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ABSTRACT
In this paper, a higher-order nonlinear oscillator model has been proposed to predict the characteris-
tics of the vortex-induced vibration (VIV) of a cylinder with two degrees of freedom. First, the vibration
equations of the cylinder fixed by four symmetric springs were deduced based on the Lagrangian sec-
ond kind of kinetic equation and the Taylor expansion formula of the binary function. Then, the fluctu-
ating lift and drag were derived by using the discrete point vortex theory. Finally, the coupling model of
the VIV was proposed by introducing the modified Van der Pol equation. On this basis, the VIV prediction
of the cylinders with different mass ratios and damping ratios was carried out, and the results were com-
pared with the experimental data to verify correctness and universality of the model. Besides, the sensitiv-
ity of the parameters in the model was analysed to investigate the predicting characteristics of the model
systematically.

1. Introduction
Vortex-induced vibration (VIV) exists widely inmany engineer-
ing fields, such as the risers in offshore oil and gas exploration,
bridges, cables, antennas, etc. (Wanderley and Soares 2015).
When the fluid with a certain velocity runs through the cylin-
drical structures, the phenomenon of periodic vortex shedding
will occur. The continuous generation and shedding of the vor-
tex will produce the fluctuating lift and drag, which will lead to
the cross-flow and in-line VIV of the structures (Rahman et al.
2016; Gao et al. 2017). And the VIV is one of the important rea-
sons for structural fatigue damage.

The research on the VIV of a cylinder is the basis of that of
the cylindrical ocean structures. In recent years, a large number
of scholars, such as Govardhan and Williamson (2000), Jauvtis
andWilliamson (2004), Prasanth andMittal (2008), Guilmineau
and Queutey (2004) and Nguyen and Nguyen (2016) have car-
ried out many model tests or CFD numerical simulations to
investigate the phenomena and induced mechanism of VIV.
The research content of the two methods is abundant. But the
cost of the model test is higher, and CFD numerical simu-
lation is relatively complicated, especially in the case of high
Reynolds number, the numerical simulation of the VIV is dif-
ficult to meet the actual needs of the engineering. Therefore,
it is widely attractive to establish the relevant mathematical
model and select the appropriate empirical parameters to pre-
dict the important characteristics of the VIV of structures
quickly.

Bishop and Hassan (1964) first proposed a self-exciting and
self-limiting Van der Pol equation to simulate the lift effect of
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fluid on the structure in VIVs. After that, Hartlen et al. (1970)
improved themodel proposed by Bishop andHasson, where the
structural vibration velocity was coupled with the Van der Pol
equation. And the improved model is also the first proposed
wake oscillator model. Based on their research, Griffin and Skop
(1976), Facchinetti et al. (2004) and Farshidianfar and Zanganeh
(2010) did some research on the wake oscillator model and
acquired certain achievements, which also made the wake oscil-
lator model become the most classical prediction model for the
VIV of cylinders gradually. However, most of their researches
have only considered the cross-flow vibration inVIV, and the in-
line vibration which has the high-frequency characteristics and
the coupling effect on cross-flow vibration cannot be ignored in
many cases, especially for the structures with lower mass ratio,
such as marine risers.

Srinil and Zanganeh (2012) employed two Duffing equations
and two Van der Pol equations to simulate the VIV of the cylin-
derwith two degrees of freedom. But in theirmathematicmodel,
the fluctuating lift and the fluctuating drag are disconnecting,
so it is difficult to fully consider the coupling effect of the in-
line and cross-flow vibration. Qin et al. (2012) deduced the fluid
forces of the cylinder in VIV based on the method of discrete
vortex, and then he proposed amodel to predict relevant charac-
teristics of the VIV with two-degree-of-freedom by combining
the linear vibration equation of structure with the classical Van
der Pol equation. However, the linearisation hypotheses in the
predictionmodel for two-degree-of-freedomVIV are toomuch,
which makes the accuracy of the predicting results still need to
be improved.
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Figure . Schematic diagram of the vibrating model of a cylinder with two degrees
of freedom.

In order to predict the amplitude response, frequency,
motion trajectory and other important characteristics of the
two-degree-of-freedom VIV of a cylinder qualitatively and
quantitatively, the vibrating equations for the cylinder fixed
by four symmetric springs have been deduced on the basis of
Lagrangian second kind of kinetic equation, where the axial
stretching nonlinearity and the coupling nonlinearity in the
springs system are considered. So, the traditional linear vibrat-
ing equations of the structures are modified as the nonlinear
equations to improve the predicting accuracy. Then, based on
the Biot–Savart law and the Blasius’ resultant forcing formula
for the unsteady flow, the fluctuating fluid forces of the cylinder
have been derived. And the mathematic relationship between
the fluctuating lift and fluctuating drag has also been obtained
from the mechanism of vortex-induced hydrodynamic force.
Finally, a high-order Van der Pol equation with fifth-order aero-
dynamic damping term which can better simulate the hysteresis
phenomenon and the super-upper branch of the amplitude in
theVIV of the cylinder with lowmass ratio has been introduced.
On this basis, a higher-order nonlinear oscillator model is pro-
posed to predict the amplitude and other characteristics of the
VIV of the cylinder with two-degree-of-freedom, and then the
model is verified and analysed for the cylinders with different
mass ratios and damping ratios. The sensitivity of each param-
eter in the model is also analysed to study the forecasting char-
acteristics of the model systematically.

2. Establishment of the higher-order nonlinear
oscillator model

2.1. Nonlinear structural vibration equation
The VIV of the structure has strong nonlinear characteristics
(Zhu and Gao 2017). When the cylinder is fixed by several
springs, the system no longer meets the linear condition, espe-
cially for the VIV of the cylinder with double degrees of free-
dom. The vibration model for that is shown in Figure 1, and the
coupling of the four springs makes the motion of the cylinder
exhibits nonlinear characteristics.

