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One-dimensional dynamical systems

Consider the following initial value problem for one (autonomous1) ODE⎧⎪⎨⎪⎩
dx

dt
= f(x)

x(0) = x0

(1)

where f : D �→ R and D ⊆ R is a subset of R. In order for the initial value problem (1) to be well-posed
(a problem is well-posed if the solution exist and is unique), it is necessary and sufficient for f(x) to be
Lipschitz continuous in D.

Definition 1 (Lipschitz continuity). Let D ⊆ R be a subset of R. We say that f : D × [0, T ] → R is
Lipschitz continuous in D if there exists a positive constant 0 ≤ L <∞ (Lipschitz constant) such that

|f(x1)− f(x2)| ≤ L |x1 − x2| for all x1, x2 ∈ D. (2)

The smallest number L∗ such that the inequality above is satisfied is called “best” Lipschitz constant.

Lipschitz continuity is stronger than continuity, which requires only that2

lim
y1→y±2

|f(y1)− f(y2)| = 0 for all t ∈ [0, T ] and for all y2 ∈ D (excluding boundary). (3)

In fact, Lipschitz continuity implies that the rate at which f(x1) approaches f(x2) as x1 → x2 cannot be
larger than L. In other words, a Lipschitz continuous function f(x) has a growth rate that is bounded by
L for all x in D.

Example: Let D = [−1, 1] be a closed interval, i.e., an interval including the endpoints −1 and 1. The
function f(x) = x1/3 is continuous in D for all t ∈ R (see Figure 1). However, f(x) is not Lipschitz
continuous in D. The problem here is that f(x) has infinite “slope” at the point x = 0. In other words,
there is no constant 0 ≤ L <∞ such that

|f(x)− f(0)| ≤ L |x− 0| for all x ∈ D. (4)

This can be seen by substituting f(x) = y1/3 in (4)

|f(x)| ≤ L |x| ⇒
∣∣∣∣∣x1/3x

∣∣∣∣∣ =
∣∣∣∣ 1

x2/3

∣∣∣∣ ≤ L for all x ∈ D. (5)

Clearly, if we send x to zero we have that
∣∣x−2/3

∣∣→∞. Hence, it cannot be bounded from above by any
finite constant L. In other words, f(x) is not Lipschitz continuous in D because its growth rate at x = 0
is too large. However, if we remove x = 0 and consider, e.g., the domain

D =

[
1

10
, 1

]
(6)

then f(x) is Lipschitz continuous (actually infinitely-differentiable with continuous derivatives) in D. Fi-
nally we notice that f(x) is not Lipschitz continuous in the open interval D =]0, 1]. In fact the growth
rate of f(x) cannot be bounded by a finite constant L as x→ 0+.

1The ODE (1) is called “autonomous” if the right hand side f does not depend explicitly on t.
2The notation x1 → x±

2 means that x1 is approaching x2 either from the left (“−”) or from the right (“+”). Note that we
can equivalently write (3) as

lim
x1→x+

2

f(x1) = lim
x1→x−2

f(x1) = f(y2).
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Figure 1: Sketch of the function f(x) = x1/3 in D = [−1, 1]. The function is continuous in D, but it has
an infinite slope at x = 0 and therefore it is not Lipschitz continuous in D.

Figure 2: Geometric meaning of Lipschitz continuity.

Geometric meaning of the Lipschitz continuity condition. The Lipschitz continuity condition (2)
has a nice geometric interpretation. In practice it says that the function f(x) cannot enter a double cone
with slope L and vertex placed on any point of the graph (x, f(x)) with x ∈ D. In other words, if we can
slide the vertex of the double cone over the graph of the function f(x) for all x ∈ D and the function never
enters the cone then f(x) is Lipschitz continuous in D. To explain this, let us divide the inequality (2) by
|x1 − x2| (for x1 	= x2). This yields∣∣∣∣f(x1)− f(x2)

x1 − x2

∣∣∣∣︸ ︷︷ ︸
|K|

≤ L for all x1, x2 ∈ D. (7)

As shown in Figure 2, K represents the slope of the line connecting the points (x1, f(x1)) and (x2, f(x2)).
The “best” Lipshitz constant is obtained as

L∗ = max
x1,x2∈D

∣∣∣∣f(x1)− f(x2)

x1 − x2

∣∣∣∣ . (8)
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Figure 3: Geometric meaning of the existence and uniqueness theorem for the solution of one ODE.

Any finite number L ≥ L∗ is still a Lipschitz constant, though not the best one. If the function f(x) is
continuously differentiable on a closed set D ⊂ R then

L∗ = max
x∈D

∣∣∣∣df(x)dx

∣∣∣∣ <∞. (9)

Lemma 1. If f(x) is continuously differentiable on a closed set D ⊆ R then f(x) is Lipschitz continuous
in D.

Proof. By assumption the derivative of df(x)/dx is continuous in the closed set D ⊆ R. This implies that
the minimum and the maximum of df(x)/dx are attained at some points in D (Extreme Value Theorem).
By using the mean value theorem we immediately see that

|f(x1)− f(x2)| =
∣∣∣∣df(x∗)dx

∣∣∣∣ |x1 − x2| . (10)

where x∗ is some point within the interval [x1, x2] ⊂ D. The point x∗ depends on f , x1 and x2. The right
hand side of (10) can be bounded as

|f(x1)− f(x2)| ≤ max
x∈D

∣∣∣∣df(x)dx

∣∣∣∣︸ ︷︷ ︸
L∗

|x1 − x2| for all y1, y2 ∈ D. (11)

Example: The function f(x) = x2 is of class C∞ (infinitely differentiable with continuous derivatives) in
any closed set D ⊂ R. However, the function f(x) = x2 is not Lipschitz continuous at x = ±∞, since the
slope of the first-order derivative f ′(x) = 2x grows unboundedly as x→ ±∞.

Well-posedness of the initial value problem. Next, we formulate the existence and uniqueness
theorem for the solution of the first-order ODE (1).
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Theorem 1 (Existence and uniqueness of the solution to (1)). Let D ⊂ R be an open set, x0 ∈ D. If
f : D → R is Lipschitz continuous in D then there exists a unique solution to the initial value problem
(1) within the time interval [0, τ [, where τ is the instant at which x(t) exits3 the domain D (see Figure 3).
The solution x(t) is continuously differentiable in [0, τ [.

Remark: In Theorem 1, we required that D is an open set so that we can have solutions in D at least for
some t ∈ [0, τ [. On the other hand, if D is closed then we can pick x0 right at the boundary of D so that
the solution4 x(t) = X(t, x0) never enters D, which is the region in which f is assumed to be Lipschitz
continuous. In this case, the “exit time” τ may be zero, and Theorem 1 does not provide any information
on the existence and uniqueness of the solution.

Global solutions. If f(x) is Lipschitz continuous on the entire real line R then the solution to the initial
value problem (1) is global. This means that the solution exists and is unique for all t ≥ 0. In fact, x(t)
never exits the domain in which f(x) is Lipschitz continuous, and therefore we can extend τ in Theorem 1
to infinity. It is important to emphasize that existence and uniqueness of the solution to (1) has nothing
to do with the smoothness of f(x) but rather with the rate at which f(x) grows or decays.

Computing the solution of one-dimensional autonomous ODEs. The initial value problem (1) is
separable, i.e., it can be equivalently written in an integral form as∫ x(t)

x0

dx

f(x)
= t (12)

Hence, if we know how to compute the primitive of 1/f(x), i.e., the integral at the left hand side of (12),
then we have an algebraic equation that relates x(t), x0 and t. This does not mean that we can always
easily write x(t) explicitly in terms of x0 and t. This is demonstrated in the following simple example.

Example: Consider the initial value problem (1) and set

f(x) =
1

x4 − x2 + 1
and x0 = 0. (13)

As it is seen in Figure 4, f(x) continuously differentiable in R with bounded derivative.

3As shown in Figure 3, the “exit time” τ depends on D f(x) and x0.
4The nonlinear map X(t, x0) represents the solution of (1) corresponding to the initial condition x0, where x0 is left

unspecified. As we shall see hereafter X(t, x0) is called flow generated by the dynamical system (1).
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Figure 4: Plot of the function defined in equation (13).

Therefore, the solution of the initial value problem (1), with f and x0 as in (13) is global, meaning that it
exists and it is unique for all t ≥ 0. A substitution of (13) into the integral equation (12) yields

x(t)5

5
− x(t)3

3
+ x(t) = t. (14)

Hence, to express x(t) as a function of t we need to compute the roots of the fifth-order polynomial (14)
as a function of t and among them select the one that passes through x(0) = 0.

Example: Consider the initial value problem⎧⎪⎨⎪⎩
dx

dt
= sin(x)

x(0) = x0

(15)

where x0 is any number in the interval D = [0, π]. The solution to (15) can be obtained by computing the
integral5 ∫ x(t)

x0

dx

sin(x)
= t ⇒

[
log

(∣∣∣tan(x
2

)∣∣∣)]x(t)
x0

= t (16)

By using the properties of the logarithm we obtain

log

∣∣∣∣∣∣∣∣
tan

(
x(t)

2

)
tan

(x0
2

)
∣∣∣∣∣∣∣∣ = t ⇒ x(t) = 2 arctan

(
et tan

(x0
2

))
. (17)

Note that
lim
t→∞x(t) = π (18)

The trajectories of the system (15) are shown in Figure 8.

Hereafter we provide an example of an initial value problem the solution of which blows-up in a finite time,
and an example of an initial value problem that has an infinite number of solutions.

5Recall that the primitive of 1/ sin(x) is

log
(∣∣∣tan(x

2

)∣∣∣) .
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(finite time blow-up) (non-uniqueness of solution)

Figure 5: (left) Solutions of the initial value problem (19) for different initial conditions x0. It is seen that
for x0 > 0 the solution blows up at the fine time t∗ = 1/x0. On the other hand, if x0 ≤ 0 the solution
exists and is unique for all t ≥ 0. (b) Solutions of the initial value problem (21) corresponding to the initial
condition x0 = 0. This problem has an infinite number of solutions.

• Finite-time blow-up: Consider the initial value problem

dx

dt
= x2 x(0) = x0. (19)

We know that f(x) = x2 is not Lipschitz continuous at infinity. By using separation of variables, i.e.,
equation (12), it is straightforward to show that∫ x(t)

x0

dx

x2
= − 1

x(t)
+

1

x0
= t ⇒ x(t) =

x0
1− x0t

. (20)

The function x(t) clearly blows up to infinity as t approaches 1/x0 (from the left) for positive initial
conditions x0. On the other hand, if x0 ≤ 0 the solution exists and is unique for all t ≥ 0.

• Non-uniqueness of solutions: Consider the initial value problem

dx

dt
= x1/3 x(0) = 0. (21)

We have seen that f(x) = x1/3 is not Lipschitz continuous in any domain D that includes the point
the point x = 0. Note that we are setting the initial condition exactly at the point in which the slope
of f(x) is infinity (see Figure 1). By using separation of variables it straightforward to show that a
solution to (21) is

x(t) =

(
2

3
t

)3/2

. (22)

However, note that the functions

x(t) =

⎧⎪⎨⎪⎩
0 for 0 ≤ t < c

±
(
2

3
(t− c)

)3/2

for t ≥ c
(23)

are also solutions to (21) for all c ≥ 0.
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Figure 6: Trajectories corresponding to different initial conditions cannot intersect.

One-dimensional flows. We have seen that the initial value problem (1) admits a unique solution x(t)
(continuously differentiable in t) if f(x) is Lipschitz continuous on an open subset D ⊂ R (Theorem 1),
and if x0 is chosen in D. This means that the solution x(t) depends on f(x) and x0. We will denote the
dependence of x(t) on x0 as X(t, x0), i.e.,

x(t) = X(t, x0). (24)

Let us first notice that because of the existence and uniqueness Theorem 1, it is not possible for two
solutions corresponding to two different initial conditions to intersect at any finite time t (see Figure 6).
This implies that X(t, x0) is invertible at each finite time6 (see below), i.e., we can always identify which
“particle” x0 sits at location x(t) = X(t, x0) at time t. Moreover, it is impossible for two “particles” x01
and x02 to collide at any finite time, or for one particle to split into two or more particles (Figure 6). Next,
we characterize how the flow X(t, x0) depends on the initial condition x0 at each fixed time t.

Theorem 2 (Regularity of the ODE solution with respect to x0). Let D ⊂ R be an open set, x0 ∈ D. If
f : D → R is Lipschitz continuous in D then the solution of the initial value problem (1), i.e., X(t, x0) (i.e.,
the flow generated by the ODE) is continuous in x0. Moreover, if f(x) is of class Ck in D (continuously
differentiable k-times in D with continuous derivative), then X(t, x0) is of class C

k in D.

In summary, Theorem 2 states that the smoother f(x), the smoother the dependency ofX(t, x0) on x0. The
two-dimensional function X(t, x0) is called flow generated by the dynamical system (1), and it represents
the full set of solutions to (1) for every initial condition x0.

Theorem 3 (Regularity of the ODE solution in time t). Let D ⊂ R be an open set, x0 ∈ D. if f(x) is
of class Ck in D (continuously differentiable k-times in D with continuous derivative), then X(t, x0) is of
class Ck+1 in time.

The continuity of higher-order derivatives, and its link to the the regularity of f(x) can be established by
differentiating the ODE

dX(t, x0)

dt
= f(X(t, x0)) (25)

6Solutions corresponding to different initial conditions can, however, intersect at t =∞, e.g., when there exist an attracting
set such as a stable equilibrium point (proof below).
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Figure 7: Visualization of the flow generated by the ODE (28).

with respect to time. For instance, we have

d2X(t, x0)

dt2
= f ′(X(t, x0))f(X(t, x0)), (26)

d3X(t, x0)

dt3
= f ′′(X(t, x0))f

2(X(t, x0)) + [f ′(X(t, x0))]
2f(X(t, x0)). (27)

At this point we can use the existence and uniqueness theorem for the solution of higher-dimensional
dynamical systems to conclude that the derivatives dnX(t, x0)/dt

n are continuous if dn−1f(x)/dxn−1 is
continuous.

Example: In Figure 7 we visualize the flow generated by the ODE

dx

dt
= sin(x) (28)

for all x0 ∈ [−5π, 5π] and t ∈ [0, 10]. Such flow was computed by solving the ODE (28) numerically (see
Appendix A) for a large number of initial conditions x0. Similarly, in Figure 8 we plot the trajectories of
the system (28) corresponding to an evenly-spaced grid of 100 initial conditions in [−5π, 5π].

Properties of the flow. The flow generated by one dimensional dynamical systems of the form (1)
satisfies the following properties:

• X(0, x0) = x0. This means that at t = 0 the mapping X(t, x0) is the identity.

• X(t, x0) is monotonic in x0 for each fixed t, i.e.,

X(t, x02) > X(t, x01) for all x02 > x01. (29)

This property can be proved easily by substituting x(t) = X(t, x0) into the ODE dx/dt = f(x) and
differentiating it with respect to x0. This yields

∂

∂x0

(
dX(t, x0)

dt

)
=

∂f(X(t, x0))

∂x0
⇒ d

dt

(
∂X(t, x0)

∂x0

)
= f ′(X(t, x0))

∂X(t, x0)

∂x0
. (30)

The last one ODE is linear and that can be easily integrated in time from the initial condition

∂X(0, x0)

∂x0
= 1 (31)

Page 8



AM 114/214 Prof. Daniele Venturi

0 2 4 6 8 10

-15

-10

-5

0

5

10

15

Figure 8: Trajectories of the dynamical system (28) corresponding to 100 evenly spaced initial conditions
in [−5π, 5π]. All trajectories are computed numerically. The red dashed lines represent the stable fixed
points (equilibria) of the system.

to obtain7

∂X(t, x0)

∂x0
= exp

[∫ t

0
f ′(X(τ, x0))dτ

]
. (34)

The right hand side of (34) is strictly positive for each t ≥ 0, which implies

∂X(t, x0)

∂x0
> 0 for each finite t ≥ 0. (35)

This proves that the flow map X(t, x0) is monotonic in x0 and therefore invertible for each finite t.

• X(t, x0) satisfies the composition rule X(t+s, x0) = X(t,X(s, x0)) = X(s, x(t, x0)). This property is
called “semi-group property” of the flow and it follows from the fact that we can restart integration
of the ODE (1) at time t (or time s) from the new initial condition X(t, x0) (or X(s, x0)) to get to
the final integration time s + t. Again, this property holds because of the existence and uniqueness
theorem 1.

