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1 Abstract

The Mori-Zwanzig (MZ) formulation is a technique originally developed in statistical mechanics to formally
integrate out phase variables in nonlinear dynamical systems by means of a projection operator. One of the
main features of such formulation is that it allows us to systematically derive exact equations of motion for
quantities of interest (macroscopic observables), based on microscopic equations of motion. Such equations
can be found in a variety of applications, including particle dynamics [79, 98, 55, 56, 53], partial differential
equations (PDEs) [15, 83, 12, 14, 88], fluid dynamics [69, 70, 82], and solid-state physics [97, 54, 60].
Computing the solution to the MZ equation is a challenging task. One of the main difficulties is the ap-
proximation of the memory integral (convolution term), and the fluctuation term (noise), which encode the
interaction between the so-called orthogonal dynamics and the dynamics of the quantity of interest. The
orthogonal dynamics is essentially a high-dimensional nonlinear flow that satisfies a hard-to-solve integro-
differential equation. Such flow has, in general, the same order of magnitude and dynamical properties as
the quantity of interest, i.e., there is no general scale separation between the so-called resolved and the un-
resolved variables of the system [18, 81]. As a consequence, approximating the MZ memory integral and
the fluctuation term in these cases is a daunting task, because of the strong coupling between the orthogonal
dynamics and the dynamics of the macroscopic observables.

In this project, we developed an in-depth mathematical analysis of the MZ formulation for both de-
terministic and stochastic dynamical systems, and established an effective computational framework that
allows us to perform numerical simulations of the MZ equation. This report includes a detailed description
of the main research achievement we have obtained during the period of performance July 2015 - Sep 2019.
Such achievements may be summarized as follows:

1. We developed rigorous error estimates and provably convergent approximations for the MZ memory
integral and fluctuation terms for both deterministic and stochastic dynamical systems. In particular,
we developed and studied new hierarchical approximations based on Faber operator series expansions,
first-principle memory calculation methods, and data-driven approximation schemes. These contribu-
tions effectively turn the MZ formalism into a practical computational tool, which can find its way in
many different application areas.

2. We derived and studied a new type of MZ equation, which we called effective Mori-Zwanzig (EMZ)
equation, governing the dynamics of noise-averaged observables defined on stochastic flow. Build-
ing upon recent work on hypoelliptic operators, we rigorously proved that EMZ memory kernel and
fluctuation terms converge exponentially fast in time to a computable equilibrium state. This has
applications in high-dimensional particle dynamics, and swarms of autonomous agents.

The report includes extensive discussion and technical details on these major achievements, as well as
many application examples ranging from random wave propagation to high-dimensional interacting particle
systems.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

1



2 The Mori-Zwanzig formulation for deterministic dynamical systems

Consider the following nonlinear dynamical system evolving on a smooth manifoldM⊆ RN

dx

dt
= F (x), x(0) = x0, (1)

where x0 ∈ M is a random initial state with probability density function ρ0(x). The dynamics of any
vector-valued phase space function

u : M→ RM

x 7→ u(x) (2)

can be expressed in terms of a semi-group of linear operators acting on u(x0), i.e.,

u(x(t,x0)) = etL(x0)u(x0), L(x0) =
N∑
k=1

Fk(x0)
∂

∂x0k
. (3)

In this equation, x(t,x0) represents the flow [95] generated by the system (1), while etL is the composition
(Koopman) operator of the system [48, 23]. The Mori-Zwanzig formulation [102, 15, 99] allows us to derive
the exact evolution equation for the phase space function u(t) = u(x(t,x0)). The first step is to introduce
an orthogonal projection operator P , and the complementary projectionQ = I −P , where I is the identity
operator. In Section (2.1) we review a few commonly used projection operators P . The mathematical
properties of such projections are discussed in detail in [99, 23]. By differentiating the well-known Dyson’s
identity

etL = etQL +

∫ t

0
esLPLe(t−s)QLds (4)

with respect to time, we obtain the following evolution equation for the Koopman operator etL

d

dt
etL = etLPL+ etQLQL+

∫ t

0
esLPLe(t−s)QLQL ds. (5)

Applying this equation to any phase space function u(0) = u(x0) yields the Mori-Zwanzig (MZ) equation

∂

∂t
etLu(0) = etLPLu(0) + etQLQLu(0) +

∫ t

0
esLPLe(t−s)QLQLu(0)ds. (6)

The three terms at the right hand side are called, respectively, streaming term, fluctuation (or noise) term,
and memory term. It is often more convenient (and tractable) to compute the evolution of the observable
u(t) within a closed linear space, e.g., the image of the projection operator P . To this end, we apply such
projection to both sides of equation (6). This yields the following exact evolution equation1

∂

∂t
PetLu(0) = PetLPLu(0) +

∫ t

0
PesLPLe(t−s)QLQLu(0)ds. (7)

Depending on the choice of the projection operator, the MZ equation (7) can yield evolution equations for
different quantities. For example, if we use Chorin’s projection [15, 16, 99, 88], then (7) is an evolution
equation for the conditional mean of u(t). Similarly, if we use Mori’s projection [100, 79], then (7) is an
evolution equation for the temporal auto-correlation function of u(t).

1Note that the projected fluctuation term PetQLQLu(0) is identically zero since PQ = 0.
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2.1 Projection operators

In this Section we briefly review the most commonly used projection operators in the Mori-Zwanzig for-
mulation. Such projection operators are conditional expectations in the sense of operator algebras [23], and
they can have different forms.

2.1.1 Chorin’s Projection

In a series of papers [15, 18, 17], A. J. Chorin and collaborators defined the following projection operator

(
Pu
)
(x̂0) =

∫ +∞

−∞
u(x̂(t; x̂0, x̃0), x̃(t; x̂0, x̃0))ρ0(x̂0, x̃0)dx̃0∫ +∞

−∞
ρ0(x̂0, x̃0)dx̃0

, (8)

which represents a conditional expectation in the sense of classical probability theory. In equation (8),
x(t;x0) denotes the flow map generated by (1), which we can split into resolved x̂(t; x̂0, x̃0) and unresoved
x̃(t; x̂0, x̃0) maps, u(x) = u(x̂, x̃) is the quantity of interest, and ρ0(x̂0, x̃0) is the probability density
function of the initial state x0. Alternatively, one can replace ρ0 with the equilibrium distribution of the sys-
tem ρeq(x̂, x̃), assuming it exists. Clearly, if x0 is deterministic then ρ0(x̂0, x̃0) is a product of Dirac delta
functions. On the other hand, if x̂0 and x̃0 are statistically independent, i.e. ρ0(x̂0, x̃0) = ρ̂0(x̂0)ρ̃0(x̃0),
then the conditional expectation (8) simplifies to(

Pu
)
(x̂0) =

∫ +∞

−∞
u(x̂(t; x̂0, x̃0), x̃(t; x̂0, x̃0))ρ̃0(x̃0)dx̃0. (9)

In the special case where u(x̂, x̃) = x̂(t; x̂0, x̃0) we have

(
Px̂
)
(x̂0) =

∫ +∞

−∞
x̂(t; x̂0, x̃0)ρ̃0(x̃0)dx̃0, (10)

i.e. the conditional expectation of the resolved variables x̂(t) given the initial condition x̂0. This means that
an integration of (10) with respect to ρ̂0(x̂0) yields the mean of the resolved variables

〈x̂(t)〉ρ0 =

∫ ∞
−∞

(
Px̂
)
(x̂0)ρ̂0(x̂0)dx̂0 =

∫ ∞
−∞

x̂(t,x0)ρ0(x0)dx0. (11)

Obviously, if the resolved variables x̂(t) evolve from a deterministic initial state x̂0 then the conditional
expectation (10) represents the average of the reduced-order flow map x̂(t; x̂0, x̃0) with respect to the PDF
of x̃0, i.e.,

X0(t; x̂0) =

∫ +∞

−∞
x̂(t; x̂0, x̃0)ρ̃0(x̃0)dx̃0. (12)

In this case, the MZ equation (7) is an unclosed evolution equation (PDE) for the averaged flow map (12).

2.1.2 Mori’s projection

Suppose that the phase space function (2) belongs to the weighted Hilbert space H = L2(M, ρ), where ρ
is a positive weight function inM. For instance, ρ can be the probability density function of the random
initial state x0 (i.e., ρ0, see Eq. (1)), or the equilibrium distribution of the system ρeq (assuming it exists).
Let

〈f, g〉ρ =

∫
M
f(x)g(x)ρ(x)dx f, g ∈ H (13)
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be the inner product in H . For any closed linear subspace V ⊂ H the Mori projection operator P is de-
fined to be the orthogonal projection onto V , relative to the inner product (13). If V is finite-dimensional
with dimension M , then P can be effectively constructed if we are given M linearly independent func-
tions ui(0) = ui(x) ∈ V (i = 1, ...,M ). Clearly, if {u1(0), . . . , uM (0)} are linearly independent then
V = span{u1(0), . . . , uM (0)}. To construct Mori’s projection, we first compute the positive-definite Gram
matrix Gij = 〈ui(0), uj(0)〉ρ, i.e.,

Gij =

∫
M
ui(x)uj(x)ρ(x)dx. (14)

With Gij available, we define

Pf =
M∑
i,j=1

G−1
ij 〈ui(0), f〉ρuj(0), f ∈ H. (15)

In classical statistical dynamics of Hamiltonian systems, a common choice for the density ρ is the Boltzmann-
Gibbs distribution

ρeq(x) =
1

Z
e−βH(x), (16)

whereH(x) = H(q,p) is the Hamiltonian of the system, x = (q,p) are generalized coordinates/momenta,
and Z is the partition function. For other systems, ρ can be, e.g., the probability density function of the
random initial state (see Eq. (1)). Next, suppose that each observable ui(x) (i = 1, . . . ,M ) belongs to the
linear space PH ∩D(L), where PH = V andD(L) denotes the domain of the Liouville operator L defined
in (3). The MZ equation (6), with P defined in (15), reduces to

du(t)

dt
= Ωu(t) +

∫ t

0
K(t− s)u(s)ds+ f(t), (17)

where2

Gij = 〈ui(0), uj(0)〉ρ (Gram matrix), (19a)

Ωij =

M∑
k=1

G−1
jk 〈uk(0),Lui(0)〉ρ (streaming matrix), (19b)

Kij(t) =
M∑
k=1

G−1
jk 〈uk(0),LetQLQLui(0)〉ρ (memory kernel), (19c)

f(t) = etQLQLu(0) (fluctuation term). (19d)

Equation (17) is often referred to as generalized Langevin equation (GLE) in classical statistical physics and
other disciplines [79]. By applying Mori’s projection to (17) we obtain the following linear (and closed)
evolution equation for the projected phase space function

d

dt
Pu(t) = ΩPu(t) +

∫ t

0
K(t− s)Pu(s) ds. (20)

2Note that the ith component of the system (113) can be explicitly written as

dui(t)

dt
=

M∑
j=1

Ωijuj(t) +

M∑
j=1

∫ t

0

Kij(t− s)uj(s)ds+ fi(t). (18)
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Acting with the inner product 〈uj(0), ·〉ρ on both sides of equation (20), yields the following exact equation
for the temporal auto-correlation matrix Cij(t) = 〈uj(0), ui(t)〉ρ

d

dt
Cij(t) =

M∑
k=1

ΩikCkj(t) +
M∑
k=1

∫ t

0
Kik(t− s)Ckj(s)ds. (21)

In the particular case where the system (1) is Hamiltonian, and the random initial state x0 is distributed
according to the Boltzmann-Gibbs distribution (16), i.e., ρ0 = ρeq, we have that the Liouville operator L is
skew-adjoint relative to the inner product (13), i.e., we have

〈f,Lg〉eq = −〈Lf, g〉eq f, g ∈ L2(M, ρeq) ∩ D(L). (22)

This allows us to simplify the expression of the memory kernel (19c) as

Kij(t) =−
M∑
k=1

G−1
jk 〈QLuk(0), etQLQLui(0)〉eq,

=−
M∑
k=1

G−1
jk 〈fk(0), fi(t)〉eq, (23)

where fk(t) is the k-th component of the fluctuation term (19d). The identity (23) is known as Kubo’s second
fluctuation-dissipation theorem [49]. We emphasize there are several advantages in using Mori’s projection
(15) over other projection operators, e.g., Chorin’s projection [17]. For example, both MZ equations (17)
and (20) are linear and closed, which allows us perform rigorous convergence analysis [100, 99]. Secondly,
the streaming matrix (19b) and the memory kernel (19c) are exactly the same for both the projected and the
unprojected equations ,i.e., (17) and (20)). Thirdly, we have that the second-fluctuation dissipation theorem
(23) holds true, which allows us to express the MZ memory kernel in a relatively simple form in terms of
averages of random forces.

2.1.3 Berne’s projection

A simpler projection operator was proposed by Berne in [7] (see also [79], p. 30). The standard form for
scalar observables (2) is

P(·) =
〈u0, (·)〉eq
〈u0, u0〉eq

u0. (24)

This projection can be considered as a subcase of the Mori projection (15). Note that with Berne’s projection
we can easily represent the auto-correlation function the observable u(x(t)) as

Cu(t) =
〈u(t), u0〉eq
〈u0, u0〉eq

=
〈Pu(x(t)), u0〉eq
〈u0, u0〉eq

. (25)

3 Analysis of the MZ memory integral

In this section we develop a thorough mathematical analysis to deduce conditions for accuracy and conver-
gence of different approximations of the memory integral in the Mori-Zwanzig (MZ) equation, i.e.,∫ t

0
PesLPLe(t−s)QLQLu0ds =

∫ t

0
PesLPe(t−s)LQLQLu0ds. (26)
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In particular, we derive errors bounds and sufficient convergence conditions for short-memory approxi-
mations, the t-model, and hierarchical (finite-memory) approximations. In addition, we derive useful upper
bounds for the MZ memory integral, which allow us to estimate a priori the contribution of the MZ memory
to the dynamics. Such upper bounds are easily computable for systems with finite-rank projections, e.g.,
Mori-type projections. We begin by describing the behavior of the semigroup norms ‖etL‖, ‖etQLQ‖, and
‖etLQ‖ as functions of time, for different choices of projection P and different norms. As we will see, the
analysis will give clear computable bounds only in some circumstances, illustrating the difficulty of this
problem and the need for further development and insight.

3.1 Memory growth

We begin by seeking to bound the MZ memory integral as a whole, and build our analysis from there. A
key assumption of our analysis is that the semigroup etLQ is strongly continuous, i.e., the map t 7→ etLQg is
continuous in the norm topology on the space of observables for each fixed g [28]. Thus, assume that there
exist constants MQ and ωQ such that ‖etLQ‖ ≤ MQe

tωQ . Throughout this section, ‖ · ‖ denotes a general
Banach norm. We begin with the following simple estimate:

Theorem 1. (Memory growth) Let etL and etLQ be strongly continuous semigroups with upper bounds
‖etL‖ ≤Metω and ‖etLQ‖ ≤MQetωQ . Then∥∥∥∥∫ t

0
PesLPLe(t−s)QLQLu0ds

∥∥∥∥ ≤M0(t), (27)

where

M0(t) =

C1te
tωQ , ω = ωQ

C1

ω − ωQ
[etω − etωQ ], ω 6= ωQ

(28)

and C1 = MMQ‖LQLu0‖ is a constant. Clearly, lim
t→0

M0(t) = 0.

Proof. We first rewrite the memory integral in the equivalent form∫ t

0
PesLPLe(t−s)QLQLu0ds =

∫ t

0
PesLPe(t−s)LQLQLu0ds.

Since etL and etLQ are assumed to be strongly continuous semigroups, we have the upper bounds ‖etL‖ ≤
Metω, ‖etLQ‖ ≤MQetωQ . Therefore∥∥∥∥∫ t

0
PesLPe(t−s)LQLQLu0ds

∥∥∥∥ ≤ ∫ t

0
‖esLPe(t−s)LQLQLu0‖ds

≤MMQ‖LQLu0‖
∫ t

0
es(ω−ωQ)ds

=

C1te
tωQ , ω = ωQ

C1

ω − ωQ
[etω − etωQ ], ω 6= ωQ

where C1 = MMQ‖P‖2‖LQLu0‖.
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Theorem 1 provides an upper bound for the growth of the memory integral based on the assumption
that etL and etLQ are strongly continuous semigroups. We emphasize that only for simple cases can such
upper bounds can be computed analytically (we will compute one of the cases later in section 5.7), because
of the fundamental difficulties in computing the upper bound of etLQ. However, it will be shown later that,
although the specific expression for M0(t) is unknown, the form of it is already useful as it enables us to
derive some verifiable theoretical predictions for general nonlinear systems.

3.2 Short memory approximation and the t-model

Theorem 1 can be employed to obtain upper bounds for well-known approximations of the memory integral.
Let us begin with the t-model proposed in [18]. This model relies on the approximation∫ t

0
PesLPLe(t−s)QLQLu0ds ' tetLPLQLu0 (t-model). (29)

Theorem 2. (Memory approximation via the t-model [18]) Let etL and etLQ be strongly continuous
semigroups with upper bounds ‖etL‖ ≤Metω and ‖etLQ‖ ≤MQetωQ . Then∥∥∥∥∫ t

0
PesLPLe(t−s)LQLQLu0ds− tPetLLQLu0

∥∥∥∥ ≤M1(t),

where

M1(t) =


C1

(
etωQ − etω

ωQ − ω
+
tetω

MQ

)
ω 6= ωQ

C1
MQ + 1

MQ
tetω ω = ωQ

,

and C1 = MMQ‖P‖2‖LQLu0‖.

Proof. By applying the triangle inequality, we obtain that∥∥∥∥∫ t

0
PesLPe(t−s)LQLQLu0ds− tPetLPLQLu0

∥∥∥∥ ≤ ‖P‖2 ‖LQLu0‖
(
MMQ

∫ t

0
esωe(t−s)ωQds+ tMetω

)
= C1e

tω

(∫ t

0
es(ωQ−ω)ds+

t

MQ

)

=


C1

(
etωQ − etω

ωQ − ω
+
tetω

MQ

)
ω 6= ωQ

C1
MQ + 1

MQ
tetω ω = ωQ

where C1 = MMQ‖P‖2‖LQLu0‖.

Theorem 2 provides an upper bound for the error associated with the t-model. The limit

lim
t→0

M1(t) = 0, (30)

guarantees the convergence of the t-model for short integration times. On the other hand, depending on the
semigroup constants M , ω, MQ and ωQ (which may be estimated numerically), the error of the t-model
may remain small for longer integration times (see the numerical results in section 3.7.2) Next, we study the

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

7



short-memory approximation proposed in [80]. The main idea is to replace the integration interval [0, t] in
(26) by a shorter time interval [t−∆t, t], i.e.∫ t

0
PesLPLe(t−s)QLQLu0ds '

∫ t

t−∆t
PesLPLe(t−s)QLQLu0ds (short-memory approximation),

where ∆t ∈ [0, t] identifies the effective memory length. The following result provides an upper bound to
the error associated with the short-memory approximation.

Theorem 3. (Short memory approximation [80]) Let etL and etLQ be strongly continuous semigroups
with upper bounds ‖etL‖ ≤Metω and ‖etLQ‖ ≤MQetωQ . Then the following error estimate holds true∥∥∥∥∫ t

0
PesLPLe(t−s)QLQLu0ds−

∫ t

t−∆t
PesLPLe(t−s)QLQLu0ds

∥∥∥∥ ≤M2(t−∆t, t),

where

M2(∆t, t) =


C1(t−∆t)etωQ ω = ωQ

C1e
∆tωQ

e(t−∆t)ω − e(t−∆t)ωQ

ω − ωQ
ω 6= ωQ

and C1 = MMQ‖P‖2‖LQLu0‖.

We omit the proof due to its similarity to that of Theorem 1. Note that lim
∆t→t

M2(∆t, t) = 0 for all finite
t > 0.

3.3 Hierarchical memory approximation methods

An alternative way to approximate the memory integral (26) was proposed by Stinis in [82]. The key idea is
to repeatedly differentiate (26) with respect to time, and establish a hierarchy of PDEs which can eventually
be truncated or approximated at some level to provide an approximation of the memory. In this section, we
derive this hierarchy of memory equations and perform a thorough theoretical analysis to establish accuracy
and convergence of the method. To this end, let us first define

w0(t) =

∫ t

0
PesLPLe(t−s)QLQLu0ds (31)

to be the memory integral (26). By differentiating w0(t) with respect to time we obtain

dw0(t)

dt
= PetLPLQLu0 +w1(t),

where

w1(t) =

∫ t

0
PesLPLe(t−s)QL(QL)2u0ds.

By iterating this procedure n times we obtain

dwn−1(t)

dt
= PetLPL(QL)n−1u0 +wn(t), (32)
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where

wn(t) =

∫ t

0
PesLPLe(t−s)QL(QL)n+1u0ds. (33)

The hierarchy of equations (32)-(33) is equivalent to the following infinite-dimensional system of PDEs

dw0(t)

dt
= PetLPLQLu0 +w1(t)

dw1(t)

dt
= PetLPLQLQLu0 +w2(t)

...
dwn−1(t)

dt
= PetLPL(QL)nu0 +wn(t)

...

(34)

evolving from the initial condition wi(0) = 0, i = 1, 2, . . . (see equation (33)). With such initial condition
available, we can solve (34) with backward substitution, i.e., from the last equation to the first one, to obtain
the following (exact) Dyson series representation of the memory integral (31)

w0(t) =

∫ t

0
PesLPLQLu0ds+

∫ t

0

∫ τ1

0
PesLPLQLQLu0dsdτ1

+ · · ·+
∫ t

0

∫ τn−1

0
· · ·
∫ τ1

0
PesLPL(QL)nu0dsdτ1 . . . dτn−1 + . . . . (35)

So far no approximation was introduced, i.e., the infinite-dimensional system (34) and the corresponding
formal solution (35) are exact. To make progress in developing a computational scheme to estimate the
memory integral (31), it is necessary to introduce approximations. The simplest of these rely on truncating
the hierarchy (34) after n equations, while simultaneously introducing an approximation of the n-th order
memory integral wn(t). We denote such an approximation as wen

n (t). The truncated system takes the form

dwn
0 (t)

dt
= PetLPLQLu0 +wn

1 (t),

dwn
1 (t)

dt
= PetLPLQLQLu0 +wn

2 (t),

...
dwn

n−1(t)

dt
= PetLPL(QL)nu0 +wen

n (t).

(36)

The notation wn
j (t) (j = 0, .., n − 1) emphasizes that the solution to (36) is, in general, different from the

solution to (34). The initial condition of the system can be set as wn
i (0) = 0, for all i = 0, . . . , n − 1. By

using backward substitution, this yields the following formal solution

wn
0 (t) =

∫ t

0
PesLPLQLu0ds+

∫ t

0

∫ τ1

0
PesLPLQLQLu0dsdτ1

+ · · ·+
∫ t

0

∫ τn−1

0
· · ·
∫ τ1

0
PesLPL(QL)nu0dsdτ1 . . . dτn−1

+

∫ t

0

∫ τn−1

0
· · ·
∫ τ1

0
wen
n (s)dsdτ1 . . . dτn−1 (37)

representing an approximation of the memory integral (31). Note that, for a given system, such approxima-
tion depends only on the number of equations n in (36), and on the choice of approximationwen

n (t). In this
report, we discuss the following choices:
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1. H-model

wen
n (t) = 0. (38)

2. Ht-model

wen
n (t) = tPetLPL(QL)n+1u0. (39)

The first approximation, i.e., (38), is a truncation of the hierarchy obtained by assuming that wn(t) = 0.
Such approximation was originally proposed by Stinis in [82], and we shall call it the H-model. Similarly,
the Ht- model approximation is based on replacing the n-th order memory integral wn(t) with a classical
t-model. Note that in this setting the classical t-model approximation proposed by Chorin and Stinis [18] is
equivalent to a zeroth-order Ht-model approximation.

Hereafter, we present a thorough mathematical analysis that aims at estimating the error ‖w0(t) −
wn

0 (t)‖, wherew0(t) is full memory at time t (see (31) or (35)), whilewn
0 (t) is the solution of the truncated

hierarchy (36), withwen
n (t) given by (38), or (39). With such error estimates available, we can infer whether

the approximation of the full memory w0(t) with wn
0 (t) is accurate and, more importantly, if the algorithm

to approximate the memory integral converges. To the best of our knowledge, this is the first time a rigorous
convergence analysis is performed on various approximations of the MZ memory integral. It turns out
that the distance ‖w0(t) −wn

0 (t)‖ can be controlled through the construction of the hierarchy under some
constraint on the initial condition.

3.3.1 The H-model

Setting wen
n (t) = 0 in (36) yields an approximation by truncation, which we will refer to as the H-model

(hierarchical model). Such model was originally proposed by Stinis in [82]. Hereafter we provide error
estimates and convergence results for this model. In particular, we derive an upper bound for the error
‖w0(t) −wn

0 (t)‖, and sufficient conditions for convergence of the reduced-order dynamical system. Such
conditions are problem dependent, i.e., they involve the Liouvillian L, the initial condition u0, and the
projection operator P .

Theorem 4. (Accuracy of the H-model) Let etL and etLQ be strongly continuous semigroups with upper
bounds ‖etL‖ ≤ Metω and ‖etLQ‖ ≤ MQe

tωQ , and let T > 0 be a fixed integration time. For some fixed
n, let

αj =
‖(LQ)j+1Lu0‖
‖(LQ)jLu0‖

, 1 ≤ j ≤ n. (40)

Then, for any 1 ≤ p ≤ n and all t ∈ [0, T ], we have

‖w0(t)−wp
0(t)‖ ≤Mp

3 (t) ≤Mp
3 (T ),

where

Mp
3 (t) = C1A1A2

tp+1

(p+ 1)!

p∏
j=1

αj , C1 = ‖LQLu0‖MMQ,

and

A1 = max
s∈[0,T ]

es(ω−ωQ) =

{
1 ω ≤ ωQ
eT (ω−ωQ) ω ≥ ωQ

, A2 = max
s∈[0,T ]

esωQ =

{
1 ωQ ≤ 0

eTωQ ωQ ≥ 0
. (41)
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Proof. We begin with the expression for the difference between the memory termw0 and its approximation
wp

0

w0(t)−wp
0(t) =

∫ t

0

∫ τp

0
· · ·
∫ τ2

0

∫ τ1

0
PesLPe(τ1−s)LQ(LQ)n+1Lu0dsdτ1 · · · dτp. (42)

Since etL and etLQ are strongly continuous semigroups we have ‖etL‖ ≤ Meωt and ‖etLQ‖ ≤ MQe
ωQt.

By using Cauchy’s formula for repeated integration, we bound the norm of the error (42) as

‖w0(t)−wp
0(t)‖ ≤

∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
‖PesLPe(σ−s)LQ(LQ)p+1Lu0‖dsdσ

≤ ‖P‖2MMQ‖(LQ)p+1Lu0‖
∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
esωe(σ−s)ωQdsdσ

≤ C1

 p∏
j=1

αj

∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
esωe(σ−s)ωQdsdσ︸ ︷︷ ︸

fp(t,ω,ωQ)

= C1

 p∏
j=1

αj

 fp(t, ω, ωQ), (43)

where C1 = ‖P‖2‖LQLu0‖MMQ as before. The function fp(t, ω, ωQ), may be bounded from above as

fp(t, ω, ωQ) ≤ A1A2

∫ t

0

(t− σ)p−1

(p− 1)!

∫ σ

0
dsdσ

= A1A2
tp+1

(p+ 1)!
.

Hence, we have

‖w0(t)−wp
0(t)‖ ≤ C1A1A2

 p∏
j=1

αj

 tp+1

(p+ 1)!
= Mp

3 (t).

Theorem 4 states that for a given dynamical system (represented by L) and quantity of interest (rep-
resented by P) the error bound Mp

3 (t) is strongly related to {αj} which is ultimately determined by the
initial condition x0. It turns out that by bounding {αj}, we can control Mp

3 (t), and therefore the over-
all error ‖w0(t) − wp

0(t)‖. The following corollaries discuss sufficient conditions such that the error
‖w0(T )−wn

0 (T )‖ decays as we increase the differentiation order n for fixed time T > 0.