For the vibration model in Figure 1, we define the stiffness
coefficients of the four springs are all k, the original lengths are
all a and the springs are in the original long state when the

cylinder is in the central equilibrium position. For the system,
the kinetic energy is given by

T = 1
2
m(Ẋ2 + Ẏ 2) (1)

And the potential energy is described by

V = k
2

(√
(a − X )2 +Y 2 − a

)2
+ k

2

(√
(a + X )2 +Y 2 − a

)2

+ k
2

(√
X2 + (a −Y )2 − a

)2
+ k

2

(√
X2 + (a +Y )2 − a

)2

(2)

The Lagrange function of the system is expressed as

L = T −V = 1
2
m(Ẋ2 + Ẏ 2) − k

2

(√
(a − X )2 +Y 2 − a

)2

− k
2

(√
(a + X )2 +Y 2 − a

)2
− k

2

(√
X2 + (a −Y )2 − a

)2

− k
2

(√
X2 + (a +Y )2 − a

)2
(3)

And considering the generalised forces are the fluid force FX
and FY as well as the damping force cẊ and cẎ , the second kinds
of Lagrange dynamic equation for the system can be expressed
as

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= Fqj − cq̇ j (4)

where q j isX orY in the vibrating system. By solving formula (4),
the equations of motion in X and Y directions can be derived as

mẌ + cẊ + 4kX − ka(X − a)√
(X − a)2 +Y 2

− ka(X + a)√
(X + a)2 +Y 2

− kaX√
X2 + (Y − a)2

− kaX√
X2 + (Y + a)2

= FX (5a)

mŸ + cẎ + 4kY − ka(Y − a)√
X2 + (Y − a)2

− ka(Y + a)√
X2 + (Y + a)2

− kaY√
(X − a)2 +Y 2

− kaY√
(X + a)2 +Y 2

= FY (5b)

It can be found that Equations (5a) and (5b) are nonlinear
coupling equations. And their nonlinearity is mainly reflected
in the geometric nonlinearity of the springs. These equations are
complicated and difficult to solve directly, so we need to simplify
them. The nonlinear terms in above equations are expanded to
the third order by using the Taylor expansion formula of the
binary function shown in in the following equation:

f (X,Y ) = f (X0,Y0) +
[
(X − X0)

∂

∂X
+ (Y −Y0)

∂

∂Y

]
f (X0,Y0)

+ 1
2!

[
(X − X0)

∂

∂X
+ (Y −Y0)

∂

∂Y

]2

f (X0,Y0)

+ · · · + 1
n!

[
(X − X0)

∂

∂X
+ (Y −Y0)

∂

∂Y

]n

f (X0,Y0)

+Rn(3 − 53) (6)
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According to Equation (6), the ka(X − a)/
√

(X − a)2 +Y 2,
ka(X + a)/

√
(X + a)2 +Y 2, kaX/

√
X2 + (Y − a)2 and

kaX/
√
X2 + (Y + a)2 are expanded at (0, 0), respectively,

and the items higher than the third order are omitted. Thus, the
four nonlinear terms in Equation (5a) can be expressed as

(X − a)√
(X − a)2 +Y 2

= −1 + Y 2

2a2
+ XY 2

a3
(7a)

(X + a)√
(X + a)2 +Y 2

= 1 − Y 2

2a2
+ XY 2

a3
(7b)

X√
X2 + (Y − a)2

= X
a

+ XY
a2

− X3

2a3
+ XY 2

a3
(7c)

X√
X2 + (Y + a)2

= X
a

− XY
a2

− X3

2a3
+ XY 2

a3
(7d)

The four nonlinear terms in Equation (5b) can be expanded
similarly. Then, Equations (5a) and (5b) can be simplified to

mẌ + cẊ + 2kX − 4kXY 2

a2
+ kX3

a2
= FX (8a)

mŸ + cẎ + 2kY − 4kYX2

a2
+ kY 3

a2
= FY (8b)

Meanwhile, the stiffnessX and Y directions, the mass and the
damping are, respectively, given by kx = ky = 2k,m = ms + ma
and c = cs + c f where ms is the structural mass, ma is the fluid
added mass defined as ma = CaπD2ρ/4 for a cylinder, cs is the
structural viscous damping coefficient, c f is the added damping
coefficient obtained by c f = γωstρD2 and γ = C̄D/(4πSt )on
the basis ofMorrison formulawith C̄D the so-called average drag
coefficient (Hartlen and Currie 1970). By introducing the geo-
metric parameter η = 1/2a2, the modified nonlinear structural
vibrations (Equations (8a) and (8b)) become

(ms + ma)Ẍ + (cs + c f )Ẋ + kx(X + ηX3 − 4ηXY 2) = FX
(9a)

(ms + ma)Ÿ + (cs + c f )Ẏ + ky(Y + ηY 3 − 4ηYX2) = FY
(9b)

We can find that the improved nonlinear structural vibra-
tion equations involve X3, XY 2, Y 3 and YX2, where X3 and
Y 3 mainly simulate the axial stretching nonlinearity in vibra-
tion,XY 2 andYX2 mainly simulate the coupling nonlinearity of
cross-flow and in-line vibration. Moreover, the improved equa-
tions have established the relation between the axial geometric
nonlinear parameters and the coupled nonlinear parameters. So,
the empirical parameters in the nonlinear terms are fewer, which
can improve the accuracy of the calculation and reduce the com-
putational complexity.