Inverse flows. The monotonicity property (29) guarantees that the flow map is invertible for each finite
t ≥ 0. In other words, it is always possible to determine which x0 sits at a certain location x at time
t. As we mentioned above, this also means that it is impossible to have simultaneous occupation of one
location x by more than one “particle” x0, i.e., the trajectories of the (1) corresponding to two different
initial conditions cannot intersect (see Figure 6). The invertibility of X(t, x0) in x0 for each fixed t allows
us to define the inverse flow, which gives the label x0 of the particle that sits at x at time t. In practice,
the inverse flow can be computed by integrating the (1) from the initial condition x (at time t) backwards

7Equation (34) characterizes the dynamics of an infinitesimal “line element” with length dx0 as it is “transported” by the
flow X(t, x0). In fact, from (34) it follows that

dX(t, x0) = dx0 exp

[∫ t

0

f ′(x(τ, x0))dτ

]
. (32)

Moreover, if x0 is a fixed-point, i.e. if X(τ, x0) = x0, then

dX(t, x0) = dx0e
tf ′(x0). (33)
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Figure 9: Illustration of forward and inverse flows.

in time to t = 0. Integrating (1) backwards in time is equivalent to integrating forward in time the ODE
system with reversed velocity vector (see Figure 9)⎧⎪⎨⎪⎩

dx

dt
= −f(x)

x(0) = x

(36)

The flow associated with this system will be denoted as X0(t, x). Clearly, for each fixed t the inverse flow
X0(t, x) is the inverse of the forward flow X(t, x0), i.e.,

X(t,X0(t, x)) = x, X0(t,X(t, x0)) = x0. (37)

Flow map equation. It can be shown that the flow X(t, x0) generated by the initial value problem (1)
is governed by the first-order partial differential equation (PDE)⎧⎪⎨⎪⎩

∂X(t, x0)

∂t
− f(x0)

∂X(t, x0)

∂x0
= 0

X(0, x0) = x0

(38)

This can be verified, e.g., by substituting the flow

X(t, x0) =
x0

1− x0t
(39)

generated by (19) into (38). Indeed, computing the derivatives

∂X(t, x0)

∂t
=

x20
(1− x0t)2

,
∂X(t, x0)

∂x0
=

1

(1− x0t)2
. (40)

and recalling that f(x0) = x20 in this case, we see that (38) is identically satisfied. Equation (9) is a
hyperbolic PDE that can be solved numerically, e.g., with the method of characteristics, finite differences,
or spectral methods, to obtain the flow map. The solution to (38) can be formally expressed in terms of
an exponential operator known as Koopman operator. To this end, we first define the linear (differential)
operator

K(x0) = f(x0)
∂

∂x0
, (41)
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Figure 10: Vector field associated with f(x), fixed points, and phase portrait.

which is known as “generator” of the Koopman operator. This allows us to write (38) as

∂X(t, x0)

∂t
= K(x0)X(t, x0), (42)

and therefore obtain the formal solution

X(t, x0) = etK(x0)x0, (43)

where etK(x0) is the Koopman operator. In this form, it is immediate to prove the semi-group property of
the flow discussed previously. In fact,

X(t+ s, x0) = e(t+s)K(x0)x0 = etK(x0)esK(x0)x0 = etK(x0)X(s, x0) = X(t,X(s, x0)). (44)

Similarly, the inverse flow X0(t, x) defined by the dynamical system (36) is governed by the PDE⎧⎪⎨⎪⎩
∂X0(t, x)

∂t
+ f(x)

∂X0(t, x)

∂x
= 0

X0(0, x) = x

(45)

The solution to this PDE is
X0(t, x) = e−tK(x0)x. (46)

Geometric approach. We have seen that dynamical systems of the form (1) generate a flow X(t, x0)
that maps every initial condition x0 to the solution of the ODE at time t. If we think as x0 as the
initial position of a particle sitting on a line (phase space), then from elementary mechanics we know
that dX(0, x0)/dt = f(x0) represents the velocity of such particle. Hence, given f(x) we can immediately
plot the vector field 8 associated with the dynamical system, which represents how fast a particle at any
particular location x moves left or right. Clearly, if the velocity vector f(x) is equal to zero at some

8A vector field is a vector that is continuously indexed by one or more variables. For one-dimensional dynamical systems
the vector field f(x) is indexed by coordinate x.
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locations x∗ then any particle placed at that location won’t move at all as time increases. These points
are called fixed points (or equilibria) of the dynamical system (1). Fixed points can be rigorously defined
as the points x∗ ∈ R such that for all t ≥ 0

X(t, x∗) = x∗. (47)

By differentiating the previous equation with respect to time yields

0 =
∂X(t, x∗)

∂t
= f(X(t, x∗)) = f(x∗). (48)

Therefore, the fixed points of the system (1) are zeros of the nonlinear function f(x), i.e.

f(x∗) = 0, (49)

(see Figure 10). The calculation of the fixed points can be done analytically for prototype dynamical
systems. In general, computing the fixed points requires a root-finding numerical algorithm such as the
Newton’s method.

Distribution of fixed points. The (Lipschitz) continuity condition on f(x) in Theorem 1 imposes
topological constraints on the distribution of fixed points. Specifically, fixed points facing each other cannot
be both stable or unstable, but rather they must have opposite stability properties (Figure 10).

Stability analysis of fixed points. A fixed point x∗ of the dynamical system (1) is said to be asymp-
totically stable if

lim
t→∞ |X(t, x0)− x∗| = 0 (50)

for all x0 in some neighborhood of x∗. In other words, stable fixed points attract trajectories of the
dynamical system from both left and right (see Figure 10). Of course, by plotting f(x) we can immediately
infer the stability properties of all fixed points. This can be also done analytically by a technique known as
linearization. The basic idea is very simple. If f(x) is smooth (at least continuously differentiable) then the
more we “zoom-in” at a fixed point x∗ the more f(x) looks linear in a neighborhood of x∗, and therefore
it can be replaced by its fist-order term in a Taylor series expansion. In other words, by “zooming-in” we
are studying the local dynamics of the system nearby the fixed point. To this end, let us pick an initial
condition x0 that is sufficiently close to to the fixed point x∗, say x0 − x∗ = 10−10. By continuity, the
flow X(t, x0) will map x0 to a position that is still close to x∗ at least for some time (see Figure 11). The
distance between X(t, x0) and the fixed point x∗ can be expressed as function9

η(t, x0) = X(t, x0)− x∗ ⇔ X(t, x0) = η(t, x0) + x∗. (52)

A substitution of X(t, x0) = η(t, x0) + x∗ into (1) yields⎧⎪⎨⎪⎩
dη

dt
= f(η + x∗)

η(0, x0) = x0 − x∗
(53)

If η(0, x0) is very small then η(t, x0) is very small too (at least for some time). This allows us expand
f(η + x∗) in a Taylor series as

f(η(t, x0) + x∗) = f(x∗)︸ ︷︷ ︸
=0

+f ′(x∗)η(x, t) +
1

2
f ′′(x∗)η(x, t)2 + · · · (54)

9Note that
η(0, x0) = X(0, x0)− x∗ = x0 − x∗. (51)
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Figure 11: Linearization nearby the fixed point x∗.

Hence, to first-order in η we obtain the linear initial value problem⎧⎪⎨⎪⎩
dη

dt
= f ′(x)η

η(0, x0) = x0 − x∗
(55)

The solution of (55) is
η(t, x0) = (x− x0)e

f ′(x∗)t. (56)

The last equation allows us to conclude that

• f ′(x∗) < 0 ⇒ x∗ is asymptotically stable

• f ′(x∗) > 0 ⇒ x∗ is unstable

• f ′(x∗) = 0 ⇒ results of linear stability analysis are inconclusive.

If f ′(x0) = 0 then need to expand f to higher order in η, and solve a nonlinear ODE to classify the stability
of the fixed point x∗.

Example: The dynamical system
dx

dt
= x2 − 1︸ ︷︷ ︸

f(x)

(57)

has two fixed points located at x∗1,2 = ±1. Of course, f ′(x) = 2x. By evaluating f ′(x) at the fixed points
we see that f ′(1) = 2 > 0 and f ′(−1) = −2 < 0. Hence x∗1 = 1 is unstable, and x∗2 = −1 is asymptotically
stable.

Example: The dynamical system
dx

dt
= 1 + sin(x) (58)

has a global solution for all initial conditions x0, and an infinite number of fixed points located at (see
Figure 12)

x∗k =
3π

2
+ 2kπ. (59)
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Figure 12: (a) Graph of function the f(x) = 1 + sin(x) and some of its fixed points (red circles). (b)
Trajectories of the dynamical system (58).

By expanding f(x) = 1 + sin(x) in a Taylor series at x∗0 = 3π/2 we obtain

sin

(
η +

3π

2

)
=sin

(
3π

2

)
+ cos

(
3π

2

)
η − 1

2
sin

(
3π

2

)
η2 + · · ·

=− 1 +
η2

2
+ · · · , (60)

i.e.,

1 + sin

(
η +

3π

2

)
=

η2

2
+ · · · . (61)

Substituting this back into (53) yields the nonlinear system⎧⎪⎪⎨⎪⎪⎩
dη

dt
=

η2

2

η(0, x0) = x0 − 3π

2

(62)

We computed the analytical solution to this system before (see Eq. (20)),

η(t, x0) =

(
x0 − 3π

2

)
1−

(
x0 − 3π

2

)
t

2

. (63)

Clearly, if x0 > 3π/2 then trajectory tends to go further away from the fixed point x∗0 = 3π/2. On the
other hand, if x0 < 3π/2 then the trajectories are attracted to x∗0 = 3π/2. Note that the second-order
polynomial approximation of the system (58) at the fixed point x∗0 = 3π/2 we just considered seems to
blow-up in a finite time for x0 > 3π/2, while the trajectories plotted in Figure 12 exist and are unique
for all times. This is due to the fact that we did not include a sufficient number of terms in the Taylor
expansion, some of which become increasingly important in stabilizing the polynomial approximation of
the dynamical system as η becomes larger.

Example: The dynamical system
dx

dt
= −x3︸︷︷︸

f(x)

(64)
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Figure 13: These trajectories are impossible for one-dimensional dynamical systems of the form (1).

has a fixed point at x∗ = 0. Linear stability analysis in this case is ineffective at inferring stability. In fact
f ′(x) = −3x2, which is equal to zero at x∗ = 0. The analytical solution to (64) is obtained as∫ x(t)

x0

dx

x3
= −t ⇒ 1

2

(
1

x(t)2
− 1

x20

)
= t. (65)

Therefore,

X(t, x0) = sign(x0)

√
x20

1 + 2x20t
, (66)

which shows that x∗ = 0 is a globally attracting fixed point. This means that x∗ = 0 attracts all trajectories
generated by the ODE (64) independently of the initial condition x0.

Lyapunov functions (potentials). Lyapunov functions are used to make conclusions about trajectories
of a system (1) without finding the trajectories (i.e., solving the differential equation). A typical Lya-
punov theorem has the form: “if there exists a function V (x) that satisfies some conditions on V (x) and
dV (x(t))/dt, then the trajectories of the system satisfy some property”. A Lyapunov function V can be
thought of as generalized potential for a system.

• Asymptotic stability of fixed points: If there exists a smooth function V (x) in a neighborhood of the
fixed point x∗ satisfying

a) V (x) has a local minimum at x∗,

b) V (x) does not increase along trajectories of (1), i.e., dV (x(t))/dt < 0, in a neighborhood of x∗,
(excluding x∗).

Then x∗ is is an asymptotically stable fixed point. The proof is very simple. Suppose that x(t1) is
in a neighborhood of x∗ then

V (x(t2)) = V (x(t1)) +

∫ t2

t1

dV (x(τ))

dτ
dτ < V (x(t1)) for all t2 ≥ t1 (67)

Hence x(t) converges monotonically to the local minimum of V located at x∗ as time increases,
implying that x∗ is asymptotically stable.

• Impossibility of trajectory reversals: If there exists a smooth function V (x) satisfying dV (x(t))/dt < 0
then there cannot be any maxima or minima of x(t) at any finite time t. In particular, this rules
out trajectories of the form shown in Figure 13. The proof follows immediately from (67). In fact,
for any trajectory reversal there exist t1 and t2 such that x(t2) = x(t1) (see Figure 13). Hence,
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Figure 14: An autonomous dynamical generates trajectories that depend only on x0 and f . This means that
we can translate a trajectory left and right to obtain other solutions of the same system. This translational
symmetry, together with the existence and uniqueness theorem 1, rules out the possibility of trajectory
reversals, e.g., the blue trajectory.

V (x(t2)) = V (x(t1)) which immediately contradicts (67). Note in fact, that dV (x(t))/dt is not zero
and does not change sign in [t1, t2]).

How do we construct a function V (x) with the properties stated above? For one-dimensional systems it is
sufficient to consider primitive of −f(x), i.e.,

dV (x)

dx
= −f(x). (68)

In fact,
dV (x(t))

dt
= −dV (x(t))

dx

dx(t)

dt
= −f(x(t))2 ≤ 0. (69)

The equality sign holds only at fixed points, which are indeed the only points where dx(t)/dt = 0. Note
that this rules out the possibility of trajectories of the form shown in Figure 13. If we interpret f(x) as a
vector field in the sense described in Figure 10, then V (x) defined in (68) is called potential for f(x). The
potential is defined up to an additive constant.

An alternative method to rule out the possibility trajectories reversals such those in Figure 13 relies on
the existence and uniqueness Theorem 1. In fact, since the dynamical system (1) is autonomous, it doesn’t
really matter the time at which we set the initial condition. This implies that we are free to translate the
trajectories left and right in the plane (x(t), t), to obtain all possible solutions to the system. However,
as show in Figure 14, it is not possible to do so without violating the existence and uniqueness theorem if
there exists a trajectory reversal.

Note that this also means that to compute flow of 1D systems we just need a few trajectories which can
be then translated left or right as shown in Figure 15 for the system dx/dt = 1− x2.

Example: Consider the dynamical system (58). A potential for such system is

V (x) = V (x0)−
∫ x

x0

(1 + sin(y)) dy = cos(x)− x+ C, (70)

where C is a constant. This function is plotted in Figure 16 for C = 0. It is seen that V (x) has inflection
points at the fixed points suggesting that such fixed points are half-stable.
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Figure 15: We can use the translational symmetry of the solutions to the autonomous system (1) to
construct the entire flow. Specifically, the yellow trajectories are all obtained by translating the trajectory
labeled by “A” to the left and to the right. Similarly, the red trajectories are obtained by translating the
trajectory labeled as “B” to the left, while the green trajectories are obtained by translating the trajectory
labeled by “C” to the left and to the right.

Dynamics of one-dimensional dynamical systems. In summary, the trajectories of a one-dimensional
dynamical system

• Can get to a stable (or half-stable) fixed-point in an infinite time,

• Can blow-up to infinity in a finite or an infinite time,

• Cannot have maxima or minima at any finite time (no overshoot/undershoot, no periodic orbits).

The only attracting sets of one-dimensional dynamical systems are fixed points. In higher dimensions we
can have attracting sets that are more complicated, e.g., limit cycles, saddle nodes connected by heteroclinic
orbits, strange attractors, etc.

Appendix A: Elementary numerical methods for ODEs

The initial value problem (1) can be equivalently written in an integral form as

x(t) = x0 +

∫ t

0

dx(s)

ds
ds = x0 +

∫ t

0
f(x(s))ds (71)

i.e., as an integral equation for x(s). This formulation is quite convenient for developing numerical methods
for ODEs based on numerical quadrature formulas, i.e., numerical approximations of the temporal integral
appearing at the right hand side of (71). For example, consider a discretization of the time interval [0, T ]
in terms of N + 1 evenly-spaced time instants

ti = iΔt i = 0, 1, . . . , N where Δt =
T

N
. (72)
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Figure 16: A potential function for the dynamical system (58).