Corollary 4.1. (Uniform convergence of the H-model) If {αj} in Theorem4 satisfy

αj <
j + 1

T
, 1 ≤ j ≤ n, (44)

for any fixed time T > 0, then there exists a sequence of constants δ1 > δ2 > · · · > δn such that

‖w0(T )−wp
0(T )‖ ≤ δp 1 ≤ p ≤ n.
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Proof. Evaluating (43) at any fixed (finite) time T > 0 yields

‖w0(T )−wp
0(T )‖ ≤ C2

 p∏
j=1

αi

 fp(T, ω, ωQ) ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)!
,

‖w0(T )−wp+1
0 (T )‖ ≤ C2

p+1∏
j=1

αj

 T p+2

(p+ 2)!
,

where C2 = C2(T ) = C1A1A2. If there exists δp ≥ 0 such that

‖w0(T )−wp
0(T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)!
≤ δp,

then there exist a δp+1 such that

‖w0(T )−wp+1
0 (T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)!

αp+1T

p+ 2
≤ δp+1 < δp,

since αp+1 < (p+ 2)/T . Moreover, the condition αj < (j + 1)/T holds for all 1 ≤ j ≤ n. Therefore, we
conclude that for any fixed time T > 0, there exists a sequence of constants δ1 > δ2 > · · · > δn such that
‖w0(T )−wp

0(T )‖ ≤ δp, where 1 ≤ p ≤ n.

Corollary 4.1 provides a sufficient condition for the error ‖w0(t)−wp
0(t)‖ to decrease monotonically as we

increase p in (36). A stronger condition that yields an asymptotically decaying error bound is given by the
following Corollary.

Corollary 4.2. (Asymptotic convergence of the H-model) If αj in Theorem 4 satisfies

αj < C, 1 ≤ j < +∞ (45)

for some positive constant C, then for any fixed time T > 0, and arbitrary δ > 0, there exists a constant
1 ≤ p < +∞ such that for all n > p,

‖w0(T )−wn
0 (T )‖ ≤ δ.

Proof. By introducing the condition αj < C in the proof of Theorem 4 we obtain

‖w0(T )−wp
0(T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)!
≤ C2T

(CT )p

(p+ 1)!
for all 1 < p < +∞.

The limit

lim
p→+∞

C2T
(CT )p

(p+ 1)!
= 0

allows us to conclude that there exists a constant 1 < p < +∞ such that for all n > p, ‖w0(T )−wn
0 (T )‖ ≤

δ.
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An interesting consequence of Corollary 4.2 is the existence of a convergence barrier, i.e., a “hump” in
the error plot ‖w0(T )−wp

0(T )‖ versus p generated by the H-model. While Corollary 4.2 only shows that
behavior for an upper bound of the error, not directly the error itself, the feature is often found in the actual
errors associated with numerical methods based on these ideas. The following Corollary shows that the
requirements on {αj} can be dropped (we still need αj < +∞) if we consider relatively short integration
times T .

Corollary 4.3. (Short-time convergence of the H-model) For any integer n for which αj < ∞ for 1 ≤
j ≤ n, and any sequence of constants δ1 > δ2 > · · · > δn > 0, there exists a fixed time T > 0 such that

‖w0(T )−wp
0(T )‖ ≤ δp

for 1 ≤ p ≤ n.

Proof. Since αj < +∞, we can choose C = max
1≤j≤n

αj . By following the same steps we used in the proof

of Theorem 4, we conclude that, for

T ≤ 1

C
min

1≤p≤n

[
C(p+ 1)!

C2
δp

] 1
p+1

,

the errors satisfy

‖w0(T )−wp
0(T )‖ ≤ C2

 p∏
j=1

αj

 T p+1

(p+ 1)!
≤ C2

C

(CT )p+1

(p+ 1)!
≤ δp

as desired, for all 1 ≤ p ≤ n.

Corollary 4.1 and Corollary 4.2 provide sufficient conditions for the error ‖w0(T )−wn
0 (T )‖ generated

by the H-model to decay as we increase the truncation order n. However, we still need to answer the
important question of whether theH-model actually provides accurate results for a given nonlinear dynamics
(L), quantity of intererest (P) and initial state x0. Corollary 4.3 provides a partial answer to this question
by showing that, at least in the short time period, condition (44) is always satisfied (assuming that {αj} are
finite). This guarantees the short-time convergence of the H-model for any reasonably smooth nonlinear
dynamical system and almost any observable. However, for longer integration times T , convergence of the
H-model for arbitrary nonlinear dynamical systems cannot be established in general, which means that we
need to proceed on a case-by-case basis by applying Theorem 4 or by checking whether the hypotheses
of Corollary 4.1 or Corollary 4.2 are satisfied. On the other hand, convergence of the H-model can be
established for any finite integration time in the case of linear dynamical systems [100]. From a practical
viewpoint, the implementation of the H-model requires computing (LQ)nLx0 to high-order in n. This is
not straightforward if the dynamical systems is nonlinear. However, for linear systems such terms can be
easily computed (see section 3.4).

3.3.2 The Ht-model

The Ht-model is obtained by solving the system (36) with wen
n (t) approximated using Chorin’s t-model

[18] (see equation (39)). Convergence analysis can be performed by using the mathematical methods we
employed for the proofs of the H-model. Note that the classical t-model is equivalent to a zeroth-order
Ht-model.
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Theorem 5. (Accuracy of the Ht-model) Let etL and etLQ be strongly continuous semigroups with upper
bounds ‖etL‖ ≤ Metω and ‖etLQ‖ ≤ MQe

tωQ , and let T > 0 be a fixed integration time. For some fixed
n, let

αj =
‖(LQ)j+1Lu0‖
‖(LQ)jLu0‖

, 1 ≤ j ≤ n. (46)

Then, for any 1 ≤ p ≤ n and all t ∈ [0, T ], we have

‖w0(t)−wp
0(t)‖ ≤Mp

6 (t) ≤Mp
6 (T ),

where

Mp
6 (t) = C4

 p∏
j

αj

 tp+1

(p+ 1)!
, C4 =

[
C1A1A2 +

C1

MQA3

]
, A3 = max

s∈[0,T ]
sesω =

{
1 ω ≤ 0,

eTω ω > 0
,

and C1, A1, A2 are as before.

Proof. For p-th order Ht-model, the difference between the memory term w0 and its approximation wp
0 is

w0(t)−wp
0(t) =

∫ t

0

∫ τp

0
· · ·
∫ τ2

0

[∫ τ1

0
PesLPe(τ1−s)LQ(LQ)p+1Lu0ds−

τ1Peτ1LP(LQ)p+1Lu0

]
dτ1 · · · dτp. (47)

Using Cauchy’s formula for repeated integration, we can bound the norm of the second term in (47) as∥∥∥∥∫ t

0

(t− σ)p−1

(p− 1)!
σPeσLP(LQ)p+1Lu0dσ

∥∥∥∥ ≤ ∫ t

0

(t− σ)p−1

(p− 1)!
‖σPeσLP(LQ)p+1Lu0‖dσ

≤ ‖P‖2M‖(LQ)p+1Lu0‖
∫ t

0

(t− σ)p−1

(p− 1)!
σeσωdσ︸ ︷︷ ︸

gp(t,ω)

=
C1

MQ

 p∏
j=1

αj

 gp(t, ω), (48)

where C1 = ‖P‖2‖LQLu0‖MMQ as before. The function gp(t, ω), may be bounded from above as

gp(t, ω) ≤ A3

∫ t

0

(t− σ)p−1

(p− 1)!
σdσ = A3

tp+1

(p+ 1)!
, A3 = max

s∈[0,T ]
esω =

{
1 ω ≤ 0

eTω ω > 0
.

By applying the triangle inequality to (47), and taking (48) into account, we obtain

‖w0(t)−wp
0(t)‖ ≤ C1A1A2

 p∏
j=1

αj

 tp+1

(p+ 1)!
+

C1

MQ
A3

 p∏
j=1

αj

 tp+1

(p+ 1)!
= Mp

6 (t).

One can see that the upper bounds Mp
6 (t) and Mp

3 (t) (see Theorem 4) share the same structure, the only
difference being the constant out front. Hence by changing C2 to C4, we can prove of a series of corollaries
similar to 4.1, 4.2, and 4.3. In summary, what holds for the H-model also holds for the Ht-model. For the
sake of brevity, we omit the statement and proofs of those corollaries.
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3.4 Linear dynamical systems

The upper bounds we obtained above are not easily computable for general nonlinear systems and infinite-
rank projections, e.g., Chorin’s projection (8). However, if the dynamical system is linear, then such upper
bounds are explicitly computable and convergence of the H-model can be established for linear phase space
functions in any finite integration time T . To this end, consider the linear system ẋ = Ax with random
initial condition x(0) sampled from the joint probability density function

ρ0(x0) = δ(x01 − x1(0))
N∏
j=2

ρ0j(x0j). (49)

In other words, the initial condition for the quantity of interest u(x) = x1(t) is set to be deterministic, while
all other variables x2, . . . , xN are zero-mean and statistically independent at t = 0. Here we also assume for
simplicity that ρ0j (j = 2, .., N ) are i.i.d. standard normal distributions. Observe that the Liouville operator
associated with the linear system ẋ = Ax is

L =
N∑
i=1

N∑
j=1

Aijxj
∂

∂xi
, (50)

where Aij are the entries of the matrix A. If we choose observable u(t) = x1(t), then Chorin’s projec-
tion operator (10) yields the evolution equation for the conditional expectation E[x1(t)|x1(0)] , i.e., the
conditional mean path (12), which can be explicitly written as

d

dt
E[x1|x1(0)] = A11E[x1|x1(0)] + w0(t), (51)

where A11 = PLx1(0) is the first entry of the matrix A, w0 represents the memory integral (31). Next, we
explicitly compute the upper bounds for the memory growth and the error in the H-model for this system.
To this end, we first notice that the domain of the Liouville operator can be restricted to the linear space

V = span{x1, . . . , xN}. (52)

In fact, V is invariant under L, P and Q, i.e., LV ⊆ V , PV ⊆ V and QV ⊆ V . These operators have the
following matrix representations

L ' AT '
[
a11 bT

a MT
11

]
, P '


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , Q '


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,
whereM11 is the minor of the matrix of A obtained by removing the first column and the first row, while

a = [A12 · · ·A1N ]T , bT = [A21 · · ·AN1]. (53)

Therefore,

LQ '

[
0 bT

0 MT
11

]
, L(QL)nx1(0) '

[
bT
(
MT

11

)n−1
a(

MT
11

)n
a

]
. (54)
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At this point, we set x01 = x1(0) and

q(t, x01, x̃0) =

∫ t

0
esLPLe(t−s)QLQLx01ds.

Since x̃0 = (x2(0), ..., xN (0)) is random, q(t, x01, x̃0) is a random variable. By using Jensen’s inequality
[E(X)]2 ≤ E

(
X2
)
, we have the following L∞ estimate

‖(Pq)(t, x01)‖L∞ ≤ ‖q(t, x01, ·)‖L2
ρ0
. (55)

On the other hand, we have

‖etL‖L2
ρ0

(V ) ≤ ‖etL‖L2
ρ0
≤ etω, ω = −1

2
inf divρ0(Ax). (56)

For linear dynamical systems, both ‖ ·‖L2
ρ0

(V ) and ‖ ·‖L2
ρ0

upper bounds can be used to estimate the norm of

the semigroup etL. However, for the semigroup etLQ, we can only obtain the explicit form of the ‖ · ‖L2
ρ0

(V )

bound, which is given by the following perturbation theorem [28]:

‖etLQ‖L2
ρ0

(V ) ≤ etωQ , where ωQ = ω +

√√√√A2
11 +

N∑
i=2

A2
1i

〈x2
i (0)〉ρ0
x2

1(0)
≥ ω + ‖LP‖L2

ρ0
(V ). (57)

Memory growth It is straightforward at this point to compute the upper bound of the memory growth we
obtained in Theorem1. Since ‖P‖L2

ρ0
= ‖Q‖L2

ρ0
= 1 (P and Q are orthogonal projections relative to ρ0),

we have the following result

|w0(t)| ≤ ‖LQLx1(0)‖e
tω − etωQ
ω − ωQ

=

√
(bTa)2x2

1(0) +
∥∥Λxi+1(0)M

T
11a
∥∥2

2

etω − etωQ
ω − ωQ

, (58)

where Λxi+1(0) is a N −1×N −1 diagonal matrix with Λii = 〈xi+1(0)〉ρ0 , and ‖ · ‖2 is the vector 2-norm.

Accuracy of the H-model We are interested in computing the upper bound of the approximation error
generated by the H-model (see section 3.3.1 - Theorem 4). By using the matrix representation of L, P and
Q, the n-th order H-model MZ equation (51) for linear system can be explicitly written as

d

dt
E[x1|x1(0)] = A11E[x1|x1(0)] + wn0 (t) (MZ equation),

dwnj (t)

dt
= bT (MT

11)jaTE[x1|x1(0)] + wnj+1(t), j = 0, 1, . . . , n− 1,

dwnn(t)

dt
= bT (MT

11)naTE[x1|x1(0)],

(59)

where M11, a and b are defined as before (see equation (53)). The upper bound for the memory term
approximation error is explicitly obtained as

|w0(t)− wn0 (t)| ≤ A1A2‖L(QL)nx1(0)‖ tn+1

(n+ 1)!

= A1A2

√[
bT
(
MT

11

)n
a
]2
x2

1(0) +
∥∥∥Λxi+1(0)

(
MT

11

)n+1
a
∥∥∥2

2

tn+1

(n+ 1)!
(60)
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where A1, A2 are defined in (41), while ω and ωQ are given in (56) and (57), respectively. Note that the
error bound (60) is slightly different from the one we obtained in Theorem 4. The reason is that here we
choose to bound ‖L(QL)nu0‖, instead of the quotient αn = ‖L(QL)n+1u0‖/‖L(QL)nu0‖. For each fixed
integration time T , the upper bound (60) goes to zero as we send n to infinity, i.e.,

lim
n→+∞

|w0(T )− wn0 (T )| = 0.

This means that theH-model converges for all linear dynamical systems with observables in the linear space
(52).

3.5 Memory estimates for finite-rank projections and Hamiltonian systems

The semigroup estimates we obtained in previous sections allow us to compute explicitly an a priori esti-
mate of the memory kernel in the Mori-Zwanzig equation if we employ finite-rank projections, e.g., Mori’s
projection operator (15). Hereafter we outline the procedure to obtain such estimate for Hamiltonian dynam-
ical systems. We begin by recalling that, in general, Hamiltonian systems are necessarily divergence-free,
i.e.,

divρeq(F ) = 0. (61)

Here, F (x) is the velocity field at the right hand side of (1), while ρeq = e−βH/Z is the canonical Gibbs
distribution. Equation (61) can be easily obtained by noticing that

divρeq(F ) =eβH∇ ·
(
e−βHF

)
,

=eβH
N∑
i=1

(
∂

∂qi

[
e−βH

∂H
∂pi

]
− ∂

∂pi

[
e−βH

∂H
∂qi

])
,

=0.

The Koopman semigroup generated by a Hamiltonian dynamical system is always a contraction in the L2
ρeq

norm, i.e., ∥∥etL∥∥
L2
ρeq
≤ 1. (62)

Moreover, the MZ equation (7) with a finite-rank projection P of the form (15) can be reduced to the
following Volterra integro-differential equation

d

dt
Pui(t) =

M∑
j=1

ΩijPuj(t)−
M∑
j=1

∫ t

0
Kij(t− s)Puj(s)ds, i = 1, ...,M (63)

where

Gij = 〈ui, uj〉eq, (64a)

Ωij =
M∑
k=1

(G−1)jk〈uk,Lui〉eq, (64b)

Kij(t− s) = −
M∑
k=1

(
G−1

)
jk
〈QLuk, e(t−s)QLQLui〉eq. (64c)
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Equation (63) is often called generalized Langevin equation (GLE) [20, 79] for the projected quantity of
interest ui(t). To derive (64a)-(64c), we used the fact that L is skew-adjoint and Q is self-adjoint with
respect to the L2

ρeq inner product, and that Q2 = Q. Next, define the temporal-correlation matrix

Cij(t) = 〈uj(0), ui(t)〉eq = 〈uj(0),Pui(t)〉eq. (65)

By applying 〈uj , (·)〉eq to both sides of equation (63), we obtain the following exact evolution equation for
Cij(t)

dCij
dt

=
M∑
k=1

ΩikCkj −
M∑
k=1

∫ t

0
Kik(t− s)Ckj(s)ds. (66)

Moreover, if we employ a one-dimensional Mori’s basis, i.e.,M = 1, then we obtain the simplified equation

dC(t)

dt
= ΩC(t)−

∫ t

0
K(t− s)C(s)ds. (67)

where C(t) = 〈u(0), u(t)〉eq. The main difficulty in solving the GLE (66) (or (67)) lies in computing
the memory kernel Kij(t). Hereafter we prove that such memory kernels can be uniformly bounded by a
computable quantity that depends only on the initial condition of the system. For the sake of simplicity, we
will focus on the one-dimensional GLE (67).

Theorem 6. The memory kernel K(t) in the one-dimensional GLE (66) is uniformly bounded as

|K(t)| ≤
‖u̇(0)‖2L2

ρeq

‖u(0)‖2
L2
ρeq

∀t ≥ 0. (68)

Proof. From the second-fluctuation dissipation theorem (64c), the memory kernel K(t) satisfies

|K(t)| =
∣∣∣∣〈etQLQLu(0),QLu(0)〉eq

〈u(0), u(0)〉eq

∣∣∣∣ ≤ ‖etQLQ‖L2
ρeq

‖Lu(0)‖2L2
ρeq

‖u(0)‖2
L2
ρeq

= ‖etQLQ‖L2
ρeq

‖u̇(0)‖2L2
ρeq

‖u(0)‖2
L2
ρeq

On the other hand, we know that the semigroup etQLQ is contractive, i.e. ‖etQLQ‖L2
ρeq
≤ 1. Since Q is an

orthogonal projection with respect to ρeq, we have ‖etQLQ‖L2
ρeq
≤ ‖Q‖L2

ρeq
‖etQLQ‖L2

ρeq
≤ 1. This yields

|K(t)| ≤ ‖etQLQ‖L2
ρeq

‖u̇(0)‖2L2
ρeq

‖u(0)‖2
L2
ρeq

≤
‖u̇(0)‖2L2

ρeq

‖u(0)‖2
L2
ρeq

.

Theorem 6 provides an a priori and easily computable upper bound for the memory kernel defining the
dynamics of any quantity of interest u1 that is initially in the Gibbs canonical ensemble ρeq = e−βH/Z.
In section 5.7, we will calculate the upper bound (68) analytically and compare it with the exact memory
kernel we obtain in prototype linear and nonlinear Hamiltonian systems.

Next, we provide simple numerical examples of the MZ memory approximation analysis we discussed
so far. Specifically, we study Hamiltonian systems (linear and nonlinear) with finite-rank projections (Mori’s
projection), and non-Hamiltonian systems with infinite-rank projections (Chorin’s projection). In both cases
we demonstrate the accuracy of the a priori memory estimation method we presented in section 3.5 and
section 3.4. We also compute the solution to the MZ equation for non-Hamiltonian systems with the t-
model, the H-model and the Ht-model.
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3.6 Hamiltonian dynamical systems with finite-rank projections

In this section we consider dimension reduction in linear and nonlinear Hamiltonian dynamical systems with
finite-rank projection. In particular, we consider Mori’s projection (15) and study the MZ equation for the
temporal auto-correlation function of a scalar quantity of interest.

3.6.1 Harmonic chains of oscillators

Consider a one-dimensional chain of harmonic oscillators. This is a simple but illustrative example of a
linear Hamiltonian dynamical system which has been widely studied in statistical mechanics, mostly in
relation with the microscopic theory of Brownian motion [6, 39, 29]. The Hamiltonian of the system can be
written as

H(p, q) =
1

2m

N∑
i=1

p2
i +

k

2

N+1∑
i,j=0
i<j

(qi − qj)2, (69)

where qi and pi are, respectively, the displacement and momentum of the i-th particle, m is the mass of
the particles (assumed constant throughout the network), and k is the elasticity constant that modulates the
intensity of the quadratic interactions. We set fixed boundary conditions at the endpoints of the chain, i.e.,
q0(t) = qN+1(t) = 0 and p0(t) = pN+1(t) = 0 (particles are numbered from left to right) and m = k = 1.
The Hamilton’s equations are

dqi
dt

=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

, (70)

which can be written in a matrix-vector form as[
ṗ
q̇

]
=

[
0 kB − kD
I/m 0

] [
p
q

]
(71)

where B is the adjacency matrix of the chain and D is the degree matrix (see [8]). Note that (71) is a linear
dynamical system. We are interested in the velocity auto-correlation function of a tagged oscillator, say the
one at location j = 1. Such auto-correlation function is defined as

Cp1(t) =
〈p1(0)p1(t)〉eq
〈p1(0)p1(0)〉eq

, (72)

where the average is with respect to the Gibbs canonical distribution ρeq = e−βH/Z. It was shown in [39]
that Cp1(t) can be obtained analytically by employing Lee’s continued fraction method . The result is the
well-known J0 − J4 solution

Cp1(t) = J0(2t)− J4(2t), (73)

where Ji(t) is the i-th Bessel function of the first kind. On the other hand, the Mori-Zwanzig equation
derived by the following Mori’s projection

P(·) =
〈(·), p1(0)〉eq
〈p1(0), p1(0)〉eq

p1(0) (74)

yields the following GLE for Cp1(t)

dCp1(t)

dt
= Ωp1Cp1(t)−

∫ t

0
K(s)Cp1(t− s)ds. (75)
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Here,

Ωp1 =
〈Lp1(0), p1(0)〉eq
〈p1(0), p1(0)〉eq

= 0

since 〈pi(0), qj(0)〉eq = 0, while K(t) is the MZ memory kernel. For the J0 − J4 solution, it is possible
to derive the memory kernel K(t) analytically. To this end, we simply insert (73) into (75) and apply the
Laplace transform

L [·](s) =

∫ ∞
0

(·)e−stdt

to obtain

K̂(s) = −s+
1

Ĉ(s)
, (76)

where Ĉ(s) = L [Cp1(t)] and K̂(s) = L [K(t)]. The inverse Laplace transform of (76) can be computed
analytically as

K(t) =
J1(2t)

t
+ 1. (77)

With K(t) available, we can verify the memory estimated we derived in Theorem 6. To this end,

|K(t)| ≤
‖ṗ1(0)‖2L2

ρeq

‖p1(0)‖2
L2
ρeq

=
‖q2(0)− 2q1(0)‖2L2

ρeq

‖p1(0)‖2
L2
ρeq

= 2. (78)

Here we used the exact solution of the velocity auto-correlation function and displacement auto-correlation
function of the fixed-end harmonic chain given by (see [39])

〈pi(0), pj(0)〉eq =
kBT

π

∫ π

0
sin(ix) sin(jx)dx, 〈qi(0), qj(0)〉eq =

kBT

π

∫ π

0

sin(ix) sin(jx)

4 sin2(x/2)
dx.

In Figure 1 we plot the absolute value of the memory kernel K(t) together with the theoretical bound (78).
It is seen that the upper bound we obtain in this case is of the same order of magnitude as the memory kernel.

3.6.2 Chorin-Hald system

In this section, we study the Hamiltonian system studied by Chorin et al. in [16, 18]. The Hamiltonian
function is defined as

H(p, q) =
1

2
(q2

1 + p2
1 + q2

2 + p2
2 + q2

1q
2
2), (79)

while the corresponding Hamilton’s equations of motion are
q̇1 = p1

ṗ1 = −q1(1 + q2
2)

q̇2 = p2

ṗ2 = −q2(1 + q2
1)

(80)
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Figure 1: Harmonic chain of oscillators. (a) Velocity auto-correlation function Cp1(t) and (b) memory
kernel K(t) of the corresponding MZ equation. It is seen that our theoretical estimate (78) (dashed line)
correctly bounds the MZ memory kernel. Note that the upper bound we obtain is of the same order of
magnitude as the memory kernel.

We assume that the initial state is distributed according to canonical Gibbs distribution ρeq = e−H(p,q)/Z.
The partition function Z is given by

Z = e1/4(2π)3/2K0

(
1

4

)
, (81)

where K0(t) is the modified Bessel function of the second kind. We aim to study the properties of the
autocorrelation function of the first component q1, which is defined as

Cq1(t) =
〈q1(0), q1(t)〉eq
〈q1(0), q1(0)〉eq

.

Obviously, Cq1(0) = 1. The evolution equation for Cq1(t) is obtained by using the MZ formulation with
the Mori’s projection

P(·) =
〈(·), q1(0)〉eq
〈q1(0), q1(0)〉eq

q1(0). (82)

This yields the GLE

dCq1(t)

dt
= Ωq1Cq1(t)−

∫ t

0
K(s)Cq1(t− s)ds. (83)

The streaming term Ωq1Cq1(t) is again identically zero since

Ωq1 =
〈Lq1(0), q1(0)〉eq
〈q1(0), q1(0)〉eq

= 0.

Theorem 6 provides the following computable upper bound for the modulus of K(t)

|K(t)| ≤
‖q̇1(0)‖2L2

ρeq

‖q1(0)‖2
L2
ρeq

=
‖p1(0)‖2L2

ρeq

‖q1(0)‖2
L2
ρeq

=
e1/4K0 (1/4)√
πU (1/2, 0, 1/2)

≈ 1.39786, (84)
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Figure 2: Hald Hamiltonian system (80). (a) Autocorrelation function of the displacement q1(t) and (b)
memory kernel of the governing MZ equation. Here Cq1(t) is computed by Markov chain Monte-Carlo
(MCMC) while K(t) is determined by inverting numerically the Laplace transform in (85) with the Talbot
algorithm. It is seen that the theoretical upper bound (84) (dashed line) is of the same order of magnitude as
the memory kernel.

where U(a, b, y) is the confluent hypergeometric function of the second kind. In Figure 2(a) we plot the
correlation function Cq1(t) we obtained by sampling (80) and then averaging over all realizations. The
samples of the initial condition are generated from the Gibbs equilibrium distribution by using Markov
Chain Monte Carlo (MCMC). In Figure 2(b) we plot the memory kernel K(t) we computed numerically
based on Cq1(t). To compute such kernel, we inverted numerically the Laplace transform of (83), i.e.,

K(t) = L −1

[
−s+

1

Ĉ(s)

]
, (85)

where Ĉ(s) = L [Cq1(t)]. In practice, we replaced Cq1(t) within the time interval [0, 20] with a high-
order polynomial interpolant at Gauss-Chebyshev-Lobatto nodes, computed the Laplace transform of such
polynomial analytically, and then computed the inverse Laplace transform (85) numerically with the Talbot
algorithm [1].

3.7 Non-Hamiltonian systems with infinite-rank projections

In this section we study the accuracy of the t-model, the H-model and the Ht model in predicting scalar
quantities of interest in non-Hamiltonian systems. In particular, we consider the MZ formulation with
Chorin’s projection operator. For the particular case of linear dynamical systems we also compute the
theoretical upper bounds we obtained in section 3.4 for the memory growth and the error in the H-model,
and compare such bounds with exact results.

3.7.1 Linear Dynamical Systems

We begin by considering a low-dimensional linear dynamical system ẋ = Ax evolving from a random
initial state with density ρ0(x) to verify the MZ memory estimates we obtained in section 3.4. For simplicity,
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we choose A to be negative definite

A = eCBe−C , B =

−1
8 0 0

0 −2
3 0

0 0 −1
2

 , C =

 0 1 0
−1 0 1
0 −1 0

 . (86)

In this case, the origin of the phase space is a stable node and it is easy to estimate
∥∥etL∥∥

ρ0
. We set x1(0) = 1

and x2(0), x3(0) independent standard normal random variables. In this setting, the semigroup estimates
(56) and (57) are explicit

‖etL‖ ≤ etω, ω = −1

2
trace(A) = 0.6458,

‖etLQ‖ ≤ etωQ , ωQ = ω +

√√√√A2
11 +

N∑
i=2

A2
1i

x2
1(0)

= 1.1621.