2.2. Derivation of the fluid forces
Due to the generation and shedding of the rear vortex of the
cylinder, a lift FL and drag FD will be induced on the cylinder
(Xu et al. 2017). We define a layer of area close to the surface of

the cylinder as near-wall control field and the area outside the
near-wall control field as wake vortex field.

By superimposing the N point vortices composed of m con-
trol vortices in the near-wall field and n stable vortices in the
wake vortex field and the uniform flow, we can obtain the flow
field complex potential W (z). Based on the Blasius’ resultant
forcing formula for the unsteady flow, the fluid forces acting on
the cylinder are given by

FD − iFL =
∮
c
i(ρ

∂W
∂t

+ ρ

2
dW
dz

dW̄
dz̄

)dz̄ (10)

By using the formula of z̄kzk∗ = R2, Equation (11) can be
deduced to

FD = ρD
4

m∑
k=1

∂�k

∂t
yk

xk2 + yk2
+ ρ

N∑
k=1

�k

×
[
−vk − uk

4
2xkyk

(xk2 + yk2)2
+ vk

4
xk2 − yk2

(xk2 + yk2)2

]
(11a)

FL = −ρD
4

m∑
k=1

∂�k

∂t
xk

xk2 + yk2
+ ρ

N∑
k=1

�k

×
[
uk + uk

4
xk2 − yk2

(xk2 + yk2)2
+ vk

4
2xkyk

(xk2 + yk2)2

]
(11b)

where uk and vk are the induced velocities at the position of the
kth point vortex.

The parts in the square brackets of the above equations are
defined as fD1 and fL1, respectively. In the wake vortex field,
we assume the point vortex moves along the downstream and
xkyk/(xk2 + yk2)2 and (xk2 − yk2)/(xk2 + yk2)2 tend to 0 in the
far wake vortex field. So, fD1 and fL1 can be expressed approxi-
mately as

fD1 = 0 (12a)

fL1 = ρU
N∑

k=m+1

�k = ρU�n(t )=ρ�U cos(2πωst t ) (12b)

where ωst is the vortex shedding frequency and � is the peak of
total vorticity.

We denote the first term of the right part of Equations (12a)
and (12b) as fD2 and fL2 which are shown in Equation (13):

fD2 = ρD
4

m∑
k=1

∂�k

∂t
yk

xk2 + yk2
≈ ρD

m∑
k=1

∂�k

∂t
yk =ρD

d�C

dt
yC

(13a)

fL2 = −ρD
4

m∑
k=1

∂�k

∂t
xk

xk2 + yk2
≈ −ρD

m∑
k=1

∂�k

∂t
xk

= −ρD
d�C

dt
xC (13b)

where xC and yC are the dimensionless positions of the equiva-
lent vortex. And due to yC vibrates at the positive and negative
axis of the y-axis and xC has a slight change at the positive axis
of the x-axis, only the role of yC is taken into account.
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Based on the principle of the generation and dissipation of
vortex, the change of vorticity of the equivalent vortex is oppo-
site to that of the vortex in wake vortex field. Thus equivalent
vortex �C can be described by

�C = −� cos(2πωst t ) (14)

The position of the positive point vortex and that of the nega-
tive point vortex in the near-wall field will alternately transform.
And we can also use the cosine function to approximate this
process. But considering the specific value of the amplitude is
unknown, it is necessary to introduce an empirical parameter α

determined by the experiment. So, yC can be given by

yC = α
�

UD
cos(2πωst t ) (15)

Then, fD2 and fL2 are derived as

fD2 = ρD [2πωst� sin(2πωst t )]
[
α

�

UD
cos(2πωst t )

]
(16a)

fL2 = 0 (16b)

FD and FL can be obtained by adding fD1 and fD2 as well
as fL1 and fL2. We introduce a dimensionless wake variable
q = 2CL/CL0 whereCL0 is the reference lift coefficient. And then
considering FL = ρDU 2CL/2, we can obtain 4� cos(2πωst t ) =
UDCL0q. Thus, the cross-flow and in-line fluid forces FX and FY
are described by

FX = FD = − 1
16

ρD2CL0
2αUqq̇ (17a)

FY = FL = 1
4
ρDCL0U 2q (17b)

2.3. Higher-ordermodification of the Van der Pol equation
The classical wake oscillatormodel usually simulates themotion
of the fluid oscillator by using the Van der Pol equation.
Facchinetti et al. (2002) and (2004), in their study, argued that
the excitation term of the Van der Pol equation was related to
the acceleration of the cross-flow vibration. Researchers such as
Farshidianfar and Zanganeh (2010) and Dolatabadi et al. (2011)
found that although the classical wake oscillator model was well
able to predict the VIV response of the cylinder with high mass
ratio, it often underestimated the amplitude results under the
condition of low mass ratio. So, it is necessary to modify it.

Based on the higher-order Van der Pol equation proposed
by Landl (1975) and the research of Farshidianfar on single-
degree-of-freedom VIV, the classical wake oscillator model is
modified by high order in this paper. Landl’s higher-ordermodel
includes a Van der Pol damping term and a fifth-order aerody-
namic damping term, and specific formula is given by

C̈L + (α′ − β ′CL
2 + λ′CL

4)ĊL + �rCL = bẏ (18)

where �r is the structural vibration frequency, α′, β ′, λ′ and b
are empirical parameters and need to be selected according to
different specific problems. By transforming Equation (18) into

the form of the Van der Pol equation and introducing parame-
ters α′ = −ε, β ′/ε = −β and λ′/ε = λ, we can obtain

q̈ + εωst (βq2 − 1 + λq4)q̇ + ωst
2q = F (19)

where ωst is the Strouhal frequency with ωst = 2πStV/D. In the
research of Farshidianfar, the displacement, velocity and acceler-
ation of the structure are substituted into F to analyse themodel,
and the results of the acceleration were found to be best. So, the
F = HŸ is taken as the coupling term in Equation (19), whereH
is the empirical parameter confirmed by the experimental data.