By applying (71) within each time interval [ti, ti+1] we obtain

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(s))ds. (73)

At this point we can approximate the integral at the right hand side if (73), e.g., by using the simple
rectangle rule ∫ ti+1

ti

f(x(s))ds  Δtf(x(ti)) (74)

This yields the Euler forward scheme
ui+1 = ui +Δtf(ui), (75)

where ui is an approximation of x(ti). The Euler forward scheme is an explicit one-step scheme. The
adjective “explicit” emphasizes the fact that ui+1 can be computed explicitly based on the knowledge of f
and ui using (75). On the other hand, if we approximate the integral at the right hand side of (71) with
the trapezoidal rule ∫ ti+1

ti

f(x(s))ds  Δt

2
[f(x(ti+1)) + f(x(ti))] (76)

we obtain the Crank-Nicolson scheme

ui+1 = ui +
Δt

2
[f(ui) + f(ui+1)] . (77)

The Crank-Nicolson scheme is “implicit” because the approximate solution at time ti+1, i.e., ui+1, cannot
be computed explicitly based on ui, but requires the solution of a nonlinear equation. Such a solution can
be computed numerically by using any method to solve nonlinear equations. These methods are usually
iterative, e.g., the bisection method, or the Newton method if f is continuously differentiable. Iterative
methods for nonlinear equations can be formulated as fixed point iteration problems. In the specific case
of (77) we have

ui+1 = G(ui+1) where G(ui+1) = ui +
Δt

2
[f(ui) + f(ui+1)] . (78)

If Δt is small then ui is close to ui+1. Moreover, if Δt is sufficiently small we have that the Lipschitz
constant of G is smaller than 1, which implies that the fixed point iterations will convergence globally to
a unique solution ui+1 .
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Bifurcations of equilibria in one-dimensional dynamical systems

In previous lecture note we studied one-dimensional dynamical systems of the form⎧⎪⎨⎪⎩
dx

dt
= f(x)

x(0) = x0

(1)

and fully characterized their properties. In particular, we proved that trajectory reversals or oscillations
are impossible, and that the dynamics is essentially determined by the location of the fixed points and
their stability properties. In this course note we study what happens to the locations of the fixed points if
f(x) in (1) depends on a parameter μ ∈ R, and we are allowed to vary such parameter μ. To this end, we
consider the dynamical system1 ⎧⎪⎨⎪⎩

dx

dt
= f(x, μ)

x(0) = x0

(2)

For each fixed value of μ we can plot f(x, μ) versus x, and see if there are any fixed points. Equivalently,
we can think of f(x, μ) as a real-valued function in 2 variables, i.e., a surface in the three-dimensional
Euclidean space.

Figure 1: Sketch of a saddle-node bifurcation.

Clearly, the fixed points of the system (2) are in the zero level set2 of f(x, μ), i.e., they are solutions of the
equation

f(x, μ) = 0. (4)

In Figure 1, the zero level set of f(x, μ) is represented by the stable and unstable branches of fixed points
that originate from a saddle-node bifurcation at μ = μ2. Of course, there are many other ways the function
f(x, μ) can intersect the plane (x, μ). For instance, we can have the zero level set corresponding to the
so-called sub-critical pitchfork bifurcation. This is sketched in Figure 2.

1More generally, f(x) can depend on multiple parameters, i.e., we can have f(x, μ1, . . . , μM ) in equation (2).
2The zero level set of a function f(x, μ) is the set of points (x, μ) ∈ R

2 such that the function is equal to zero, i.e.,

{(x, μ) ∈ R
2 : f(x, μ) = 0} (zero level set of f). (3)

If the function f(x, μ) does not intersect the (x, μ) plane, then the zero level set is empty.
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Figure 2: Sketch of a subcritical pitchfork bifurcation.

Bifurcation diagram. The zero level set of f(x, μ), i.e., the set of points (x, μ) ∈ R
2 satisfying (4) is

called bifurcation diagram of fixed points. In practice, the bifurcation diagram provides the location of all
fixed points of the system as a function of the parameter μ. Hereafter we sketch the bifurcation diagrams
corresponding to the saddle-node bifurcation sketched in Figure 1, and the subcritical pitchfork bifurcation
sketched Figure 2.

Figure 3: Bifurcation diagrams corresponding to the saddle-node bifurcation sketched in Figure 1, and the
subcritical pitchfork bifurcation sketched in Figure 2.

In the bifurcation diagram we usually plot the location of the fixed points x∗(μ) as a function of the
bifurcation parameter μ, but it is also possible to plot the bifurcation parameter μ(x∗) versus the location
of the fixed points x∗. In this setting, the saddle-node bifurcation diagram shown in Figure 3(left) becomes
a parabolic function μ(x∗) with upward concavity.

What is the relation between the coordinates of the fixed points x∗ and the parameter μ? In particular, is
it possible to express the zero level set of f(x, μ) as a graph of a smooth function? The answer is provided
by the implicit function theorem.
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Theorem 1 (Implicit function theorem). Let f(x, μ) be a function of class C1 (i.e., continuously differen-
tiable) in x and μ in a neighborhood of a point (x∗, μ∗) such that f(x∗, μ∗) = 0. If

∂f(x∗, μ∗)
∂x

	= 0 (5)

then there exists a neighborhood B of μ∗ in which the zero level set of f(x, μ) can be represented as a
graph of a smooth function x∗(μ), i.e.,

f(x∗(μ), μ) = 0 for all μ ∈ B. (6)

The function x∗(μ) is of class C1(B) (continuously differentiable in B) and it satisfies the additional
properties:

x∗(μ∗) = x∗,
dx∗(μ∗)

dμ
= −

∂f(x∗, μ∗)
∂μ

∂f(x∗, μ∗)
∂x

. (7)

Comments on the implicit function theorem:

• Theorem 1 indicates that the bifurcation diagram is composed of smooth curves x∗(μ) (continuously
differentiable in μ), except at points (x∗, μ∗) where

∂f(x∗, μ∗)
∂x

= 0. (8)

• Property (7) follows immediately by differentiating (6) with respect to μ and evaluating the derivative
at at μ = μ∗. In fact,

f(x∗(μ), μ) = 0 ⇒ df(x∗(μ), μ)
dμ

= 0 ⇒ ∂f(x∗(μ), μ)
∂μ

+
∂f(x∗(μ), μ)

∂x

dx∗(μ)
dμ

= 0. (9)

By evaluating the last equation at μ = μ∗ and recalling that x∗(μ∗) = x∗ we obtain (7). Note that
we can divide by ∂f(x∗, μ∗)/∂x because it is nonzero by assumption (5).

• The role of x and μ can be reversed in Theorem 1. In other words, it is possible to formulate the
implicit function theorem by choosing x as independent variable and μ as dependent variable. In
this formulation, if (x∗, μ∗) is in the zero level set of f and ∂f(x∗, μ∗)/∂μ 	= 0 then there exists a
smooth function μ∗(x) in a neighborhood of x∗ that represents the zero level set of f(x, μ) for all x
in such a neighborhood, i.e., f(x, μ∗(x)) = 0. With reference to the saddle-node bifurcation sketched
in Figure 3, it is seen that at the saddle-node bifurcation point we have dx∗(μ∗)/dμ =∞, suggesting
that ∂f(x∗, μ∗)/∂x = 0 and ∂f(x∗, μ∗)/∂μ 	= 0 (see Eq. (7)). On the other hand, dμ∗(x∗)/dx = 0,
implying again that ∂f(x∗, μ∗)/∂x = 0.

From the discussion above, it appears that the conditions

f(x∗, μ∗) = 0,
∂f(x∗, μ∗)

∂x
= 0 (10)

may suggest that a bifurcation is taking place at (x∗, μ∗). While these condition are indeed necessary
(otherwise the implicit function theorem applies), they are not sufficient to guarantee the existence of a
bifurcation as the following example clearly demonstrates.

Example: Consider the function
f(x, μ) = x3 + μ. (11)
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Figure 4: Sketch of the function (11) for different μ (left) and bifurcation diagram (right). In this case
there is only one unstable fixed point that moves around as we very the parameter μ, and no bifurcation
whatsoever. Yet, the (necessary) conditions for a bifurcation summarized in equation (10) are both satisfied
at (x∗, μ∗) = (0, 0).

Clearly

f(0, 0) = 0,
∂f(0, 0)

∂x
= 2x2

∣∣
(x,μ)=(0,0)

= 0. (12)

Hence, (x∗, μ∗) = (0, 0) may be a bifurcation point. However, the zero level set in this case can be expressed
analytically as (see Figure 4)

f(x, μ) = x3 + μ = 0 ⇒ x∗(μ) = − 3
√
μ. (13)

This shows that there is indeed no bifurcation at (x∗, μ∗) = (0, 0). In Figure 4 we sketch the function (11)
for different values of μ, and the corresponding bifurcation diagram.

In general, a bifurcation is characterized by two or more branches of fixed point intersecting at some
location for some value of the bifurcation parameter μ (see Figure 5). Such multiplicity of branches
emanating from the bifurcation point (x∗, μ∗) is usually associated with non-invertibility of the zero level
set of f(x, μ) at (x∗, μ∗), which can be studied by using Taylor series (next section). Of course, it is
possible to have functions f(x, μ) with rather complicated zero level sets, and multiple bifurcations of
different types. For example, in Figure 5 we sketch a bifurcation diagram with five different types of
bifurcations. In particular,

• Saddle-node bifurcation,

• Transcritical bifurcation,

• Pitchfork bifurcation (supercritical and subcritical).

The “exotic” bifurcation looks like a saddle-node but it involves four branches instead of two.

It is important to always keep in mind that the bifurcation diagram represents the location of the fixed
points of the systems as a function of μ. The continuity requirement we imposed on f(x, μ) prohibits fixed
points of the same type, e.g., two stable nodes, to face each other. Consequently, two stable branches or
two unstable branches cannot be facing each other in the bifurcation diagram.
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Figure 5: Sketch of a bifurcation diagram with 5 different bifurcations.

Polynomial approximation at bifurcation points. To study invertibility of the zero level set of f(x, μ)
in a neighborhood of a point (x∗, μ∗) that belongs to such zero level set we expand f(x, μ) in a Taylor
series

f(x, μ) =

∞∑
k,m=0

1

k!m!

∂k+mf(x∗, μ∗)
∂xk∂μm

(x− x∗)k(μ− μ∗)m, (14)

i.e.,

f(x, μ) =f(x∗, μ∗) +
∂f(x∗, μ∗)

∂x
(x− x∗) +

∂f(x∗, μ∗)
∂μ

(μ− μ∗) +
1

2

∂2f(x∗, μ∗)
∂x2

(x− x∗)2+

1

2

∂2f(x∗, μ∗)
∂μ2

(μ− μ∗)2 +
∂2f(x∗, μ∗)

∂x∂μ
(x− x∗)(μ− μ∗) +

1

6

∂3f(x∗, μ∗)
∂x3

(x− x∗)3+

1

6

∂3f(x∗, μ∗)
∂μ3

(μ− μ∗)3 +
1

2

∂3f(x∗, μ∗)
∂x∂μ2

(x− x∗)(μ− μ∗)2 +
1

2

∂3f(x∗, μ∗)
∂x2∂μ

(x− x∗)2(μ− μ∗) + · · ·
(15)

We know that if (x∗, μ∗) is a bifurcation point then

f(x∗, μ∗) = 0, and
∂f(x∗, μ∗)

∂x
= 0. (16)

A substitution of (16) into (15) yields

f(x, μ) =
∂f(x∗, μ∗)

∂μ
R+

1

2

∂2f(x∗, μ∗)
∂x2

X2 +
1

2

∂2f(x∗, μ∗)
∂μ2

R2 +
∂2f(x∗, μ∗)

∂x∂μ
XR+

1

6

∂3f(x∗, μ∗)
∂x3

X3 +
1

6

∂3f(x∗, μ∗)
∂μ3

R3 +
1

2

∂3f(x∗, μ∗)
∂x∂μ2

XR2 +
1

2

∂3f(x∗, μ∗)
∂x2∂μ

X2R+ · · · (17)

where we defined the “centered” variables

X = x− x∗, R = μ− μ∗. (18)
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If (x, μ) is also in the zero level set then f(x, μ) = 0 in (17). This yields polynomial equation in X and
R that characterizes the locations of the fixed points in a neighborhood of a fixed point (x∗, μ∗) satisfying
(16). The multiplicity of possible solutions to such polynomial equation is what eventually yields multiple
branches of equilibria emanating from the fixed point (x∗, μ∗).

Depending on the leading order of the polynomial expansion of the system at the bifurcation point, we
can have a different number of branches of equilibria involved in the bifurcation process. As we shall
see hereafter, both saddle-node and transcritical bifurcations are represented locally by polynomials of
degree 2. Pitchfork bifurcations by polynomials of degree 3. The “exotic” bifurcation shown in Figure 5 is
generated by system that is locally equivalent to a polynomial of degree 4.

Saddle-node bifurcation. We have now all element to characterize the saddle-node bifurcation sketched
in Figure 1 and Figure 3(left).

Theorem 2 (Saddle-node bifurcation). Let (x∗, μ∗) be a fixed point of the dynamical system (2), i.e.,
f(x∗, μ∗) = 0. If the following conditions are satisfied

∂f(x∗, μ∗)
∂x

= 0,
∂f(x∗, μ∗)

∂μ
	= 0,

∂2f(x∗, μ∗)
∂x2

	= 0, (19)

then the system undergoes a saddle-node bifurcation at (x∗, μ∗).

To characterize the saddle-node bifurcation quantitatively, we choose R in (17) to be of the same order of
magnitude as X2. For example, if X  10−5 then R  10−10. In this way, the leading terms in the Taylor
series (17) have the same order of magnitude, and we can neglect higher-order terms in a straightforward
way. In this assumption, the Taylor series (17) can be written as

f(x, μ) =AX2 +BR+ · · · . (20)

where we set

A =
∂f(x∗, μ∗)

∂μ
	= 0, and B =

1

2

∂2f(x∗, μ∗)
∂x2

	= 0. (21)

Equation (20) allows us to write the following polynomial approximation3 of the dynamical system (2) in
a neighborhood of the bifurcation point (x∗, μ∗)

dX

dt
= AX2 +BR. (23)

Diving by A and rescaling the time variable t as τ = At yields4

dX

dτ
= X2 +H (normal form) (25)

where τ = At, and H = RB/A is a rescaled version of the bifurcation parameter μ. Any dynamical system
that undergoes a saddle-node bifurcation can be written as (25) in a neighborhood of the bifurcation point,
i.e., for (x, μ) very close to (x∗, μ∗). This is the reason why (25) is called the normal form of a dynamical
system that undergoes a saddle-node bifurcation.

In Figure 6 we clarify the meaning of the normal form of a saddle-node bifurcation. In Figure 7 we sketch
the corresponding bifurcation diagram.

3Note that since x∗ is a constant we have
dX

dt
=

d(x− x∗)
dt

=
dx

dt
. (22)

4In equation (25) we assumed that A > 0. If A < then we divide by the modulus of A, i.e., |A|, which leaves a minus sign
in front of X2 in (25), i.e.,

dX

dτ
= −X2 +H , τ = |A|t, ,H = RB/|A|. (24)

.
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Figure 6: Saddle-node bifurcation. Shown is the function f(x, μ) for three values of μ, and a zoom-in of
the bifurcation process. The nonlinear dynamical system (2) in such a small region is approximated by
the normal form (25) (after appropriate rescaling).

Figure 7: Bifurcation diagram for the normal form of a saddle-node bifurcation. Similarly to Figure 6,
this bifurcation diagram describes what happens in an extremely small region that includes the bifurcation
point (x∗, μ∗), i.e., the region in red in Figure 6.

Example: Consider the nonlinear system

dx

dt
= sin(x) + μ (26)

In Figure 8 we plot f(x, μ) together with its zero level set, i.e., the bifurcation diagram. Note that if μ∗ = 1
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Figure 8: Plot of the right hand side of equation 26, i.e., f(x, μ) = sin(x) + μ together with its zero level
set (left), and bifurcation diagram (right).

we have that f(x, μ) = sin(x) + μ is tangent to the x axis at the points

x∗k = −π

2
+ 2kπ, k ∈ Z. (27)

At such points we have

∂f(x∗k, μ
∗)

∂x
= cos(x∗k) = 0

∂f(x∗k, μ
∗)

∂μ
= 1 	= 0

∂2f(x∗k, μ
∗)

∂x2
= − sin(x∗k) = −1 	= 0. (28)

Hence, the conditions of Theorem 2 are satisfied, implying that (x∗k, μ
∗) (k ∈ Z) are all saddle-node

bifurcations. It is straightforward to show that when μ∗ = −1 there is another infinite number of of
saddle-node bifurcations at

x∗k =
π

2
+ 2kπ, k ∈ Z. (29)

Example: Consider the nonlinear system

dx

dt
= e−x2/μ − sin(xμ)

(x2 + 1)
. (30)

In this case, it is not possible to determine the fixed points of the system analytically. In fact, the fixed
points are solutions to the transcendental equation

e−x2/μ =
sin(xμ)

(x2 + 1)
, (31)

which cannot be solved analytically. However, it is rather straightforward to compute the fixed points
numerically, e.g., as zero level sets of the two dimensional function (30) or using any root finding solver.
The result is shown in Figure 9, where we see that there is an infinite number of saddle node bifurcations
that tend to cluster as μ increases
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Figure 9: Plot of f(x, μ) defined in equation 30 (right hand side) together with its zero level set (left), and
bifurcation diagram (right).