Therefore, we obtain the following explicit upper bounds for the memory integral and the error of the H-
model (see equations (58) and (60))

|w0(t)| ≤ 0.1964
(
e1.1621t − e0.6458t

)
, (87)

|w0(t)− wn0 (t)| ≤ e1.1624t

√(
bT
(
MT

11

)n
a1

)2
x2

1(0) +
∥∥∥(MT

11

)n+1
a
∥∥∥2

2

tn+1

(n+ 1)!
. (88)

Next, we compare these error bounds with numerical results obtained by solving numerically the H-model
(59). For example, the second-order H-model reads

d

dt
E[x1(t)|x1(0)] = −0.4560E[x1(t)|x1(0)] + w2

0(t),

dw2
0(t)

dt
= 0.0586E[x1(t)|x1(0)] + w2

1(t),

dw2
1(t)

dt
= −0.0192E[x1(t)|x1(0)].

(89)

In Figure 3 we demonstrate convergence of the H-model to the benchmark solution computed by Monte-
Carlo simulation as we increase the H-model differentiation order. In Figure 4 we plot the bound on the
memory growth (equation (87)) and the bound in the memory error (equation (88)) together with exact
results.

Remark The results we just discussed can be obviously extended to higher-dimensional linear dynamical
systems. In Figure 5 we plot the benchmark conditional mean path we obtained through Monte Carlo
simulation together with the solution of the H-model (59) for the 100-dimensional linear dynamical system
defined by the matrix (N = 100)

A =


−1 1 . . . (−1)N

1
... B
1

 , (90)
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Figure 3: Convergence of the H-model for the linear dynamical system with matrix (86). The benchmark
solution is computed with Monte-Carlo (MC) simulation. Also, the zero-order H-model represents the
Markovian approximation to the MZ equation, i.e. the MZ equation without the memory term.
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Figure 4: Linear dynamical system with matrix (86). In (a) we plot the memory term w0(t) we obtain from
Monte Carlo simulation together with the estimated upper bound (87). In (b) and (c) we plot H-model
approximation error |w0(T )−wn0 (T )| together with the upper bound (88) for different differentiation orders
n and at different times t.

whereB = eCΛe−C and

Λ =


−1

8 0 · · · 0

0 −2
9

...
...

. . . 0

0 · · · 0 −N−1
N+6

 , C =


0 1 0

−1 0
. . .

. . . . . . 1
0 −1 0

 .
It is seen that the H-model converges as we increase the differentiation order in any finite time interval, in
agreement with the theoretical prediction of section 3.4.

3.7.2 Nonlinear dynamical systems

The hierarchical memory approximation method we discussed in section 3.3 can be applied to nonlinear
dynamical systems in the form (1). As we will see, if we employ the Ht-model then the nonlinearity
introduces a closure problem that needs to be addressed properly.
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Figure 5: Linear dynamical system with matrix A (90). Convergence of the H-model to the conditional
mean path solution E[x1(t)|x1(0)]. The initial condition is set as x1(0) = 3, while {x2(0), . . . , x100(0)}
are i.i.d. Normals.

Lorenz-63 System Consider the classical Lorenz-63 model
ẋ1 = σ(x2 − x1)

ẋ2 = x1(r − x3)− x2

ẋ3 = x1x2 − βx3

(91)

where σ = 10 and β = 8/3. The phase space Liouville operator for this ODE is

L = σ(x2 − x1)
∂

∂x1
+ (x1(r − x3)− x2)

∂

∂x2
+ (x1x2 − βx3)

∂

∂x3
.

We choose the resolved variables to be x̂ = {x1, x2} and aim at formally integrating out x̃ = x3 by using
the Mori-Zwanzig formalism. To this end, we set x3(0) ∼ N (0, 1) and consider the zeroth-order Ht-model
(t-model) 

dx1m

dt
= σ(x1m − x2m),

dx2m

dt
= −x2m + rx1m − tx2

1mx2m,

(92)

where x1m(t) = E[x1(t)|x1(0), x2(0)] and x2m(t) = E[x2(t)|x1(0), x2(0)] are conditional mean paths. To
obtain this system we introduced the following mean field closure approximation

tPetLPLQLx2(0) =− tE[x1(t)2x2(t)|x1(0), x2(0)],

'− tE[x1(t)|x1(0), x2(0)]2E[x2(t)|x1(0), x2(0)],

=− tx2
1mx2m. (93)

Higher-orderHt-models can be derived based on (93). As is well known, if r < 1, the fixed point (0, 0, 0) is
a global attractor and exponentially stable. In this case, the t-model (zeroth-orderHt-model) yields accurate
prediction of the conditional mean path for long time (see Figure 6). On the other hand, if we consider the
chaotic regime at r = 28 then the t-model and its higher-order extension, i.e., the Ht-model, are accurate
only for relatively short time. This is in agreement with our theoretical predictions. In fact, different from
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Figure 6: Accuracy of theHt model in representing the conditional mean path in the Lorenz-63 system (91).
It is seen that if r = 0.5 (first row), then the zeroth-order Ht-model, i.e., the t-model, is accurate for long
integration times. On the other hand, if we consider the chaotic regime at r = 28 (second row) then we see
that the t-model and its high-order extension (Ht-model) are accurate only for relatively short time.

linear systems where the hierarchical representation of the memory integral can be proven to be convergent
for long time, in nonlinear systems the memory hierarchy is, in general, provably convergent only in a
short time period (Theorem 5 and Corollary 4.3). This doesn’t mean that the H-model or the Ht-model are
not accurate for nonlinear systems. It just means that the accuracy depends on the system, the quantity of
interest, and the initial condition.
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Figure 7: Accuracy of theHt-model in representing the conditional mean path in the Lorenz-96 system (91).
Here we set F = 5 and N = 100. It is seen that the Ht-model converges only for short time and provides
results that are more accurate that the classical t-model.

Modified Lorenz-96 system. As an example of a high dimensional nonlinear dynamical system, we con-
sider the following modified Lorenz-96 system [41, 57]

ẋ1 = −x1 + x1x2 + F

ẋ2 = −x2 + x1x3 + F

...

ẋi = −xi + (xi+1 − xi−2)xi−1 + F

...

ẋN = xN − xN−2xN−1 + F

(94)

where F is constant. As is well known, depending on the values of N and F this system can exhibit a wide
range of behaviors [41]. Suppose we take the resolved variables to be x̂ = {x1, x2}. Correspondingly, the
unresolved ones, i.e., those we aim at integrating through the MZ framework, are x̃ = {x3, . . . , xN}, which
we set to be independent standard normal random variables. By using the mean field approximation (93),
we obtain the following zeroth-order Ht-model (t-model) of the modified Lorenz-96 system is (94){

ẋ1m = −x1m + x1mx2m + F,

ẋ2m = −x2m + F + t(x2
1mx2m − x1mF ).

(95)

In Figure 7 we study the accuracy of the Ht-model in representing the conditional mean path for with
F = 5 and N = 100. It is seen that the the Ht-model converges only for short time (in agreement with the
theoretical predictions) and it provides results that are more accurate that the classical t-model.

4 Mori-Zwanzig formulation for stochastic dynamical systems

In this section we develop an in-dept analysis of the Mori-Zwanzig (MZ) formulation for stochastic dy-
namical systems driven by multiplicative white noise. To this end, we first derive a new type of MZ
equation, which we call effective Mori-Zwanzig (EMZ) equation, that governs the temporal dynamics of
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noise-averaged observables. Such dynamics is generated by a Kolmogorov operator obtained by averaging
Itô’s representation of the stochastic Liouvillian of the system. Building upon recent work on hypoelliptic
operators, we prove that the generator of the EMZ orthogonal dynamics has a spectrum that lies within
cusp-shaped region of the complex plane. This allows to rigorously prove that EMZ memory kernel and
fluctuation terms converge exponentially fast in time to a computable equilibrium state. We apply the new
theoretical results to the Langevin dynamics of an interacting particle system widely studied in molecular dy-
namics simulations, and show that for smooth interaction potentials, the EMZ memory and fluctuation terms
decay exponentially fast to statistical equilibrium. TO illustrate the method, let us consider a d-dimensional
stochastic differential equation on a smooth manifoldM

dx(t)

dt
= F (x(t)) + σ(x(t)) ξ(t)︸︷︷︸

random
noise

, x(0) = x0 ∼ ρ0(x) (96)

where F : M 7→ Rd and σ : M → Rd×m are smooth functions, ξ(t) is m-dimensional Gaussian white
noise with independent components, and x0 is a random initial state characterized in terms of a probability
density function ρ0(x)3. The solution (96) is a d-dimensional stochastic flow on the manifoldM, is know
as Brownian flow [50]. As is well known, if F : M 7→ Rd and σ : M → Rd×m are of class Ck+1

(k ≥ 0) with uniformly bounded derivatives, then the solution to (96) is global, and that the corresponding
flow is a stochastic flow of diffemorphisms [10, 96, 93] of class Ck. This means that such stochastic flow
is is differentiable k times (with continuous derivative), with respect to the initial condition for all t Next,
consider a smooth vector-valued phase space function of the form (2). Similar to the deterministic case
we discussed in section 2, it is possible to define a stochastic composition (Koopman) operator E(t, s) that
pushes forward in time the observable u(t) = u(x(t)). Specifically,

u(x(t)) = E(t, s)u(x(s)), (98)

The semigroup E(t, s) can be formally written as

E(t, s) =
−→
T e

∫ t
s L(τ)dτ ,

where
−→
T is the time ordering operator placing later operators to the right, and L(τ) is the (random) infinites-

imal generator of the composition operator4. The (random) generator L(τ) of the semigroup E(t, s) can be
determined using by Dyson’s series expansion [72], i.e.,

E(t, s) =

∞∑
n=1

Dn(t, s), (99)

where

Dn(t, s) =
−→
T 1

n!

∫ t

s

∫ t1

s
· · ·
∫ tn−1

s
dt1dt2 · · · dtnL(t1)L(t2) · · · L(tn).

3If the system (96) evolves from a deterministic initial states then we have

ρ0(x) =
N∏
i=1

δ(xi − xi(0)). (97)

4The evolution operator E(t, s) has a dual construction in the space of probability density functions [23].
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A substitution of (99) into (98) yields

u(x(t)) =

∞∑
n=1

Dn(t, s)u(x(s)). (100)

Next, we match each term of the series expansion (100) with the terms of the stochastic Taylor expansion of
u(x(t)) (see [46], Chapter 5). This allows us to construct explicit expressions for the stochastic Liouvillian
L(τ). In particular, if we interpret the SDE (96) in the Itô sense, then we can use the classical Itô-Taylor
expansion to obtain5

L(t) =

d∑
k=1

Fk(x0)
∂

∂x0k
+

1

2

m∑
j=1

d∑
i,k=1

σij(x0)σkj(x0)
∂2

∂x0i∂x0k
+

m∑
j=1

d∑
i=1

σij(x0)ξj(t)
∂

∂x0i
. (102)

With the generator L(t) of the stochastic flow available, we can now derive the Mori-Zwanzig equation
governing the evolution of the observable (98). To this end, we introduce a projection operator P and the
complementary projection Q = I − P . By following the formal procedure outlined in [101, 23] we obtain
the following evolution equation for the observable u(t) = u(x(t,x0))

d

dt
u(t) = E(t, 0)PL(t)u(x0) + Y(t, 0)QL(t)u(0) +

∫ t

0
E(s, 0)PL(s)Y(t, s)QL(t)u(0)ds, (103)

where u(0) = u(x0) and
Y(t, s) =

−→
T e

∫ t
s QL(τ)dτ . (104)

The three terms at the right hand side of (103) are called, respectively, streaming term, fluctuation (or
noise) term, and memory term. It is often more convenient (and tractable) to compute the evolution of the
observable u(t) within a closed linear space, e.g., the image of the projection operator P . To this end, we
apply such projection to both sides of equation (103) to obtain6

d

dt
Pu(t) = PE(t, 0)PL(t)u(0) +

∫ t

0
PE(s, 0)PLω(s)Y(t, s)QL(t)u(0)ds. (105)

Depending on the choice of the projection operator, the MZ equation (105) can yield evolution equations
for different quantities [23]. For example, if we use Chorin’s projection [15, 16, 99, 88], then (105) is an
evolution equation for the conditional mean of u(t). Similarly, if we use Mori’s projection [100, 79], then
(105) is an evolution equation for the temporal auto-correlation function of u(t).

4.1 Effective Mori-Zwanzig (EMZ) equation

The Mori-Zwanzig formulation we discussed in the previous Section provides a general framework to handle
dimension reduction in stochastic dynamical systems. However, the MZ equations are not easy to use in
practice because the generator L(t) depends on the random process ξ(t) (see Eq. (102)). To overcome this
difficulty we can average the evolution (98) over ξ(t), conditional to the initial state x0. This allows us to

5Similarly, by using the Stratonovich-Taylor expansion, one obtain the following infinitesimal generator

L(t) =
d∑
k=1

Fk(x0)
∂

∂x0k
+

m∑
j=1

d∑
i=1

σij(x0) ◦ ξj(t)
∂

∂x0i
, (101)

where ◦ ξj(t) denotes the stochastic increment in Stratonovich’s interpretation.
6The projected fluctuating term PY(t, 0)QL(t)u(x0) is identically zero since PQ = 0.
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define an composition operatorM(t, 0) that pushes forward in time the average of the observable u(t) over
the noise, i.e.,

Eξ(t)[u(x(t))|x0] =M(t, 0)u(x0). (106)

It can be shown that M(t, 0) is a Markovian semigroup [75]. Also, the averaging operation Eξ(t)[·] ap-
pearing in (106) is a functional integral [87] with respect to the Gaussian process ξ(t). By using stochastic
Taylor series, it is straightforward to show that the generator of the Markovian semigroup M(t, 0) is the
average (over noise) of the generator L defined in (102), i.e.,

K(x0) =

d∑
k=1

Fk(x0)
∂

∂x0k
+

1

2

m∑
j=1

d∑
i,k=1

σij(x0)σkj(x0)
∂

∂x0i∂x0k
, (107)

Note that K is a backward Komogorov operator [46]. The semigroupM(t, 0) can be now written as

M(t, 0) = etK. (108)

This yields the following effective Mori-Zwanzig (EMZ) equation governing the evolution of (106)

∂

∂t
etKu(0) = etKPKu(0) + etQKQQKu(0) +

∫ t

0
esKPKe(t−s)QKQQKu(0)ds. (109)

Applying the projection operator P once more yields

∂

∂t
PetKu(0) = PetKPKu(0) +

∫ t

0
PesKPKe(t−s)QKQQKu(0)ds. (110)

We notice that the projected EMZ equation for stochastic systems has the same structure as the the classical
projected MZ equation for deterministic (autonomous) dynamical systems [101, 99, 100]. However, the
classical Liouville operator is now replaced by a Kolmogorov operator K.

By following the procedure we recently presented in [101] it possible to derive a (linear) generalized
Langevin equation (GLE) for the noise-averaged observable (106) based on the EMZ equation (109) or
(110). To this end, consider the weighted Hilbert space H = L2(M, ρ), where ρ is a positive weight
function inM. For instance, ρ can be the probability density function of the random initial state x0. Let

〈h, g〉ρ =

∫
M
h(x)g(x)ρ(x)dx h, g ∈ H (111)

be the inner product in H . In H we introduce the following (Mori) projection operator

Ph =
M∑
i,j=1

G−1
ij 〈ui(0), h〉ρuj(0), h ∈ H. (112)

where Gij = 〈ui(0), uj(0)〉ρ and ui(0) = ui(x) ∈ V (i = 1, ...,M ) are M linearly independent functions.
With P defined as in (112), it is easy to show that the EMZ equation (109), and its projected version (110),
take the form

du(t)

dt
= Ωu(t) +

∫ t

0
K(t− s)u(s)ds+ f(t), (113)

d

dt
Pu(t) = ΩPu(t) +

∫ t

0
K(t− s)Pu(s) ds. (114)
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where u(t) = [u1(t), . . . , uM (t)]T and

Gij = 〈ui(0), uj(0)〉ρ, (115a)

Ωij =

M∑
k=1

G−1
jk 〈uk(0),Kui(0)〉ρ (streaming matrix), (115b)

Kij(t) =
M∑
k=1

G−1
jk 〈uk(0),KetQKQQKui(0)〉ρ (memory kernel), (115c)

f(t) = etQKQQKu(0) (fluctuation term). (115d)

The Kolmogorov operator K is not skew-adjoint relative to 〈, 〉ρ, and therefore it is not possible to represent
the memory kernel as a function of the autocorrelation of f using the fluctuation-dissipation theorem (see
[101]).

4.1.1 An example: EMZ for the Ornstein-Uhlenbeck process

Let us consider the Ornstein-Uhlenbeck process defined by the solution to the Itô stochastic differential
equation

d

dt
x = θ(µ− x) + σξ(t), (116)

where σ, µ, and θ are positive parameters and ξ(t) is Gaussian white noise with correlation function
〈ξ(t), ξ(s)〉 = δ(t − s). As is well-known that the Ornstein-Uhlenbeck process is ergodic and admits a
stationary (equilibrium) Gaussian distribution ρeq = N (µ, σ2/2θ), and we assume that x(0) ∼ ρeq. The
formal solution of Eq. (116) can be written as

x(t) = x(0)e−θt + µ(1− e−θt) + σ

∫ t

0
e−θ(t−s)ξ(s)ds. (117)

Next, we consider the following quantity of interest u(t) = x(t) − µ (centered Ornstein-Uhlenbeckk pro-
cess). By using the formal solution (117) we obtain the following non-stationary conditional mean and
conditional auto-covariance function

Eξ(t)[x(t)− µ|x(0)] =(x(0)− µ)e−θt, (118)

Eξ(t)[(x(t)− µ)(x(s)− µ)|x(0)] =
σ2

2θ

(
e−θ|t−s| − e−θ(t+s)

)
. (119)

By averaging over the random initial state (distributed as ρeq) we obtain

Ex(0)[Eξ(t)[x(t)− µ|x(0)]] = Ex(0)[x(0)e−θt − µe−θt] = 0, (120)

Ex(0)[Eξ(t)[(x(t)− µ)(x(s)− µ)|x(0)]] =
σ2

2θ
e−θ|t−s|. (121)

At this point, we define the projection operator

Ph =
〈h, u(0)〉ρeq
〈u(0), u(0)〉ρeq

u(0), (122)

The EMZ equations (113) and (114) with projection (122) can be written as
d

dt
M(t) = −θM(t),

d

dt
C(t) = −θC(t) (123)

where M(t) = Eξ(t)[x(t)−µ|x(0)] and C(t) = Ex(0)[Eξ(t)[(x(t)−µ)(x(0)−µ)|x(0)]]. Clearly, equations
(123) are the exact evolution equations governing the mean and the autocovariance function of process u(t)
since their solution is (118) and (121), respectively.
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4.2 Analysis of the EMZ equation

In this section, we develop an in-depth mathematical analysis of the effective Mori-Zwanzig equation (109)
using the theory of Hörmander operators [35, 91, 68]. In particular, we build upon the analysis by Hérau and
Nier [35], Eckmann and Hairer [27, 25, 26], and Helffer and Nier [34] on linear hypoelliptic operators. One
of the key results of such analysis is that the spectrum of the Kolmogorov operator K (see Eq. (107)) lies
within a cusp-like region of the complex half-plane. This allows us to prove exponential convergence (in
time) of the operator semigroup etK to statistical equilibrium. We will show that the same technique can be
applied to the EMZ equation, in particular the orthogonal dynamics propagator etQKQ to prove exponential
relaxation to equilibrium of both the streaming term and the memory integral in (109). For consistency with
the literature on hypoelliptic operators, we will use the negative of K and QKQ as semigroup generators7

and write the semigroups appearing in EMZ equation (109) as e−tK and e−tQKQ.

4.2.1 The Kolmogorov operator K

In this section we review some of key results on the Kolmogorov operator K defined in Equation (107). We
begin by noticing that SDEs (96) have an associated Markovian evolution operator M(t, 0) (108) that is
generated by a Hörmander-type operator of the form

K(x) =

m∑
i=1

X ∗i (x)Xi(x) + X0(x) + f(x). (124)

where Xi(x) (0 ≤ i ≤ m) denotes a first-order differential operator with space-dependent coefficients, X ∗i
is the formal adjoint of Xi(x) in L2(Rn), and f(x) is a function with at most polynomial growth. To derive
useful spectral estimates for K, it is convenient to first provide some background

Definition 1. Let N be a real number. Define

PolN0 =

{
f ∈ C∞(Rn) : sup

x∈Rn
(1 + ‖x‖)−N |∂αf(x)| ≤ Cα

}
,

where α is a multi-index of arbitrary order. Note that PolN0 is the set of infinitely differentiable functions
growing at most polynomially with x.

Similarly, we define the space of k-th order differential operators with coefficients growing at most
polynomially with x as

PolNk =

G : C∞(Rn)→ C∞(Rn) : G(x) = G0(x) +

n∑
j=1

k∑
i=1

Gij(x)∂ij , Gij ∈ PolN0


It is easy to verify that if X ∈ PolNk and Y ∈ PolMl then the operator commutator [X ,Y] = XY −YX is in
PolN+M

k+l−1.

Definition 2. A family of operators

Ai(x) =

n∑
j=1

Aij(x)∂j i = 1, ...,m (125)

7If K andQKQ are dissipative then −K and −QKQ are accretive.
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is called non-degenerate if there exist two constants N and C such that

‖y‖2 ≤ C(1 + ‖x‖2)N
m∑
i=1

〈Ai(x),y〉2 ∀x,y ∈ Rn

where 〈Ai(x),y〉 =
n∑
j=1

Aij(x)yj .

It was recently shown by Eckmann and Hairer in [26] that if the Lie algebra generated by the operators
{X0, . . . ,Xm} in (124) is non-degenerate thenK is hypoelliptic [27, 37]. The main result can be summarized
as follows

Proposition 1 (Eckmann and Hairer [26]). If {X0, . . . ,Xm} and f in (124) satisfy the following conditions:

1. Xj ∈ PolN1 for all j = 0, . . . ,m, and f ∈ PolN0 ;

2. There exits a finite integer M such that the family of operators consisting of {Xi}mi=0, {[Xi,Xj ]}mi,j=1,
{[Xi, [Xj ,Xk]]}mi,j,k=1 and so on up to the commutators of rank M is non-degenerate;

Then the operator K defined in (124) and ∂t +K are both hypoelliptic.

Conditions 1 and 2 are called poly-Hörmander conditions. The hypoellipticity of the operator ∂t +K guar-
antees smoothness of the transition probability density pushed forward in time by the Markovian semigroup
M(t, 0) [25]. Let us review additional mathematical properties of the Kolmogorov operator K. As a differ-
ential operator with C∞, tempered (i.e. with all its derivatives polynomially bounded) coefficients, K and
its formal adjoint K∗ are defined in the Schwarz space S (Rn), which is dense in Lp(Rn) (1 ≤ p <∞). On
the other hand, K and K∗ are both closable operators on S (Rn), and therefore all estimates in we obtain in
this Section hold in S (Rn). We now introduce a family of weighted Sobolev spaces

Sα,β = {u ∈ S ′(Rn) : ΛαΛ̄βu ∈ L2(Rn), α, β ∈ R}, (126)

where S ′(Rn) the space of tempered distributions in Rn. The operator Λα is a pseudo-differential operator
(see [27, 26, 35] for a rigorous definition and properties) that reduces to

Λ2 = 1−∆ (127)

for α = 2. The weighted Sobolev space (126) is equipped with the scalar product

〈h, g〉α,β = 〈ΛαΛ̄βh,ΛαΛ̄βg〉L2 ,

which induces the Sobolev norm ‖ · ‖α,β . With the above definitions it is possible to obtain the following
important estimate on spectrum of the Kolmogorov operator K.

Theorem 7 (Eckmann and Hairer [26]). LetK ∈ PolN2 be an operator of the form (124) satisfying conditions
1. and 2. in Proposition 1. Suppose that the closure of K is a maximal-accretive operator in L2(Rn) and
that for every ε > 0 there exists two constants δ > 0 and C > 0 such that

‖u‖δ,δ ≤ C(‖u‖0,ε + ‖Ku‖) (128)

for all u ∈ S (Rn). If, in addition, there exist two constants δ > 0 and C > 0 such that

‖u‖0,ε ≤ C(‖u‖+ ‖Ku‖), (129)

then K has compact resolvent when considered as an operator acting on L2(Rn), whose spectrum σ(K) is
contained in the cusp (see Figure 8):

SK = {z ∈ C : Re z ≥ 0, | Im z| < (8C1)M/2(1 + Re z)M} (130)

for some positive constant C1 and M ∈ N.
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Figure 8: Sketch of the cusp-shaped region of the complex plane enclosing the spectrum of the operators K
and QKQ.

One of the key estimates used by Eckmann and Hairer in the proof of Theorem 7 is

1

4
|z + 1|2/M‖u‖2 ≤ C1

(
[1 + Re z]2‖u‖2 + ‖(K − z)u‖2

)
, ∀Re z ≥ 0. (131)

In a series of papers, Hèrau, Nier and Helffer [35, 34] proved that the Kolmogorov operatorK corresponding
to classical Langevin dynamics generates a semigroup e−tK that decays exponentially fast to an equilibrium
state. Hereafter we show that similar results can be obtained for Kolmogorov operators in the general form
(124). In particular, we have the following

Theorem 8. Suppose that K satisifies all conditions in Theorem 7. If the spectrum of K in L2(Rn) is such
that

σ(K) ∩ iR = {0}, (132)

and the eigenvalue 0 (if any) has finite algebraic multiplicity, then for any 0 < γ < min(Reσ(K)/{0}),
there exits a positive constant C = C(γ) such that the estimate

‖e−tKu0 − π0u0‖ ≤ Ce−αt‖u0‖ (133)

holds for all u0 ∈ L2(Rn) and for all t > 0, where π0 is the spectral projection onto the kernel of K.

Proof. The Kolmogorov operator K is closed, maximal-accretive and densely defined in L2(Rn). Hence,
by the Lumer-Phillips theorem, the semigroup e−tK is a contraction in L2(Rn). It was shown in [26, 35]
that the core of K is a Schwarz space, and that the hypoelliptic estimate (131) holds for any u ∈ L2(Rn).
According to Theorem 7, K only has a discrete spectrum, i.e., σ(K) = σdis(K). Condition (132) requires
that λ = 0 is the only eigenvalue on the immaginary axis iR, and that such eigenvalue has finite algebraic
multiplicity. This condition, together with Theorem 6.1 in [34], allows us to obtain a weakly convergent
Dunford integral representation of the semigroup e−tK given by

e−tKu0 − π0u0 =
1

2πi

∫
∂S′K

e−tz(z −K)−1u0dz, (134)
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where ∂S ′K = γint∪γext is the union of the two regions shown in Figure 8, and (z−K)−1 is the resolventK.
Equation (134) allows us to formulate the semigroup estimation problem as an estimation problem involving
a complex integral. In particular, to derive the upper bound (133), we just need an upper bound for the norm
of resolvent (z − K)−1. To derive such bound, we notice that for all z 6∈ SK (see (130)) and Re z ≥ 0, we
have |z+ 1|2/M ≥ (8C1)(1 + Re z)2. A substitution of this inequality into (131) yields, for all u ∈ L2(Rn)

1

8
|z + 1|2/M‖u‖2 ≤ C1‖(K − z)u‖2, ∀Re z ≥ 0, z 6∈ SK.