It can be found that the higher-order equation is connected
with the classical Van der Pol equation.When β = 1 and λ = 0,
the higher-order equation is equal to the classical Van der Pol
equation. By adjusting the value of β and λ, the higher-order
equation can increase the amplitude of vibration properly. So, it
can effectively overcome some disadvantages of classical Van der
Pol equation, which is difficult to accurately simulate the high
amplitude response under the condition of low mass ratio.

To verify the enlargement effect of β and λ on vibration
amplitude, the higher-order and classical Van der Pol equations
are calculated by combining cross-flowvibration equation inves-
tigated by Facchinetti et al. (2004) and Farshidianfar and Zan-
ganeh (2010), which is shown in the following equation:

ÿ +
(
2ξδ + γ

μ

)
ẏ + δ2y = S, S=Mq=CL0

2
1

8π2St2μ
q (20)

Using a harmonic linearisation method for Equations
(19) and (20) and assuming y(t ) = y0 cos(ωt ) and q(t ) = q0
cos(ωt − φ), elementary algebra yields the amplitude y0 and q0

y0
q0

= M√
(δ2 − ω2)

2 +
(
2ξδ + γ

μ

)2
ω2

(21a)

q0 = 2

√√√√√√−β +
√

β2 + 8λ
(
1 + AM

ε
C

(δ2−ω2)
2+(2ξδ+γ /μ)2ω2

)
4λ

(21b)

ω6 −
[
1 + 2δ2 −

(
2ξδ + γ

μ

)2
]

ω4

−
[
−2δ2 +

(
2ξδ + γ

μ

)2

− δ4

]
ω2 − δ2 + G = 0 (21c)

where C = (2ξδ + γ /μ)ω2, G = hM(ω2 − δ2)ω2, parameters
ε, h, β and λ are selected as 0.3, 12, 0.25 and 0.008. The calcu-
lated results about amplitude y0 and q0 using higher-order and
classical Van der Pol equations are illustrated in Figure 2.

It can be observed that the value of q0 and y0 increases at
all reduced velocities while the lock-in and hysteresis intervals
are almost unchanged after introducing the parameters β and λ,
which indicates that the higher-order Van der Pol equation can
be applied in the prediction for the higher amplitude VIV that
usually occurs in the marine and ocean engineering field.
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Figure . Comparison of the amplitude results about higher-order and classical Van der Pol equations; (a) amplitude of thewake oscillatorq0; (b) amplitude of the structure
oscillator y0 . (This figure is available in colour online.)

2.4. Coupled nonlinear oscillator equation
By combining the structural vibration equation and the fluid
oscillator equation, we can obtain the coupled equations of the
VIV of cylinders. Meanwhile, the dimensionless process is car-
ried out, where τ = ωst t , x = X/D and y = Y/D as well as the
empirical parameter α = CD0/(2πStCL0

2) are introduced. And
the coupled nonlinear oscillator equations are expressed as

d2x
dτ 2 +

(
2ξδ + γ

μ

)
dx
dτ

+ δ2(x + ηx3 − 4ηxy2) = − CD0qq̇
32π2St2μ

(22a)

d2y
dτ 2 +

(
2ξδ + γ

μ

)
dy
dτ

+ δ2(y + ηy3 − 4ηyx2) = CL0q
16π2St2μ

(22b)

q̈ + ε(βq2 − 1 + λq4)q̇ + q = h
d2y
dτ 2 (22c)

where ξ = cs/(2msωn) is the structural damping ratio, ωn is
the natural vibrating frequency of the cylinder; μ is a dimen-
sionless mass ratio parameter with μ = (ms + ma)/ρD2; δ =
ωn/ωst is the frequency ratio; γ is the damping parameter of
fluid, being selected as 0.5 based on the research of Ogink and
Metrikine (2010), with γ = Cd/(4πSt ); η is the geometric non-
linear parameter, being taken as 0.2 by fitting with the experi-
mental results (Jauvtis and Williamson 2004; Stappenbelt et al.
2007; Blevins and Coughran 2009); h is a dimensionless cou-
pling parameter selected as 12 on the basis of the research of
Facchinetti et al. (2004); ε is the damping parameter of Van der
Pol equation related to the mass ratio of cylinder, being deter-
mined by the fitting curve (Jauvtis and Williamson 2004; Stap-
penbelt et al. 2007), as shown in Figure 3; β and λ are the nonlin-
ear parameters of fluid oscillator. In addition,CL0 andCD0 are the
referenced lift and drag coefficient, respectively which are taken
as 0.3 and 0.2 based on the researches of Blevins and Coughran
(2009) and Pantazopoulos (1994).

Figure . Fitting curve of ε for different mass ratios of cylinders. (This figure is avail-
able in colour online.)

The parameters β and λ are determined by referring to the
solving method for nonlinear equations proposed by Nayfeh
(1979).Without external disturbances, the higher-order Van der
Pol equation is given by

q̈ + q = ε(−βq2 + 1 − λq4)q̇ (23)

The solution of the equation can be divided into linear part
and nonlinear part. By ignoring the high-order nonlinear part,
we can get

q(t, ε) = u(t ) + εv(t ) + · · · (24)

Substituting Equation (24) into Equation (23), we can solve
the linear and nonlinear parts separately. And these parts are
described by

ü + u = 0, v̈ + v = ü − β

3
u̇3 + λ

5
u̇5 (25)
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Table . parameters of the cylinder.