Transcritical bifurcation. Transcritical bifurcations are rather common bifurcations of equilibria, which
can be characterized by the following theorem.

Theorem 3 (Transcritical bifurcation). Let (x∗, μ∗) be a fixed point of the dynamical system (2), i.e.,
f(x∗, μ∗) = 0. If the following conditions are satisfied

∂f(x∗, μ∗)
∂x

= 0,
∂f(x∗, μ∗)

∂μ
= 0,

∂2f(x∗, μ∗)
∂x2

	= 0,
∂2f(x∗, μ∗)

∂x∂μ
	= 0 (32)

then the system undergoes a transcritical bifurcation at (x∗, μ∗).

A substitution of (32) into (17) yields (to leading order in X = x− x∗ and R = μ− μ∗)

f(x, μ) =BX2 + CXR+ · · · . (33)

In equation (33) we set

B =
1

2

∂2f(x∗, μ∗)
∂x2

	= 0, and C =
∂2f(x∗, μ∗)

∂x∂μ
	= 0. (34)

Hence, the dynamics nearby a transcritical bifurcation point is characterized by the following polynomial
approximation of the dynamical system (2)

dX

dt
= BX2 + CXR, . (35)

which can be normalized (divide by B) as5

dX

dτ
= X2 +XH (normal form), (37)

where τ = Bt, and H = CR/B. The fixed points of (37) are X∗ = 0 and X∗ = −H. In Figure 10 plot
the velocity vector that defines the normal form of a transcritical bifurcation and sketch the bifurcation
diagram.

5As in the case of the saddle-node bifurcation, if B < 0 then we divide by the modulus of B, which yields a minus in front
of X2 in (35), i.e.,

dX

dτ
= −X2 +XH. (36)
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Figure 10: Transcritical bifurcation in local coordinates. Shown is the function X2 + XH appearing at
the right hand side of the normal form (37) for three values of H. The nonlinear dynamical system (2)
is approximated by the normal form (37) in a neighborhood of the bifurcation point (after appropriate
rescaling).

Figure 11: Bifurcation diagram for the normal form of a transcritical bifurcation.

Example: Consider the following dynamical system

dx

dt
= μ log(x) + x− 1︸ ︷︷ ︸

f(x,μ)

. (38)

The fixed points are obtained by setting f(x, μ) = 0. This yields,

μ log(x) = 1− x. (39)

Clearly, for x = 1 the equation above reads 0 = 0, which means that x∗ = 1 is a fixed point for all values
of μ. Next, we compute the derivative of f(x, μ) with respect to x

∂f(x, μ)

∂x
=

μ

x
+ 1. (40)

A necessary condition for (x∗, μ∗) to be a bifurcation point is

∂f(x∗, μ∗)
∂x

= 0 ⇒ μ∗ = −x∗. (41)
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Recalling that x∗ = 1 is always a fixed point, we find that (x∗, μ∗) = (1,−1) could be a bifurcation point.
Let us verify that (1,−1) is indeed a transcritical bifurcation point. To this end, we just need to verify the
conditions in Theorem 3. We have,

∂f(1,−1)
∂μ

= 0,
∂2f(1,−1)

∂x2
= 1 	= 0,

∂2f(1,−1)
∂x∂μ

= 1 	= 0. (42)

Therefore (x∗, μ∗) = (1,−1) is a transcritical bifurcation point. Let us compute the normal form of the
system (38) at the bifurcation point. Recalling (34)-(35) and using (42) we have

dX

dt
=

X2

2
+XR, (43)

where X = x− 1 and R = μ+ 1. Divide (43) by 1/2 to obtain the normal form

dX

dτ
= X2 +XH, (44)

where

τ =
t

2
, and H = 2(μ+ 1). (45)

Pitchfork bifurcation. Another type of rather common bifurcation of equilibria is the pitchfork bifur-
cation, which can be supercritical or subcrititical (see Figure 2 and Figure 5). The following Theorem
characterizes pitchfork bifurcations.

Theorem 4 (Pitchfork bifurcation). Let (x∗, μ∗) be a fixed point of the dynamical system (2), i.e.,
f(x∗, μ∗) = 0. If the following conditions are satisfied

∂f(x∗, μ∗)
∂x

= 0,
∂f(x∗, μ∗)

∂μ
= 0,

∂2f(x∗, μ∗)
∂x2

= 0,
∂3f(x∗, μ∗)

∂x3
	= 0,

∂2f(x∗, μ∗)
∂x∂μ

	= 0

(46)
then the system undergoes a pitchfork bifurcation at (x∗, μ∗).

As mentioned above, pitchfork bifurcations can be supercritical or subcritical, depending on the sign of
∂3f/∂x3 and ∂2f/∂x∂μ. A substitution of (46) into (17) yields (to leading order in X = x − x∗ and
R = μ− μ∗

f(x, μ) =DX3 + CXR+ · · · . (47)

where we set

D =
1

6

∂3f(x∗, μ∗)
∂x3

	= 0, and C =
∂2f(x∗, μ∗)

∂x∂μ
	= 0. (48)

Hence, to leading order, we obtain the following polynomial approximation of (2) at a pitchfork bifurcation
point

dX

dt
= DX3 + CXR. (49)

Dividing by the modulus of D yields

dX

dτ
= X3 +XH (D > 0) subcritical pitchfork, (50)

dX

dτ
= −X3 +XH (D < 0) supercritical pitchfork, (51)
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Figure 12: Bifurcation diagrams for supercritical and subcritical pitchfork bifurcations.

where we set τ = |D|t and H = CR/|D|. Any dynamical system of the form (2) that undergoes a pitchfork
bifurcation at (x∗, μ∗) can be written (to leading order in X and R after appropriate rescaling) either as
(50) or (51) in a neighborhood of (x∗, μ∗). For this reason, (50) and (51) are referred to as the em normal
forms of the supercritical and subcritical pitchfork bifurcations, respectively. In Figure 12 plot the velocity
vectors associated with the normal forms (50) or (51) and sketch the bifurcation diagrams.

Example: Consider the system
dx

dt
= sin(x) + μx︸ ︷︷ ︸

f(x,μ)

. (52)

The fixed points are solutions to the transcendental equation

sin(x) + μx = 0. (53)

Clearly x∗ = 0 is a fixed point for all μ. Note also that for x 	= 0 the bifurcation diagram is completely
defined by the equation

μ(x∗) =
sin(x∗)

x∗
, (54)

which explicitly expresses the bifurcation parameter as a function of the location of the fixed points. The
derivative of the right hand side of (52) is

∂f

∂x
= cos(x) + μ. (55)
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Figure 13: Bifurcation diagram for the system (52).

Hence, for x∗ = 0 we have that μ∗ = −1 makes (55) equal to zero. This means that (x∗, μ∗) = (0,−1) could
be a bifurcation point as it satisfies the necessary conditions (10). Let us verify that (x∗, μ∗) = (0,−1) is
indeed a pitchfork bifurcation point. To this end, it is necessary and sufficient to verify the conditions in
Theorem 4. We have

∂2f

∂x2
= − sin(x) ⇒ ∂2f(x∗, μ∗)

∂x2
= 0, (56)

∂3f

∂x3
= − cos(x) ⇒ ∂3f(x∗, μ∗)

∂x3
= −1, (57)

∂2f

∂x∂μ
= 1 ⇒ ∂2f(x∗, μ∗)

∂x∂μ
= 1. (58)

Hence, there is a supercritical pitchfork bifurcation point at (x∗, μ∗) = (0,−1). Note, in fact, that (57)
implies that the coefficient D in (48) is negative, and therefore the normal form representing the bifurcation
in this case is (51). As shown in Figure 13, the system exhibits also an infinite number of saddle-node
bifurcations as the parameter μ is varied. Such saddle-node bifurcations are defined analytically by equation
(54).

Other bifurcations of equilibria. The Taylor series (17) can be (to leading order) a rather arbitrary
polynomial in X and R. This opens the possibility to have more “exotic” bifurcations of equilibria in
which one point splits into four points or more (see Figure 5), or bifurcation in which multiple stable and
unstable branches intersect at one point.
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Introduction to n-dimensional dynamical systems

Consider the following n-dimensional system of nonlinear ODEs⎧⎪⎨⎪⎩
dx

dt
= f(x)

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a vector of phase variables, f : D → R
n, and D is a subset of Rn. In an

expanded notation the system (1) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= f1(x1, . . . , xn)

dx2
dt

= f2(x1, . . . , xn)

...
dxn
dt

= fn(x1, . . . , xn)

x1(0) = x10

x2(0) = x20
...

xn(0) = xn0

(2)

Dynamical systems of the form (1) can model phenomena in classical mechanics (e.g., the pendulum
equations), health and medicine (e.g., cancer models), weather patterns, material science, and quantum
physics. They can also be used to approximate the dynamics of partial differential equations (PDEs). Let
us provide two simple examples.

Example: Consider the following sketch of a pendulum (point mass), subject to gravity and friction with
friction

As is well-known from physics, the rate of change (time derivative) of the angular momentum of the point
mass m with respect to the point P equals the momentum of the external forces acting on the point mass.
The external forces in this case are gravity and friction. Setting up the balance of momenta yields

mL2d
2θ

dt2
= −mgL sin(θ)− γL

dθ

dt
, (3)
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i.e.
d2θ

dt2
= − g

L
sin(θ)− γ

Lm

dθ

dt
. (4)

This is a second-order ordinary nonlinear differential equation in θ(t). The equation can be easily trans-
formed into a system two first-order nonlinear ODEs by defining the new variables

x1(t) = θ(t), x2(t) =
dθ(t)

dt
. (5)

Clearly, based on the definition of x1(t) and x2(t) we have

dx1
dt

= x2. (6)

Moreover, by differentiating x2(t) with respect to time and using equation (4) we obtain

dx2
dt

= − g

L
sin(x1)− γ

Lm
x2. (7)

Hence, equation (4) is equivalent to the two-dimensional nonlinear dynamical system⎧⎪⎨⎪⎩
dx1
dt

= x2,

dx2
dt

= − g

L
sin(x1)− γ

Lm
x2.

(8)

Of course, in order to solve the system of ODEs (8), we need an initial condition for the position of the
pendulum x1(0), and an initial condition for the velocity of the pendulum x2(0).

Example: Consider the following initial-boundary value problem for the heat equation in the periodic
spatial domain [0, 2π] ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u(t, y)

∂t
= α

∂2u(y, t)

∂y2
heat equation

u(0, y) = u0(y) initial condition

u(t, 0) = u(t, 2π) periodic boundary conditions

(9)

A finite-difference approximation of the PDE (9) on the evenly-spaced grid with n points

yk = (k − 1)Δy k = 1, . . . , n, Δy =
2π

n
(10)

yields the n-dimensional linear dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)

dt
=

α

Δy2
[x2(t)− 2x1(t) + xn(t)]

dx2(t)

dt
=

α

Δy2
[x3(t)− 2x2(t) + x1(t)]

...
dxn(t)

dt
=

α

Δy2
[x1(t)− 2xn(t) + xn−1(t)]

(11)

where we defined xk(t) = u(yk, t). Note that xk(t) represents an approximation of the solution to the
partial differential equation (9) at the grid point y = yk. Hence, by computing the solution to (11), we are
computing an approximation of the solution to the PDE (9) at the grid points (y1, . . . , yn).
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Figure 1: Illustration of the meaning of Theorem 1 in two-dimensions. Shown are the open set D ⊂ R
2 in

which f(x) is Lipschitz continuous, the trajectory corresponding to a particular x0 ∈ D and the exit time
τ for such trajectory.

Well-posedness of the initial value problem. Let us recall theorem that guarantees existence and
uniqueness of the solution to the system of first order ODEs (1).

Theorem 1 (Existence and uniqueness of the solution to (1)). Let D ⊂ R
n be an open set, x0 ∈ D. If

f : D → R
n is Lipschitz continuous in D then there exists a unique solution to the initial value problem (1)

within the time interval [0, τ [, where τ is the time instant at which the trajectory x(t) exits1 the domain
D. The solution x(t) is continuously differentiable in [0, τ [.

How do we define Lipschitz continuity for a vector-valued function f(y) defined on subset of Rn? By a
simple generalization of the definition we gave for one-dimensional functions.

Definition 1. Let D be a subset of Rn, f : D → R
n. We say that f is Lipschitz continuous in D if there

exists a constant 0 ≤ L <∞ such that

‖f(x1)− f(x2)‖ ≤ L ‖x1 − x2‖ for all x1,x2 ∈ D, (12)

where ‖·‖ is any norm defined in R
n (see Appendix B). Recall, in fact that all norms defined in a finite-

dimensional space such as Rn are equivalent.

Similarly to what we have seen for one-dimensional dynamical systems, there conditions that simpler to
verify than Lipschitz continuity.

Lemma 1. If f(x) is of class C1 in a compact convex domain D ⊂ R
n, then f(x) is Lipschitz continuous

in D.

The proof of this lemma is provided in Appendix B.

Lemma 2. Let f(y, t) be of class C1 (continuously differentiable) in D ⊆ R
n. If f(y, t) has bounded

derivatives ∂fi/∂yj then f(y, t) is Lipschitz continuous in D.

1As shown in Figure 1, the “exit time” τ depends on D, f(x) and x0.
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(two-dimensional system) (three-dimensional system)

Figure 2: It is impossible for two trajectories to intersect with nonzero velocity any point in phase space.
This would make f(x) non-unique at such point and also violate the existence and uniqueness Theorem 1.

Global solutions. If f(x) is Lipschitz continuous on the entire space R
n then the solution to the initial

value problem (1) is global. This means that the solution exists and is unique for all t ≥ 0. In fact, x(t)
never exits the domain in which f(x) is Lipschitz continuous, and therefore we can extend τ in Theorem
1 to infinity. It is important to emphasize that existence and uniqueness of the solution to (1) has nothing
to do with the smoothness of f(x) but rather with the rate at which f(x) grows or decays.

Example: The solution to both dynamical systems (8) and (11) is global in time, meaning that exists and
is unique for all t ≥ 0. In fact the right hand side of such systems if globally Lipschitz in R

2 and R
n,

respectively.

Flow generated by nonlinear dynamical systems. The solution of initial value problem (1) depends
on f(x) and x0. As before, we will denote the dependence of the solution x(t) on x0 as X(t,x0), i.e.,

x(t) = X(t,x0). (13)

Similarly to what we have seen for one-dimensional systems, it is not possible for two solutions corre-
sponding to two different initial conditions to intersect at any finite time t. Otherwise we could use such
intersection point as initial condition for (1) and conclude that there are two orbits emanating from such
point (see Figure 2), hence violating the existence and uniqueness Theorem 1. This implies that X(t,x0)
is invertible at each finite time2 (see below), i.e., we can always identify which “particle” x0 sits at location
x(t) = X(t,x0) at time t. Moreover, it is impossible for two “particles” to collide at any finite time, or for
one particle to split into two or more particles (Figure 2).

Theorem 2 (Regularity of the flow with respect to x0). Let D ⊂ R
n be an open set, x0 ∈ D. If

f : D → R
n is Lipschitz continuous in D then the flow X(t,x0) generated by the initial value problem

(1), is continuous in x0. Moreover, If f(x) is of class Ck(D) (continuously differentiable k-times in D) in
D then X(t,x0) is of class C

k(D) relative to x0 (continuously differentiable k-times with respect to x0).

2Solutions corresponding to different initial conditions can, however, intersect at t =∞, e.g., when there exist an attracting
set.
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In summary, Theorem 2 states that the smoother f(x), the smoother the dependency of the flow X(t,x0)
on x0. The n-dimensional function X(t,x0) is called flow generated by the dynamical system (1), and it
represents the full set of solutions to (1) for each initial condition x0.

Theorem 3 (Regularity of the flow in time). Let D ⊂ R
n be an open set, x0 ∈ D. if f(x) is of class Ck

in D (continuously differentiable k-times in D with continuous derivative), then X(t,x0) is of class C
k+1

in time for all t ∈ [0, τ [, where τ is the time at which X(t,x0) exits the domain D.

Properties of the flow: The flow X(t,x0) satisfies the following properties

• X(0,x0) = x0. This means that at t = 0 the mapping X(0,x0) = x0 is the identity.