Hence, ‖(K − z)−1‖ ≤
√

8C1|z + 1|−1/M . Next, we rewrite the Dunford integral (134) as

1

2πi

∫
∂S′K

e−tz(z −K)−1u0dz =
1

2πi

∫
γint

e−tz(z −K)−1u0dz +
1

2πi

∫
γext

e−tz(z −K)−1u0dz. (135)

Since (K− z)−1 is a compact linear operator, we have that for any 0 < α < min(Reσ(K)/{0}) there exits
a constant Cα > 0 such that ‖(K − α)u‖ ≥ Cα‖u‖. On the other hand, K is also a real operator, which
implies that for all z = α+ iν 6∈ σ(K), ν ∈ R, we have

‖(K − α+ iν)u‖2 = ‖(K − α)u‖2 + ν2‖u‖2 ≥ (C2
α + ν2)‖u‖2,

i.e.,

‖(K − α+ iν)−1u‖ ≤ 1√
C2
α + ν2

‖u‖. (136)

This suggests that the resolvent (K − z)−1 is uniformily bounded by 1/Cα within the region γint, i.e.,∥∥∥∥ 1

2πi

∫
γint

e−tz(z −K)−1u0dz

∥∥∥∥ ≤ Ce−αt‖u0‖. (137)

The region γext is defined by all complex numbers z = x + iy such that | Im z| = (8C1)M/2(1 + Re z)M .
Also, if z 6∈ SK then we have shown that the norm of the resolvent is bounded by ‖(K−z)−1‖ ≤

√
8C1|z+

1|−1/M . These two inequalities allow us to write, for M = 1 and all M ≥ 2,∥∥∥∥ 1

2πi

∫
γext

e−tz(z −K)−1u0dz

∥∥∥∥ ≤ C‖u0‖
∫ ∞

(8C1)M/2(1+α)M
exp{−t[(8C1)−

1
2 y

1
M − 1]}y−

1
M dy

= C‖u0‖
∫ ∞
α

e−th(h+ 1)M−2dh

≤ Ce−αt‖u0‖
[

1

t
+

1

t2
+ · · · 1

tM

]
, t > 0. (138)

By combining (134), (135), (137) and (138) we see that there exists a constant C = C(α) such that

‖e−tKu0 − π0u0‖ ≤ Ce−αt‖u0‖. (139)

This completes the proof.

Another direct consequence of the estimate (131) is the unconditional convergence of the formal power
series expansion of the semigroup e−tK. This is an important result that yields convergence of operator
series expansions such as the MZ-Faber expansion [100] for stochastic dynamical systems.
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Corollary 8.1. Assuming that K satisfies all conditions listed in Theorem 8, then for any u0 ∈ L2(Rn) the
power series expansion

e−(t+s)Ku0 = lim
m→∞

m∑
n=0

(−s)n

n!
e−tKKnu0 (140)

converges in norm for any t > 0 and s ≥ t.

Proof. By using the resolvent identity (z −K)−1K = z(z −K)−1 − I, The Cauchy integral theorem, and
tthe Dunford integral representation (134), we obtain

e−tKKu0 − π0Ku0 =
1

2πi

∫
∂S′K

e−tz(z −K)−1Ku0dz

=
1

2πi

∫
∂S′K

ze−tz(z −K)−1u0dz, (141)

which holds for any t > 0. As before, we split the integral in ∂S ′K into the sum of two integrals (see Eq.
(135))

e−tKKu0 − π0Ku0 =
1

2πi

(∫
γint

ze−tz(z −K)−1u0dz +

∫
γext

ze−tz(z −K)−1u0dz

)
. (142)

If z is located within the interior of the cusp shown Figure 8, i.e., in γint we have |z| ≤ (α2 + (8C1)M (1 +
α)2M )1/2. This inequality, combined with the uniform boundedness of the resolvent (136), allows us to
write ∥∥∥∥ 1

2πi

∫
γint

e−tzz(z −K)−1u0dz

∥∥∥∥ ≤ Ce−αt‖u0‖. (143)

If z is in γext then |z| =
√

[(8C1)−1/2|y|1/M − 1]2 + y2, where y = Im(z). To derive an upper bound for
the second integral in (142), we only need to consider the case where y is large enough such that |y|2/M <
|y|2, i.e., |z| ≤ C|y|. A substitution of this estimate into the second integral in (142) yields∥∥∥∥ 1

2πi

∫
γext

zne−tz(z −K)−1u0dz

∥∥∥∥ ≤ C‖u0‖
∫ ∞

(8C1)M/2(1+α)M
exp{−t[(8C1)−1/2y1/M − 1]}y1−1/Mdy

≤ C‖u0‖
∫ ∞
α

e−th(h+ 1)2M−2dh

≤ Ce−αt‖u0‖
[

1

t
+

1

t2
+ · · · 1

t2M−1

]
︸ ︷︷ ︸

B(t)

, t > 0. (144)

Combining (143) and (144) we conclude that the Dunford integral (141) is bounded byB(t). By the triangle
inequality, we have for any fixed t > 0 and n ∈ N∣∣∣∥∥∥e−tK/nKu0

∥∥∥− ‖π0Ku0‖
∣∣∣ ≤ ∥∥∥e−tK/nKu0 − π0Ku0

∥∥∥ ≤ B( t
n

)
.

Using the operator identity e−tKKn = (e−tK/nK)n we obtain∥∥e−tKKnu0

∥∥ ≤ ∥∥∥e−tK/nKu0

∥∥∥n ≤ (B( t
n

)
+ ‖π0Ku0‖

)n
.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

36



As easily seen from the the definition of B(t) given in (144), for each fixed t > 0 we have

lim
n→∞

∥∥e−tKKnu0

∥∥
n!

≤ lim
n→∞

1

n!

(
B

(
t

n

)
+ ‖π0Ku0‖

)n
= 0. (145)

By using the Lagrangian representation of the residual of a truncated power series [28, p. 104], we see
that (145) implies that (140) converges in norm for any t > 0, s ≥ t.

4.2.2 Projected Kolmogorov operator QKQ

In this section we analyze the semigroup e−tQKQ generated by operatorQKQ, where K is the Kolmogorov
operator and Q = I − P is the complementary projection. Such semigroup appears in the streaming term
and in the memory term of the EMZ equation (113). In principle, projection operator P and therefore the
complementary projection Q can be chosen arbitrarily [99, 16]. Here we restrict our analysis to finite-rank,
self-adjoint projections in L2. Mori’s projection (112) is one of such projections.

Theorem 9. Let P : L2(Rn) → L2(Rn) be a finite-rank self-adjoint projection operator. If K satisfies all
conditions listed in Theorem 7, then the operatorQKQ has a compact resolvent whose spectrum lies within
the cusp

SQKQ = {z ∈ C|Re z ≥ 0, | Im z| < (8CQ)MQ/2(1 + Re z)MQ} (146)

for some the positive constants CQ and integer MQ.

Proof. We first show that if K is closely defined and maximal-accretive, so is QKQ. According to Lumer-
Phillips theorem [28], the adjoint of a maximal-accretive operator is accretive, and therefore

Re〈Kf, f〉 ≥ 0, ∀f ∈ D(K),

Re〈K∗f, f〉 ≥ 0, ∀f ∈ D(K∗).

On the other hand, if P is a self-adjoint operator in L2(Rn) then Q = I − P is also a self-adjoint. This
implies that

Re〈QKQf, f〉 = Re〈KQf,Qf〉 ≥ 0 ∀f ∈ D(K)

Re〈(QKQ)∗f, f〉 = Re〈K∗Qf,Qf〉 ≥ 0, ∀f ∈ D(K∗)

i.e.,QKQ and its adjointQK∗Q are both accretive. QKQ is also a closable operator defined in D(K). This
can be seen by decomposing it as QKQ = K − KP − PKQ. In fact, if K is a closed operator then QKQ
is also closed since KP and PKQ are bounded [43], as we shall see hereafter. The proof is based on two
steps: First, we show that the closure of QKQ generates a contraction semigroup e−tQKQ in L2(Rn). In
the second step we show that if K satisfies the hypoelliptic estimate ‖u‖δ,δ ≤ C(‖u‖+ ‖Ku‖), then so does
QKQ. i.e.

‖u‖δ,δ ≤ C(‖u‖+ ‖QKQu‖). (147)

By using triangle inequality

‖u‖δ,δ ≤ C(‖u‖+ ‖Ku‖) ≤ C(‖u‖+ ‖KPu‖+ ‖QKQu‖+ ‖PKQu‖)

To prove (147), it is sufficient to show that KP and PKQ are bounded operators in L2(Rn). To this end,
we recall that the set the set of finite rank operators is dense in the space of compact operators. Moreover,
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compact operators between Hilbert spaces are bounded. If, in addition we assume that P is finite-rank then
we have the canonical representation

P =
m∑
i=1

λi〈·, φi〉ϕi (148)

, where {φi}mi=1 and {ϕi}mi=1 are elements L2(Rn). This implies that

‖KPu‖ =

∥∥∥∥∥
m∑
i=1

λi〈u, φi〉Kϕi

∥∥∥∥∥ ≤
m∑
i=1

|λi|‖Kϕi‖‖φi‖‖u‖ ≤ C‖u‖

‖PKQu‖ =

∥∥∥∥∥
m∑
i=1

λi〈KQu, φi〉ϕi

∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

λi〈u,QK∗φi〉ϕi

∥∥∥∥∥ ≤
n∑
i=1

|λi|‖QK∗φi‖‖ϕi‖‖u‖ ≤ C‖u‖

This proves that KP and PKQ are bounded operators. At this point we notice that sinceQKQ is accretive,
we have that (QKQ+ I) invertible. Moreover,

‖u‖δ,δ ≤ C(‖u‖+ ‖QKQu‖) ≤
√

2C‖(QKQ+ I)u‖ ⇒ ‖(QKQ+ I)−1u‖δ,δ ≤
√

2C‖u‖,

i.e., (QKQ + I)−1 is bounded from L2 to Sδ,δ (see (126)). Recall that Sδ,δ is compactly embedded into
L2 (Lemma 3.2 [26]). Hence (QKQ + 1)−1 is compact from L2 into L2 and therefore QKQ has compact
resolvent [43]. To prove that the discrete spectrum of QKQ lies within the cusp SQKQ defined in (146), we
follow the procedure outlined in [26]. To this end, let K ∈ PolN2 . Then, for δ = max{2, N} we have the
bound

‖(K + I)u‖ ≤ C‖u‖δ,δ, ∀u ∈ Sn.

and

‖(QKQ+ I)u‖ ≤ ‖Q‖(‖Ku‖+ ‖KPu‖) + ‖u‖ ≤ C(‖Ku‖+ ‖u‖) ≤
√

2C‖(K + I)u‖ ≤ C‖u‖δ,δ.

Recall that QKQ : D(QKQ) → L2(R2d) is a maximal accretive operator. Therefore, by Lemma 4.5 in
[26], for all δ > 0 one can find an integer MQ > 0 and a constant C such that

〈u, [(QKQ+ I)∗(QKQ+ I)]1/MQ〉 ≤ C‖u‖2δ,δ. (149)

By using the hypoelliptic estimate (149), (147), Proposition B.1 in [34] and the triangle inequality for
z = Re z + i Im z, we obtain

1

2
|z + 1|2/MQ‖u‖2 ≤ C‖u‖2δ,δ + ‖(QKQ− z)‖2

≤ CQ([1 + Re z]2‖u‖2 + ‖(QKQ− z)u‖2).

This plus the compactness of the resolvent of QKQ imply that if z ∈ σ(QKQ) (spectrum of QKQ) then

1

4
| Im z|2/MQ‖u‖2 ≤ 1

4
|z + 1|2/MQ‖u‖2 ≤ CQ(1 + Re z)2‖u‖2.

Therefore the spectrum of QKQ is contained in the cusp-shaped region SQKQ defined in (146). If z 6∈
SQKQ, then we have resolvent estimate

‖(QKQ− z)−1‖ ≤
√

8CQ|z + 1|−1/MQ . (150)
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Remark The main assumption at the basis of Theorem 9 is that P is a finite-rank self-adjoint projection
operator, e.g., Mori’s projection (112). Indeed, if P is of finite-rank then both KP and PKQ are bounded
operators, which yields the hypoelliptic estimate (128). On the other hand, ifP is an infinite-rank projection,
e.g., Chorin’s projection [99, 17, 18, 102], then KP and PKQ may not be bounded. Whether Theorem 9
holds for infinite-rank projections is an open question.

With the resolvent estimate (150) available, we can now prove the analog of Theorem 8 and Corollary 8.1,
where K replaced by QKQ. These results establish exponential relaxation to equilibrium of e−tQKQ and
convergence of its formal power series expansion.

Theorem 10. Assume thatK satisfies all conditions listed in Theorem 7. Suppose that the spectrum ofQKQ
as an operator from L2 to L2 satisfies

σ(QKQ) ∩ iR ⊂ {0}, (151)

where the eigenvalue 0 (if any) has finite algebraic multiplicity. Then for any 0 < αQ < min(Reσ(QKQ)/{0}),
there exits a positive constant C = C(αQ) such that

‖e−tQKQu0 − πQ0 u0‖ ≤ Ce−αQt‖u0‖ (152)

holds for all u0 ∈ L2 and for all t > 0, where πQ0 is the spectral projection onto the kernel of QKQ.

Proof. The proof closely follows the proof of Theorem 8. Therefore it is omitted.

Corollary 10.1. Suppose that K satisfies all conditions listed in Theorem 8. Then for any u0 ∈ L2(Rn) the
power series expansion

e−(t+s)QKQu0 = lim
q→∞

q∑
n=0

(−s)n

n!
e−tQKQ(QKQ)nu0 (153)

converges in norm for any t > 0, s ≥ t.

Proof. The proof closely follows the proof of Corollary 8.1. Therefore it is omitted.

Remark The convergence results in Corollary 8.1 and Corollary 10.1 hold for all t > 0. An immediate
consequence of these results is that the operator polynomial expansion method we proposed in [100] (see
also [99] and the references therein) can be proven to be convergent when applied to the EMZ equations
(113)-(114) corresponding to stochastic systems of the form (96). A similar conclusion holds for the first
principle MZ memory calculation method we recently developed in [101].

An important consequence of the bound (152) is that the EMZ memory kernel K(t) defined in (115c)
converges to an equilibrium state exponentially fast (in time). Specifically, we have the following

Corollary 10.2. For any scalar observable u(t) = u(x(t)) with initial condition u(0) = u0, the EMZ
memory kernel (115c) converges exponentially fast to the equilibrium state 〈QK∗u0, π

Q
0 Ku0〉, with rate

αQ. In other words, there exists a positive constant C such that

|K(t)− 〈QK∗u0, π
Q
0 Ku0〉‖ ≤ Ce−αQt. (154)
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Proof. According to the definition (115c) we have

|K(t)− 〈QK∗u0, π
Q
0 (Ku0)〉| = |〈u0,KetQKQQKu0〉 − 〈QK∗u0, π

Q
0 Ku0〉|

= |〈QK∗u0, e
tQKQKu0〉 − 〈QK∗u0, π

Q
0 Ku0〉| (155)

Since πQ0 is a projection, πQ0 Ku0 − πQ0 Ku0 = 0. By using the estimates (152), (155), and the Cauchy-
Schwartz inequality we finally obtain

|K(t)− 〈QK∗u0, π
Q
0 Ku0〉| ≤ C‖QK∗u0‖‖Ku0 − πQ0 Ku0‖e−αQt. (156)

Remark It is rather straightforward to generalize Corollary 10.2 to matrix-valued memory kernels (115c).
To this end, it is sufficient to consider each entry of the memory matrix (115c) separately, and apply Corol-
lary 10.2 to each entry. This yields,

‖K(t)−G−1CQ‖M ≤ C‖G−1DQ‖Me−αQt, (157)

where ‖ · ‖M denotes any matrix norm and G is the Gram matrix (115a). Also, the matrix CQ has entries
CQij = 〈QK∗ui(0), πQ0 Kuj(0)〉, while DQij = ‖QKui(0)‖‖Kuj(0) − πQ0 (Kuj(0))‖. The proof of (157)
follows from the following inequality

〈ui(0),KetQKQQKuj(0)〉 − 〈QK∗ui(0), πQ0 (Kuj(0))〉 = 〈QK∗ui(0),KetQKQQKuj(0)− πQ0 (Kuj(0))〉
≤ ‖QKui(0)‖‖Kuj(0)− πQ0 Kuj(0)‖, (158)

In fact, a substitution of (158) into (115c) yields (157).

Remark Similarly, we can prove that the fluctuation term reaches the equilibrium state exponentially fast
in time. In fact, if we choose the initial condition u0 = QKu0 then for all j = 1, ...,m we have

‖fj(t)− πQ0 QKu0j‖ = ‖e−tQKQQKu0j − πQ0 QKu0j‖ ≤ Ce−αQt‖QKu0j‖. (159)

Alternatively, we can introduce the norm

‖u(t)‖V = ‖[‖u1(t)‖, ‖u2(t)‖, · · · , ‖um(t)‖]‖M

where ‖ · ‖ is the standard L2(Rn) norm, and ‖ · ‖M is any matrix norm. Then from (159) it follows that

‖f(t)− πQ0 QKu0‖V ≤ Ce−αQt‖V ‖M ,

where V = (‖QKu10‖, · · · , ‖QKum0‖).

4.3 Application to Langevin dynamics of a particle system

All results we obtained so far are based on functional analysis, and they can be applied to arbitrary stochastic
dynamical systems of the form (96), provided the MZ projection operator is of finite-rank. In this section, we
study in detail a specific system, namely a particle system widely used in molecular dynamics simulations
and show that the EMZ memory kernel decays exponentially fast to statistical equilibrium. One of our main
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focus will be on determining the projector πQ0 appearing in Theorem 9 and Corollary 10.2. The dynamics
of a system of interacting identical particles can be modeled by the following SDE [53] in R2d

p,q
dq

dt
=

1

m
p

dp

dt
= −∇V (q)− γ

m
p+ σξ(t)

(160)

where m is the mass of each particle, V (q) is the interaction potential and ξ(t) is a d-dimensional white
noise process modeling Brownian motion. The parameters γ and σ represent, respectively, the magnitude
of the fluctuations and the dissipation. Such parameters are linked by the fluctuation-dissipation relation
σ = (2γ/β)1/2, where β ∝ 1/T , T being the thermodynamic temperature. The stochastic dynamical
system (160) is widely used in statistical mechanics to model mesoscopic dynamics of liquids and gases.
Letting the mass m in (160) go to zero, and setting γ = 1 yields the so-called overdamped Langevin
dynamics, i.e., Langevin dynamics where no average acceleration takes place. The Kolmogorov operator
(107) associated with the SDE (160) is given by

−K =
p

m
· ∇q −∇qV (q) · ∇p + γ

(
− p
m
· ∇p +

1

β
∆p

)
, (161)

where “·” denotes the dot product. If the interaction potential V (q) is strictly positive at infinity then the
Langevin equation (160) admits an unique invariant Gibbs distribution given by

ρeq(p, q) =
1

Z
e−βH(p,q) H(p, q) =

‖p‖22
2m

+ V (q), (162)

Z being is the partition function. At this point we introduce the unitary transformation U : L2(R2d) →
L2(R2d; ρeq) defined by

(Ug)(p, q) =
√
ZeβH(p,q)/2g(p, q), (163)

where L2(R2d; ρeq) is a weighted Hilbert space endowed with the inner product

〈h, g〉eq =

∫
h(p, q)g(p, q)ρeq(p, q)dpdq (164)

The linear transformation (163) is an isomorphism between L2(R2d) and L2(R2d; ρeq). In fact, for any
ũ ∈ L2(R2d), there exists a unique u ∈ L2(R2d, ρeq) such that ũ = (e−βH/2/

√
Z)u and

‖ũ‖L2 = ‖u‖L2
eq
. (165)

By applying (163) to (161) we construct the following Kolmogorov operator K̃ = U−1KU , i.e.,

K̃ = − p
m
· ∇q +∇V (q) · ∇p +

γ

β

(
−∇p +

β

2m
p

)
·
(
∇p +

β

2m
p

)
(166)

which can be written in the canonical form (124), i.e.,

K̃ =

d∑
i=1

X ∗i Xi −X0 (167)
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provided we set 

X0 =
p

m
· ∇q −∇V (q) · ∇p

Xi =

√
γ

β

(
∂pi +

β

2m
pi

)
X ∗i =

√
γ

β

(
−∂pi +

β

2m
pi

) (168)

Note that X0 is a skew-adjoint operator in L2(R2d). Also, X ∗i and Xi can be interpreted as creation and
annihilation operators of a quantum harmonic oscillator. The Kolmogorov operator K̃ and its formal adjoint
K̃∗ are both accretive, closable and with maximally accretive closure in L2(R2d) (see [35, 34, 25]) Similarly
to the Kolmogorov operator K̃ = U−1KU , we can transform the MZ projection operators P and Q into
operators in the “flat” Hilbert space L2(R2d) as P̃ = U−1PU and Q̃ = U−1QU . The relationship between
L2(R2d), L2(R2d; ρeq) and the operators defined therein can be summarized by the following commutative
diagram

L2(R2d) L2(R2d; ρeq)

L2(R2d) L2(R2d; ρeq)

P̃, K̃, Q̃

U

U−1

P,K,Q

The properties of all operators defined in L2(R2d) and L2(R2d; ρeq) are essentially the same since U is an
isomorphism. For instance if P is compact and self-adjoint then P̃ is also compact and self-adjoint.

Next, we apply the analytical results we obtained in Section 4.2.1 and Section 4.2.2. To this end, we just
need to verify whether K̃ is a poly-Hörmander operator, i.e., if the operators {Xi}di=0 appearing in (167)-
(168) satisfy the poly-Hörmander conditions in Proposition 1 and the estimate Theorem 7 (see Section
4.2.1). This can be done by imposing additional conditions on the particle interaction potential V (q), and
then following the mathematical steps in [25, Proposition 3.7]. In particular, following Helffer and Nier
[34], we assume V (q) satisfies the following ellipticity hypothesis

Hypothesis 1. The particle interaction potential V (q) is of class C∞(Rd), and it satisfies

1. ∀α ∈ Nd, |α| = 1, ∀q ∈ Rd, |∂αq V (q)| ≤ Cα
√

1 + ‖∇V (q)‖2 for some positive constant Cα,

2. ∃M,C ≥ 1, ∀q ∈ Rd, C−1(1 + ‖q‖2)1/(2M) ≤
√

1 + ‖∇V (q)‖2 ≤ C(1 + ‖q‖2)M/2.

Hypothesis 1 holds for any particle interaction potential that grows at most polynomially, i.e., V (q) '
‖q‖M , as q →∞. With this hypothesis, it is possible to prove the following

Proposition 2 (Helffer and Nier [34]). Consider the Langevin equation (160) with particle interaction
potential V (q) satisfying Hypothesis 1. Then the operator K̃ defined in (166) has compact resolvent, with
spectrum bounded by the cusp SK. Moreover, there exists a positive constant C such that the estimate

‖e−tK̃u0 − π̃0ũ0‖ ≤ Ce−αt‖ũ0‖ (169)

holds for all ũ0 ∈ L2(R2d) and for all t > 0, where π̃0 is the orthogonal projection onto the kernel of K̃ in
L2(R2d).
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By using the isomorphism (163) we can now rewrite Proposition 2 in L2(R2d; ρeq) as

‖e−tKu0 − π0u0‖L2
eq

= ‖e−tK̃ũ0 − π̃0ũ0‖L2 ≤ Ce−αt‖ũ0‖L2 = Ce−αt‖u0‖L2
eq
, (170)

where π0 = U π̃0U−1 = is the orthogonal projection onto linear subspace 1 with respect to the L2(R2d; ρeq)
norm. We also notice that π0(·) = E[(·)]. The inequality (170) is completely equivalent to the estimate
(133). It is also possible to obtain a prior estimate on the convergence rate α by building a between the
Kolmogorov operator and the Witten Laplacian (see [35, 34] for further details).

Our next task is to derive an estimate for the operator Q̃K̃Q̃, and for the semigroup e−tQ̃K̃Q̃ generated
by Q̃K̃Q̃. According to Theorem 9, the spectrum of Q̃K̃Q̃ is bounded by the cusp SQ̃K̃Q̃, provided P is

a finite-rank projection. On the other hand, Theorem 10 establishes exponential convergence of e−tQ̃K̃Q̃ to
equilibrium if Q̃K̃Q̃ satisfies condition (151). To determine the exact form of the spectral projection π̃Q̃0 ,
i.e., the projection onto the kernel of Q̃K̃Q̃ (see Theorem 10) we consider a general Mori-type projection P
and its unitarily equivalent version P̃ = U−1PU

P(·) =

m∑
i=1

〈·, gi(q)〉eqgi(q) P̃(·) =

m∑
i=1

〈·, gi(q)〉eq/2gi(q)e−βH/2, (171)

where {gj(q)}mj=1 are zero-mean8 orthonormal basis functions. In (171) we used the shorthand notation

〈h〉eq/2 =
1

Z

∫
g(p, q)e−βH(p,q)/2dpdq. (172)

Lemma 11. Suppose that the particle interaction potential V (q) in the SDE (161) satisfies Hypothesis 1.
Then

Ker(Q̃K̃Q̃) = Ker(K̃)⊕ Id(P̃), (173)

σ(Q̃K̃Q̃) ∩ iR ⊂ {0}, (174)

where K̃ and P̃ are defined in (166) and (171), respectively, and Id(P̃) = {u ∈ L2(R2d) : P̃u = u} is a
finite-dimensional linear space.

Proof. We first prove (173). If u ∈ Ker(Q̃K̃Q̃) then Q̃K̃Q̃u = 0. Therefore we can only have one of
the following three cases: i) Q̃u = 0; ii) Q̃u 6= 0, K̃Q̃u = 0; and iii) Q̃u 6= 0, K̃Q̃u 6= 0, Q̃K̃Q̃u = 0.
Hereafter we discuss these cases separately.

Case 1 If Q̃u = 0 then P̃u = u− Q̃u = u, i.e., u ∈ Id(P̃).

Case 2 If Q̃u 6= 0 and K̃Q̃u = 0, then we have that Q̃u ∈ Ker(K̃). We first prove that Q̃u ∈ Ker(K̃)⇒
u ∈ Id(P̃)⊕Ker(K̃). Since P̃ is an orthogonal, finite-rank projection in L2(Rn) (see Eq. (171)), we have
that Id(P̃) = Range(P̃) = span{gi(q)e−βH(p,q)/2}mi=1. At this point, we write u as

u = P̃u+ Q̃u =

m∑
i=1

cigi(q)e−βH/2 + c′e−βH/2 ∈ Id(P̃)⊕Ker(K̃), ci, c
′ ∈ R

Let us verify that if u ∈ Id(P̃)⊕Ker(K̃) then K̃Q̃u = 0, i.e. Q̃u ∈ Ker(K̃). To this end,

Q̃u = u− P̃u = c′e−βH/2 − c′P̃e−βH/2 = c′e−βH/2 ∈ Ker(K̃)⇒ K̃Q̃u = 0.
8Zero-mean here means that 〈gj〉eq = 0.
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Case 3. Let us assume that Q̃u 6= 0, K̃Q̃u 6= 0 and Q̃K̃Q̃u = 0. If u satisfies these three conditions, then
we have

〈Q̃K̃Q̃u, u〉 = 〈K̃Q̃u, Q̃u〉 = 0, Q̃u 6= 0, K̃Q̃u 6= 0. (175)

Upon definition of g = Q̃u, we can write (175) as 〈K̃g, g〉 = 0, g 6= 0, K̃g 6= 0. This suggests that
Re〈K̃g, g〉 =

∑d
i=1〈Xig,Xig〉 = 0, which implies that g belonging to the kernel of all annihilation operators

Xi, 1 ≤ i ≤ d. Therefore g must be of the form g = µ(q)e−β‖p‖
2/(4m). On the other hand, since

Q̃K̃Q̃u = Q̃K̃g = 0, we have that P̃K̃g = K̃g. A substitution of general form of g into this expression
yields

K̃g = X0g =

d∑
i=1

pi

[
1

m
∂qiµ(q)− β

2m
µ(q)∂qiV (q)

]
e−β‖p‖

2/(4m) =

d∑
i=1

Fi(q)ipie
−β‖p‖2/(4m) (176)

Thus,

P̃K̃g =
N∑
i=1

〈K̃g, gi(q)〉eq/2gj(q)e−
β
2
V (q)e−β‖p‖

2/(4m). (177)

The function F (q) appearing in (176) is a d-dimensional vector field that depends on the position q. It is
clear that tP K̃g = K̃g if and only if K̃g, which contradicts the assumption K̃Q̃u 6= 0. Hence we conclude
that there is no u that simultaneously satisfies Q̃K̃Q̃u = 0, Q̃u 6= 0 and K̃Q̃u 6= 0. This means that the
kernel of operator K̃Q̃K̃ is the finite-dimensional linear space Ker(K̃)⊕ Id(P̃).