D m∗ξ m∗ ξ fN fNx/fNy

.cm . . . . Hz 

After the algebraic computation process, the solutions are
given by

u = q0 cosωt (26a)

v = 1
2

(
1 − β

4
q02 + λ

8
q04

)
q0 cosωt + 1

8

(
β

12
− λ

16
q02

)
q03

× sin 3ωt + λ

1920
q05 sin 5ωt (26b)

When t = 0, we can obtain 1 − β/4q02 + λ/8q04 = 0. And
then q0 is solved as

q0 =
√√√√−β

λ
+

((
β

λ

)2

+ 8
λ

)0.5

(27)

It can be found that there are two independent variables in
the above formula, namely β and λ. By setting the value of β

from small to large, a series of formulas of q0 changing with λ

can be obtained. We can reasonably adjust the values of β and
λ to change q0, which will achieve the purpose of changing the
vibration amplitudes of fluid oscillator and structural oscillator.
For the model of this paper, β and λ are selected as 0.25 and
0.008, respectively by fitting with the experimental data, and the
effects of the two parameters will be investigated in Section 4.3.

3. Verification and analysis of themodel

3.1. Verification of the example of a cylinder
The experimental data of the example are derived from the
model test of the two-degree-of-freedomVIV of a cylinder con-
ducted by Jauvtis andWilliamson (2004). The relevant parame-
ters of the cylinder are shown in Table 1.

It should be noted that the mass ratio inWillamson’s paper is
defined as m∗=ms/mρ= 4ms/πρD2, where ms is the structure
mass, mρ is the displaced fluid mass, for two-dimensional sim-
ulation, the length of the cylinder can be selected as 1. We can
see the definition of mass ratio m∗ is different with the dimen-
sionless mass ratio parameter μ = ms+ma

ρD2 =m∗× πρD2
4 +CM× πρD2

4
ρD2 =

π
4 (m∗ +CM ) introduced in Section 2.4, where CM is the added
mass coefficient and usually taken as 1 for a circular cylin-
der (Facchinetti et al. 2004). Then, μ can be written as μ =
π
4 (m∗+1), which describes the relationship of μ andm∗.

The higher-order nonlinear oscillator model is solved by
using fourth-order Ronge–Kutta method, then the dimension-
less amplitude and motion trajectory of the cylinder under dif-
ferent reduced velocity are obtained, and the dimensionless fre-
quency is acquired by Fourier transform.

Besides the testing results of Jauvtis and Williamson, the
results of the same circular cylinder calculated by the existing
VIV analysis software Shear 7, where the classical wake oscilla-
tormodel is adopted, are also presented. And the relevant results
calculated by the twomodels are compared with the experimen-
tal results, as shown in Figures 4–6. It should be noted that since
the Shear 7 can only consider the cross-flow vibration of the
cylinder, just the representative cross-flow dimensionless ampli-
tude of classical model is given.

By analysing the cross-flow dimensionless amplitude results
of the newmodel in Figure 4(a), it can be found that whenUr >

4, the cross-flow VIV of the cylinder gradually enters the reso-
nance state, and its amplitude increases obviously.WhenUr > 8,
the vibration gradually starts to get out of resonance stage and
the amplitude suddenly decreases to a smaller value, which is
consistent with Williamson’s test results in general trend. And
the calculated results of the most important ‘upper branch’ and
‘super upper branch’ of the amplitude response are in good
agreement with the experimental results. In addition, the cal-
culated maximum amplitude is about 1.5D, which is very close
to the experimental results. However, we can also find the new
model does not accurately simulate the ‘lower branch’ of the
amplitude mainly because the coupling parameter ε is chosen
as a constant only related to the mass ratio. And the shape of the
‘lower branch’may be adjusted by associating εwith the reduced

Figure . Comparison of the amplitude response of cylindrical vibration; (a) cross-flow vibration; (b) in-line vibration. (This figure is available in colour online.)
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velocity, which can be further studied in the future. By contrast,
although the ‘upper branch’ of the amplitude curve is predicted
by the classical model in Shear 7, the most important ‘super
upper branch’ is absent under the condition of low mass ratio,
and the lock-in range is much smaller than experimental value.
This is due to the classic wake oscillatormodel in Shear 7 ignores
the coupling effect of in-line vibration on cross-flow vibration,
and its empirical parameter is obtained from the single-degree-
of-freedom model test, which has limited effect in the case of
high mass ratio but leads to large errors under the condition of
low mass ratio. Therefore, in engineering project, the safety fac-
tor is often larger when the Shear 7 software is used to analyse
the VIV of the cylindrical structures, such as risers.

For the in-line dimensionless amplitude results in
Figure 4(b), we can find a significant resonance appears at
Ur = 2.5. And then its amplitude decreases rapidly, follow-
ing which a larger increase of the in-line amplitude occurs
on account of the coupling effect of cross-flow vibration on
in-line vibration. WhenUr > 8, the in-line amplitude decreases
markedly since the cross-flow vibration is getting out of the
resonance state and the coupling effect is relatively weak. The
compared results show that the trend of in-line amplitude and
the maximum value in calculation are in good agreement with
the experimental results. And combined with the reasonable
prediction of the amplitude response for cross-flow vibration,
it is shown that the nonlinear oscillator model proposed in this
paper can qualitatively and quantitatively predict the amplitude
characteristics of the cylindrical two-degree-of-freedom VIV.