• X(t,x0) is invertible for all t for which the solution to the initial value problem (1) exists and is
unique.

• X(t,x0) satisfies the composition ruleX(t+s,x0) = X(t,X(s,x0)) = X(s,X(t,x0)). This property
is called “semi-group property” of the flow and it follows from the fact that we can restart integration
of the ODE (1) at time t (or time s) from the new initial condition X(t,x0) (or X(s,x0)) to get to
the final integration time s + t. Again, this property holds because of the existence and uniqueness
theorem 1.

• The flow X(t,x0) satisfies the system of first-order PDEs⎧⎪⎨⎪⎩
∂X(t,x0)

∂t
− f(x0) · ∇x0X(t,x0) = 0

X(0, x0) = x0

(14)

• The inverse flow X0(t,x) satisfies the system of first-order PDEs⎧⎪⎨⎪⎩
∂X0(t,x)

∂t
+ f(x) · ∇xX0(t,x) = 0

X0(0, x) = x

(15)

Geometric approach. The flow X(t,x0) generated by the ODE system (1) maps any initial condition
x0 to the solution of the ODE at time t. If we think as x0 as the initial position of a particle in R

n, then
from elementary mechanics we know that dX(0,x0)/dt = f(x0) represents the velocity of such particle.
Hence, given f(x) we can immediately sketch the vector field3 associated with the dynamical system, which
represents where a particle sitting at any particular location in phase space is heading to To clarify this
idea, consider the following two-dimensional dynamical system⎧⎪⎨⎪⎩

dx1
dt

= f1(x1, x2)

dx2
dt

= f2(x1, x2)

(16)

In Figure 3 we plot the velocity vector

f(x) = (f1(x), f2(x)) (17)

3A vector field is a vector that is continuously indexed by one or more variables. For one-dimensional dynamical systems
the vector field f(x) is indexed by coordinate x, and it is represented by a vector sitting on a line. For two-dimensional system
the vector f(x) = (f1(x),f2(x)) is a vector with two components: one along x1 and the other along x2. For three-dimensional
systems the vector field has three components, and so on so forth.
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(a) (b)

Figure 3: Geometric approach in 2D. (a) Sketch of a trajectory in the phase plane and associated velocity
vectors f(x(t)). This process can be reversed in the sense that we can also guess how the trajectory x(t)
looks like by plotting a bunch of velocity vectors f(x) evaluated at different points x in the plane (b).

along a trajectory x(t). This process can be reversed in the sense that we can guess how the trajectory
x(t) looks like by plotting a sufficiently large number of velocity vectors f(x) evaluated at points nearby
a point of interest in the phase space (see Figure 4(b)).

Example: In Figure 4 we plot the vector fields and corresponding trajectories defined by following two-
dimensional dynamical systems {

ẋ1 = 2x1x2 − 1

ẋ2 = −x21 − x22 + 10
(18)

and ⎧⎪⎨⎪⎩
ẋ1 = x2

ẋ2 = − sin(x1)− 1

10
x2

(pendulum with friction) (19)

As we shall see hereafter, the curves ẋ1 = 0 and ẋ2 = 0 are called nullclines. Fixed points are at the
intersection of nullclines.

Fixed points. If the velocity vector f(x) is equal to zero at some point x∗ ∈ R
n then any particle placed

at that point won’t move at all as time increases. These points are called fixed points (or equilibria) of the
dynamical system (1). Mathematically, we can define a fixed point x∗ ∈ R

n as

X(t,x∗) = x∗ for all t ≥ 0. (20)

By differentiating this previous equation with respect to time we obtain

∂X(t,x∗)
∂t

= f(X(t,x∗)) = f(x∗) = 0. (21)

Therefore, the fixed points of the system (1) are solutions to the nonlinear system of equations

f(x) = 0. (22)
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(a) (b)

Figure 4: Vector field and trajectories generated by the two-dimensional nonlinear dynamical system (18)
(Figure (a)), and (19) (Figure (b)). Shown are also the nullclines for both systems.

This system can be written as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fn(x1, . . . , xn) = 0

(23)

In this form, it is clear that the fixed points (if any) of the system (1) lie at the intersection of zero level
sets4 of n functions fj each one of which is n-dimensional. In two-dimensions such zero level sets are
identified by the intersection of two surfaces f1(x1, x2) and f1(x1, x2) with the (x1, x2) plane⎧⎨⎩f1(x1, x2) = 0

f2(x1, x2) = 0
(24)

In two dimensions, the zero level sets of f1(x1, x2) and f1(x1, x2) are called nullclines. The reason for the
definition is that the vector field f(x1, x2) is vertical at all points sitting on the nullcline f1(x1, x2) = 0, and
horizontal at all point sitting on the nullcline f2(x1, x2) = 0. Correspondingly, the trajectories intersect the
nullclines f1(x1, x2) = 0 and f2(x1, x2) = 0 vertically and horizontally, respectively (see Figure 4).

Example: Let us calculate the nullclines of the dynamical system (18). The first nullcline is

f1(x1, x2) = 2x1x2 − 1 = 0 ⇔ x2 =
1

2x1
(nullcline ẋ1 = 0), (25)

i.e., the hyperbola depicted in red in Figure 4(a). The second nullcline is a circle with radius
√
10 centered

at the origin

f2(x1, x2) = −x21 − x22 + 10 ⇔ x21 + x22 = 10 (nullcline ẋ2 = 0). (26)

4The calculation of the fixed points can be done analytically only for prototype dynamical systems. In general, computing
the fixed points requires a root-finding numerical algorithm for nonlinear systems of algebraic equations, e.g., the Newton’s
method.
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This is depicted in black in Figure 4(a). We also see that the trajectories of the system intersect the
nullcline ẋ2 = 0 (black curve) horizontally. In fact, such nullcline represents the set of points in the phase
plane where the velocity has zero vertical component. Similarly the trajectories intersect the nullcline
ẋ1 = 0 (red curve) vertically. The four fixed points of the system are at the intersection of the nullclines
and can be computed analytically (left as exercise).

Example: Let us calculate the nullclines and the fixed points of the dynamical system (19). The first
nullcline is

f1(x1, x2) = x2 = 0 ⇔ x2 = 0 (nullcline ẋ1 = 0), (27)

Such nullcline is plotted in red in Figure 4(b). The second nullcline is

f2(x1, x2) = sin(x1)− x2/10 ⇔ x2 = 10 sin(x1) (nullcline ẋ2 = 0), (28)

and it is plotted in black in Figure 4(b).. The fixed points are at the intersection of the nullclines. In this
case we obtain two physically different fixed points:

x∗1 = (0, 0) x∗2 = (π, 0) (29)

corresponding to a pendulum in a vertical position, i.e., x1 = 0 or x1 = π with zero velocity x2 = 0.

Analysis of fixed points. A quick look at the phase portraits in Figure 4 suggests that the dynamics
in a neighborhood of a fixed point can be quite different. Such dynamics can often be computed via a
linearization process that is similar to the process we used in one-dimensional dynamical systems. The idea
is “zoom-in” on a fixed point x∗ and compute the orbits of the dynamical systems in a small neighborhood
of x∗ by solving a linearized version of the system (1). To this end, consider an initial condition x0 that
is very close x∗, and define the perturbation

η(t,x0) = X(t,x0)− x∗. (30)

By expanding f(X(t,x0)) = f(x∗ + η(t,x0)) in a neighborhood of x∗, i.e., for small η(t,x0) we ob-
tain

f(x∗ + η(t,x0)) = f(x∗)︸ ︷︷ ︸
=0

+Jf (x
∗)η(t,x0) + · · · , (31)

where

Jf (x
∗) =

⎡⎢⎢⎢⎢⎣
∂f1(x

∗)
∂x1

· · · ∂f1(x
∗)

∂xn
...

. . .
...

∂fn(x
∗)

∂x1
· · · ∂fn(x

∗)
∂xn

⎤⎥⎥⎥⎥⎦ (32)

is the Jacobian5 of f(x) evaluated at the fixed point x∗. Hence, the first-order approximation of the
nonlinear dynamical system (1) at x∗ can be written as⎧⎪⎨⎪⎩

dη

dt
= Jf (x

∗)η

η(0,x0) = x0 − x∗
(33)

5The Jacobian of f(x) is a matrix-valued function that takes in a function f(x) and it returns a n × n matrix-valued
function. The entries of such Jacobian matrix are functions. Of course, if we evaluate the Jacobian of f(x) at a specific point
x∗ then we obtain a matrix with real entries (provided f is real).
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Figure 5: Geometric meaning of the Hartmman-Grobman Theorem 4. The trajectories of a nonlinear sys-
tem in a neighborhood of any hyperbolic fixed point are homeomorphic to the trajectories of the linearized
system at x∗. This means that the trajectories of the nonlinear and linearized system are not exactly the
same in the aforementioned neighborhood of x∗, but they can be mapped to each other by a continuous
transformation that has a continuous inverse.

Theorem 4 (Hartman-Grobman). Let x∗ ∈ R
n be a fixed point of the dynamical system (1). If the

Jacobian (32) has no eigenvalue with zero real part then there exists a homeomorphism (i.e., continuous
invertible mapping with continuous inverse) defined on some neighborhood of x∗ that takes orbits of the
system (1) and maps them into orbits of the linearized system (30)-(33). The mapping preserves the
orientation of the orbits.

Remark: Theorem (4) is saying that if x∗ is a hyperbolic6 fixed point then the flow of the nonlinear
dynamical system (1) nearby x∗ is “homemorphic” (i.e., it can be mapped back and forth by a continuous
transformation) to the flow of the linearized system (30)-(33).

At this point it is natural to ask the following questions:

1. To study the flow nearby a hyperbolic fixed point of nonlinear system we need to compute the flow
of the linear system (33). Is there a general method to compute such flow? Note that flows of linear
systems are very important on their own as there are many system that are actually are linear (e.g.,
the discretized PDE system (11)).

2. What happens if the fixed point is non-hyperbolic? As we will see, in this case we need to use a
generalization of the Hartman-Grobman theorem known as center manifold theorem.

6A fixed point x∗ is called hyperbolic if the Jacobian of Jf (x
∗) has no eigenvalue with zero real part.
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Appendix A: Elementary numerical methods for systems of ODEs

As before, we can re-write the Cauchy problem (1) as an integral equation

x(t) = x(0) +

∫ t

0
f(x(s))ds. (34)

This form is quite handy to derive numerical methods to solve (1) based on quadrature rules applied to
the one-dimensional integral at the right hand side. For instance, consider a partition of the [0, T ] into an
evenly-spaced grid points such that ti+1 = ti +Δt, and write (34) within each time interval

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(s))ds. (35)

Explicit midpoint method. By approximating the integral at the right hand side of (35), e.g., using
the midpoint rule yields ∫ ti+1

ti

f(x(s))ds  Δtf

(
x

(
ti +

Δt

2

))
(36)

At this point, we can approximate x(ti +Δt/2) using the Euler forward method

x

(
ti +

Δt

2

)
 x(ti) +

Δt

2
f(x(ti)) (37)

to obtain the explicit midpoint method

x(ti+1) = x(ti) + Δtf

(
x(ti) +

Δt

2
f(x(ti))

)
. (38)

The explicit midpoint method is a one-step method that belongs to the larger class of Runge-Kutta meth-
ods.

Appendix B: Equivalent norms in R
n

As is well known, all norms defined in a finite-dimensional vector space such as R
n are equivalent. This

means that if we pick two arbitrary norms in R
n, say ‖·‖a and ‖·‖b , then there exist two numbers C1 and

C2 such that
C1 ‖x‖a ≤ ‖x‖b ≤ C2 ‖x‖a for all x ∈ R

n. (39)

The most common norms in R
n are

‖x‖∞ = max
k=1,..,n

|xk| , (40)

‖x‖1 =
n∑

k=1

|xk| , (41)

‖x‖2 =
(

n∑
k=1

|xk|2
)1/2

, (42)

... (43)

‖x‖p =
(

n∑
k=1

|yk|p
)1/p

p ∈ N \ {∞}. (44)
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Based on these definitions it can be shown that, e.g., that

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞ , (45)

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 , (46)

‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞ . (47)

Therefore if the f(x) is Lipschitz continuous in D with respect to the 1-norm, i.e.,

‖f(x1)− f(x2)‖1 ≤ L1 ‖x1 − x2‖1 for all x1,x2 ∈ D (48)

then it is also Lipschitz continuous in D with respect to the uniform norm. In fact, by using (45) we
have

‖f(x1)− f(x2)‖∞ ≤ L1n︸︷︷︸
L∞

‖x1 − x2‖∞ . (49)

Similarly, by using (46), we see that if f is Lipschitz in D with respect to the 1-norm then f is Lipschitz
in D with respect to the 2-norm.

Appendix B: Proof of Lemma 1

Let D ⊆ R
n be a compact convex domain and let

M = max
x∈D

∣∣∣∣∂fj(x)∂xi

∣∣∣∣ . (50)

Clearly M exists and is finite because we assumed that D is compact and that f is of class C1 in D7.
Consider two points x1 and x2 in D, and the line that connects x1 to x2, i.e.,

z(s) = (1− s)x1 + sx2 s ∈ [0, 1]. (51)

Since D is convex, we have that the line z(s) lies entirely within D. Therefore we can use the mean value
theorem applied to the one-dimensional function fi(z(s)) (s ∈ [0, 1]) to obtain

fi(x2)− fi(x1) = ∇fi(z(s
∗), t) · (x2 − x1) for some s∗ ∈ [0, 1]. (52)

By taking the absolute value and using the Cauchy-Schwartz inequality we obtain

|fi(x1)− fi(x1)|2 =
∣∣∣∣∣∣

n∑
j=1

∂fi(z(s
∗))

∂xj
(x2j − x1j)

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣

n∑
j=1

∂fi(z(s
∗))

∂xj

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

n∑
j=1

(x2j − x1j)

∣∣∣∣∣∣
2

≤nM2 ‖x2 − x1‖22 . (53)

This implies that
‖f(x2)− f(x1)‖2 ≤ nM︸︷︷︸

L2

‖x2 − x1‖2 . (54)

i.e., f(y, t) is Lipschitz continuous in the 2-norm, or any other norm that is equivalent to the 2-norm. In
particular, by using the inequalities (45)-(47) we have that f(x) is Lipschitz continuous relative to the
1-norm.

7A compact domain is by definition bounded and closed. The minimum and maximum of a continuous function in defined
on a compact domain is attained at some points within the domain or on its boundary. Note that this is not true if the
domain is not compact. For example, the function f(y) = 1/y is continuously differentiable on ]0, 1] (bounded domain by not
compact), but the function is unbounded on ]0, 1].
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Linear dynamical systems

Consider the following n-dimensional linear dynamical system⎧⎪⎨⎪⎩
dx

dt
= Ax

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a column vector of phase variables, and A ∈ Mn×n(R) is a n× n matrix
with real coefficients.

It is immediate to show that the linear function f(x) = Ax is Lipschitz continuous on R
n. In fact,

‖Ax1 −Ax2‖ = ‖A(x1 − x2)‖ ≤ ‖A‖ ‖x1 − x2‖ (2)

for any matrix norm ‖A‖ that is compatible with the vector norm ‖x‖ (see Appendix B). Alternatively,
note that the function f(x) = Ax has bounded derivatives for all x ∈ R

n (provided the entries of the
matrix A are finite), i.e.,

∂fi(x)

∂xj
= Aij <∞ for all i, j = 1, . . . , n. (3)

Therefore by Lemma 2 in the course note 2, we immediately conclude that the solution of (1) is global, i.e.,
it exists and is unique for all t ≥ 0. Moreover, since Ax is continuously differentiable an infinite number
of times on R

n, then by Theorem 2 and Theorem 3 in the course note 3 we have that the flow X(t,x0)
generated by (1) is of class C∞ in t and x0.

Fixed points. The fixed points of the linear dynamical system (1) are solutions of the linear equation

Ax = 0Rn , (4)

i.e., they lie at the intersection of n hyper-planes passing through the origin in R
n. Such hyper-planes are

defined by the linear equations

Aj1x1 +Aj2x2 + · · ·+Ajnxn = 0, j = 1, . . . , n. (5)

Clearly, if the matrix A is invertbile then we have a unique fixed point at

x∗ = 0Rn . (6)

On the other hand, if the matrix A is not invertible then we have an infinite number of fixed points, i.e.,
all points in the nullspace1 of A are fixed points. For example, the fixed points of the 2D linear dynamical
system defined by the rank 1 matrix

A =

[
5 1
10 2

]
(7)

are obtained by solving [
5 1
10 2

] [
x1
x2

]
=

[
0
0

]
⇒ x2 = 2x1 (8)

Hence, in this case we have an infinite number of fixed points sitting on a line with slope 2 passing through
the origin of the phase plane (x1, x2).