Now we prove (174). Such condition states that the only eigenvalue of Q̃K̃Q̃ on the imaginary axis iR
is the origin. Equivalently, this means that for all u ∈ L2(R2d) such that Q̃K̃Q̃u = iλu (λ ∈ R), we have
that λ = 0. To see this, we choose g = Q̃u, Q̃K̃Q̃u = iλu implies Re〈Q̃K̃Q̃u, u〉 = Re〈K̃g, g〉 = 0,
which again implies g = µ(q)e−β‖p‖

2/4m. Since g is a real function and X0 a real operator, we have
Im〈K̃g, g〉 = Im〈X0g, g〉 = 0. Therefore, if Q̃K̃Q̃u = iλu and λ ∈ R, then we must have λ = 0.

Lemma 11 allows us to derive the following exponential convergence result for the semigroup e−tQKQ.

Proposition 3. Suppose that the particle interaction potential V (q) in the SDE (161) satisfies Hypothesis
1. Then there exits a positive constant C such that

‖e−tQKQu0 − πQ0 u0‖L2
eq
≤ Ce−αQt‖u0‖L2

eq
(178)

for all u0 ∈ L2(R2d, ρeq) and for all t > 0. In (178), P is the finite-rank projection (171), while

(179)

piQ0 (·) = π0(·) + P(·) (180)

is the orthogonal projection onto the linear space Ker(K)⊕ Id(P).

Proof. We first rewrite (178) as an L2(R2d) estimation problem as

‖e−tQ̃K̃Q̃ũ0 − π̃Q̃0 ũ0‖L2 ≤ Ce−αQt‖ũ0‖L2 (181)

where π̃Q̃0 = U−1πQ0 U . According to Proposition 2, The transformed Kolmogorov operator K̃ is of the form
(124). We know that such operator has compact resolvent and cusp-shaped spectrum. Then by Theorem 9
the operator Q̃K̃Q̃ has the same properties, provided P̃ is a finite-rank projection. To derive the estimate
(178) we can use Theorem 10. To this end, we need to make sure that the following conditions are met
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1. The spectral projection appearing in Theorem 10 can be replaced by a projection operator π̃Q̃0 in
L2(R2d), which projects any u ∈ L2(R2d) onto the linear subspace Ker(Q̃K̃Q̃), i.e., Range(π̃Q̃0 ) =
Ker(Q̃K̃Q̃) = Id(P̃)⊕Ker(K̃);

2. πQ0 is an orthogonal operator in L2(R2d; ρeq) given by (179) (up to an isomorphism).

Proof of condition 1 The projection operator P̃ is self-adjoint, and therefore Id(P̃) = Id(P̃∗). In [34],
Helffer and Nier proved that Ker(K̃) = Ker(K̃∗) = Re−βH . Hence,

Ker(Q̃K̃Q̃) = Ker(Q̃K̃∗Q̃) = Ker(K̃)⊕ Id(P̃) (182)

We now consider the orthogonal decomposition of the Hilbert space L2(R2d)

L2(R2d) = Ker(Q̃K̃Q̃)
⊥
⊕Ker(Q̃K̃Q̃)⊥,

If we define a projection operator πQ̃0 with range Range(πQ̃0 ) = Ker(Q̃K̃Q̃), then for any u0 ∈ L2(R2d),
we have the orthogonal decomposition

ũ0 = πQ̃0 ũ0 + (ũ0 − πQ̃0 ũ0), where πQ̃0 ũ0 ∈ Ker(Q̃K̃Q̃), ũ0 − πQ0 ũ0 ∈ Ker(Q̃K̃Q̃)⊥.

We now verify that Q̃K̃Q̃maps the linear subspaceKer(Q̃K̃Q̃)⊥ into itself, i.e., that for any u ∈ Ker(Q̃K̃Q̃)⊥

we have that Q̃K̃Q̃u ∈ Ker(Q̃K̃Q)⊥. To this we first notice that if w ∈ Ker(Q̃K̃Q̃) then

〈Q̃K̃Q̃u,w〉 = 〈u, Q̃K̃∗Q̃w〉 = 0.

In fact Ker(Q̃K̃Q̃) = Ker(Q̃K̃∗Q̃). On the other hand, if u ∈ Ker(Q̃K̃Q̃)⊥ then Q̃K̃Q̃u 6= 0 and there-
fore we must have Q̃K̃Q̃u ∈ Ker(Q̃K̃Q̃)⊥. The operator Q̃K̃Q̃ and its adjoint Q̃K̃∗Q can be decomposed
as

Q̃K̃Q̃ = Q̃K̃Q̃
∣∣
Ker(Q̃K̃Q̃)

⊥
⊕ Q̃K̃Q̃

∣∣
Ker(Q̃K̃Q̃)⊥

, Q̃K̃∗Q̃ = Q̃K̃∗Q̃
∣∣
Ker(Q̃K̃Q̃)

⊥
⊕ Q̃K̃∗Q̃

∣∣
Ker(Q̃K̃Q̃)⊥

.

This allows us to deform the domain of the Dunford integral representing etQ̃K̃Q̃ũ0−π̃Q̃0 ũ0 from [−i∞,+i∞]
to the cusp S ′Q̃K̃Q̃, as we did in Theorem 8. This yields

etQ̃K̃Q̃ũ0 − π̃Q̃0 ũ0 = etQ̃K̃Q̃
(
ũ0 − π̃Q̃0 ũ0

)
=

1

2πi

∫
∂S′
Q̃K̃Q̃

e−tz
(
z − Q̃K̃Q̃

)−1
ũ0dz.

At this point we can follow the exact same procedure in the proofs of Theorem 8 and Theorem 9, to
prove the semigroup estimate (178).

Proof of condition 2 Here we show that π̃Q̃0 is an orthogonal projection in L2(R2d) given by

π̃Q̃0 (·) = π̃0(·) + P̃(·) = 〈·〉eq/2e−βH/2 +
m∑
i=1

〈·, gi(q)〉eq/2gi(q)e−βH/2, (183)

up to an isomorphism. Since π̃Q̃0 and its adjoint are both projections, they can be used to decomposeL2(R2d)
as

L2(R2d) = Ker
(
π̃Q̃0

)
⊕ Range

(
π̃Q̃0

)
, L2(R2d) = Ker

([
π̃Q̃0

]∗)
⊕ Range

([
π̃Q̃0

]∗)
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It follows from (182) that Range(π̃Q̃0 ) = Range([π̃Q̃0 ]∗) = Ker(Q̃K̃Q̃). This impliesKer(π̃Q̃0 ) = Ker([π̃Q̃0 ]∗).
Since for all u,w ∈ L2(R2d), w − π̃Q̃0 w ∈ Ker(π̃

Q̃
0 ), we have that

〈p̃iQ̃0 u,w − π̃Q̃0 w〉 = 〈u, [π̃Q̃0 ]∗(w − π̃Q̃0 w)〉 = 0.

Therefore π̃Q̃0 is an orthogonal projection operator. On the other hand, since Id(P̃) = Range(P̃) and P̃ itself
is an orthogonal operator, the projection π̃Q̃0 is therefore given by (183) (unique up to an isomorphism).

4.3.1 EMZ memory and fluctuation terms

Theorem 3 allows us to prove that the EMZ memory kernel (115c) and the fluctuation term (115d) coverge
exponentially fast to an equilibrium state. Specifically,

Corollary 11.1. Suppose that the particle interaction potential V (q) in the SDE (161) satisfies Hypothesis
1. Let P a Mori-type projection operator associated with scalar observable u(t) = u(x(t)) such that
Ker(QKQ) = Ker(K)⊕ Id(P). Then the memory kernel of (115c) converges exponentially converges to
the equilibrium state E[Ku0]E[QK∗u0] with rate αQ, i.e.

|K(t)− E[Ku0]E[QK∗u0]| ≤ Ce−αQt. (184)

Proof. The Corollary follows immediately from (154), (179) and the fact that PQ = 0.

We emphasize that the equilibrium state E[Ku0]E[QK∗u0] the EMZ memory kernel K(t) converges to can
be explicitly calculated. It is straightforward to extend (184) to matrix-valued memory kernels (115c). By
following the same steps that lead us to (157), we obtain

‖K(t)−G−1CQ‖M ≤ C‖G−1DQ‖Me−αQt, (185)

where ‖ · ‖M denotes any matrix norm, and G is the Gram matrix (115a). The entries of the matrix CQ

are given by CQij = E[QK∗ui(0)]E[Kuj(0)], while DQij = E[QKui(0)]E[QKuj(0) − E[Kuj(0)]]. The
components of the EMZ fluctuation term (115d) decay to an equilibrium state as well, exponentially fast in
time. In fact, if we choose the initial condition as u0 = QKu0, then (152) yields the following estimate

E[fi(t)− E[QKui(0)]] ≤ Ce−αQtE[QKui(0)]. (186)

The estimate (186) can be also written in a vector form as

‖f(t)− E[QKu(0)]‖V ≤ Ce−αQt‖V ‖M , (187)

where V = (E[QKu1(0)], · · · ,E[QKum(0)]), ‖‖M is any matrix norm and

‖h(t)‖V = ‖E[u1(t)], . . . ,E[um(t)]‖M . (188)

5 Approximation methods for the MZ equation

Computing the solution to the MZ equation is a challenging task that relies on approximations and appropri-
ate numerical schemes [84, 12, 82]. One of the main difficulties is the approximation of the memory integral
(convolution term), which encodes the effects of the so-called orthogonal dynamics in the time evolution
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of the quantity of interest. The orthogonal dynamics is essentially a high-dimensional flow that satisfies a
complex integro-differential equation. Such flow usually has the same order of magnitude and dynamical
properties as the quantity of interest, i.e., there is no scale separation between the resolved and the orthog-
onal dynamics [88]. In these cases, the computation of the MZ memory integral can be addressed only
by problem-class-dependent approximations. The first effective technique was developed by Hazime Mori
in [64]. The method relies on on continued fraction expansions, and it can be conveniently formulated in
terms of recurrence relations [79, 40, 52, 51, 39]. The continued fraction expansion method of Mori made
it possible to compute the exact solution of important prototype problems in statistical mechanics, such as
the dynamics of the auto-correlation function of a tagged oscillator in an harmonic chain [29, 44]. Other
effective approaches to approximate the MZ memory integral rely on perturbation methods [94, 76, 89],
mode coupling theories [2, 78, 77], or functional approximation methods [31, 33, 65]. In a parallel effort,
the applied mathematics community has, in recent years, attempted to derive general easy-to-compute rep-
resentations of the MZ memory integral [88, 32]. In particular, various approximations such as the t-model
[15, 18, 81, 12], hierarchical perturbation methods [84, 99, 89], and data-driven methods [53, 9] were pro-
posed to address approximation of the MZ memory integral in situations where there is no clear separation
of scales between the resolved and the unresolved dynamics.

5.1 Operator series expansions

In this section, we discuss approximation methods for the MZ equation based on operator series expansions
of the orthogonal dynamics propagator. Specifically, we study the Faber series, which yields asymptotically
optimal approximations converging at least superlinearly with the polynomial order (for linear dynamical
systems). The advantages of expanding the orthogonal dynamics propagator in terms of globally defined
operator series are similar to those we obtain when we approximate a smooth function in terms of orthogonal
polynomials rather than Taylor series [36]. The proposed memory approximation method can outperform
in terms of accuracy the hierarchical memory approximation technique proposed by Stinis in [82] (see also
[99]), which is based on Taylor series. Most of the analysis and numerical results presented in this section
are for high-dimensional linear dynamical systems evolving from random initial states. The extension to
nonlinear systems is straightforward, but but its practical implementation is limited by the same computa-
tional bottlenecks that made it difficult to obtain high-order expansions in [15, 82, 81, 84]. To describe the
method consider the Mori-Zwanzig memory integral (see Eq. (17))∫ t

0
PesLPLe(t−s)QLQLu0ds (189)

Expand the orthogonal dynamics propagator etQL as

etQL =
∞∑
n=0

an(t)Φn (QL) , (190)

where Φn are polynomial basis functions, and an(t) are temporal modes. Series expansions in the form
(190) can be rigorously defined in the context of matrix theory [61, 62], i.e., for operators QL between
finite-dimensional vector spaces. The question of whether it is possible to extend such expansions to the
infinite-dimensional case, i.e., for operators acting between infinite-dimensional Hilbert or Banach spaces,
is not a trivial [21]. For example, it is well-known that the classical Taylor series

etL =
∞∑
k=0

tk

k!
Lk (191)
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does not hold if L is an unbounded operator, e.g., the generator of the Koopman semigroup (see [43], p.
481). In the latter case, etL should be properly defined as

etL = lim
n→∞

(
1− tL

n

)−n
. (192)

In fact, (1− tL/n)−1 is the resolvent of L (apart from a constant factor), which can be defined for both
bounded and unbounded linear operators. Despite the theoretical issues associated with the existence of
convergent series expansions of semigroups generated by unbounded operators [28, 43], when it comes to
computing we always need to discretize the system, most often by discretizing the generator of the semi-
group. In this setting, etQL is truly a matrix exponential, where, with some abuse of notation, we denoted
by Q and L the finite-dimensional representation9 of the operators Q and L.

5.1.1 MZ-Dyson expansion

A substitution of the classical Taylor series expansion of the orthogonal dynamics propagator

etQL =

∞∑
n=0

tn

n!
(QL)n (193)

into the MZ equation (7) yields

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
PesLPLe(t−s)QLQLu0ds,

= PetLPLu0 +

∫ t

0

∞∑
n=0

(t− s)n

n!
PesLPL(QL)nQLu0︸ ︷︷ ︸

Cn(s)u0

ds,

= PetLPLu0 +

∫ t

0

[ ∞∑
n=0

Cn(s)
(t− s)n

n!

]
︸ ︷︷ ︸

G(t−s,s)

u0ds,

= PetLPLu0 +

∫ t

0
G(t− s, s)u0ds, (194)

where the memory operator10 G(t− s, s) is defined as

G(t− s, s) =
∞∑
n=0

(t− s)n

n!
Cn(s), Cn(s) = PesLPL(QL)nQL, n ≥ 0. (195)

We shall call this series expansion of the MZ equation as MZ-Dyson expansion. The reason for such def-
inition is that (194) is equivalent to the hierarchical memory approximation model originally proposed by
Stinis [82], which in turn is equivalent to

∂

∂t
PetLu0 = PetLPLu0 +w0(t)

9The matrix representation of a linear operator L, relative to the span of a finite-dimensional basis V = span{h1, h2, ..., } can
be easily obtained by representing each vector Lhi in V (provided the LV ⊆ V ). Alternatively, if L operates in the Hilbert space
H and {h1, h2, ..., } is an orthonormal basis of H, then the matrix representation of L has entries Lij = (Lhi, hj), where (, )
denotes the inner product inH.

10Note that G(t− s, s) here is not a function but a linear operator.
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where w0(t) is given by the Dyson series (see section 3.3.1)

w0(t) =
∞∑
n=1

∫ t

0

∫ τn−1

0
...

∫ τ1

0
PesLPL(QL)nu0dsdτ1...dτn−1. (196)

To prove such equivalence, we just need to prove that∫ t

0

∫ τn−1

0
...

∫ τ

0
PesLPL(QL)ndsdτ1...dτn−1 =

∫ t

0

(t− s)n−1

(n− 1)!
PesLPL(QL)nQLds. (197)

We proceed by induction. To this end, we first define

An(t) =

∫ t

0

∫ τn−1

0
...

∫ τ

0
PesLPL(QL)ndsdτ1...dτn−1, Bn(t) =

∫ t

0

(t− s)n−1

(n− 1)!
PesLPL(QL)nQLds.

(198)
For n = 1 we haveA1 = B1. For n ≥ 2 we haveA′n(t) = An−1(t), B′n(t) = Bn−1(t) andAn(0) = Bn(0).
Hence, by induction we conclude that An(t) = Bn(t), and therefore the memory integral in (194), with G
given in (195), is equivalent to a Dyson series.

5.2 MZ-Faber expansion

The Faber expansion of the orthogonal dynamics propagator etQL is an operator series of the form

etQL =

∞∑
j=0

aj(t)Fj(QL), (199)

where Fj is the j-th order Faber polynomial, and aj(t) are suitable temporal modes defined hereafter.
The series expansion (199) is asymptotically optimal, in the sense that its m-th order truncation uniformly
approximates the best sequence of operator polynomials converging to etQL as m → ∞ (see [66, 63]). A
substitution of (199) into (189) yields the following expansion of the MZ equation (7)

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
PesLPLe(t−s)QLQLu0ds,

= PetLPLu0 +

∫ t

0

∞∑
j=0

aj(t− s)PesLPLFj(QL)QLu0︸ ︷︷ ︸
Cj(s)u0

ds,

= PetLPLu0 +

∫ t

0
G(t− s, s)u0ds, (200)

where

G(t− s, s) =

∞∑
j=0

aj(t− s)Cj(s), (201)

and

aj(t− s) =
1

2πi

∫
|w|=R

e(t−s)ψ(w)

wj+1
dw, Cj(s) = PesLPLFj(QL)QL. (202)

Here, ψ(w) is the conformal map at the basis of the Faber series. The coefficients of the Laurent expansion
of ψ determine the recurrence relation of the Faber polynomials. High-order Laurent series usually yield
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higher convergence rates, but complicated recurrence relations. Moreover, the computation of the integrals
in (202) can be quite cumbersome if high-order Laurent series are employed. To avoid such drawbacks, we
choose the conformal map ψ(w) = w + c0 + c1/w. This yields the following analytical expression for the
temporal modes aj(t− s)

aj(t− s) =
e(t−s)c0

(
√
−c1)j

Jj
(
2(t− s)

√
−c1

)
, (203)

where Jj denotes the j−th Bessel function of the first kind. In Section 5.6 we prove that the Faber expansion
of the MZ memory integral converges for any linear dynamical system and any finite integration time with
rate that is at least R-superlinear.

Remark The MZ-Dyson expansion we discussed in Section 5.1.1 is a subcase of the Faber expansion. In
fact, Faber polynomialsFj(QL) corresponding to the conformal mapping ψ(w) = w are simply monomials
(QL)j . Moreover, the temporal modes (203) reduce to (t−s)j/j! if we set c0 = 0 and take the limit c1 → 0.

5.3 Other series expansions of the MZ-memory integral

The orthogonal dynamics propagator etQL can be expanded relative to basis functions other than Faber
polynomials [61, 62]. This yields different approximations of the MZ memory integral and, correspondingly,
different expansions of the MZ equation.

5.3.1 MZ-Lagrange expansion

The MZ-lagrange expansion is based on the following semigroup expansion

etQL =

n∑
j=1

eλjt
n∏
k=1
k 6=j

(QL− λkI)

(λj − λk)
, (204)

where {λ1, ..., λn} = σ(QL) is the spectrum of the matrix representation of the operator QL (eigenvalues
counted with their multiplicity). Note that (204) is in the form (190) with

aj(t) = eλjt, and Φj(QL) =

n∏
k=1
k 6=j

(QL− λkI)

(λj − λk)
. (205)

A substitution of (204) into the MZ equation yields the MZ-Lagrange expansion

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
G(t− s, s)u0ds, (206)

where

G(t− s, s) =

n∑
j=1

e(t−s)λjCj(s), and Cj(s) = PesLPL
n∏
k=1
k 6=j

(QL− λkI)

(λj − λk)
, j ≥ 1. (207)
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Mori-Zwanzig Memory

G =

∞∑
j=0

hj(t− s)Cj(s)

Type Temporal modes Operators Cj(s)

MZ-Dyson
tj

j!
PesLPL(QL)jQL

MZ-Faber etc0
Jj(2t

√
−c1)

(
√
−c1)j

PesLPLFj(QL)QL

MZ-Lagrange etλj PesLPL
n∏
k=1
k 6=j

(QL− λkI)

(λj − λk)

MZ-Newton f1,j(t)


PesLPL j = 1

PesL
j−1∏
k=1

(PLQL− λkPL) j ≥ 2

Table 1: Series expansions of the Mori-Zwanzig memory operator. Here Jj is the jth Bessel function of the
first kind, c0 and c1 are real numbers, f1,j(t) are defined in (209), and λj are the eigenvalues of any matrix
representation of QL.

5.3.2 MZ-Newton expansion

The MZ-Newton expansion is based on the following semigroup expansion

etQL = f1,1(t)I +

n∑
j=2

f1,j(t)

j−1∏
k=1

(QL− λkI), (208)

where f1,j(t) is the divided difference defined recursively by

f1,j(t) =



eλ1t j = 1,

etλ1 − etλ2
λ1 − λ2

j = 2,

f1,j−1(t)− f2,j(t)

λ1 − λj
j ≥ 3.

(209)

A substitution of the Newton expansion (208) into the MZ equation yields the following MZ-Newton ex-
pansion

∂

∂t
PetLu0 = PetLPLu0 +

∫ t

0
G(t− s, s)u0ds, (210)

where

G(t− s, s) = C1(s)e(t−s)λ1 +

n∑
j=2

Cj(s)f1,j(t), Cj(s) =


PesLPL j = 1

PesL
j−1∏
k=1

(PLQL− λkPL) j ≥ 2
.

(211)

Remark All series expansion methods we considered so far aim at representing the memory integral in the
Mori-Zwazing equation for the same phase space function. Therefore, such series should be related to each
other. Indeed, as shown in Table 1, they basically represent the same memory operator G(t − s, s) relative
to different bases. This also means that the series can have different convergence rates. For example, as we
will demonstrate numerically in Section 5.7 the MZ-Faber expansion converges faster than the MZ-Dyson
series.
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5.4 The generalized Langevin equation (GLE)

We have seen that expanding the orthogonal dynamics propagator etQL in an operator series in the form
(190) yields the Mori-Zwanzig equation11

∂

∂t
PetLu0 = PetLPLu0 +

∞∑
j=0

∫ t

0
hj(t− s)Cj(s)u0ds, (212)

where hj(t−s) are temporal modes, and Cj(s) are operators defined in Table 1. For example, if we consider
the MZ-Dyson expansion, we have

hj(t− s) =
(t− s)j

j!
, Cj(s) = PesLPL(QL)jQL. (213)

Equation (212) is the exact generalized Langevin equation (GLE) governing the projected dynamics of a
quantity of interest. Such equation has different forms depending on the choice of the projection operator P .
In particular, if we choose Chorin’s projection (8) then (212) is an equation for the conditional expectation
of the quantity of interest. On the other hand, if we choose Berne’s projection (24) then (212) becomes an
equation for the autocorrelation function of the quantity of interest. Both these equations are, in general,
unclosed if the dynamical system (1) is nonlinear. However, if the system is linear then, as we will see
hereafter, such equations are closed.

5.4.1 Application to linear dynamical systems

Consider the linear dynamical system ẋ = Ax and the quantity of interest u(x) = x1 (first component of the
system). In this Section, we derive the evolution equations for the conditional mean and the autocorrelation
function of x1(t) by using the MZ formulation.

5.4.2 Evolution equation for the conditional expectation

Let P be Chorin’s projection (8) and choose u(x) = x1 (scalar). Then

PetLx1(0) = 〈x1(t)〉ρ0 =

∫
x1(t,x0)ρ0(x0)dx0.

In this case, equation (212) reduces to

d

dt
〈x1(t)〉ρ0 = α〈x1(t)〉ρ0 + β +

∫ t

0
g(t− s)〈x1(s)〉ρ0ds+

∫ t

0
f(t− s)ds, (214)

where the constants α, β, the MZ memory kernel g(t− s), and the function f(t− s) are defined by

PLx1(0) = αx1(0) + β, g(t− s) =
∞∑
j=0

gjhj(t− s), f(t− s) =
∞∑
j=0

fjhj(t− s). (215)

11We emphasize that if we apply the semigroup expansion (199) to the unprojected Mori-Zwanzig equation (17), then we obtain
a stochastic differential equation for the full dynamics. Establishing convergence of a reduced-order stochastic model derived from
such such stochastic equation is not easy. Moreover, for nonlinear systems, we inevitably have to introduce additional approxima-
tions to the “noise” term etQLQLu0, to obtain a computable model. For instance, if we assume that etQLQLu0 is random noise,
then we need to introduce a suitable probability functional to characterize it [87, 47].
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The coefficients gj , fj and the temporal bases hj(t− s) appearing in the series expansions above depend on
the series expansion of the orthogonal dynamics propagator etQL. Specifically, gj and fj are determined by
the equation

Cj(s)x1(0) = gj〈x1(s)〉ρ0 + fj , (216)

while hj(t−s) and Cj(s) are defined in Table 1. To derive equation (216) we used the identity PesLfj = fj .
In the case of MZ-Dyson and MZ-Faber expansions we explicitly obtain

PL(QL)jQLx1(0) = gDj x1(0) + fDj , PLFj(QL)QLx1(0) = gFj x1(0) + fFj , (217)

where the superscripts D and F stand for “Dyson” and “Faber”, respectively.

5.4.3 Evolution equation for the autocorrelation function

If we choose the projection operator P to be Berne’s projection (24), then equation (212) becomes an
evolution equation for the autocorrelation function of the quantity of interest12, i.e.,

dCu(t)

dt
= αCu(t) +

∫ t

0
g(t− s)Cu(s)ds, (218)

where α and g(t− s) defined by

PLu0 = αu0, g(t− s) =
∞∑
j=0

gjhj(t− s). (219)

As before, the temporal modes hj and the coefficients gj in the expansion of the MZ-memory kernel g(t−s)
depend on the expansion of the orthogonal dynamics propagator etQL. Specifically, in the case of MZ-Dyson
and MZ-Faber expansions we obtain, respectively,

PL(QL)jQLu0 = gDj u0, PLFj(QL)QLu0 = gFj u0. (220)

It is worth noticing that Berne’s projection sends any function into the linear space spanned by the initial
condition u0.

5.4.4 Exact solution to the MZ equation

The analytical solution to the MZ equations (214) and (218) can be computed through Laplace transforms.
To this end, let us first notice that both equations are in the form of a Volterra equation

dy(t)

dt
= αy(t) + β +

∫ t

0
g(t− s)y(s)ds+

∫ t

0
f(t− s)ds. (221)

Applying the Laplace transform

L [·](s) =

∫ ∞
0

(·)e−stdt (222)

to both sides of (221) yields

sY (s)− y(0) = αY (s) +
β

s
+ Y (s)G(s) +

F (s)

s
, (223)

12In fact, if we apply the operator 〈u0, ·〉/〈u0, u0〉 to both sides of equation (212) we obtain (218).
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i.e.,

Y (s) =
(F (s) + β)/s+ y(0)

s−G(s)− α
, (224)

where
Y (s) = L [y(t)], F (s) = L [f(t)], G(s) = L [g(t)]. (225)

Thus, the exact solution to the Volterra equation (221) can be written as

y(t) = L −1

[
(F (s) + β)/s+ y(0)

s−G(s)− α

]
. (226)

The Laplace transform of the memory kernel g(t), i.e., G(s), can be computed analytically in many cases.
For example, in the case of MZ-Dyson and MZ-Faber expansions we obtain, respectively

G(s) =
∞∑
j=0

gDj
sj+1

(MZ-Dyson), (227)

G(s) =
∞∑
j=0

gFj
2j(
√
−c1)2j

(
√
s2 − 4c1 − s)j√
s2 − 4c1

(MZ-Faber). (228)

The coefficients gFj and gDj are explicitly defined in (217), or (220), depending on whether we are interested
in the mean or the correlation function of the quantity of interest.

Remark The recurrence relation at the basis of the Faber polynomials induces a recurrence relation in
the Laplace transform G(s) of the MZ memory kernel. Therefore, a connection between the MZ-Faber
approximation method we propose here and the method of recurrence relations of Lee [64, 51] can be
established.