The calculated and experimental results of dimensionless fre-
quency of cross-flow vibration are illustrated in Figure 5. It
can be found that the calculated results occur the lock-in phe-
nomenon when Ur is between about 4 and 9, and the results
under other reduced velocities satisfy Strouhal relationship,
which is basically consistent with the experimental data and
the related theoretical studies. However, since the mathemati-
cal model fails to accurately simulate the ‘lower branch’ of cross-
flow vibration in Wiiliamson’s test, the frequency results have a
certain difference with experimental data when Ur is larger. In
general, themathematicalmodel can qualitatively reflect the fre-
quency characteristics of the cylindrical VIV.

The calculated motion trajectories of the cylinder under dif-
ferent reduced velocity are shown in Figure 6. When the flow
velocity is lower, the in-line amplitude is larger than the cross-
flow amplitude, and the motion trajectory is flat or standard ‘8’
shape, but its overallmotion is relatively small.With the increase

Figure . Comparison of the cross-flow dimensionless frequency of cylindrical
vibration. (This figure is available in colour online.)

of the flow velocity, the cross-flow vibration gradually enters the
resonance state and the amplitude increases significantly. At this
time, the trajectory appears as the elongated ‘8’ shape and gradu-
ally shows a tendency to tilt to the right side. And the trajectory
is close to the crescent shape when Ur is near 8–9. And then,
with the continuous increase of the flow velocity, both the in-line
and the cross-flow amplitudes significantly decrease, and the
motion trajectory becomes a narrow and thin ‘8’ shape. The vari-
ation of these trajectories is basically consistent with the results
of the current VIV studies.

In general, the higher-order nonlinear oscillator model pro-
posed in this paper is able to simulate the amplitude, frequency
and trajectory characteristics of two-degree-of-freedom VIV of
the cylinder with relatively higher accuracy, which can provide
a reference for research on quick prediction for the VIV charac-
teristics of structures.

3.2. Influence of themass ratio
The mass ratio is an important factor affecting the VIV char-
acteristics of the cylinders. In this section, based on the model
test of two-degree-of-freedom VIV of the cylinders carried out
by Stappenbelt et al. (2007), the mass ratios are selected as 2.36,
3.68, 5.19, 6.54, 7.91 and 8.76, respectively and the damping ratio
is chosen as 0.006. The values of ε at different mass ratios are

Figure . The motion trajectories of the two-degree-of-freedom VIV of the cylinder.
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Figure . Comparison of the cross-flow amplitude of the cylinders with different mass ratios; (a) m∗ = .; (b) m∗ = .; (c) m∗ = .; (d) m∗ = .; (e) m∗ = .;
(f )m∗ = ..

selected by using the curve in Figure 3 shown in Section 2.4. And
then the predictions for the VIV of the cylinders with different
mass ratios are conducted.

Figure 7 shows the calculated results and Stappenbelt’s exper-
imental results about the cross-flow amplitude of the cylinders
with different mass ratios. After comparison, we can find the

two kinds of results can be consistent in the trend under differ-
ent mass ratio conditions, and the calculated maximum ampli-
tude is in agreement with the experimental value. In addition,
it can be found that as the mass ratio increases, the maximum
amplitude of the cross-flow vibration and the lock-in range is
decreasing, but the hysteresis interval predicted by the oscillator
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Figure . Comparison of the in-line amplitude of the cylinders with different mass ratios; (a) m∗ = .; (b) m∗ = .; (c) m∗ = .; (d) m∗ = .; (e) m∗ = .;
(f )m∗ = .. (This figure is available in colour online.)

model is becoming larger. This is because the coupling param-
eter ε will increase with the mass ratio, which will enhance the
nonlinearity of themodel to further make the hysteresis interval
larger.

By comparing and analysing the in-line amplitude curves
in Figure 8, it is found that the calculated results are in good
agreement with the experimental results in the trend, and the
calculated maximum amplitude is basically consistent with the
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Figure . Comparison of the motion trajectories of the cylinders with different mass ratios; (a) Ur = ; (b) Ur = .; (c) Ur = . (This figure is available in colour online.)

experimental value. However, when the mass ratio is 2.36, the
in-line maximum amplitude of the cylinder is overestimate.
This is because the calculating formula of ε is the exponential
form related to mass ratio, and the value of ε is insensitive when
the mass ratio is very low, which results in a certain error. In
addition, with the increase of the mass ratio, the coupling effect
of the cross-flow vibration on in-line vibration is weakening,
which leads to the decrease of its second peak. And similar
to the cross-flow vibration, the in-line hysteresis interval also
increases with the mass ratio.

In order to analyse the effect of mass ratio on the motion
trajectory of the cylinder near the amplitude branch mutation,
the trajectory curves with Ur = 6, 8.5 and 10 under different
mass ratio conditions are given in Figure 9. It can be found
that the ‘8’ shape of the trajectory becomes thinner with the
increase of mass ratio at Ur = 6, which is because the coupling
effect of cross-flow vibration on in-line vibration decreases with
the increase of mass ratio and the in-line amplitude becomes
smaller. AtUr= 8.5, the trajectory appears as the crescent shape
under the lower mass ratio condition. And with the increase of
the mass ratio, the size of trajectory decreases greatly, and the
crescent shape is not exhibited because the increase ofmass ratio

causes the reduction of lock-in range, which has contributed to
the detachment from the lock-in region atUr= 8.5.WhenUr=
10, the trajectories become the ‘8’ shape again under all mass
ratio conditions, and the higher the mass ratio, the smaller the
‘8’ shape.

3.3. Influence of the damping ratio
The damping ratio is another important parameter affecting the
characteristics of VIV. By referring to the results of the model
test for two-degree-of-freedom VIV of the cylinders conducted
by Blevins and Coughran (2009) in 2009, we set the mass ratio
of the cylinders as 5.4 and the damping ratio as 0.002, 0.02, 0.05,
0.1, 0.2 and 0.4, respectively, and then predict the characteristics
of the VIV of the cylinders.