1Recall that the nullspace of a matrix A is the set of vectors that are sent to the zero vector by applying A. The nullspace
of an n× n matrix is a vector subspace of Rn.
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Flow generated by linear dynamical systems. As shown in Appendix C, the analytical solution of
the initial value problem (1) can be formally expressed in terms of a matrix exponential2, i.e.,

X(t,x0) = etAx0. (10)

This expression shows that the flow map is indeed of class C∞ in both x0 and t, as anticipated above.
Hereafter we take a linear algebraic approach to the problem of solving the linear system of ODEs (1), i.e.,
we focus on linear algebraic techniques to compute the matrix exponential etA explicitly in terms of the
spectral properties (eigenvalues, eigenvectors and generalized eigenvectors) of the matrix A.

Computation of the matrix exponential. The matrix exponential in appearing in (10) can be written
explicitly in terms of the eigenvalues and the eigenvectors (or generalized eigenvectors) of the matrix A.
In Appendix A we provide a thorough review of the matrix eigenvalue problem, including calculation of
the eigenvalues, eigenvectors and generalized eigenvectors of a matrix. Please read through Appendix A
very carefully, as everything that is discussed hereafter assumes that you are familiar with eigenvalues,
eigenspaces, generalized eigenvectors, and similarity transformations. The computation of the matrix the
matrix exponential etA, and therefore the solution (10) of the linear system (1), differs depending on
whether or not

• the matrix A is diagonalizable,

• the matrix A is not diagonalizable.

For a definition diagonalizable and non-diagonalizable matrices see Appendix A. As we will see, the non-
diagonalizable case includes the diagonalizable one. Therefore, in principle, we could just develop the
formula for the matrix exponential in the case where A is not-diagonalizable. However, for clarity of
exposition, here we present the two cases separately.

Matrix exponential for diagonalizable matrices. If A is diagonalizable then there exists a set of n
distinct eigenvectors {v1, . . . ,vn} and a similarity transformation P such that (see Appendix A)

AP = PΛ, (11)

where

Λ =

⎡⎢⎣λ1 · · · 0
...

. . .
...

0 · · · λn

⎤⎥⎦ (12)

is a diagonal matrix that contains all eigenvalues {λ1, . . . , λn} of A and

P =
[
v1 v2 · · · vn

]
(13)

is a matrix that contains all eigenvectors of A. Each vector vi in (13) is a column vector. Since the matrix
P is invertible we have

A = PΛP−1. (14)

2Recall that the matrix exponential is formally defined by the power series

etA = I + tA+
t2

2
A2 + · · · =

∞∑
k=0

tkAk

k!
, (9)

which converges uniformly for all t ≥ 0.
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This matrix factorization is very effective when computing the matrix powers appearing in the definition
of the matrix exponential (9). In fact,

A2 = PΛP−1P︸ ︷︷ ︸
I

ΛP−1 = PΛ2P−1. (15)

Similarly,
A3 = PΛ3P−1, · · · ,Ak = PΛkP−1. (16)

This implies that

etA = P

(
I + tΛ+

t2

2
Λ2 + · · ·

)
P−1 = P etΛP−1. (17)

The exponential the diagonal matrix Λ in (12) is easily obtained as

etΛ =

⎡⎢⎣e
tλ1 · · · 0
...

. . .
...

0 · · · etλn

⎤⎥⎦ . (18)

Hence, steps to compute the analytical solution (1) in the case where A is diagonalizable are:

1. Compute the eigenvalues and the eigenvectors of A;

2. Construct the matrix P in (13) and the matrix exponential (18);

3. Compute the analytical solution of (1) using matrix-vector products

X(t,x0) = P etΛP−1x0. (19)

Matrix exponential for non-diagonalizable matrices. If the matrix A is not diagonalizable then
there exist a similarity transformation P such that

AP = PJ , (20)

where (assuming that A has p distinct eigenvalues3)

J =

⎡⎢⎣J1 · · · 0
...

. . .
...

0 · · · Jp

⎤⎥⎦ (21)

is a block-diagonal matrix called the Jordan form of A (see Appendix A and Table 1). The matrix

P =
[
v1 v2 · · · vn

]
(22)

is the matrix that contains the eigenvectors and the generalized eigenvectors of A columnwise.

Since the matrix P is invertible (eigenvectors and generalized eigenvectors are linearly independent) we
have the matrix factorization

A = PJP−1, (23)

By following exactly the same steps as in (15)-(17) we obtain the following expression for the matrix
exponential of A in the case where A is non-diagonalizable

etA = P etJP−1. (24)

3The sum of the algebraic multiplicities of the eigenvalues {λ1, . . . , λp} must be equal to n.
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Properties of the eigenvalue Jordan block Exponential of Jordan block

λi has algebraic multiplicity one Ji =
[
λi

]
etJi =

[
etλi

]

λi has algebraic multiplicity two
and geometric multiplicity two

Ji =

[
λi 0
0 λi

]
etJi =

[
etλi 0
0 etλi

]

λi has algebraic multiplicity two
and geometric multiplicity one

Ji =

[
λi 1
0 λi

]
etJi =

[
etλi tetλi

0 etλi

]

λi has algebraic multiplicity three
and geometric multiplicity three

Ji =

⎡⎣λi 0 0
0 λi 0
0 0 λi

⎤⎦ etJi =

⎡⎣etλi 0 0
0 etλi 0
0 0 etλi

⎤⎦

λi has algebraic multiplicity three
and geometric multiplicity two

Ji =

⎡⎣λi 0 0
0 λi 1
0 0 λi

⎤⎦ etJi =

⎡⎣etλi 0 0
0 etλi tetλi

0 0 etλi

⎤⎦

λi has algebraic multiplicity three
and geometric multiplicity one

Ji =

⎡⎣λi 1 0
0 λi 1
0 0 λi

⎤⎦ etJi =

⎡⎣etλi tetλi t2etλi/2
0 etλi tetλi

0 0 etλi

⎤⎦

Table 1: Jordan blocks and matrix exponentials of Jordan blocks (see Appendix A) corresponding to
eigenvalues λi with different algebraic and geometric multiplicities.

The Jordan canonical form of A is a block-diagonal matrix (see equation (153)), with blocks given in Table
1. The matrix exponential of a block-diagonal matrix is a matrix that has the exponential of each block
in the diagonal

etJ =

⎡⎢⎢⎢⎣
etJ1

etJ2

. . .

etJp

⎤⎥⎥⎥⎦ . (25)

In Table 1 we summarize the Jordan blocks corresponding to different types of eigenvalues. The mathe-
matical proof of each Jordan block is given in Appendix A. Hence, steps to compute the analytical solution
(1) in the case where A is not diagonalizable are:

1. Compute the eigenvalues, the eigenvectors, and the generalized eigenvectors of A;

2. Construct the the matrix J using the Jordan blocks in Table 1;

3. Construct the matrix P in (22) and the matrix exponential (25) by exponentiating each Jordan block
as in Table 1;
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4. Compute the analytical solution of (1) using matrix-vector products

X(t,x0) = P etJP−1x0. (26)

Fundamental matrix. In the theory of autonomous linear ODEs the general solution of the system (1)
is often expressed in terms of a fundamental matrix Φ(t) as

xg(t) = Φ(t)c, (27)

where c is an arbitrary vector. Enforcing the initial condition xg(0) = x0 we find that

c = Φ−1(0)x0. (28)

Substituting this expression for c back into (27) gives

X(t,x0) = Φ(t)Φ−1(0)x0. (29)

Comparing this expression to (10) suggests that we can equivalently write the matrix exponential of A
as

etA = Φ(t)Φ−1(0). (30)

Regarding the analytical expression of the fundamental matrix Φ(t), it can be obtained immediately by
comparing (30) with (24). This yields

Φ(t) = P etJ (31)

where P is the matrix (22) that has the eigenvectors and generalized eigenvectors of A as columns. As
before, the exponential of the Jordan canonical form of A, i.e., etJ , can be computed by using (25) and
exponentiating each Jordan block as in Table 1.

Two-dimensional linear dynamical systems. In this section we compute the analytical solution/flow of
several prototype two-dimensional dynamical systems using the mathematical techniques we just discussed.
Specifically, we study the flow corresponding to the saddle node, spiral, center, and degenerate node.

Saddle node. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
2 3
3 −6

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (32)

We have seen in Appendix A (Example 4) that the eigenvalues of A are

λ1 = 3, λ2 = −7. (33)

Since the eigenvalues are simple, the matrix A is diagonalizable. A basis for the eigenspace corre-
sponding to each eigenvalue is

v1 =

[
3
1

]
, v2 =

[
1
−3

]
. (34)

The matrix of eigenvectors that defines the similarity transformation (11) is

P =
[
v1 v2

]
=

[
3 1
1 −3

]
. (35)
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Figure 1: Saddle node. Shown are the nullclines, and the unstable (red arrows)/stable (green arrows)
manifolds of the saddle identified by the eigenvectors v1 and v2, respectively.

The inverse of P is

P−1 =
1

10
=

[
3 1
1 −3

]
. (36)

This yields the analytical solution[
X1(t,x0)
X2(t,x0)

]
=

[
3 1
1 −3

]
︸ ︷︷ ︸

P

[
e3t 0
0 e−7t

]
︸ ︷︷ ︸

etΛ

1

10

[
3 1
1 −3

]
︸ ︷︷ ︸

P−1

[
x01
x02

]
︸ ︷︷ ︸

x0

(37)

Developing the matrix products yields the desired flow⎧⎪⎨⎪⎩
X1(t,x0) =

x01
10

(
9e3t + e−7t

)
+

x02
10

(
e3t + 9e−7t

)
X2(t,x0) =

x01
10

(
3e3t − 3e−7t

)
+

x02
10

(
3e3t − 3e−7t

) (38)

The phase portrait of this flow is shown in Figure 1.

Stable spiral. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[−1 −1
1 −1

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (39)

The eigenvalues of the matrix A are

λ1 = −1 + i, λ2 = −1− i. (40)

These eigenvalues are complex conjugates and both have algebraic multiplicity one (simple eigenval-
ues), which implies that they have geometric multiplicity one. Therefore the matrix A is diagonal-
izable, and there exits a one-dimensional eigenspace (spanned by a complex vector) for each λi. To
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compute such eigenspaces/eigenvectors we proceed as usual

(A− λ1I)v1 = 0R2 ⇔
[−i −1
1 −i

] [
v11
v12

]
=

[
0
0

]
⇔

{
−iv11 = v12

v12 or v11 free
(41)

(A− λ2I)v2 = 0R2 ⇔
[
i −1
1 i

] [
v21
v22

]
=

[
0
0

]
⇔

{
iv21 = v22

v21 or v22 free
(42)

We choose v1 = v21 = i, which yields the following basis for the (complex) eigenspaces corresponding
to λ1 and λ2, respectively

v1 =

[
i
1

]
, v2 =

[
i
−1

]
. (43)

The similarity matrix P and its inverse are

P =
[
v1 v2

]
=

[
i i
1 −1

]
, P−1 =

1

2

[−i 1
−i 1

]
. (44)

The matrix exponential (17) is easily obtained as

etA =

[
i i
1 −1

]
︸ ︷︷ ︸

P

[
et(−1+i) 0

0 et(−1−i)

]
︸ ︷︷ ︸

etΛ

1

2

[−i 1
−i 1

]
︸ ︷︷ ︸

P−1

=
e−t

2

[
i i
1 −1

] [ −ieit eit

−ie−it −e−it

]
=
e−t

2

[
eit + e−it ieit − ie−it

−ieit + ie−it eit + e−it

]
. (45)

At this point we use the Euler formulas

cos(t) =
eit + e−it

2
, sin(t) =

eit − e−it

2i
, (46)

to obtain

etA = e−t

[
cos(t) − sin(t)
sin(t) cos(t)

]
. (47)

Applying etA to the initial condition x0 gives us the analytical solution{
X1(t,x0) = e−t [cos(t)x01 − sin(t)x02]

X2(t,x0) = e−t [sin(t)x01 + cos(t)x02]
. (48)

The phase portrait of this flow is shown in Figure 2.

• Center. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (49)

The eigenvalues of A are
λ1 = i, λ2 = −i. (50)
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Figure 2: Stable spiral.

The eigenspaces associated with λ1 and λ2 are both one-dimensional (both eigenvalues are simple).
Let us compute a basis for the eigenspace associated with λ1

(A− λ1I)v1 = 0R2 ⇔
[−i 1
−1 −i

] [
v11
v12

]
=

[
0
0

]
⇔

{
iv11 = v12

v11 or v12 free
. (51)

We choose v11 = 1, which yields

v1 =

[
1
i

]
. (52)

Similarly, for the eigenspace associated with λ2 we have

(A− λ2I)v2 = 0R2 ⇔
[
i 1
−1 i

] [
v21
v22

]
=

[
0
0

]
⇔

{
iv21 = −v22
v21 or v22 free

. (53)

We choose v21 = 1, which yields

v2 =

[
1
−i

]
. (54)

The similarity matrix P and its inverse are

P =
[
v1 v2

]
=

[
1 1
i −i

]
, P−1 =

1

2

[
1 −i
1 i

]
. (55)

The matrix exponential etA can be computed using equation (17)

etA =

[
1 1
i −i

]
︸ ︷︷ ︸

P

[
eit 0
0 e−it

]
︸ ︷︷ ︸

etΛ

1

2

[
1 −i
1 i

]
︸ ︷︷ ︸

P−1

=
1

2

[
eit + e−it −i (eit − e−it

)
i
(
eit − e−it

)
eit + e−it

]
(56)

=

[
cos(t) sin(t)
− sin(t) cos(t)

]
, (57)
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Figure 3: Center.

where we used again the Euler formulas (46). A substitution of the matrix exponential into (10)
yields the analytical solution {

X1(t,x0) = x01 cos(t) + x02 sin(t)

X2(t,x0) = −x01 sin(t) + x02 cos(t)
. (58)

The phase portrait of this flow is shown in Figure 3.

• Degenerate node. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
1 1
−1 3

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (59)

The matrix A has only one eigenvalue λ = 2 with algebraic multiplicity 2. The dimension of the
corresponding eigenspace, i.e., the dimension of the nullspace of (A− λI) (geometric multiplicity of
λ), can be calculated using the matrix rank theorem

dim (N(A− λI)) = 2− rank(A− λI) = 2− rank

([−1 1
−1 1

])
︸ ︷︷ ︸

=1

= 1 (60)

Hence the dimension of the eigenspace associated with λ = 2, is equal to one. This implies that the
matrix A is not diagonalizable. Let us compute a basis for the one-dimensional eigenspace. We have

(A− λI)v1 = 0R2 ⇔
[−1 1
−1 1

] [
v11
v12

]
=

[
0
0

]
⇔

{
v11 = v12

v11 or v12 free
(61)

We choose v12 = 1, which yields

v1 =

[
1
1

]
. (62)
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At this point we need to complement v1 to a basis of R2 by adding one linearly independent vector.
To this end, we compute the so-called generalized eigenvector4 by solving the linear equation

(A− λI)v2 = v1 (64)

We obtain [−1 1
−1 1

] [
v21
v22

]
=

[
1
1

]
⇒

{
−v21 + v22 = 1

v21 or v22 free
(65)

We choose v22 = 1 which gives the generalized eigenvector

v2 =

[
0
1

]
. (66)

The similarity matrix in this case has the eigenvector v1 and the generalized eigenvector v2 as columns

P =

[
1 0
1 1

]
⇔ P−1 =

[
1 0
−1 1

]
. (67)

The matrix exponential of the Jordan block that corresponds to the eigenvalue λ = 2 with algebraic
multiplicity two and geometric multiplicity one is (see Table 1)

etJ =

[
e2t te2t

0 e2t

]
. (68)

The the matrix exponential etA can now be computed explicitly via the formula (24)

etA =

[
1 0
1 1

]
︸ ︷︷ ︸

P

[
e2t te2t

0 e2t

]
︸ ︷︷ ︸

etJ

[
1 0
−1 1

]
︸ ︷︷ ︸

P−1

=

[
e2t − te2t te2t

−te2t e2t + te2t

]
. (69)

This gives the analytical solution{
X1(t,x0) =

(
e2t − te2t

)
x01 + te2tx02

X2(t,x0) = −te2tx01 +
(
e2t + te2t

)
x02

. (70)

The phase portrait of this flow is shown in Figure 4.