5.5 GLEs for nonlinear systems

In the previous Sections, we employed Chorin’s projection and Berne’s projection to derive generalized
Langevin equations for quantities of interest (phase space functions) in linear dynamical systems. Similar
series expansion can be developed for nonlinear dynamical systems by following methods similar to those
presented in [11, 54]. In particular, if we use Mori’s projection (15), then PL(QL)iu0 is in the span of the
orthogonal basis {A1(u(x)), . . . , AM (u(x))} defining the Hilbert space of observables, i.e.,

PL(QL)iu0 ∈ S = span{A1, . . . , AM}. (229)

As a consequence, the j-th order operator polynomial Φj(QL) and PLΦj(QL)u0 are both in S. This
means that if we choose the initial condition as u0 = Ak ∈ S, then PesLPLΦi(QL)Ak admits the matrix
representation13

PesLPLΦi(QL)Ak =
M∑
j=1

Hkj(Φi)ηj(s), (230)

13The existence of H follows form (229) and simple linear algebra.
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where Ak(s) = PesLAk(0). The M × M matrix H(Φi) depends on the polynomial Φi we employ to
expand the orthogonal dynamics propagator (190). Any truncation of the series (190) to n terms yields

PesLPLe(t−s)QLQLAk =

M∑
j=1

n∑
i=1

gi(t− s)Hkj(Φi)Aj(s),

where gj(t−s) can be any of the temporal bases listed in Table 1. This yields following matrix-valued GLE

d

dt
Ak(t) =

N∑
j=1

ΩjkAj(t) +
N∑
j=1

∫ t

0
Kkj(t− s)Aj(s)ds, (231)

where the entries of the streaming matrix Ω and the memory matrixK(t− s) are defined by

PLAk =
N∑
j=1

ΩjkAj and Kkj(t− s) =
n∑
i=1

gi(t− s)Hkj(Φi). (232)

Unfortunately, for nonlinear systems it is not easy to calculate the matrix coefficients Hkj(Φi), especially
for large values of i. The reason is the same that limits the practical computation of high-order expansions
in [82, 81, 84]. Nevertheless, the MZ equation (231) can be used as a starting point to build approximations,
e.g., based on data streams [53, 9].

5.6 Convergence analysis

In this section, we develop a thorough convergence analysis of the MZ-Faber14 equation (7). The key ideas
at the basis of our analysis can be found in our recent paper [99]. Here we focus, in particular, on high-
dimensional linear systems of the form

ẋ(t) = Ax(t), x(0) = x0(ω), (233)

where x0(ω) is a random initial state. Our goal is to prove that the norm of the approximation error

En(t) =

∫ t

0
PesLPLe(t−s)QLQLu0ds−

n∑
j=0

∫ t

0
aj(t− s)PesLPLFj(QL)QLu0ds︸ ︷︷ ︸

MZ-Faber series

=

∫ t

0

∞∑
j=n+1

aj(t− s)PesLPLFj(QL)QLu0ds (234)

decays as we increase the polynomial order n, for any fixed integration time t > 0, i.e.,

lim
n→∞

‖En(t)‖ = 0.

Throughout this Section ‖·‖ denotes either an operator norm, a norm in a function space or a standard norm
in CN , depending on the context. The convergence proof of MZ-Faber series clearly depends on the choice
of the projection operator, and on the phase space function u(x) (quantity of interest). In this Section, we
consider

u(x(t)) = x1(t), (235)

and Chorin’s projection (8). Similar results can be obtained for other projection, and vector-valued phase
space functions (2). We begin with the following

14We recall that the MZ-Dyson series expansion is a subcase of the MZ-Faber expansion. Therefore convergence of MZ-Faber
implies convergence of MZ-Dyson.
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Lemma 12. Consider the linear dynamical system (233) and the phase space function (235). Let P be
Chorin’s projection (8) with arbitrary initial distribution ρ0 (not necessarily i.i.d), Q = I − P , L(x) =
Ax · ∇ and pk an arbitrary polynomial of degree k. Then we have the following operator polynomial
equality

PLpk(QL)QLx1(0) =
[
b · pk(MT

11)a
]
x1(0) +

[
pk(M

T
11)MT

11a
]
· 〈x−1(0)〉ρ0 ,

where

x−1(0) = [x2(0), x3(0), . . . , xN (0)]T , a = [A12, . . . , A1N ]T , b = [A21, . . . , AN1]T ,

and M11 is the matrix obtained fromA by removing the first row and the first column.

Proof. By a direct calculation, it can be verified that

(QL)nx1(0) =
[(
MT

11

)n−1
a
]
· [x−1(0)− 〈x−1(0)〉ρ0 ] ,

L(QL)nx1(0) =
[
bT
(
MT

11

)n−1
a
]
x1(0) +

[(
MT

11

)n
a
]
· x−1(0),

PL(QL)nQLx1(0) =
[
bT
(
MT

11

)n
a
]
x1(0) +

[(
MT

11

)n
MT

11a
]
· 〈x−1(0)〉ρ0 . (236)

Note that each entry of the vector 〈x−1(0)〉ρ0 = [〈x2(0)〉ρ0 , ..., 〈xN (0)〉ρ0 ]T is 〈xi(0)〉ρ0 = Pxi(0) (i =
2, ..., N ). Thus, for any polynomial function in the form

pk(QL) =

k∑
j=0

βk(QL)j , (237)

we have

PLpk(QL)QLx1(0) =

k∑
j=0

βjPL(QL)jQLx1(0),

=

k∑
j=0

βj

([
bT
(
MT

11

)n
a
]
x1(0) +

[(
MT

11

)n
MT

11a
]
· 〈x−1(0)〉ρ0

)
,

=
[
b · pk

(
MT

11

)
a
]
x1(0) +

[
pk
(
MT

11

)
MT

11a
]
· 〈x−1(0)〉ρ0 .

This completes the proof of the Lemma.

To prove convergence of MZ-Faber series we need two more Lemmas involving Faber polynomials of a
complex variable.

Lemma 13. Let γ be the capacity of Ω ⊆ C. If Ω is symmetric with respect to the real axis, then for any
R > γ the conformal map

ψ : Ĉ \ {w : |w| ≤ γ} → Ĉ \ Ω, ψ(∞) =∞, ψ′(∞) = 1, (238)

where Ĉ is the Riemann’s sphere, satisfies

ψ(R) ≤ ψ(γ) +R− γ2

R
.
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Proof. We first notice that

ψ(R) = ψ(γ) +

∫ R

γ
ψ′(t)dt.

By using Lemma 4.2 in [66], i.e.,

|ψ′(t)| ≤ 1 +

(
γ

|t|

)2

, |t| > γ

we have

ψ(R)− ψ(γ) ≤ |ψ(R)− ψ(γ)| =
∣∣∣∣∫ R

γ
ψ′(t)dt

∣∣∣∣ ≤ ∫ R

γ
|ψ′(t)|dt = R− γ2

R
,

which completes the proof.

Next, consider an arbitrary matrixA and define the field value ofA as

FV (A) =
{
zHAz : z ∈ CN , zHz = 1

}
.

The field value of A is a subset of the complex plane. Also, denote the truncated Faber series of the
exponential matrix etA as

Pm(t) =
m∑
j=0

aj(t)Fj(A). (239)

With this notation, we have the following

Lemma 14. Let Ω ⊂ C be symmetric with respect to the real axis, convex and with capacity γ. Consider
an N × N matrix A with spectrum σ(A), and an N × 1 vector v. If σ(A) ⊆ Ω and the field value
FV (A) ⊆ Ω(q) for some q ≥ γ, then the approximation error

em(t− s)v = e(t−s)Av − P(m−1)(t− s)v t ≥ s

satisfies

‖em(t− s)v‖ ≤ C3e
(t−s)E

(
qet−s

m

)m−1

m ≥ 4q,

where

C3 = C3(v) = 8e‖v‖q
(

1 +
1

8q

)
and E = 1 + ψ(γ).

Proof. If q ≥ γ then we have, thanks to the convexity of Ω and the analyticity of the exponential function,

‖em(t− s)v‖ ≤ 8‖v‖e
(

1 +
1

8q

)
m
( q
m

)m
max
|z|∈Γ(m)

∣∣∣e(t−s)z
∣∣∣ m ≥ 4q (240)

(see Theorem 4.2 in [66]). On the other hand,

max
|z|∈Γ(m)

∣∣∣e(t−s)z
∣∣∣ = e(t−s)ψ(m) m ≥ 4q. (241)
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By using Lemma 13 we have

ψ(m) ≤ ψ(γ) +m− γ2

m
≤ ψ(γ) +m, (242)

and therefore

e(t−s)ψ(m) ≤ e(t−s)(m−1)e(t−s)(1+ψ(γ)) m ≥ 4q ≥ γ. (243)

Combining (240) , (241) and (243), we obtain

‖em(t− s)v‖ ≤ C3 exp((t− s)E)

(
qet−s

m

)m−1

, (244)

where

C3 = 8e‖v‖q
(

1 +
1

8q

)
and E = 1 + ψ(γ).

At this point, we we have all elements to prove the following

Theorem 15. (Convergence of the MZ-Faber Expansion) Consider the linear dynamical system (233),
the phase space function (235) and the projection operator (8). The norm of the approximation error (234)
satisfies15

‖En(t)‖ ≤ K
(

q

n+ 1

)n etβ − et(E+n)

β − E − n
t ≥ 0, n ≥ 4q, (245)

where n is the Faber polynomial order, while q, K, β and E are suitable constants defined in the proof of
the theorem.

Proof. We aim at determining an upper bound for

‖En(t)‖ =

∥∥∥∥∥∥
∫ t

0
PesL

∞∑
j=n+1

aj(t− s)PLFj(QL)QLx1(0)ds

∥∥∥∥∥∥ . (246)

To this end, we fist notice that quantity Fj(QL)QL is a (j + 1)-th order operator polynomial in QL. Thus,
we can apply Lemma 12 to obtain

PLFj(QL)QLx1(0) =
[
b · Fj(MT

11)a
]
x1(0) +

[
Fj(MT

11)MT
11a
]
· 〈x−1(0)〉ρ0 . (247)

Let us now set

ηn(t− s) =

∥∥∥∥∥∥
∞∑

j=n+1

aj(t− s)PLFj(QL)QLx1(0)

∥∥∥∥∥∥ . (248)

By using (247) and the Cauchy-Schwartz inequality we have

ηn(t− s) ≤ C4

∥∥∥∥∥∥
∞∑

j=n+1

aj(t− s)Fj(MT
11)a

∥∥∥∥∥∥+ C5

∥∥∥∥∥∥
∞∑

j=n+1

aj(t− s)Fj(MT
11)MT

11a

∥∥∥∥∥∥ , (249)

15It can be shown that the upper bound in (245) is always positive.
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where C4 = ‖bT ‖|x1(0)|, C5 = ‖〈x−1(0)〉ρ0‖. The two sums in (249) represent the error in the Faber
approximation of the matrix exponential e(t−s)MT

11 . In fact,

e(n+1)(t− s) = e(t−s)MT
11 −

n∑
j=1

aj(t− s)Fj(MT
11) =

∞∑
j=n+1

aj(t− s)Fj(MT
11). (250)

Combining (246), (248), (249) and (244) yields

‖En(t)‖ ≤
∫ t

0
ηn(t− s)

∥∥PesL∥∥ ds,
≤
∫ t

0

(
C4

∥∥e(n+1)(t− s)a
∥∥+ C5

∥∥e(n+1)(t− s)MT
11a
∥∥) ‖PesL‖ds,

≤
∫ t

0
Kesβe(t−s)(E+n)

(
q

n+ 1

)n
ds,

≤ K
(

q

n+ 1

)n etβ − et(E+n)

β − E − n
n ≥ 4q. (251)

Here we used the semigroup estimation ‖esL‖ ≤Wesβ . The constants in (251) are

K = ‖P‖C6W, C6 = 2 max{C4C3, C5C
∗
3}, E = 1 + ψ(γ), (252)

where

C3 = 8e‖a‖q
(

1 +
1

8q

)
, C∗3 = 8e‖MT

11a‖q
(

1 +
1

8q

)
. (253)

It can be shown that the upper bound (251) is always positive, and goes to zero as we send the Faber
polynomial order n to infinity. This implies that

lim
n→∞

‖En(t)‖ = 0, (254)

i.e., the MZ-Faber expansion converges for any finite time t ≥ 0. This completes the proof.

Next, we estimate the convergence rate of the MZ-Faber expansion. To this end, let us define

R(t, n) = K

(
q

n+ 1

)n etβ − et(E+n)

β − E − n
, n ≥ 4q (255)

the be the upper bound (251). We have the following

Corollary 15.1. (Convergence Rate of the MZ-Faber Expansion) With the same the notation of Theorem
15, the MZ-Faber expansion converges at least superlinearly with the polynomial order, i.e.

lim
n→∞

R(t, n+ 1)

R(t, n)
= 0 (256)

for any finite time t ≥ 0.

Proof. By a direct calculation it is easy to verify that (256) holds true. In fact,

R(t, n+ 1)

R(t, n)
=

q

n+ 2

(
n+ 1

n+ 2

)n etβ − et(E+n+1)

etβ − et(n+E)

β − E − n
β − E − (n+ 1)

. (257)
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Therefore16,

lim
n→+∞

R(t, n+ 1)

R(t, n)
= lim

n→+∞

qet

n+ 2

(
n+ 1

n+ 2

)n
= 0, t <∞. (259)

By using asymptotic analysis we can also show that the MZ-Dyson expansion converges superlinearly.
To this end, let us define the approximation error

En(t) =

∫ t

0
PesLPLe(t−s)QLQLu0ds−

n∑
j=0

∫ t

0
aj(t− s)PesLPL(QL)jQLu0ds︸ ︷︷ ︸

MZ-Dyson series

. (260)

By following the same steps we used in the proof of Theorem 15, we can bound the norm of (260) as

‖En(t)‖ ≤ F (t, n). (261)

where

F (t, n) = C
(At)n

(n+ 1)!
A,C ≥ 0. (262)

Such upper bound plays the same role as R(t, n) in the MZ-Faber expansion of En(t) (see Eqs. (251) and
(255)). Taking the ratio between F (t, n+ 1) and F (t, n) we obtain

lim
n→∞

F (t, n+ 1)

F (t, n)
= lim

n→∞

At

n+ 2
= 0. (263)

5.7 Numerical examples

In this section, we demonstrate the accuracy of the MZ-Faber expansion methods. Specifically, we study
random wave propagation in an annulus with Dirichlet boundary conditions, and dynamics of harmonic
chains of oscillators interacting on graphs with arbitrary topology.

5.7.1 Random wave propagation

Consider the following initial/boundary value problem for the wave equation in an annulus with radii r1 = 1
and r2 = 11

∂2w

∂t2
=
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂θ2
, (264)

where

w(t, r1, θ) = 0, w(t, r2, θ) = 0 w(0, r, θ) = w0(r, θ;ω),
∂w(0, r, θ)

∂t
= 0. (265)

16We recall that

lim
n→+∞

(
n+ 1

n+ 2

)n
=

1

e
. (258)
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The field w(t, r, θ) represents the wave amplitude at time t, while w0(r, θ;ω) is the wave field at initial time,
which is set to be random. We seek the for an approximation of the solution w(t, r, θ) in the form

wN (t, r, θ) =

N∑
n=1

ŵn(t)ψn(r, θ), (266)

where ψn(r, θ) is a basis constructed by taking the tensor product of polynomials (radial direction) and
trigonometric functions (angular direction). The random wave field at initial time is represented as

w0(r, θ;ω) =

M∑
n=1

ŵn(0)ψn(r, θ), M ≤ N, (267)

where ŵn(0) are i.i.d Gaussian random variables. Substituting (266) into (264) and imposing that the resid-
ual is orthogonal to the space spanned by the basis {ψ1, ..., ψN} ( Galerkin method [42, 36]) yields the linear
system

d2

dt2
ŵ(t) = Aŵ(t), (268)

whereA is an N ×N matrix with entries

Amn =

∫ r2

r1

∫ 2π

0

(
∂2ψn
∂r2

+
1

r

∂ψn
∂r

+
1

r2

∂2ψn
∂θ2

)
ψmdrdθ∫ r2

r1

∫ 2π

0
ψ2
mdrdθ

. (269)

We are interested in developing reduced-order model for the mean wave amplitude at a specific point
within the annulus, e.g., at a location where we would like to place a sensor. To this end, we transform
the system (268) from the modal space to the nodal space defined by an interpolant of at N collocation
points. Such transformation can be easily defined by evaluating (266) at a set of distinct collocation nodes
xn = (ri(n), θj(n)) (n = 1, ..., N ) within the annulus. This yields

w(t) = Ψŵ(t), (270)

where w(t) = [w(t,x1), ..., w(t,xN )]T , while Ψ is the N ×N transformation matrix defined as

Ψ =

ψ1(x1) . . . ψN (x1)
...

...
ψ1(xN ) . . . ψN (xN )

 .
Differentiating (270) with respect to time yields

d2

dt2
w(t) = ΨAΨ−1w(t). (271)

This system can be conveniently transformed into a first-order system as

d

dt

[
w
ẇ

]
= B

[
w
ẇ

]
, where B =

[
0 I

ΨAΨ−1 0

]
. (272)

The initial condition is set as

w(0) = Ψŵ(0),
dw(0)

dt
= 0, (273)

where ŵ(0) is random. In Figure 9 we plot the mean solution of the random wave equation for initial
conditions in the form (267) with different number of modes.
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Figure 9: Mean solution of the random wave equation in the annulus. We consider two random initial
conditions in the form (267), with different number of modes: M = 25 (first row), M = 50 (second row).

Generalized Langevin equation for the mean wave amplitude We are interested in developing reduced-
order model for the mean wave amplitude at a specific point within the annulus, e.g., at a location where
we would like to place a sensor. Such dynamical system can be constructed by using the Mori-Zwanzig
formulation and Chorin’s projection operator (8). To this end, let us define the quantity of interest as
u(w, ẇ) = w1(t), i.e., the wave amplitude at the spatial point (r, θ) = (1.1, 0.1). The general form of
the evolution equation for mean of w1(t) was derived in Section 5.4.2, and it is rewritten hereafter for
convenience

d

dt
〈w1(t)〉ρ0 = α〈w1(t)〉ρ0 + β +

∫ t

0
g(t− s)〈w1(s)〉ρ0ds+

∫ t

0
f(t− s)ds. (274)

The coefficients α and β are defined in terms of the matrixB (Eq. (272)) and the orthogonal phase variables
as17

α = B11 β = a · 〈w−1(0)〉ρ0 , (276)

where

w−1(0) = [w2(0), . . . , wN (0), ẇ1(0), . . . , ẇN (0)]T , a = [B12, . . . , B1(2N)]
T . (277)

Note that the matrix B has entries [B11 · · ·B1N ] = 0, and we have ω̇(0) = 0 (see equation (273)). This
yields, α = β = 0. The memory kernel g(t− s) and the function f(t− s) can be expanded in terms of any

17We recall that the coefficients α and β appearing in equation (274) are computed by projecting

L(ω, ω̇)ω1 =
N∑
i=1

(
ω̇i

∂

∂ωi
+
[
ΨAΨ−1ω

]
i

∂

∂ω̇i

)
w1 = ω̇1 (275)

i.e.,

PLw1(0) =B11w1(0) + a · 〈w−1(0)〉ρ0 = αw1(0) + β.

Since ω̇1 = 0 (see equation (273)) , in this case we obtain α = 0 and β = 0.
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Figure 10: Dyson and Faber expansions of the Mori-Zwanzig memory kernel g(t − s) in equation (278).
Shown are results for different polynomial orders n. It is seen that the MZ-Faber series converges faster that
the MZ-Dyson series.

of the operator series summarized in Table 1. For instance, if we employ MZ-Faber series we obtain

g(t− s) =
n∑
j=0

gFj e
tc0
Jj(2t

√
−c1)

(
√
−c1)j

, f(t− s) =
n∑
j=0

fFj e
tc0
Jj(2t

√
−c1)

(
√
−c1)j

. (278)

The coefficients gFj and fFj are explicitly obtained as

gFj = bTFj
(
MT

11

)
a, fFj =

[
Fj
(
MT

11

)
MT

11a
]
· 〈w−1(0)〉ρ0 , (279)

where ω−1 and a are defined in (277), while b = [B21, . . . , B(2N)1]T . Also, M11 is the matrix obtained
fromB by removing the first row and the first column. In Figure 10 we study convergence of MZ-Dyson and
MZ-Faber series expansions of the memory kernel. In Figure 11 we study the accuracy of the MZ-Dyson and
the MZ-Faber expansions in representing the mean wave solution as a function of the polynomial order n. To
this end, we solve (274) numerically with a linear multi-step (explicit) time integration scheme (3rd-order
Adams-Bashforth) combined with a trapezoidal rule to discretize the memory integral. It clearly appears
that the MZ-Faber expansion converges faster than the MZ-Dyson expansion.

5.7.2 Harmonic oscillator chains on the Bethe lattice

Dynamics of harmonic chains on Bethe lattices is a simple but illustrative Hamiltonian dynamical system
that has been widely studied in statistical mechanics, mostly in relation to Brownian motion [6, 39, 29, 30,
44]. A Bethe lattice is a connected cycle-free graph in which each node interacts only with its neighbors.
The number of such neighbors, is a constant of the graph called coordination number. This means that
each node in the graph (with the exception of the leaf nodes) has the same number of edges connecting it
to its neighbors. In Figure 12 we show two Bethe lattices with coordination numbers l = 2 and l = 3,
respectively. The Bethe graph is hierarchical and therefore it can be organized into shells, emanating from
an arbitrary node. The number of nodes in the k-th shell is given byNk = l(l−1)k−1,while the total number
of nodes within S shells is

N = 1 +
S∑
k=1

Nk. (280)
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Mean Wave Amplitude at (r, θ) = (1.1, 0.1)
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Figure 11: MZ-Dyson and MZ-Faber approximation errors of the mean wave amplitude at (r, θ) = (1.1, 0.1)
as a function of the polynomial order n. It is seen that the MZ-Faber expansion converges faster than the
MZ-Dyson series.

Next, we consider a coupled system of N harmonic oscillators18 whose mutual interactions are defined by
the adjacency matrixB(l) of a Bethe graph with coordination number l [8]. The Hamiltonian of such system
can be written as

H(p, q) =
1

2m

N∑
i=1

p2
i +

k

2l

N∑
i,j=1

B
(l)
ij (qi − qj)2, (281)

where qi and pi are, respectively, the displacement and momentum of the i−th particle, m is the mass
of the particles (assumed constant throughout the network), and k is the elasticity constant that modu-
lates the intensity of the quadratic interactions. We emphasize that the harmonic chain we consider here is
one-dimensional. The Bethe graph basically just sets the interaction among the different oscillators. The
dynamics of the harmonic chain on the Bethe lattice is governed by the Hamilton’s equations

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (282)

18The number of oscillators cannot be set arbitrarily as it must satisfy the topological graph constraints prescribed by (280).
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Figure 12: Bethe lattices with coordination numbers 2 (left), and 3 (right).

These equations can be written in a matrix-vector form as[
ṗ
q̇

]
=

[
0 kB(l) − kD(l)

I/m 0

] [
p
q

]
= C

[
p
q

]
, (283)

where B(l) is the adjacency matrix of the graph and D(l) is the degree matrix. Note that (283) is a linear
dynamical system. The time evolution of any phase space function u(q,p) (quantity of interest) satisfies

du

dt
={u,H},

where

{u,H} =
N∑
i=1

(
∂u

∂qi

∂H

∂pi
− ∂H

∂qi

∂u

∂pi

)
(284)

denotes the Poisson Bracket. A particular phase space function we consider hereafter is the velocity auto-
correlation function of a tagged oscillator, say the one at location j = 1 (see Figure 12). Such correlation
function is defined as

Cp1(t) =
〈p1(t)p1(0)〉eq
〈p1(0)p1(0)〉eq

, (285)

where the average is an integral over the Gibbs canonical distribution.

Analytical expressions for the velocity autocorrelation function The simple structure of harmonic
chains on the Bethe lattice allows us to determine analytical expressions for the velocity autocorrelation
function (285), e.g., [6, 44, 39].

Bethe lattice with coordination number 2: Let us set l = 2. In this case, the Bethe lattice is a a path graph,
i.e., a one-dimensional chain of harmonic oscillators where each oscillator interacts only with the one at the
left and at the right. We set fixed boundary conditions at the endpoint of the chain, i.e., q0(t) = qN+1(t) = 0
and p0(t) = pN+1(t) = 0 (particles are numbered from left to right). In this setting, the velocity auto-
correlation function of the particle labeled with j = 1 can be obtained analytically by employing Lee’s
continued fraction method [39]. This yields the well-known J0 − J4 solution

Cp1(t) = J0(2ωt)− J4(2ωt), (286)

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

65



Bethe lattice with l = 2 Bethe lattice with l = 3
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Figure 13: Velocity auto-correlation functions (286) (left) and (289) (right) of a tagged oscillator in an
harmonic chain interacting on a Bethe lattice with coordination number l = 2 and l = 3, respectively.

where Ji(t) is the i-th Bessel function of the first kind, and ω = k/m. Here we choose k = m = 1. The
Hamilton’s equations (283) for the inner oscillators19 take the form[

ṗ
q̇

]
=

[
0 B(2) −D(2)

I 0

] [
p
q

]
, (287)

where B(2) and D(2) are the adjacency matrix and the degree matrix of the Bethe lattice with l = 2 (see
Figure 12). As an example, if we consider N = 5 oscillators thenB(2) andD(2) are given by

B(2) =

 0 1 0
1 0 1
0 1 0

 , D(2) =

 2 0 0
0 2 0
0 0 2

 . (288)

Bethe lattice with coordination number 3: Bethe graphs with l = 3 can be represented as planar graphs (see
Figure 12). The velocity auto-correlation function at the center node can be expressed analytically [44], in
the limit of an infinite number of oscillators (N →∞)20, as

Cp1(t) =
+∞∑

n=−∞
[Gn(t) +Hn(t)]J2n(bt) (289)

where

Gn(l) =

∞∑
k=0

gk(l)

b2k−2

1

2π

∫ π/2

a
dθ

cos2(θ)

sin2k(θ)
cos(2nθ), gk(l) = −

∞∑
j=k

(2j − 1)!!

[2j(2j − 1)j!]
a2jc2(k−j),

Hn(l) =

∞∑
k=0

hk(l)

b−2k−2

1

2π

∫ π/2

a
dθ

cos2(θ)

sin−2k(θ)
cos(2nθ), hk(l) = −

∞∑
j=k

(2j − 1)!!

[2j(2j − 1)j!]
a2(j−k)c−2j

19We exclude the two oscillators at the endpoints of the harmonic chain, since their dynamics is trivial.
20Thanks to the symmetry of the Bethe lattice, in the limit n → ∞ the velocity auto-correlation function is the same at each

node.
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and a =
√

2 − 1, b =
√

2 + 1 and c =
√

6. The Hamilton’s equations of motion in this case are21

(k = m = 1) [
ṗ
q̇

]
=

[
0 B(3) −D(3)

I 0

] [
p
q

]
. (290)

whereB(3),D(3) are the adjacency matrix and the degree matrix of the Bethe lattice with l = 3 (see Figure
12). For example, if we label the oscillators as in Figure 12, and assume that the Bethe lattice has only three
shells, i.e., 10 oscillators (4 inner nodes, and 6 leaf nodes) then the adjacency matrix and the degree matrix
are

B(3) =



0 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0


, D(3) =



3 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

(291)

Generalied Langevin Equation for the Velocity Autocorrelation Function The evolution equation for
the velocity autocorrelation function (285) was obtained in Section 5.4.3 and it is hereafter rewritten for
convenience

dCp1(t)

dt
= αCp1(t) +

∫ t

0
g(t− s)Cp1(s)ds. (292)

The initial condition is set as Cpi(0) = 1. As before, it can be shown that the coefficient α in (292) is identi-
cally zero. This implies that the dynamics of the velocity autocorrelation function is entirely determined by
the MZ memory term. The MZ-Dyson and MZ-Faber series expansions of the the memory kernel g(t− s)
are given by

g(t− s) =
n∑
j=0

gDj
j!