Figure 10 shows the cross-flow amplitude curves with dif-
ferent damping ratios. It can be found that the curve trend and
the maximum value of the calculated results are in basic agree-
ment with the experimental results. With the increase of damp-
ing ratio, the amplitude of cross-flow vibration is significantly
reduced, and the hysteresis is no longer obvious, but the size of
the locking range has little change.
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Figure . Comparison of the cross-flow amplitude of the cylinders with different damping ratios; (a) ξ = .; (b) ξ = .; (c) ξ = .; (d) ξ = .; (e) ξ = .;
(f ) ξ = .. (This figure is available in colour online.)
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Figure . Comparison of the in-line amplitude of the cylinders with different damping ratios; (a) ξ = .; (b) ξ = .. (This figure is available in colour online.)

Figure 11 illustrates the in-line amplitude curves of the cylin-
ders with different damping ratios. Since the in-line amplitude
under the high damping ratio conditions is very small, we have
only given the comparison results about the damping ratios
0.002 and 0.02. After comparison, we can find that the calcu-
lated results are consistent with the experimental results in the
trend, but the calculated maximum amplitude is a little smaller
than the experimental value. In addition, the maximum value of
the in-line amplitude decreases with the increase of the damping
ratio.

In general, the amplitude responses obtained by the model
are basically consistent with the experimental results under dif-
ferent damping ratios, which further verify the correctness and
extensiveness of the application of this model.

Similarly, the motion trajectories of the cylinder at Ur = 6.5
and 8.5 are given in Figure 12. It is found that the trajectory grad-
ually changes from the ‘8’ shape to the crescent shape with the
increase of damping at Ur = 6.5, and the size of the trajectory

has significantly decreased. This is because the Ur of the ampli-
tude peak is smaller when the damping ratio is relatively large,
which will result in the advanced appearance of the correspond-
ing crescent-shape trajectory.WhenUr is 8.5, the trajectory also
changes with the damping ratio to the crescent shape, but varia-
tion of its size is relatively smaller. The reason for that is mainly
the vibration starts to jump out of the lock-in region at Ur =
8.5, and the effect of the damping ratio on amplitude is relatively
slighter.

4. Sensitivity analysis of themodel parameters
In this paper, three types of empirical parameters are introduced,
which are geometric nonlinear parameter η, coupling param-
eters h and ε as well as fluid oscillator damping parameters β

and λ, respectively. In order to comprehensively analyse their
effects on the prediction, an investigation of the sensitivity of
above parameters has been performed.

Figure . Comparison of the motion trajectories of the cylinders with different damping ratios; (a) Ur = ; (b) Ur = .. (This figure is available in colour online.)
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Figure . Comparison of the amplitude with different values of the geometric nonlinear parameter; (a) cross-flow vibration; (b) in-line vibration. (This figure is available
in colour online.)

4.1. Analysis of the geometric nonlinear parameter
The geometrical nonlinear parameter η of the model is taken
as 0, 0.1, 0.2 and 0.3, respectively in the calculation of the two-
degree-of-freedom VIV of the cylinder. And by referring to the
data of the model test about the two-degree-of-freedom VIV of
a cylinder conducted by Jauvtis andWilliamson (2004) in 2004,
the mass ratio and damping ratio are selected as 2.6 and 0.005,
respectively. And then, the predicting results are compared with
Williamson’s testing results, as shown in Figure 13.

It can be found that with the increase of parameter η, the
cross-flow and in-line amplitude curves have changed obviously.
For the cross-flow vibration, when η increases, the Ur corre-
sponding to the peak of amplitude curve has an augment and the
value of the peak also has a variation. Andwhen η is 0.2, both the
predictingmaximumamplitude and theUr corresponding to the
peak of amplitude curve are close to the test results. For the in-
line vibration, the shape of the amplitude curve changes with the
η markedly. With the increase of η, the value of the second peak
of in-line amplitude is also increasing, but the first peak value
is basically consistent, which indicates the effect of η on in-line
vibration mainly reflects in the coupled cross-flow and in-line

item. And we can also find the results of in-line amplitude agree
well with the test results at η= 0.2.

In general, as the value of η increases, the maximum cross-
flow amplitude decreases while the maximum in-line amplitude
increases, and the in-line amplitude response is more sensitive
to η. And by analysing and selecting the value of the geometric
nonlinear parameter, it is possible to realise the reasonable allo-
cation of the coupling effect of cross-flow on in-line vibration.

4.2. Analysis of the coupling parameters
The coupling parameter ε is first analysed. Taking the test data of
Stappenbelt et al. (2007) as a reference, we select the mass ratio
and damping ratio as 5.19 and 0.006 and set the value of ε as 0.03,
0.066 and 0.1, respectively in the calculation. The comparison
of the calculated and experimental results about the vibrating
amplitude is shown in Figure 14.

It can be found that with the increase of parameter ε, the
cross-flow and in-linemaximum amplitudes are decreasing, and
the width of lock-in interval also decreases slightly. For the
cross-flow vibration, the Ur value corresponding to the peak
decreases with the increase of ε. The difference between the

Figure . Comparison of the amplitude with different values of the parameter ε; (a) cross-flow vibration; (b) in-line vibration. (This figure is available in colour online.)
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Figure . Comparison of the amplitude with different values of the parameter h; (a) cross-flow vibration; (b) in-line vibration. (This figure is available in colour online.)

three curves is mainly in the locked region, and when ε is
0.066, the model predicting results are in good agreement with
the experimental results. For the in-line vibration, the shape of
amplitude curve is more sensitive to the change of ε, and with
the increase of ε, the coupling effect of cross-flow vibration on
in-line vibration is becoming stronger, which makes the curve
shape has a greater change. In summary, the role of ε is to adjust
the value of cross-flow and in-line maximum amplitudes in the
locked region.