Classification of two-dimensional flows generated linear dynamical systems. In Figure 5 and
Figure 6 we provide a classification of all possible flows generated by two-dimensional dynamical systems in
terms of the eigenvalues of the matrix A. Of course, changing the sign of the eigenvalues of A is equivalent
to transforming the matrix from A to −A. This yields an inversion in the orientation of all trajectories,
which implies, e.g., that stable nodes become unstable, centers spin the other way around, etc.

Three-dimensional linear dynamical systems. In this section we calculate analytically the flow
generated by three dimensional linear systems. Higher-dimensional system can be dealt with using similar

4Note that the generalized eigenvector v2 defined in (64) is in the nullspace of the matrix (A− λI)2. In fact,

(A− λI)v2 = v1 ⇒ (A− λI)2v2 = 0R2 . (63)

It can be shown that eigenvectors and generalized eigenvectors are linearly independent.
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Figure 4: Degenerate node. Shown is the unstable manifold of the node (red arrows), which is defined by
the eigendirection v1 corresponding to the eigenvalue λ = 2.

techniques. The general approach to compute the analytical solution (10) of a general linear system (1) is
described beginning at pages 2-5 of this course note.

Example: Consider the three dimensional linear system Consider the linear dynamical system⎡⎣ẋ1ẋ2
ẋ3

⎤⎦ =

⎡⎣1 0 0
0 1 0
1 1 −1

⎤⎦
︸ ︷︷ ︸

A

⎡⎣x1x2
x3

⎤⎦ (71)

The matrix A has eigenvalues λ1 = 1 (with algebraic multiplicity two) and λ2 = −1 (with algebraic
multiplicity one). The dimension of the eigenspace corresponding to λ1, i.e., the geometric multiplicity of
λ1 is

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

⎛⎝⎡⎣0 0 0
0 0 0
1 1 −2

⎤⎦⎞⎠ = 3− 1 = 2. (72)

Therefore the matrix is diagonalizable. The eigenvectors corresponding to λ1 are solution to the linear
system N(A− λ1I)v = 0R3 , i.e.,⎡⎣0 0 0

0 0 0
1 1 −2

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇒
{
v1 + v2 − 2v3 = 0

(v1, v2) or (v1, v3) or (v2, v3) are arbitrary
(73)

We pick (v2, v3) = (1, 1) and (v2, v3) = (2, 1) which yields the following eigenvectors

v1 =

⎡⎣11
1

⎤⎦ , v2 =

⎡⎣02
1

⎤⎦ . (74)
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Figure 5: Classification of flows generated by two-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.
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Figure 6: Classification of flows generated by two-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.

Any linear combination of v1 and v2 is still an eigenvector. The eigenvectors corresponding to λ2 = −1
are solutions to the linear system N(A− λ2I)v = 0R3 , i.e.,⎡⎣3 0 0

0 3 0
1 1 0

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇒

⎧⎪⎨⎪⎩
v1 = 0

v2 = 0

v3 is arbitrary

(75)

We choose

v3 =

⎡⎣00
1

⎤⎦ (76)
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Figure 7: Examples of flows generated by three-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.

The similarity matrix and its inverse are

P =

⎡⎣1 0 0
1 2 0
1 1 1

⎤⎦ , P−1 =
1

2

⎡⎣ 2 0 0
−1 1 0
−1 −1 2

⎤⎦ (77)

Therefore, the analytical solution of the 3D linear system (71) is⎡⎣X1(t,x0)
X2(t,x0)
X3(t,x0)

⎤⎦ =

⎡⎣1 0 0
1 2 0
1 1 1

⎤⎦⎡⎣et 0 0
0 et 0
0 0 e−t

⎤⎦ 1

2

⎡⎣ 2 0 0
−1 1 0
−1 −1 2

⎤⎦⎡⎣x01x01
x03

⎤⎦ (78)

i,e, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X1(t,x0) = etx01

X2(t,x0) = etx02

X3(t,x0) =

(
et − e−t

)
2

(x01 + x02) + e−tx03

(79)

Classification of three-dimensional flows generated linear dynamical systems In Figure 7 we
provide a few sketches of three-dimensional flows corresponding to matrices A with various eigenvalues.
As easily seen, the classification of these flows is not as straightforward as in the 2D case. In fact, we can
have spiraling directions, saddle node planes, etc.
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Appendix A: The matrix eigenvalue problem

In this Appendix we briefly review the eigenvalue problem for a n×n matrix A with real coefficients. The
eigenvalue problem is essentially the problem of finding all real (or complex) numbers λ (eigenvalues) and
all nonzero real (or complex) vectors v (eigenvectors) satisfying the equation

Av = λv. (80)

Computation of eigenvalues. From equation (80) it follows that

(A− λI)v = 0Rn , (81)

Hence, the eigenvector v (which is non-zero by definition) is in the nullspace of the matrix (A− λI). This
implies that the matrix (A − λI) is not invertible5. A necessary and sufficient condition for (A − λI) to
be not invertible is

det(A− λI) = 0 (characterististic equation). (82)

The polynomial
p(λ) = det(A− λI) (83)

is known as characteristic polynomial associated with the matrix A. The characteristic equation (82)
implies that the eigenvalues of the matrix A are roots of the characteristic polynomial p(λ).

How many eigenvalues do we have for a given n×nmatrixA? The characteristic polynomial p(λ) associated
with the matrix A is a polynomial of degree n with real coefficients. Hence, by using the fundamental
theorem of algebra we conclude p(λ) has exactly n roots which may be real or complex conjugates. In
other words, every n × n matrix has exactly n eigenvalues. Such eigenvalues may be repeated, in which
case we say that they have “algebraic multiplicity” greater than one. In other words, the multiplicity of an
eigenvalue as a root of the characteristic polynomial is called algebraic multiplicity the eigenvalue.

Example 1: Compute the eigenvalues of the matrix

A =

[
2 3
3 −6

]
. (84)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
2− λ 3
3 −6− λ

]
= −(2− λ)(6 + λ)− 9, (85)

i.e.,
p(λ) = λ2 + 4λ− 21. (86)

The eigenvalues of A are roots of p(λ). Setting p(λ) = 0 yields

λ1,2 = −2±
√
4 + 21 = −2± 5 ⇒ λ1 = 3, λ2 = −7. (87)

In this case, both eigenvalues have algebraic multiplicity one, i.e., they are simple roots of p(λ). The
characteristic polynomial can be factored as

p(λ) = (λ− 3)(λ+ 7), (88)

5The matrix (A−λI) in (81) maps a non-zero vector v into 0Rn . Hence the the nullspace of (A−λI) has a nonzero vector
in it, which implies that the matrix (A− λI) is not invertible.
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suggesting once again that λ = 3 and λ = −7 are simple roots.

Example 2: Compute the eigenvalues of the matrix

A =

⎡⎢⎢⎣
2 5 1 −5
0 4 3 0
0 0 2 4
0 0 0 1

⎤⎥⎥⎦ . (89)

In this case we have

A− λI =

⎡⎢⎢⎣
2− λ 5 1 −5
0 4− λ 3 0
0 0 2− λ 4
0 0 0 1− λ

⎤⎥⎥⎦ (90)

and
p(λ) = det(A− λI) = (2− λ)2(4− λ)(1− λ). (91)

Hence, the matrix A has three eigenvalues:

λ1 = 2 with algebraic multiplicity 2,

λ2 = 4 with algebraic multiplicity 1,

λ3 = 1 with algebraic multiplicity 1.

Note that the eigenvalues coincides with the diagonal entries of the matrix A. This is a general fact about
upper or or lower triangular matrices, i.e., the eigenvalues of such matrices coincides with the diagonal
entries of the matrix. For example, the following matrix

A =

⎡⎢⎢⎣
1 1 1 1
0 1 3 0
0 0 0 −1
0 0 0 0

⎤⎥⎥⎦ . (92)

has two eigenvalues λ1 = 1 and λ2 = 0, both with algebraic multiplicity 2.

Example 3: Compute the eigenvalues of the following matrix

A =

[
1 2
−1 1

]
. (93)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
1− λ 2
−1 1− λ

]
= −(1− λ)2 + 2, (94)

i.e.,
p(λ) = λ2 − 2λ+ 3. (95)

Hence, the eigenvalues are
λ1 = 1 + i

√
2 λ2 = 1− i

√
2 (96)

Note that λ1 and λ2 are complex conjugates eigenvalues. Clearly, for 2 × 2 matrices with real entries
the fundamental theorem of algebra tells us that the eigenvalues are either both real or complex conju-
gates.
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Eigenvectors and eigenspaces. By definition, an eigenvector of a n × n matrix A is a nonzero vector
v ∈ R

n such that
Av = λv. (97)

This means that v is a nonzero vector in the nullspace of the matrix (A− λI). In fact, v is mapped onto
the zero of Rn by (A− λI) (see equation (81)). We know that the nullspace of a n× n matrix is a vector
subspace of Rn.

We denote by N(A − λI) the nullspace of the matrix (A − λI), and call N(A − λI) the eigenspace of
A corresponding to the eigenvalue λ. The dimension of the eigenspace N(A − λI) is called geometric
multiplicity of the eigenvalue λ. By definition, an eigenvector cannot be zero and therefore the eigenspace
corresponding to each eigenvalue has dimension at least equal to one. The dimension of the eigenspace
corresponding to some eigenvalue can be computed by using the matrix rank theorem.

Example 4: Compute the eigenspaces of the matrix

A =

[
2 3
3 −6

]
(98)

We have seen in Example 1 that the eigenvalues of A are λ1 = 3 and λ2 = −7. Let us compute the
eigenspace corresponding to λ1. To this end, we first compute the dimension of such eigenspace by using
the matrix rank theorem

dim(N(A− λ1I) = 2− rank(A− λ1I) = 2− rank

([−1 3
3 −9

])
= 2− 1 = 1 (99)

Hence, the eigenspace corresponding to λ1 has dimension one. Any vector of such an eigenspace is an
eigenvector of A corresponding to λ1. To compute a basis for the eigenspace N(A− λ1I) consider

(A− λ1I)v = 0R2 ⇔
[−1 3
3 −9

] [
v1
v2

]
=

[
0
0

]
⇔ −v1 + 3v2 = 0 (100)

Hence,

v =

[
3
1

]
(101)

is a basis for N(A−λ1I), and an eigenvector of A corresponding to λ1. All eigenvectors of A corresponding
to λ1 are in the form

c

[
3
1

]
with c 	= 0. (102)

Similarly, the eigenspace corresponding to λ2 has dimension 1 and can be determined by solving the linear
system

(A− λ2I)v = 0R2 ⇔
[
9 3
3 1

] [
v1
v2

]
=

[
0
0

]
⇔ 3v1 + v2 = 0. (103)

Hence,

v =

[
1
−3

]
(104)

is a basis for N(A − λ2I) and an eigenvector of A corresponding to λ2. In summary, λ1 and λ2 are
eigenvalues with algebraic multiplicity one and geometric multiplicity one. Geometric multiplicity one
means that the eigenspaces N(A−λ1I) and N(A−λ2I) are both one-dimensional. A basis for N(A−λ1I)
and N(A− λ2I) is given by (101) and (104), respectively.
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The following theorem establishes a relationship between the algebraic multiplicity and the geometric
multiplicity of an eigenvalue λ.

Theorem 1. Let λ be an eigenvalue of a n × n matrix A. Denote by s the algebraic multiplicity of λ.
Then

dim(N(A− λI)) ≤ s. (105)

In other words the geometric multiplicity of the eigenvalue λ (i.e., the dimension of the associated eigenspace)
is always smaller or equal than the algebraic multiplicity).

Of course, if λ is a simple eigenvalue (s = 1) then dim(N(A− λI)) = 1, i.e., the eigenspace corresponding
to simple eigenvalues is always one-dimensional. If λ has algebraic multiplicity 2, i.e., it is a repeated
eigenvalue, then it is possible to have geometric multiplicity equal to one or equal to two. In the latter
case the eigenspace is two-dimensional and any vector in such eigenspace (including linear combinations
of multiple eigenvectors) is an eigenvector. Let us provide a simple example of a 2 × 2 matrix with one
eigenvalue of algebraic multiplicity two and geometric multiplicity one.

Example 5: Consider the following matrix

A =

[
2 1
0 2

]
. (106)

We know that λ = 2 is the only eigenvalue and it has algebraic multiplicity two. In fact, the characteristic
polynomial is p(λ) = (2− λ)2. The geometric multiplicity of λ = 2 can be calculated by using the matrix
rank theorem

dim(N(A− λI)) = 2− rank(A− λI) = 2− rank

([
0 1
0 0

])
︸ ︷︷ ︸

=1

= 2− 1 = 1. (107)

Hence, the eigenspace associated with λ = 2 is one-dimensional. A basis for such an eigenspace is obtained
as follows:

(A− λI)v = 0R2 ⇔
[
0 1
0 0

] [
v1
v2

]
=

[
0
0

]
⇔ v2 = 0. (108)

We choose

v =

[
1
0

]
. (109)

Example 6: Compute the eigenvalues and the eigenvectors of the following matrix

A =

⎡⎣2 1 3
0 1 5
0 0 2

⎤⎦ . (110)

This is an upper triangular matrix and therefore the eigenvalues coincide with the diagonal entries. Hence
we have λ1 = 2 with algebraic multiplicity two and λ2 = 1 with algebraic multiplicity one.

A− λ1I =

⎡⎣0 1 3
0 −1 5
0 0 0

⎤⎦ ⇔ dim(N(A− λ1I)) = 3− rank(A− λ1I)︸ ︷︷ ︸
=2

= 1, (111)
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A− λ2I =

⎡⎣1 1 3
0 0 5
0 0 1

⎤⎦ ⇔ dim(N(A− λ2I)) = 3− rank(A− λ2I)︸ ︷︷ ︸
=2

= 1. (112)

Therefore, the dimension of the eigenspaces associated with λ1 and λ2 is one. Let us find a basis for such
eigenspaces.

(A− λ1I)v = 0R3 ⇒
⎡⎣0 1 3
0 −1 5
0 0 0

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇔

⎧⎪⎨⎪⎩
v1 arbitrary

v2 + 3v3 = 0

−v2 + 5v3 = 0

(113)

Hence, an eigenvector that spans N(A− λ1I) is

v =

⎡⎣10
0

⎤⎦ . (114)

Similarly,

(A− λ2I)v = 0R3 ⇒
⎡⎣1 1 3
0 0 5
0 0 1

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇔
{
v1 + v2 + 3v3 = 0

v3 = 0
(115)

Hence, an eigenvector that spans N(A− λ2I) is

v =

⎡⎣ 1
−1
0

⎤⎦ . (116)

Hereafter, we recall an important theorem on eigenvectors corresponding to different eigenvalues.

Theorem 2. Eigenvectors corresponding to different eigenvalues are linearly independent.

Of course if an eigenvalue λ has geometric multiplicity larger than one, then we can construct a basis for
N(A − λI). In any case, such basis will be linearly independent on any other eigenvector corresponding
to a different eigenvalue.

Similarity transformations. Let A,B ∈ Mn×n(R
n). We say that A is similar to B is there exists an

invertible matrix P ∈Mn×n(R
n) such that

AP = PB ⇔ A = PBP−1 (117)

The transformation B → PBP−1 is called similarity transformation. An example of similarity transfor-
mation is the change of basis transformation.

Theorem 3. Similar matrices have the same eigenvalues.

Proof. Let A,B ∈Mn×n be two similar matrices, i.e., P ∈Mn×n such that

A = PBP−1. (118)

Then
det(A− λI) = det(PBP−1 − λPP−1) = det(P ) det(B − λI) det(P−1) = det(B − λI) (119)
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Diagonalization. Consider a n×n matrix A. We have seen in Theorem 2 that eigenvectors corresponding
to different eigenvalues are linearly independent. Hence, if the algebraic multiplicity of each eigenvalue is
equal to the geometric multiplicity then it is possible to construct a basis for R

n made of eigenvectors of
A. Let us organize such n eigenvectors as columns of a matrix P

P =
[
v1 · · · vn

]
. (120)

Clearly,

AP =
[
Av1 · · · Avn

]
=

[
v1 · · · vn

] ⎡⎢⎣λ1 · · · 0
...

. . .
...