(t− s)j , g(t− s) =

n∑
j=0

gFj e
tc0
Jj(2t

√
−c1)

(
√
−c1)j

where

gDj = bT (MT
11)ja, gFj = bTFj

(
MT

11

)
a.

The definition of the matrix MT
11 and the vectors a, b is the same as before. Here we used the fact that for

any quadratic Hamiltonian we have 〈pi(0), qi(0)〉eq = 0 and 〈pi(0), pj(0)〉eq = 0.
In Figure 14 we study convergence of the MZ-Dyson and the MZ-Faber series expansion of the memory

kernel in equation (218). As before, the MZ-Faber series converges faster that the MZ-Dyson series. In Fig-
ure 15 and Figure 16, we study the accuracy of the MZ-Dyson and the MZ-Faber expansions in representing
the velocity auto-correlation functions (286) and (289) (see Figure 13). Specifically, in these simulations
we considered a chain of N = 100 oscillators for the case l = 2, and 8 shells of oscillators for the case
l = 3, i.e., a total number of N = 766 oscillators. The results in Figure 15 and Figure 16 show that both the
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Figure 14: Harmonic chains of oscillators. Dyson and Faber expansions of the Mori-Zwanzig memory
kernel g(t − s). Shown are results for different polynomial orders n. It is seen that the MZ-Faber series
converges faster that the MZ-Dyson series.

MZ-Dyson and the MZ-Faber expansions of the memory integral yield accurate approximations of the ve-
locity autocorrelation function, and that convergence is uniform with the polynomial order. The expansion
of the MZ memory integral we developed can be employed to calculate phase space functions of harmonic
oscillators on graphs with arbitrary topological structure. The following example shows the effectiveness
of the proposed technique in calculating the velocity auto-correlation function of a tagged oscillator in a
network sampled from the Erdös–Rényi random graph.

6 Systems with local polynomial interactions

Building upon the Faber operator series expansion we discussed in section 5.1, in this section we show that
it is possible develop a formally exact algorithm to calculate the MZ memory kernel (64c). Such algorithm
is based on a combinatorial approach originally proposed by Amati, Meyer and Schilling in [3].

6.1 Calculation of the MZ memory kernel from first principles

Let us consider the dynamical system (1) and a one-dimensional (scalar) phase space function of the form
(2), i.e., u(t) = u(x(t,x0)). A substitution of (190) into (64c) allows us to write the MZ memory kernel as

K(t) '
n∑
q=0

gq(t)Mq, where Mq =
〈u(0),LΦq(QL)QLu(0)〉ρ

〈u(0), u(0)〉ρ
. (293)

Note that K(t) depends only on the set of parameters {M0, . . . ,Mn}, since the temporal modes gq(t)
are explicitly available given the polynomial set {Φ0, . . . ,Φn} (see Table 1). We aim at determining
{M0, . . . ,Mn} from first principles. For one-dimensional phase space functions, Mori’s projection (15)
reduces to

Pf =
〈f, u(0)〉ρ
〈u(0), u(0)〉ρ

u(0). (294)

21Here we implemented a free boundary condition at the outer shell of the chain.
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Figure 15: Accuracy of the MZ-Dyson and MZ-Faber expansions in representing the velocity auto-
correlation function of the tagged oscillator j = 2 in an harmonic chain interacting on the Bethe lattice
with coordination number 2. It is seen that the MZ-Dyson and the MZ-Faber expansions yield accurate pre-
dictions as we increase the polynomial order n. Moreover, the MZ-Faber expansion converges faster than
the MZ-Dyson expansion.

At this point, it is convenient to introduce the following notation

µi =
〈L(QL)i−1u(0), u(0)〉ρ

〈u(0), u(0)〉ρ
, γi =

〈Liu(0), u(0)〉ρ
〈u(0), u(0)〉ρ

. (295)

Each coefficient µi represents the rescaling of u(0) under the action of the operator PL(QL)i−1, i.e. we
have

µiu(0) = PL(QL)i−1u(0). (296)

Clearly, if we are given {µ1, . . . , µn+2} then we can easily compute Mq in (293), and therefore the memory
kernel K(t) for any given polynomial function Φq. For example, if Φq(QL) = (QL)q then Mq = µq+2

(q = 0, . . . , n). On the other hand, if {Φ0, . . . ,Φn} are Faber polynomials [100], then we can write each
Φq as a linear combination of monomials (QL)j (j = 0, . . . , q) and therefore represent Mq as a linear
combination of {µ1, . . . , µq+2}. Computing µi using the definition (295) involves taking operator powers
and averaging, which may be computationally expensive. An alternative effective algorithm relies on the
following recursive formula [19, 79, 7]

µ1 = γ1, µ2 = γ2 − µ1γ1, · · · , µn = γn −
n−1∑
j=1

µn−jγj . (297)

In practice, (297) shifts the problem of computing {µ1, . . . , µn} to the problem of evaluating the coefficients
{γ1, . . . , γn} defined in (295). This will be discussed extensively in the subsequent Section 6.2. If the
Liouville operator L is skew-adjoint relative to the inner product (111), then all µj and γj corresponding to
odd indices are identically zero. This allows us to simplify the recursion (297) as

µ2j = γ2j −
j−1∑
k=1

µ2j−2kγ2k j = 1, 2, . . . . (298)
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Figure 16: Accuracy of the MZ-Dyson and MZ-Faber expansions in representing the velocity auto-
correlation function of the oscillator at the center of a Bethe lattice with coordination number 3, 8 shells
and N = 766 oscillators. It is seen that the MZ-Dyson and the MZ-Faber expansion yield accurate predic-
tions as we increase the polynomial order n. Moreover, the MZ-Faber expansion converges faster than the
MZ-Dyson series.

As a consequence, the streaming term (115b) in the MZ equation vanishes identically since Ω = µ1 = γ1 =
0. We recall that skew-adjoint Liouville operators arise naturally, e.g., in Hamiltonian dynamical systems at
statistical equilibrium.

6.2 Systems with polynomial nonlinearities

In this Section, we address the problem of calculating the coefficients {γ1, . . . , γn} defined in (295) and
appearing in the recursion relation (297). With such coefficients available, we can compute {µ1, . . . , µn}
and therefore the MZ memory kernel (293). The calculation we propose is based on first principles, meaning
that we do not rely on any assumption or model to evaluate the averages γi = 〈Liu(0), u(0)〉ρ/〈u(0), u(0)〉ρ.
Instead, we develop a combinatorial algorithm that allows us to track all terms in Liu(0), hence representing
γi exactly as a superimposition of a finite, although possibly large, number of terms. The algorithm we
develop is built upon the combinatorial algorithm recently proposed by Amati, Meyer and Schiling in [3]. To
describe the algorithm, consider the nonlinear dynamical system (1) and assume that F (x) is a multivariate
polynomial in the phase variables x. A simple example of such system is the Kraichnan-Orszag three-mode
problem [67, 92, 9]

ẋ1 = x1x3, ẋ2 = −x2x3, ẋ3 = x2
2 − x2

1. (299)

Other examples are the semi-discrete form of the Navier-Stokes equations, or the semi-discrete form of
the nonlinear wave equation discussed in Section 6.6. The key observation to compute γj for systems with
polynomial nonlinearities is that the action of the operator power Li on a polynomial observable u(x) yields
a polynomial function. For instance, consider u(x) = x3

1, and the Liouville operator associated with the
system (299)

L = x1x3
∂

∂x1
− x2x3

∂

∂x2
+ (x2

2 − x2
1)

∂

∂x3
. (300)
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We have

Lx3
1 =3x3

1x3, (301)

L2x3
1 =9x3

1x
2
3 + 3x3

1x
2
2 − 3x5

1, (302)

L3x3
1 =27x3

1x
3
3 + 18x3

1x
2
2x3 − 18x5

1x3 + 27x3
1x

2
2x3 − 6x3

1x
2
2x3 − 15x5

1x3. (303)

Clearly, the number of terms in Lix3
1 can rapidly increase, if high-order powers of L are considered. For

higher-dimensional systems with non-local interactions, i.e., for systems where each Fi(x) (i = 1, . . . , N )
depends on all components of x, this problem is serious, and requires multi-core computer-based combina-
torics to systematically track all terms in the expansion of Lixqj . Let us introduce the following notation

Lnxqj =
∑

bi∈B(n)

a
(n)
bi
x
m

(i)
k1

k1
· · ·x

m
(i)
kr

kr
, (304)

where {a(n)
bi
} are polynomial coefficients, and {m(i)

kj
} are polynomial exponents. The set of indexes repre-

senting the relevant phase phase variables appearing in Lnxqj , i.e., {k1, . . . , kr}, is collected in the index set
K(n, j) = {k1, . . . , kr}, which depends on n and j. For example, in (301)-(303) we have

K(1, 1) = {1, 3}, K(2, 1) = {1, 2, 3}, K(3, 1) = {1, 2, 3}. (305)

Of course, for low-dimensional dynamical systems, the simplest choice for the relevant variables would be
the complete set of variables {x1, · · · , xN}. However, for high-dimensional systems with local interactions
this choice could lead to unnecessary computations. In fact, it can be shown that the variables appearing
in the polynomial Lnxqj are usually a (possibly small) subset of the phase variables if the system has local

interactions. The vector bi = [m
(i)
k1
, · · · ,m(i)

kr
], collects the exponents of the i-th monomial appearing in the

expansion (304). Similarly, a(n)
bi

is the coefficient multiplying i-th monomial in (304). For example, in (301)
and (302) we have, respectively,

b1 = [3, 1], a
(1)
b1

= 3,

b1 = [3, 0, 2], b2 = [3, 2, 0], b3 = [5, 0, 0], a
(2)
b1

= 9, a
(2)
b2

= 3, a
(2)
b3

= −3.

At this point, it is convenient to define the set of polynomial exponents B(n) = {b1, b2, · · · }, the set
polynomial coefficients A(n) = {a(2)

b1
, a

(2)
b2
, · · · }, and the combined index set

I(n) = {A(n), B(n)}. (306)

Clearly, I(n) identifies uniquely the polynomial (304), i.e., there is a one-to-one correspondence between
I(n) and Lnxqj . For example, in the case of (301)-(303) we have

I(1) ={{3}︸︷︷︸
A(1)

, {[3, 0, 1]}︸ ︷︷ ︸
B(1)

}, (307)

I(2) ={{9, 3,−3}︸ ︷︷ ︸
A(2)

, {[3, 0, 2], [3, 2, 1], [5, 0, 0]}︸ ︷︷ ︸
B(2)

, (308)

I(3) ={{27, 18,−18, 27,−6,−15}︸ ︷︷ ︸
A(3)

, {[3, 0, 3], [3, 2, 1], [5, 0, 1], [3, 2, 1], [3, 2, 1], [5, 0, 1]}︸ ︷︷ ︸
B(3)

}. (309)
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If we apply L to (304) we obtain

Ln+1xqj =LLnxqj ,

=L
∑

bi∈B(n)

a
(n)
bi
x
m

(i)
k1

k1
· · ·x

m
(i)
kr

kr
,

=
∑

bi∈B(n+1)

a
(n+1)
bi

x
m

(i)
k1

k1
· · ·x

m
(i)
kr

kr
. (310)

Clearly, if we can compute the mapping I(n) L−→ I(n+1), induced by the action of the Liouville operator L
to the polynomial (304) (represented by I(n)), then we can compute the exact series expansion of Lnxqj for
arbitrary n. With such expansion available, we can immediately determine the coefficients γj in (295) by
averaging over the probability density ρ as

γn =
〈Lnxqj , x

q
j〉ρ

〈xqj , x
q
j〉ρ

=
∑

bi∈B(n)

a
(n)
bi

〈x
m

(i)
k1

k1
· · ·x

m
(i)
kr

kr
xqj〉ρ

〈xqj , x
q
j〉ρ

. (311)

If the operator L is skew-adjoint in L2(M, ρ), i.e., if 〈Lf, g〉ρ = −〈f,Lg〉ρ, then we have

γ2n =
〈L2nxqj , x

q
j〉ρ

〈xqj , x
q
j〉ρ

= (−1)n
∑

bi,bj∈B(n)

a
(n)
bj
a

(n)
bi

〈x
m

(i)
k1

+m
(j)
k1

k1
· · ·x

m
(i)
kr

+m
(j)
kr

kr
〉ρ

〈xqj , x
q
j〉ρ

. (312)

As pointed out by Maiocchi et al. in [58], the value of the first few coefficients {γn} in (311) or (312) can
be used to identify non-exponential relaxation patterns to equilibrium.

Remark To enhance numerical stability when computing the Faber expansion of the MZ memory kernel
we scale the Liouville operator L by a parameter δ < 1 (see [100, 38]), i.e., we compute the Faber operator
polynomial series relative to δL. Correspondingly, the generalized Langevin equation (63) is solved on a
time scale t/δ. In this setting, the coefficients (311) are also calculated relative to the rescaled Liouville
operator δL.

Remark Computing γj for linear systems reduces to a classical numerical linear algebra problem, i.e.,
computing the Rayleigh quotient of a matrix power. To show this, consider theN -dimensional linear system
ẋ = Ax, evolving from the random initial state x0 ∼ ρ0 (x0 column vector). Suppose we are interested in
the first component of the system, i.e., set the observable as u(t) = x1(t,x0). Define the linear subspace
V = span{x01, x02, · · · , x0N} ⊂ L2(M, ρ0). Clearly u(t) ∈ V for all t ≥ 0 [99, 100]. This allows us to
calculate γj as

γj = 〈
[
AT
]j
x0 · e1〉ρ0 , j = 1, . . . , n (313)

where e1 = [1, 0, . . . , 0]T .
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6.3 Mapping the index set I(n)

Here we describe the algorithm that allows us to compute the polynomial Ln+1xqk given the polynomial
Lnxqk and the Liouville operator L, i.e., the mapping defined by equation (310). This is equivalent to
develop a set of algebraic rules to transform the combined index set I(n) defined in (306) into I(n+1), for
arbitrary n. Once such rules are known, we can apply them recursively to compute the polynomial sequence

xqj → Lx
q
j → L

2xqj → L
3xqj → · · · → L

nxqj

to any desired order. In this way, we can determine γn through (311) (or (312)), µn through (297) (or (298)),
and therefore the MZ memory kernel (293). Before formulating the algorithm in full generality, it is useful
to examine how it operates in a concrete example. To this end, consider again the Kraichnan-Orszag system
(299), and the transformation between the polynomials (302) and (303) defined by the action of the Liouville
operator (300). We are interested in formulating such transformation in terms of a set of algebraic operations
mapping the index set I(2) into I(3) (Eqs. (308)-(309)). We begin by decomposing the three-dimensional
Liouville operator (300) as

L = L1 + L2 + L3, where L1 = x1x3
∂

∂x1
, L2 = −x2x3

∂

∂x2
, L3 = (x2

2 − x2
1)

∂

∂x3
.

(314)
The action of Li on any monomial generates a polynomial with Si terms. In the present example, we have
S1 = S2 = 1 and S3 = 2. Let us now consider the first monomial in (302), i.e., 9x3

1x
2
3. Such monomial is

represented by the first element of A(2) and B(2) in (309). The corresponding combined set is {9, [3, 0, 2]}.
At this point, we apply the operators L1, L2 and L3 to the polynomial {9, [3, 0, 2]}. This yields

{9, [3, 0, 2]}︸ ︷︷ ︸
9x31x

2
3

L1−→ {27, [3, 0, 3]}︸ ︷︷ ︸
27x31x

3
3

, (315)

{9, [3, 0, 2]}︸ ︷︷ ︸
9x31x

2
3

L2−→ {0, [3,−1, 2]}︸ ︷︷ ︸
0

, (316)

{9, [3, 0, 2]}︸ ︷︷ ︸
9x31x

2
3

L3−→ {18, [3, 2, 1]}
⊎
{−18, [5, 0, 1]}︸ ︷︷ ︸

18x31x
2
2x3−18x51x3

= {{18,−18}, {[3, 2, 1], [5, 0, 1]}}. (317)

The transformation associated with L3 generates the sum of two monomials, namely 18x3
1x

2
2x3 − 18x5

1x3,
which we represent as a union between two index sets. Such union, here denoted as

⊎
, is an ordered union

that pushes to the left polynomial coefficients and to the right polynomial exponents. Proceeding in a similar
manner for all other monomials in (302) and taking ordered unions of all sets, yields the desired mapping
I(2) → I(3). Let us now examine the action of a more general Liouville operator

Lj = zxc11 · · ·x
cN
N

∂

∂xj
(318)

on the monomial axm1
1 · · ·x

mN
N represented by the index set {a, [m1, . . . ,mN ]}. We have

{a, [m1, . . . ,mN ]}
Lj−→ {zmja, [m1 + c1, . . . ,mj + cj − 1, . . . ,mN + cN ]}. (319)

This defines two linear transformations: a scaling transformation in the space of coefficients, and an addition
in the space of exponents

a→ (zm1)a, [m1, . . . ,mN ]→ [m1, . . . ,mN ] + [c1, . . . , cj − 1, . . . , cN ]. (320)
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In a vector notation, upon definition of b = [m1, . . . ,mN ], θj = [c1, . . . , cj − 1, . . . , cN ] and αj = zmj ,
we can write (320) in compact form as

a→ αja, b→ b+ θj . (321)

Let us know consider the general case where the Liouville operator is defined as

L(x) =

N∑
k=1

Lk(x) Lk(x) = Fk(x)
∂

∂xk
(322)

and Fk(x) is a polynomial involving Sk monomials in either all variables {x1, . . . , xN} or a subset of them.
The action of L on each monomial in (310) can be written as

Lx
m

(i)
k1

k1
. . . x

m
(i)
kr

kr
=

∑
q∈K(n,j)

Lqx
m

(i)
k1

k1
. . . x

m
(i)
kr

kr
, (323)

where K(n, j) = {k1, . . . , kr} is the set of relevant variables at iteration n. The polynomial (323) involves
Sk1 + · · ·+Skr terms, each one of which can be explicitly constructed by applying the linear transformation
rules (321). In summary, we have

I(n+1) =
⊎

q∈K(n,j)

#B(n)⊎
i=1

Sq⊎
s=1

{αqsa
(n)
bi
, bi + θqs}, (324)

where #B(n) denotes the number of elements in B(n). Note that both αss and θqs depend on q ∈ K(n, j)
(index set of relevant variables).

Remark The recursive algorithm summarized by formula (324) is a modified version of the algorithm
originally proposed by Amati, Meyer and Schiling in [3]. The key idea is the same, i.e., to compute the
expansion coefficients γn in (311) using polynomial differentiation. However, there are a few differences
between our algorithm and the algorithm proposed in [3] which we emphasize hereafter. In [3], the index set
B(n) is pre-computed using the so-called spreading operators. Essentially, for each n, the iterative scheme
generates a new set of polynomial coefficients A(n), which is subsequently matched with the corresponding
indexes in B(n). In our algorithm, the sets B(n) and A(n) are computed on-the-fly at each step of the
recursion. By doing so, we avoid calculating the spreading operators. This, in turn, allows us to avoid using
numerical tensors to store index sets, since in our formulation there is no matching procedure between the
polynomial exponents and the polynomial coefficients. Another difference between the two algorithms is
that we utilized a rescaled Liouville operator δL (δ ∈ R) to enhance numerical stability when computing
the operator polynomials Φq(QL) in (190). The algorithm in [3], on the other hand, is based on a Taylor
series expansion of the operator exponential etL, with unscaled Liouville operator22.

6.4 An example: the Fermi-Pasta-Ulam (FPU) model

Consider a one-dimensional chain of N anharmonic oscillators with Hamiltonian

H(p, q) =
N−1∑
j=0

p2
j

2m
+

N−1∑
j=1

V (qj − qj−1). (325)

22In our recent work [100] (section 3.1) we proved that a Taylor series of the orthogonal dynamical propagation etQL yields an
expansion of the MZ memory integral that resembles the classical Dyson series in scattering theory.
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In (325) {qj , pj} are, respectively, the generalized coordinate and momentum of the j-th oscillator, while
V (qi − qi−1) is the potential energy between two adjacent oscillators. Suppose that the oscillator chain
is closed (periodic), i.e., that q0 = qN and p0 = pN . Define the distance between two oscillators as
rj = qj − qj−1. This allows us to write the Hamilton’s equations of motion as

drj
dt

=
1

m
(pi − pi−1),

dpj
dt

=
∂V (rj+1)

∂rj+1
− ∂V (rj)

∂rj
.

The Liouville operator corresponding to this system is

L(p, r) =
N−1∑
i=1

[(
∂V (ri+1)

∂ri+1
− ∂V (ri)

∂ri

)
∂

∂pi
+

1

m
(pi − pi−1)

∂

∂ri

]
.

Setting V (x) = αx2/2 + βx4/4 yields the well-known Fermi-Pasta-Ulam β-model [60], which we study
hereafter. To this end, suppose we are interested in the distance between the oscillators j and j − 1, i.e., in
the polynomial observable u(p, r) = rj . The action of Ln on rj can be explicitly written as

Lnrj =
∑

bi∈B(n)

a
(n)
bi
r
m

(i)
k1

k1
· · · r

m
(i)
ku

ku
p
s
(i)
l1
l1
· · · p

s
(i)
lv
lv
, (326)

where {k1, . . . , ku} and {l1, . . . , lv} are the relevant degrees of freedom for the polynomials of r and p,
respectively, at iteration n. We can explicitly compute the sets of such relevant degrees of freedom as

Kr(n, j) =
{
j −

⌊n
2

⌋
, . . . , j +

⌊n
2

⌋}
Lp(n, j) =

{
j −

⌊
n+ 1

2

⌋
, . . . , j +

⌊
n− 1

2

⌋}
, (327)

The action of the Liouville operator on each monomial appearing in (326) can be written as

Lr
m

(i)
ku

k1
r
m

(i)
ku

ku
p
s
(i)
l1
l1
· · · p

s
(i)
lv
lv

=
∑

v∈Kr(n,j)

∑
h∈Lp(n,j)

(Lrv + Lph)r
m

(i)
k1

k1
· · · r

m
(i)
ku

ku
p
s
(i)
l1
l1
· · · p

s
(i)
lv
lv
, (328)

where

Lrv =
1

m
(pv − pv−1)

∂

∂rv
, and Lph =

[
α(rh+1 − rh) + β

(
r3
h+1 − r3

h

)] ∂

∂ph
. (329)

By computing the action of Lrv and Lph on the monomial r
m

(i)
k1

k1
· · · r

m
(i)
ku

ku
p
s
(i)
l1
l1
· · ·

s
(i)
lv
lv

we obtain explicit linear
maps of the form (321), involving the polynomial exponents

bi = [m(i), s(i)], m(i) = [m
(i)
k1
, . . . ,m

(i)
ku

], s(i) = [s
(i)
l1
, . . . , s

(i)
lv

], (330)

and the polynomial coefficients a(n)
bi

. With such maps available, we can transform the combined index set
I(n) (representing Lnrj) to I(n+1) (representing Ln+1rj) using (324). Specifically, we obtain

I(n+1) = I(n+1)
r

⊎
I(n+1)
p ,
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where

I(n+1)
r =

⊎
v∈Kr(n,j)

#B(n)⊎
i=1

1⊎
k=0

{
m(i)
v (−1)ka

(n)
bi
, [m(i) − ev, s(i) + ev−k]

}
,

I(n+1)
p =

⊎
h∈Lp(n,j)

#B(n)⊎
i=1

1⊎
k=0

{
{s(i)
h (−1)k+1αa

(n)
bi
, s

(i)
h (−1)k+1βa

(n)
bi
},

{[m(i) + eh+k, s
(i) − eh], [m(i) + 3eh+k, s

(i) − eh]}
}
.

6.5 Modeling the MZ fluctuation term

In previous section we discussed an algorithm to approximate the memory kernel in the MZ equation (113)
or (20) based on the microscopic equations of motion (first-principle calculation). In this Section we con-
struct a statistical model for the fluctuation term f(t) appearing in (113). A possible way to build such
model is to expand (19d) in a finite-dimensional series23 (see Eq. (190)) as

f(t) '
n∑
q=0

gq(t)Φq(QL)QLu(0), (331)

and evaluate the coefficients Φq(QL)QLu(0) using the combinatorial approach discussed in Section 6.2.
However, this may not be straightforward since Φq(QL)QLu(0) is a high-dimensional random field. An
alternative approach is to ignore the mathematical structure of f(t), i.e., equation (19d) or the series ex-
pansions (331), and simply model f(t) as a stochastic process. In doing so, we need to make sure that the
statistical properties of the reduced-order model, e.g., the equilibrium distribution, are consistent with the
full model. Such consistency conditions carry over a certain number of constraints on f(t), which allow for
its partial identification. As an example, consider the following MZ model recently proposed by Lei et al.
in [53] to study the dynamics of a tagged particle in a large particle system

q̇ =
p

m
ṗ = F (q) + d

ḋ = B0d−A0
p

m
+ f(t)

(332)

It was shown in [53] that if f(t) is Gaussian white noise (in time) with auto-correlation function

〈f(t)f(t′)〉 = −β
(
B0A0 +A0B

T
0

)
δ(t− t′), (333)

then the equilibrium distribution of the particle system has the Boltzmann-Gibbs form

ρ(p, q,d) ∝ exp

{
−β
(

1

2m
|p|2 +

1

2
dTA−1

0 d+ V (q)

)}
, (334)

V (q) being the inter-particle potential. However, modeling f(t) as a Gaussian process does not provide
satisfactory statistics in MZ equations is we use Mori’s projection. In fact, equation (113) is linear and there-
fore the equilibrium distribution of u(t) (assuming it exists) under Gaussian noise f(t) will be necessarily
Gaussian. In most applications, however, the equilibrium distribution of u(t) is strongly non-Gaussian.

23Note that f(t) is a random process obtained by mapping the random initial state u(0) = u(x0) forward in time using the
orthogonal dynamics propagator etQL(x0).
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To overcome this difficulty Chu and Li [19] recently developed a multiplicative Gaussian noise model that
generalizes (113) in the sense that it is not based on additive noise, and it allows for non-Gaussian responses.

In this Section we propose a different stochastic modeling approach for f(t) based on bi-orthogonal
representations random processes [86, 90, 85, 5, 4]. To describe the method, we study the case where the
observable u(t) is real valued (one-dimensional) and square integrable. This allows us to develop the theory
in a clear and concise way. We also assume that the system is in statistical equilibrium, i.e., that there exists
an equilibrium distribution ρeq(x) (or more generally an invariant measure) for the phase variables x(t,x0),
and that x0 is sampled from such distribution. The MZ equation (113) for one-dimensional phase space
functions u(t) = u(x(t,x0)) reduces to

du(t)

dt
= Ωu(t) +

∫ t

0
K(t− s)u(s)ds+ f(t), (335)

where

Ω =
〈u(0),Lu(0)〉eq
〈u(0), u(0)〉eq

, K(t) =
〈u(0),Lf(t)〉eq
〈u(0), u(0)〉eq

, f(t) = etQLQLu(0). (336)

Since u(t) is assumed to be a second-order random process in the time interval [0, T ], we can expand it in a
truncated Karhunen-Loéve series

u(t) ' u+
K∑
k=1

√
λkξkek(t), t ∈ [0, T ] (337)

where u denotes the mean of u(t) relative to the equilibrium distribution24, {ξ1, . . . , ξK} are uncorrelated
random variables (〈ξiξj〉eq = δij), and {λk, ek(t)} (k = 1, . . . ,K) are, respectively, eigenvalues and eigen-
functions of the homogeneous Fredholm integral equation of the second kind∫ T

0
〈u(t)u(s)〉eqek(s)ds = λkek(t), t ∈ [0, T ]. (338)

We recall that for ergodic systems in statistical equilibrium the auto-correlation function 〈u(t)u(s)〉eq decays
to zero as |t − s| → ∞. Also, the integral operator at the left hand side of (338) is positive-definite and
compact [4]. The orthogonal random variables ξk and the temporal modes ek(t) are related to each other by
the following dispersion relations [5, 86]

ξk =
1√
λk

∫ T

0
u(t)ek(t)dt, ek(t) =

〈u(t)ξk〉eq√
λk

k = 1, 2, . . . . (339)

Equation (339) suggests that if u(t) is a Gaussian random process (e.g., a Wiener process) then {ξ1, . . . , ξK}
are necessarily independent Gaussian random variables. On the other hand, if u(t) is non-Gaussian then
the joint distribution of {ξ1, . . . , ξK} is unknown, although it can be in principle computed by using the
transformation u(t)→ ξk (k = 1, ..,K) defined in (339), given λk and ek(t).