For another coupling parameter h, we set it as 8, 12 and 16
in the prediction, respectively. The calculated results are com-
pared with the test results obtained by Stappenbelt, as shown in
Figure 15.

After analysis, it can be found that the parameter h not only
has an effect on the value of the maximum amplitude, but also
affects the width of the lock-in interval. As h increases, both
the maximum amplitudes of cross-flow and in-line vibrations
and the width of lock-in interval are increasing significantly. By
contrast, the maximum amplitude, the width of lock-in interval

and the shape of amplitude curve obtained by the mathemati-
cal model are in good agreement with the experimental results
when h is 12, which is consistent with the research results of
Facchinetti et al.

4.3. Analysis of the damping parameters of fluid oscillator
For the analysis of damping parameters β and λ, the mass ratio
and damping ratio of the cylinder are still 5.19 and 0.006 in the
calculation. According to the determinationmethod for β and λ

described in Section 2.4, the four groups of β and λ are selected
and numbered as Schemes 1–4, respectively (see Table 2).

Considering β and λ may have a certain impact on the hys-
teresis interval, we have adopted the conditions of uniform
acceleration and uniform deceleration, respectively in calcula-
tion. And then the calculated results of each scheme are com-
pared with the experimental results, as shown in Figure 16.

By comparing and analysing the cross-flow amplitude curve,
it can be found that the maximum amplitudes of the Schemes

Figure . Comparison of the amplitude under different schemes of damping parameters; (a) cross-flow vibration; (b) in-line vibration. (This figure is available in colour
online.)
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Table . Selection schemes of the
damping parameters.

Scheme number β
λ

 . .
 . .
 . .
 . .

1–4 are decreasing, but the widths of lock-in interval and hys-
teresis interval are subjected to the process of increasing and
decreasing, and the lock-in interval and the hysteresis interval
of the Scheme 2 are the largest. Meanwhile, similar results have
occurred in the in-line amplitude curve. And it is worth noting
that the first peak of in-line amplitude curve has also changed,
indicating that the value of the first peak is more sensitive to
the variation of the damping parameters. So, the adjustment of
the first peak can be achieved by reasonably changing the val-
ues of the fluid oscillator damping parameters. We can also find
the result of Scheme 2 is better than that of other schemes, which
indicates that the combination of the damping parameters deter-
mined in this paper is reasonable.

5. Conclusions
In this paper, by combining the nonlinear structural oscilla-
tor equation with the higher-order Van der Pol equation and
deducing the fluctuating lift and drag based on the discrete point
vortex theory, a higher-order nonlinear oscillator model which
can predict the important characteristics of the two-degree-of-
freedom VIV of a cylinder qualitatively and quantitatively has
been proposed. Then, the model is verified in a classical cylin-
der example. And the vibrating characteristics under different
mass ratio and damping ratio conditions are analysed. Finally,
the sensitivity of the three types of parameters in the model is
comprehensively studied. Through the above research, the fol-
lowing conclusions can be drawn:

(1) The vibrating amplitude and frequency under lower
mass ratio condition calculated by the model proposed
in this paper are in good agreement with the experimen-
tal results ofWilliamson, and the variation of themotion
trajectory is consistent with the existing research, indi-
cating that the model can predict the important charac-
teristics of the VIV of the cylinder with lower mass ratio
accurately. And the feasibility and reasonability of the
application of the model are proved under the condition
of lower mass ratio.

(2) The amplitude responses predicted by the model at dif-
ferent mass ratios and damping ratios are basically con-
sistent with the experimental results conducted by Stap-
penbelt et al. And it is found that the mass ratio and
damping ratio have a great influence on the cross-flow
and in-line amplitude and trajectory in the calculation
and model test. These results indicate that the higher-
order nonlinear oscillator model can be used to pre-
dict the important characteristics of the two-degree-
of-freedom VIV of cylindrical structures with different
mass ratios and damping ratios, which verifies the uni-
versality of the application of the model.

(3) The sensitivity and effect of the geometric nonlinear
parameter η, the coupling parameters ε and h as well as
the fluid oscillator damping parameters β and λ are stud-
ied by using the control variable method. After compar-
ison and analysis, it is found that η has an effect on both
the cross-flow and in-line amplitude, and the value of
amplitudes can be adjusted by selecting a reasonable η.
The role of ε is mainly to adjust the peaks of cross-flow
and in-line amplitude and the coupling effect between
them. And the parameter h not only has an effect on the
value of maximum amplitude, but also affects the width
of lock-in interval. Besides, the value of the maximum
amplitude, the parameters β and λ can also affect the
size of hysteresis interval. In addition, by adopting the
parameters selected in this paper, the amplitude charac-
teristics of the VIVI can be accurately predicted, which
indicates that the determination of the parameters in the
model is reasonable and feasible.

In general, compared with the classical oscillator model, the
higher-order nonlinear oscillatormodel has considered the non-
linear characteristics in two-degree-of-freedom VIV more fully
and established the mathematical relationship between the fluc-
tuating lift and drag, which can improve the accuracy of pre-
diction effectively, especially for the ‘super upper branch’ of the
amplitude response at lower mass ratio. And its range of appli-
cation for mass ratio and damping ratio is more extensive. The
model studied in this paper may provide some reference for
the fast prediction of the VIV with two-degree-of-freedom for
marine cylindrical structures.
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