An alternative approach to identify the PDF of {ξ1, . . . , ξK} relies on sampling. In particular, as recently
shown by Phoon et al. [74, 73], it is possible to develop effective sampling algorithms for the KL expansion
(337). Such algorithms allow to sample the uncorrelated variables {ξ1, . . . , ξK} in a way that makes the
PDF of u(t) consistent with the equilibrium distribution, which can be calculated by mapping x0 ∼ ρeq(x0)
to u(x0). At this point, we have available a consistent bi-orthogonal representation of the random process
u(t) defined by the series expansion (337). It is straightforward to see that such representation yields a
corresponding series expansion of the fluctuation term f(t) in (335). In fact we have the following

24The mean of u(t) = u(x(t,x0)) is necessarily time-independent at statistical equilibrium. In fact, at equilibrium we have that
x0 ∼ ρeq implies that x(t) ∼ ρeq for all t ≥ 0. A statistically stationary process however, may not be stationary in phase space.
Indeed, x(t) evolves in time, eventually in a chaotic way as it happens for systems with strange attractors and invariant measures.
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Proposition 4. For any bi-orthogonal series expansion (337) of the solution to the MZ-equation (335), there
exists a unique series expansion of the fluctuation term f(t) of the form

f(t) = f +
K∑
k=1

√
λkξkhk(t). (340)

Proof. It is sufficient to prove the theorem for zero-mean processes. To this end, we set u = 0 and f = 0 in
(337) and (340). A substitution of (337) into (335) yields, for all t ∈ [0, T ]

f(t) =

K∑
k=1

√
λkξk

(
dek(t)

dt
− Ωek(t)−

∫ t

0
K(t− s)ek(s)ds

)
. (341)

Define,

hk(t) =
dek(t)

dt
− Ωek(t)−

∫ t

0
K(t− s)ek(s)ds. (342)

This equation does not allow us to compute hk explicitly quite yet. In fact, the MZ memory kernel K(t− s)
depends on f(t) (see Eq. (336)). However, a substitution of (340) (with f = 0) into the analytical expression
of K(t) yields

K(t) =

K∑
i,j=1

√
λiλjvijei(0)hj(t), where vij =

〈ξi,Lξj〉eq
〈u(0), u(0)〉eq

. (343)

To evaluate 〈ξi,Lξj〉eq we need to express {ξ1, . . . , ξK} as a function of x0 (recall that L operates on
functions of x0, see Eq. (3)), and then integrate over ρeq(x0). This is easily achieved by using the dispersion
relation (339). Specifically, we have

ξk(x0) =
1√
λk

∫ T

0
u(x(t,x0))ek(t)dt. (344)

At this point, we substitute (343) into (342) to obtain

hk(t) =
dek(t)

dt
− Ωek(t)−

K∑
i,j=1

√
λiλjvijei(0)

∫ t

0
hj(t− s)ek(s)ds. (345)

Given {e1(t), . . . , eK(t)}, Ω and vij , this equation can be solved uniquely for {h1(t), . . . , hK(t)} by using
Laplace transforms. Note that {h1(t), . . . , hK(t)} are not necessarily orthogonal in L2([0, T ]).

Remark If the dynamical system (1) is Hamiltonian then the MZ steaming term vanishes, and the MZ
memory kernel can be written in terms the fluctuation term as (see Eq. (23))

K(t) =
〈f(0), f(t)〉eq
〈u(0), u(0)〉eq

. (346)

A substitution of this expression into (335) yields, after projection onto ξk

dek(t)

dt
=

∫ t

0

K∑
j=1

λj [hj(0)hk′(t− s)] ek(s)ds+ hk(t). (347)

This equation establishes a one-to-one correspondence between the temporal modes of the KL expansion
(337) and the temporal modes of the fluctuation term (341). In particular, given {e1(t), . . . , eK(t)}, we
can determine {h1(t), . . . , hK(t)} directly by using Laplace transforms, without building the MZ memory
kernel (343).
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6.5.1 Building MZ-KL stochastic models from first principles

Proposition 4 establishes a one-to-one correspondence between the noise process in the MZ equation (335)
and the biorthogonal series expansion of the solution. This new paradigm allows us to build stochastic
models for the observable u(t) at statistical equilibrium from first principles. To this end,

1. Compute the solution to the MZ equation for the temporal correlation function of u(t) (see Eq. (66))

dC(t)

dt
= ΩC(t) +

∫ t

0
K(t− s)C(s)ds. (348)

The memory kernel K(t − s) can be expanded as in (293), and computed from first-principles using
the combinatorial approach we discussed in Section 6.2.

2. Build the Karhunen-Loève expansion (337) by spectrally decomposing the correlation functionC(t) =
〈u(0)u(t)〉eq obtained at point 1. Recall that at statistical equilibrium we have C(t−s) = 〈u(0)u(t−
s)〉eq = 〈u(s)u(t)〉eq. This yields eigenvalues {λj} and the eigenfunctions ej(t). The uncorrelated
random variables ξk appearing in (337) can be sampled consistently with the equilibrium distribution
ρeq by using, e.g., the iterative algorithm recently proposed by Phoon et al. [73, 74].

3. With {ξ1, . . . , ξK}, {e1(t), . . . , eK(t)} and {λ1, . . . , λK} available, we can uniquely identify the
noise process f(t) in the MZ equation (335). To this end, we simply use Proposition 4, with the
temporal modes hk(t) obtained by solving equation (345) or (347) with the Laplace transform.

4. With K(t) computed from first principles, and f(t) modeled based on the auto-correlation function
C(t), we can generate samples of the observable u(t) by solving equation (335).

Remark We emphasize that the correlation function C(t) can be also computed directly from data, e.g.,
by using a Monte-Carlo or a quasi Monte Carlo method [22]. With C(t) available it is possible to determine
the fluctuation term f(t) with equation (340) and the MZ memory kernel K(t) using equation (343).

The results of this Section can be generalized to vector-valued phase space functions u(t) at statistical
equilibrium. The starting point is the KL expansion for multi-correlated stochastic processes we recently
proposed in [13]. Such expansion is constructed based on cross-correlation information25, and can be made
consistent with the equilibrium distribution ofu(t), e.g., by using the sampling strategy proposed in [73, 74].
The correspondence between the KL expansions of u(t) and the vector-valued fluctuation term f(t) can be
established by following the same arguments we used in the proof of Proposition 4.

6.6 Application to random wave propagation

In this Section, we demonstrate the accuracy of the MZ memory calculation method and the reduced-order
stochastic modeling technique we discussed in Section 6.1 and Section 6.5, respectively. To this end, we
study nonlinear random wave propagation described by Hamiltonian partial differential equations (PDEs).
To derive such PDEs consider the nonlinear functional

H([p], [u]) =

∫ 2π

0

[
p2

2
+
α

2
u2
x +G(p, ux, u)

]
dx, (349)

25At statistical equilibrium the cross correlation functions are invariant under temporal shifts. This means that 〈ui(s), uj(t)〉eq =
〈ui(0), uj(t− s)〉eq for all t ≥ s. Hence, the solution to the projected MZ equation (66) is sufficient to compute the KL expansion
of the multi-correlated process u(t), e.g., using the series expansion method proposed in [13].
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where u = u(x, t) represents the wave displacement, p = p(x, t) is the canonical momentum (field variable
conjugate to u(x, t)), ux = ∂u/∂x, and G(p, ux, u) is the nonlinear interaction term. By taking functional
derivatives of (349) with respect to p and u (see, e.g., [87]) we obtain the Hamilton’s equations of motion

∂tu =
δH(p, u)

δp(x, t)
= p+ ∂pG(p, ux, u),

∂tp = −δH(p, u)

δu(x, t)
= αuxx + ∂x∂uxG(p, ux, u)− ∂uG(p, ux, u).

(350)

The corresponding nonlinear wave equation is

utt = αuxx + ∂t∂pG(p, ux, u) + ∂x∂uxG(p, ux, u)− ∂uG(p, ux, u). (351)

This equation has been studied extensively in mathematical physics [45, 24, 59, 71], in particular in general
relativity, statistical mechanics, and in the theory of viscoelastic fluids. In Figure 17 and Figure 18, we plot a
few sample numerical solutions to (351) corresponding to different initial conditions and different nonlinear
interaction term G(p, ux, u). These solutions are computed by an accurate Fourier spectral method with
N = 512 modes (periodic boundary conditions in x ∈ [0, 2π]). Throughout this Section, we assume that
the initial state {u(x, 0), p(x, 0)} is random and distributed according to the functional Boltzmann-Gibbs
equilibrium distribution26

ρeq([p], [u]) =
1

Z(α, γ)
e−γH([p],[u]), where Z(α, γ) =

∫
e−γH(p,u)D[p(x)]D[u(x)]. (352)

We emphasize that ρeq([p], [u]) is invariant under the infinite-dimensional flow generated by (351) with
periodic boundary conditions, since the Hamiltonian (349) is a constant of motion (conserved quantity) in
this case.

6.6.1 Linear waves

Setting the interaction term G(p, ux, u) in (349) and (351) equal to zero yields the well-known linear wave
equation

utt = αuxx. (353)

We discretize (353) in space using second-order finite differences on the (periodic) grid xj = 2πj/N
(j = 0, . . . , N ). This yields the following linear dynamical system

duj
dt

= pj ,
dpj
dt

=
α

h2
(uj+1 − 2uj + uj−1), (354)

where uj(t) = u(xj , t), pj(t) = p(xj , t), and h = 2π/N is the mesh size. The Hamilton’s function
corresponding to the finite-difference scheme (354) is obtained by discretizing the integral (349), e.g., with
the rectangle rule. This yields

H1(p,u) =

N−1∑
j=0

h

2
p2
j +

α1h

2

N−1∑
j=0

(uj+1 − uj)2, (355)

26The partition function Z(α, γ) is defined as a functional integral over u(x) and p(x) (see, e.g., [87]).
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Figure 17: Sample solutions of the nonlinear wave equation (351) with initial conditions u(x, 0) =
e− sin(2x)(1+cos(x)) (first row), u(x, 0) = e− sin(2x)(1+cos(5x))(second row), and u(x, 0) = e− sin(2x)(1+
cos(9x)) (third row). We set the group velocity α to (2π/100)2 and consider different nonlinear interaction
terms: G = 0 (first column – linear waves), G = βu4

x/4 with β = (2π/100)4 (second column – nonlinear
waves). It is seen that as the initial condition becomes rougher, the nonlinear effects become more important.

where we defined α1 = α/h2. The corresponding finite-dimensional Gibbs distribution can be written as

ρeq(p,u) =
1

Z1(α1, γ)
exp

−γ
N−1∑

j=0

1

2
p2
j +

α1

2

N−1∑
j=0

(uj+1 − uj)2

 , (356)

Z1(α1, γ) being the partition function (normalization constant). Note that we absorbed the scaling factor
h in the parameter γ > 0. It is straightforward to verify that the lattice Hamiltonian (355) is preserved
if u0 = uN and p0 = pN (periodic boundary conditions). This implies that the PDF (356) is invariant
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Figure 18: Snapshots of the solution shown in Figure 17.

under the flow generated by the linear ODE (354). Note that the lattice Hamiltonian (355) coincides with
the Hamiltonian of a one-dimensional chain of harmonic oscillators with uniform mass m = 1 and spring
constants k = α1. We set N = 100 and α = (2π/100)2 in equation (354). In this way, the system (354) is
200-dimensional and the modeling parameter α1 in (355)-(356) is equal to 1.

MZ memory kernel and auto-correlation functions The Hamiltonian system (354) with periodic bound-
ary conditions has many symmetries. In particular, the statistical properties of wave displacement u(x, t) at
any point xj are the same, if the initial state is distributed according to (356). In addition, the PDF of the
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wave momentum27 p(xj , t) and the wave displacement r(xj , t) = u(xj+1, t) − u(xj , t) are both Gaussian
(see Eq. (356)). Suppose we are interested in the temporal auto-correlation function of the wave momentum
p(xj , t) = pj , at an arbitrary location xj , i.e.,

Cpj (t) = 〈pj(t), pj(0)〉eq, (357)

where 〈, 〉eq is an integral over the equilibrium distribution (356). Such correlation function admits the
analytical expression (see [39])

Cpj (t) = J0(2t), ∀γ > 0, (358)

where J0 is the zero-order Bessel function of the first kind. With Cpj (t) available, we can solve the MZ
equation

d

dt
Cpj (t) =

∫ t

0
K(t− s)Cpj (s)ds (359)

for the memory kernel K(t) by using Laplace transforms. This yields the exact MZ kernel

K(t) =
J1(2t)

t
, ∀γ > 0, (360)

where J1 is the first-order Bessel function of the first kind. In Figure 19, we compare the exact memory
kernel (360) and the correlation function (359) with the results we obtained using the iterative algorithm
discussed in Section 6.3. Note that the system (354) is linear. Therefore, we can use the formula (313) to
compute the coefficients {γ1, . . . , γn+2}. With such coefficients available, we then compute {µ1, . . . , µn+2}
using the recurrence relation (298), and the MZ memory kernel (293). In Figure (19) we demonstrate that
the MZ-Faber expansion rapidly converges to the exact auto-correlation function (357) of the wave momen-
tum as we increase the Faber expansion order n. This is not surprising since the linear wave equation is a
well-known integrable system for which convergence of the MZ-Faber series can be rigorously established
(section 5 in [100]).

Reduced-order stochastic modeling Suppose we are interested in building a consistent reduced-order
stochastic model for the wave momentum p(xj , t) = ∂u(xj , t)/∂t at statistical equilibrium. To this end, we
employ the spectral expansion technique we discussed in Section 6.5. The auto-correlation function of the
process p(t) = p(xj , t) (at any location xj), i.e., (357), is obtained by solving the MZ equation (359) with
the kernel computed using the combinatorial algorithm described in Section 6.3. Following the stochastic
modeling paradigm we developed in Section 6.5, we expand p(t) as

p(t) '
K∑
k=1

√
λkξk(ω)ek(t), (361)

where (λk, ek(t)) are eigenvalues and eigenfunctions of (357). By enforcing consistency of (361) with the
equilibrium distribution (356) at each fixed time we obtain that the random variables p(tj) are normally
distributed with zero mean and variance 1/γ, for all tj ∈ [0, 10]. In other words p(t) is a centered, sta-
tionary Gaussian random process with correlation function (357). In Figure 20, we plot the auto-correlation
functions

Cp(t) = 〈pj(t), pj(0)〉eq, C2
p(t) = 〈p2

j (t), p
2
j (0)〉eq, C4

p(t) = 〈p4
j (t), p

4
j (0)〉eq, (362)

we obtained with an MZ-Faber expansion of degree n = 6.
27Note that for linear waves the wave momentum p(x, t) is equal to ∂u(x, t)/∂t (see Eq. (350)).
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Figure 19: Linear wave equation (353). Temporal auto-correlation function of the wave momentum
p(xj , t) = ∂u(xj , t)/∂t (Eq. (357), any location xj) and MZ memory kernel K(t). We compare the
the analytical results (358) and (360), with results we obtained by using the recursive algorithm we pre-
sented in Section 6.1 for different Faber polynomial orders n. It is seen that the MZ-Faber expansion rapidly
converges to the exact MZ-kernel and auto-correlation function we increase the polynomial order.
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Figure 20: Linear wave equation (353). Temporal auto-correlation functions (362) of the wave momentum.
The MZ kernel here is approximated with a Faber polynomial series of degree n = 10.

6.6.2 Nonlinear waves

Here we study the nonlinear wave equation (351) with interaction term G(p, ux, u) = βu4
x/4, i.e.,

utt = αuxx + 3βu2
xuxx, α, β > 0. (363)

In Figure 17 and Figure 18 we plot sample solutions of (363) corresponding to different initial conditions.
It is clearly seen that the nonlinearity u2

xuxx breaks the periodicity of traveling wave. This effect is more
pronounced if the initial condition is rougher in x, as u2

x and uxx are larger in this case, thereby increasing
magnitude of the nonlinear term in (363). As before, we discretize (363) and the Hamiltonian (349) with
finite differences on a periodic spatial grid (N points in [0, 2π]). This yields

H2(p,u) =
N−1∑
j=0

hp2
j

2
+

N−1∑
j=0

hα1

2
(uj+1 − uj)2 +

N−1∑
j=0

hβ1

4
(uj+1 − uj)4, (364)

where uj(t) = u(xj , t) and pj(t) = ∂u(xj , t)/∂t represent the wave amplitude and momentum at location
xj = hj (j = 0, . . . , N , h = 2π/N ), α1 = α/h2 and β1 = β/h4. The discretized equilibrium distribution
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(352) then becomes

ρeq(p,u) =
1

Z2(α1, β1, γ)
exp

−γ
N−1∑

j=0

p2
j

2
+
N−1∑
j=0

α1

2
(uj+1 − uj)2 +

N−1∑
j=0

β1

4
(uj+1 − uj)4

 .

(365)

As before, we absorbed the factor h into the parameter γ. Note that the lattice Hamiltonian (364) coincides
with the Hamiltonian of the Fermi-Pasta-Ulam β-model (325), with mj = 1. We emphasize that if a
different scheme is used to discretize the wave equation (363), then the lattice Hamiltonian (364) may not
be a conserved quantity.

MZ memory term and auto-correlation functions We choose the wave momentum pj(t) and the wave
displacement rj(t) = uj+1(t) − uj(t) as quantities of interest. Moreover, we set N = 100 and α =
(2π/100)2. To study the effects of the nonlinear interaction term, we consider different values of β = β1α

2,
with β1 ranging from 0.01 to 1. This corresponds to the FPU models with mild and strong nonlinearities,
respectively. Based on the structure of the Hamiltonian (364) and the equilibrium distribution (365), we
expect that the dynamics of pj(t) and rj(t) will be different for different parameters β. To calculate the tem-
poral auto-correlation function of pj(t) and rj(t) at an arbitrary spatial point xj , we solve the corresponding
MZ equations. Such equations are of the form (359), where the memory kernel K(t− s) is computed from
first-principles (i.e., from the microscopic equations of motion) using the algorithm we presented in Section
6.3. In Figure 21, we compare the temporal auto-correlation function we obtained for the wave displacement
rj(t) with results of Markov-Chain-Monte-Carlo (MCMC) (106 sample paths) for FPU systems with mild
nonlinearities (β1 = 0.01 and β1 = 0.1 ) at different temperatures (γ = 1 and γ = 40). It is seen that the
Faber approximation of the MZ memory kernel yields relatively accurate results for FPU systems with mild
nonlinearties at both low (γ = 40) and high temperature (γ = 1) as we increase the polynomial order n.

Reduced-order stochastic modeling We employ the spectral approach of Section 6.5 to build stochastic
low-dimensional models of the wave momentum pj(t) and wave displacement rj(t) = uj+1(t) − uj(t) at
statistical equilibrium. Since we assumed that we are at statistical equilibrium, the statistical properties of
the random processes representing pj(t) and rj(t) are time-independent. For instance, by integrating (365)
we obtain the following expression for the one-time PDF of rj(t)

rj(t) ∼ e−γ( 1
2
α1r2+ 1

4
β1r4) ∀t ∈ [0, T ], ∀j = 0, . . . , N − 1. (366)

Clearly, rj(t) is a stationary non-Gaussian process. To sample the KL expansion of rj(t) in a way that
is consistent with the PDF (366) we used the algorithm discussed in [74, 73]. For the FPU system with
α1 = β1 = 1, it is straightforward to show that for all m ∈ N

E{r2m
j (t)} =

∫ +∞

−∞
r2me−γ( 1

2
r2− 1

4
r4)dr∫ +∞

−∞
e−γ( 1

2
r2− 1

4
r4)dr

=

√
2γ−

1
4
−m

2 Γ
(

1
2 +m

)
U
(

1
4 + m

2 ,
1
2 ,

γ
4

)
eγ/8K1/4

(γ
8

) ,

where Γ(x) is the Gamma function,Kn(z) is the modified Bessel function of the second kind and U(x, y, z)
is Tricomi’s confluent hypergeometric function. Therefore, for all positive γ and finite m we have that
E{r2m

j (t)} <∞, i.e., rj(t) is L2m process. This condition guarantees convergence of the KL expansion to
temporal correlation functions of order greater than two. In Figure 22 we plot the temporal auto-correlation
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Figure 21: Nonlinear wave equation (363). Temporal auto-correlation function of the wave displacement
rj(t) for different values of the nonlinear parameter β1. We compare results we obtained by calculat-
ing the MZ memory from first principles using n-th order Faber polynomials (Section 6.2) with results
from Markov-Chain-Monte-Carlo (106 sample paths). The thermodynamic parameter γ is set to 1 (high-
temperature) in the first row and to 40 (low-temperature) in the second row.

function of various polynomial observables of the nonlinear wave momentum and displacement at an arbi-
trary spatial point xj . We compare results we obtained from Markov Chain Monte Carlo simulation (dashed
line), with the MZ-KL expansion method based the first-principle memory calculation (continuous line).
We also provide results we obtained by using KL expansions with covariance kernel estimated from data
(dotted line).
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Figure 22: Nonlinear wave equaton (363). Temporal auto-correlation function of polynomial observables
pmj (t) (first row) rmj (t) (second row) with m = 1, 2, 4. We compare results from Markov-Chain-Monte-
Carlo simulation (MC), KL expansion based on the first-principle MZ memory kernel calculation (359)
(KL-FP), and KL expansion based on a data-driven estimate of the temporal auto-correlation function (KL-
DD). The parameter γ appearing in (365) is set to 40, while α1 = β1 = 1.
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[37] L. Hörmander. Hypoelliptic second order differential equations. Acta. Math, 119(1):147–171, 1967.

[38] W. Huisinga, P. Lorenzo, R. Kosloff, and P. Saalfrank. Faber and Newton polynomial integrators for
open-system density matrix propagation. J. Chem. Phys, 110(12):5538–5547, 1999.

[39] J. Florencio Jr and M. H. Lee. Exact time evolution of a classical harmonic-oscillator chain. Phys.
Rev. A, 31(5):3231, 1985.

[40] T. Karasudani, K. Nagano, H. Okamoto, and H. Mori. A new continued-fraction representation of the
time-correlation functions of transport fluxes. Progress of Theoretical Physics, 61(3):850–863, 1982.

[41] A. Karimi and M. R. Paul. Extensive chaos in the Lorenz-96 model. Chaos, 20(4):043105(1–11),
2010.

[42] G. E. Karniadakis and S. Sherwin. Spectral/hp element methods for computational fluid dynamics.
Oxford University Press, second edition, 2005.

[43] T. Kato. Perturbation theory for linear operators. Springer-Verlag, fourth edition, 1995.

[44] J. Kim and I. Sawada. Dynamics of a harmonic oscillator on the Bethe lattice. Phys. Rev. E,
61(3):R2172, 2000.

[45] S. Klainerman. Global existence for nonlinear wave equations. Commun. Pure Appl. Math., 33(1):43–
101, 1980.

[46] P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations, volume 23.
Springer Science & Business Media, 2013.

[47] V. I. Klyatskin. Dynamics of stochastic systems. Elsevier Publishing Company, 2005.

[48] B. O. Koopman. Hamiltonian systems and transformation in Hilbert spaces. Proc. Natl. Acad. Sci.,
17(5):315–318, 1931.

[49] R. Kubo. The fluctuation-dissipation theorem. Reports on progress in physics, 29(1):255, 1966.

[50] H. Kunita. Stochastic flows and stochastic differential equations. Cambridge university press, 1997.

[51] H. M. Lee. Derivation of the generalized Langevin equation by a method of recurrence relations. J.
Math. Phys., 24:2512–2514, 1983.

[52] M. H. Lee. Solutions of the generalized langevin equation by a method of recurrence relations. Phys.
Rev. B, 26(5):2547, 1982.

[53] H. Lei, N.A. Baker, and X. Li. Data-driven parameterization of the generalized Langevin equation.
Proc. Natl. Acad. Sci., 113(50):14183–14188, 2016.

[54] X. Li. A coarse-grained molecular dynamics model for crystalline solids. Int. J. Numer. Meth. Engng.,
83(8-9):986–997, 2010.

[55] Z. Li, , X. Bian, X. Li, and G. E. Karniadakis. Incorporation of memory effects in coarse-grained
modeling via the Mori-Zwanzig formalism. J. Chem. Phys, 143:243128, 2015.

[56] Z. Li, H. S. Lee, E. Darve, and G. E. Karniadakis. Computing the non-Markovian coarse-grained
interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer
melts. J. Chem. Phys, 146:014104, 2017.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

91



[57] E. N. Lorenz. Predictability - A problem partly solved. In ECMWF seminar on predictability: Volume
1, pages 1–18, 1996.

[58] A. M. Maiocchi, A. Carati, and A. Giorgilli. A series expansion for the time autocorrelation of
dynamical variables. Journal of Statistical Physics, 148(6):1054–1071, 2012.

[59] H. P. McKean and K. L. Vaninsky. Statistical mechanics of nonlinear wave equations. In Trends and
perspectives in applied mathematics, pages 239–264. Springer, 1994.

[60] C. B. Mendl and H. Spohn. Current fluctuations for anharmonic chains in thermal equilibrium. J.
Stat. Mech. Theory Exp., 2015(3):P03007, 2015.

[61] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM
review, 20(4):801–836, 1978.

[62] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-
five years later. SIAM review, 45(1):3–49, 2003.

[63] I. Moret and P. Novati. The computation of functions of matrices by truncated faber series. Numerical
Functional Analysis and Optimization, 22(5-6):697–719, 2001.

[64] H. Mori. A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys,
34(3):399–416, 1965.

[65] F. Moss and P. V. E. McClintock, editors. Noise in nonlinear dynamical systems. Volume 1: theory
of continuous Fokker-Planck systems. Cambridge Univ. Press, 1995.

[66] P Novati. Solving linear initial value problems by Faber polynomials. Numerical linear algebra with
applications, 10(3):247–270, 2003.

[67] S. A. Orszag and L. R. Bissonnette. Dynamical properties of truncated Wiener-Hermite expansions.
Phys. Fluids, 10(12):2603–2613, 1967.

[68] M. Ottobre, G. A. Pavliotis, and K. P. Starov. Exponential return to equilibrium for hypoelliptic
quadratic systems. arXiv preprint arXiv:1106.2326, 2011.

[69] E. J. Parish and K. Duraisamy. A dynamic subgrid scale model for large eddy simulations based on
the Mori–Zwanzig formalism. J. Comp. Phys., 349:154–175, 2017.

[70] E. J. Parish and K. Duraisamy. Non-Markovian closure models for large eddy simulations using the
Mori-Zwanzig formalism. Phys. Rev. Fluids, 2(1):014604, 2017.

[71] G. Parisi. Statistical field theory. Addison-Wesley, 1988.

[72] M. E. Peskin. An introduction to quantum field theory. CRC Press, 2018.

[73] K.K. Phoon, H.W. Huang, and S.T. Quek. Simulation of strongly non-Gaussian processes using
Karhunen-Loev̀e expansion. Prob. Eng. Mech., 20(2):188–198, 2005.

[74] KK. Phoon, SP. Huang, and ST. Quek. Simulation of second-order processes using Karhunen-Loev̀e
expansion. Computers & structures, 80(12):1049–1060, 2002.

[75] G. Da Prato and J. Zabczyk. Ergodicity for infinite dimensional systems, volume 229. Cambridge
University Press, 1996.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

92
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