0 · · · λn

⎤⎥⎦
︸ ︷︷ ︸

Λ

= PΛ, (121)

where Λ is a diagonal matrix with the eigenvalues of A (counted with their multiplicity) sitting along the
diagonal. Equation (121) shows that if A has n linearly independent eigenvectors then A is similar to a
diagonal matrix6 Λ. The similarity transformation is defined by the matrix P in (120), i.e., the matrix
that has the eigenvectors of A as columns.

A simple corollary of this statement is that matrices with simple eigenvalues are always diagonalizable,
since they have n linearly independent eigenvectors.

Theorem 4. LetA be a n×nmatrix with eigenvalues {λ1, . . . , λp} with algebraic multiplicities {s1, . . . , sp},
respectively. Then A is diagonalizable if and only if

dim(N(A− λiI)) = si for all i = 1, . . . , p. (122)

This theorem is saying that if each eigenvalue of a matrix A has algebraic multiplicity equal to its ge-
ometric multiplicity then the matrix A is similar to a diagonal matrix. Conversely, if a matrix A is
similar to a diagonal matrix then each eigenvalue of A has algebraic multiplicity equal to its geometric
multiplicity.

Example 7: The matrix

A =

[
2 3
3 −6

]
(123)

is diagonalizable. In fact, we have seen that the eigenvalues are λ1 = 3 and λ2 = −7 (simple eigenvalues).
This implies that the dimension of the associated eigenspace is one for both eigenvalues. The eigenvectors
of A are

v1 =

[
3
1

]
and v2 =

[
1
−3

]
. (124)

Define

P =
[
v1 v2

]
=

[
3 1
1 −3

]
, Λ =

[
λ1 0
0 λ2

]
=

[
3 0
0 −7

]
. (125)

It is straightforward to verify that

P−1 =
1

10

[
3 1
1 −3

]
(126)

and
A = PΛP−1 or Λ = P−1AP . (127)

6In general, we say that a matrix A is diagonalizable if there exists an invertible matrix P such that A is similar to a
diagonal matrix.
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Example 8: The matrix

A =

[
2 1
0 2

]
(128)

is not diagonalizable. In fact the algebraic multiplicity of the eigenvalue λ = 2 is two, while its geometric
multiplicity is one. We will see hereafter that it is possible to complement the eigenvector that spans the
eigenspace with another linearly independent vector called “generalized eigenvector” to form a basis of
R
2. Such generalized eigenvector of A, makes A similar to a matrix J called Jordan form of A. In this

particular example, the Jordan form of A coincides with A, i.e., A is already in a Jordan form.

Example 9: Verify that the matrix

A =

⎡⎣1 0 0
0 1 0
0 1 2

⎤⎦ (129)

is diagonalizable. The matrix is lower-triangular with eigenvalues λ1 = 1 (algebraic multiplicity two) and
λ2 = 2 (algebraic multiplicity one). To verify that A is diagonalizable we just need to check that the
geometric multiplicity of λ1 = 1 is equal to two. To this end, we use the matrix rank theorem:

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

⎛⎝⎡⎣0 0 0
0 0 0
0 1 1

⎤⎦⎞⎠ = 3− 1 = 2 (130)

This shows that the dimension of the nullspace of N(A − λ1I), i.e., the dimension of the eigenspace
associated with λ1 = 1 is two. Let us compute a basis for such an eigenspace. To this end,

(A− λ1I)v = 0R3 ⇒
⎡⎣0 0 0
0 0 0
0 1 1

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇔

⎧⎪⎨⎪⎩
v1 arbitrary

v2 arbitrary

v3 = −v2
(131)

Hence, a basis for the eigenspace corresponding to λ1 is⎧⎨⎩
⎡⎣10
0

⎤⎦ ,

⎡⎣ 0
1
−1

⎤⎦⎫⎬⎭ . (132)

On the other hand, the eigenspace N(A− λ2I) is spanned by a vector that can be computed as

(A− λ2I)v = 0R3 ⇒
⎡⎣−1 0 0

0 −1 0
0 1 0

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇔

⎧⎪⎨⎪⎩
v1 = 0

v2 = 0

v3 arbitrary

(133)

Therefore a matrix P that diagonalizes A is

P =

⎡⎣1 0 0
0 1 0
0 −1 1

⎤⎦ . (134)

Indeed, it can be verified by a direct calculation that⎡⎣1 0 0
0 1 0
0 0 2

⎤⎦
︸ ︷︷ ︸

Λ

=

⎡⎣1 0 0
0 1 0
0 1 1

⎤⎦
︸ ︷︷ ︸

P−1

⎡⎣1 0 0
0 1 0
0 1 2

⎤⎦
︸ ︷︷ ︸

A

⎡⎣1 0 0
0 1 0
0 −1 1

⎤⎦
︸ ︷︷ ︸

P

. (135)
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Generalized eigenvectors and Jordan canonical form. The set of eigenvectors of any n× n matrix
A can be complemented to a basis of Rn. To this end, we can add a certain number of so-called generalized
eigenvectors, to each “defective” eigenspace of A. A defective eigenspace of A is an eigenspace with
dimension dim(N(A− λiI)) smaller than the algebraic multiplicity si of the associated eigenvalue λi (see
Theorem 1). For such defective eigenspaces we compute

si − dim(N(A− λiI)) (136)

additional generalized eigenvectors. This yields a basis of Rn made of eigenvectors and generalized eigen-
vectors of A. Such basis, also induces a similarity transformation between A and a matrix called Jordan
canonical form of A. Let us describe the procedure to compute the Jordan form of a matrix A. To this
end, let us first consider the simple 2 matrix

A =

[
λ 1
0 λ

]
. (137)

We know that the eigenspace corresponding to the eigenvalue λ is one-dimensional with basis

v =

[
1
0

]
. (138)

To complement v with another vector and form a basis of R2 we choose w as follows

(A− λI)w = v. (139)

Clearly, w is in the nullspace of the matrix (A−λI)2. In fact, by applying (A−λI) to both sides of (139)
we obtain

(A− λI)2w = (A− λI)v = 0R2 . (140)

It can be shown that w and v are linearly independent. To compute the generalized eigenvector w we
solve the linear system (139)

(A− λI)w = v ⇔
[
0 1
0 0

] [
w1

w2

]
=

[
1
0

]
⇔

{
w1 arbitrary

w2 = 1
. (141)

Hence a generalized eigenvector for the eigenspace N(A− λI) is

w =

[
0
1

]
(142)

At this point we define the similarity transformation

P =
[
v w

]
=

[
1 0
0 1

]
, (143)

and apply A to P to obtain

AP =
[
Av Aw

]
=

[
v w

] [λ 1
0 λ

]
︸ ︷︷ ︸

J

= PJ . (144)

Hence, A is similar to a matrix J in a particular form (not diagonal but almost diagonal), known as
Jordan canonical form of A. In this particular example, A is already in a Jordan form so the similarity
transformation defined by P turns out to be the identity transformation.
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Next, let us consider a 3 × 3 matrix A with only one eigenvalue λ of algebraic multiplicity three and
geometric multiplicity two.

A =

⎡⎣λ 1 1
0 λ 0
0 0 λ

⎤⎦ . (145)

The eigenspace of A corresponding to the eigenvalue λ is

(A− λI)v = 0R3 ⇔
⎡⎣0 1 1
0 0 0
0 0 0

⎤⎦⎡⎣v1v2
v3

⎤⎦ =

⎡⎣00
0

⎤⎦ ⇔

⎧⎪⎨⎪⎩
v1 arbitrary

v2 arbitrary

v3 = −v2
. (146)

Hence a basis for N(A− λI) is

v1 =

⎡⎣ 0
1
−1

⎤⎦ v2 =

⎡⎣10
0

⎤⎦ . (147)

To complement {v1,v2} to a basis of R3 we add a generalized eigenvector v3 that solves the following linear
system7

(A− λI)v3 = v2. (148)

We obtain ⎡⎣0 1 1
0 0 0
0 0 0

⎤⎦⎡⎣v31v32
v33

⎤⎦ =

⎡⎣10
0

⎤⎦ ⇔

⎧⎪⎨⎪⎩
v31 arbitrary

v32, arbitrary

v32 + v33 = 1

. (149)

Hence a generalized eigenvector for the eigenspace N(A− λI) is

v3 =

⎡⎣00
1

⎤⎦ . (150)

We define the similarity trasformation P by using the eigenvectors
[
v1 v2

]
and the generalized eigenvector

v3 of A
P =

[
v1 v2 v3

]
. (151)

Since {v1,v2,v3} are linearly independent we have that P is invertible. Clearly,

AP =
[
Av1 Av2 Av3

]
=

[
λv1 λv2 v2 + λv3

]
=

[
v1 v2 v3

]︸ ︷︷ ︸
P

⎡⎣λ 0 0
0 λ 1
0 0 λ

⎤⎦
︸ ︷︷ ︸

J

= PJ . (152)

Jordan blocks. At this point it is clear that by computing the generalized eigenvectors it is always
possible to construct a similarity transformation P that takes any matrix A into its Jordan canonical
form

J =

⎡⎢⎢⎢⎣
J1

J2

. . .

Jp

⎤⎥⎥⎥⎦ , (153)

7Note there is really no reason why we should choose v1 instead of v2 at the right hand side of (148). In fact, the choice
of both eigenvectors and generalized eigenvectors is not really unique.
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where p is the total number of distinct eigenvalues of A. The Jordan canonical form is a block-diagonal
matrix in which each block Ji can be of the form summarized in Table 1.

Matrix exponentials of Jordan blocks. The matrix exponential of the Jordan form of (153) is a
block-diagonal matrix that has the matrix exponential of each Jordan block along the diagonal.

etJ =

⎡⎢⎢⎢⎣
etJ1

etJ2

. . .

etJp

⎤⎥⎥⎥⎦ . (154)

Hence, to compute the matrix exponential of the Jordan form of A, we just need a formula for the matrix
exponential of each Jordan block in Table 1. The case in which the Jordan block is diagonal is trivial,
since the matrix exponential is just the exponential of the diagonal elements. For instance,

Ji =

[
λi 0
0 λi

]
⇒ etJi =

[
etλi 0
0 etλi

]
. (155)

Let us now show how to compute the matrix exponential of the following Jordan blocks

a) Ji =

[
λi 1
0 λi

]
, b) Ji =

⎡⎣λi 0 0
0 λi 1
0 0 λi

⎤⎦ , c) Ji =

⎡⎣λi 1 0
0 λi 1
0 0 λi

⎤⎦ . (156)

a) Let us write the 2D Jordan block as

Ji =

[
λi 1
0 λi

]
=

[
λi 0
0 λi

]
︸ ︷︷ ︸

Bi

+

[
0 1
0 0

]
︸ ︷︷ ︸

C

. (157)

The matrix commutator of Bi and C equals zero. In fact,

[Bi,C] = BiC −CBi =

[
λi 0
0 λi

] [
0 1
0 0

]
−

[
0 1
0 0

] [
λi 0
0 λi

]
=

[
0 0
0 0

]
. (158)

This implies that8

etJi = et(Bi+C) = etBietC . (162)

Since Bi is a diagonal matrix

etBi =

[
etλi 0
0 etλi

]
. (163)

8In general, given two square matrices A and B we have

eAeB = eZ , (159)

where

Z = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] + · · · . (160)

This formula is known as Baker-Campbell-Hausdorff formula. If A and B commute, i.e., if [A,B] = 0Mn×n then by (159)
and (160) we have

eAeB = eA+B . (161)

Page 24



AM 114/214 Prof. Daniele Venturi

Regarding the exponential of C we have the exact formula9

etC = I + tC =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
=

[
1 t
0 1

]
. (165)

Finally, a substitution of (165) and (163) into (162) yields the desired expression

etJi =

[
etλi 0
0 etλi

] [
1 t
0 1

]
=

[
etλi teλit

0 etλi

]
. (166)

b) The exponential of the 3D Jordan block

Ji =

⎡⎣λi 0 0
0 λi 1
0 0 λi

⎤⎦ (167)

can be computed using the formula (166) we just proved. In fact,

etJi =

⎡⎣etλi 0 0
0 etλi teλit

0 0 etλi

⎤⎦ . (168)

c) The exponential of the 3D Jordan block

Ji =

⎡⎣λi 1 0
0 λi 1
0 0 λi

⎤⎦ (169)

requires more work. We begin by splitting Ji as the sum of a diagonal matrix and and a non-diagonal
matrix

Ji =

⎡⎣λi 1 0
0 λi 1
0 0 λi

⎤⎦ =

⎡⎣λi 0 0
0 λi 0
0 0 λi

⎤⎦
︸ ︷︷ ︸

Bi

+

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦
︸ ︷︷ ︸

C

. (170)

As before, it is straightforward to show that Bi and C commute

[Bi,C] = BiC −CBi =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ . (171)

Moreover, by a direct calculation, we have

C2 =

⎡⎣0 0 1
0 0 0
0 0 0

⎤⎦ , C3 =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ , . . . , Ck =

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦ . (172)

Therefore, the matrix exponential of the Jordan block (169) is

etJi = etBietC = etBi

(
I +C +

C2

2

)
. (173)

9In fact,

C2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
. (164)

Of course all matrix powers Ck are all zero for k ≥ 2 since C2 = 0, and we can write Ck = C2Ck−2.

Page 25



AM 114/214 Prof. Daniele Venturi

Substituting (172) into (173) finally yields

etJi =

⎡⎣etλi 0 0
0 etλi 0
0 0 etλi

⎤⎦⎡⎣1 t t2/2
0 1 t
0 0 1

⎤⎦
︸ ︷︷ ︸

I+C+C2/2

. (174)

Developing the product finally yields

etJi =

⎡⎣etλi tetλi t2etλi/2
0 etλi tetλi

0 0 etλi

⎤⎦ . (175)

The matrix exponential of all Jordan blocks we discussed in this section are summarized in Table 1.
Formulas for matrix exponentials of higher-dimensional Jordan blocks can be computed by using the
techniques we discussed in this section.

Appendix B: Matrix norms compatible with vector norms

Let us define the following matrix norm

‖A‖ = sup
y �=0Rn

‖Ay‖
‖y‖ = sup

‖y‖=1
‖Ay‖ . (176)

Clearly, ‖A‖ is matrix norm (prove it as exercise), which satisfies, by definition, the following inequal-
ity

‖A‖ ≥ ‖Ay‖
‖y‖ i.e. ‖Ay‖ ≤ ‖A‖ ‖y‖ . (177)

It is straightforward to show that

‖A‖∞ = max
i=1,..,n

⎛⎝ n∑
j=1

|Aij |
⎞⎠ , (178)

‖A‖1 = max
j=1,..,n

(
n∑

i=1

|Aij |
)
, (179)

‖A‖2 =
√
λmax (ATA) = σmax(A), (180)

where σmax(A) is the largest singular value of the matrix A. For example,

‖Ay‖∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑

j=1

Aijyj

∣∣∣∣∣∣ ≤ max
i=1,...,n

⎛⎝ n∑
j=1

|Aij | |yj |
⎞⎠ ≤ ‖y‖∞ max

i=1,...,n

⎛⎝ n∑
j=1

|Aij |
⎞⎠ (181)

which implies that

‖Ay‖∞
‖y‖∞

≤ max
i=1,...,n

⎛⎝ n∑
j=1

|Aij |
⎞⎠ for all y 	= 0Rn , (182)

i.e.,

sup
y �=0Rn

‖Ay‖∞
‖y‖∞

= max
i=1,...,n

⎛⎝ n∑
j=1

|Aij |
⎞⎠ = ‖A‖∞ . (183)
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With any compatible matrix norm available we immediately see that the function f(y) = Ay is Lipschitz
continuous in R

n. In fact, we have

‖Ay1 −Ay2‖ ≤ ‖A‖ ‖y1 − y2‖ for all y1,y2 ∈ R
n, (184)

where L = ‖A‖ is the Lipschitz constant.

Appendix C: Solution of a linear system in terms of the matrix exponential

We first write the ODE (1) as a linear integral equation

X(t,x0) = x0 +

∫ t

0
AX(s,x0)ds.

To solve this equation we use the Picard iteration method, which is a fixed point iteration method. To
this end, we define the iterative sequence

X(n)(t,x0) = x0 +

∫ t

0
AX(n−1)(s,x0)ds X(0)(t,x0) = x0 (185)

For nonlinear systems Picard’s iterations usually converge only within a small time interval. On the other
hand, for linear systems Picard’s iterations are globally convergent. Let us we start with n = 1

X(1)(t,x0) = x0 +

∫ t

0
Ax0ds = x0 +Ax0t = (I +At)x0.

We can use this to compute n = 2 which gives

X(2)(t,x0) = x0 +

∫ t

0
AX(1)(s,x0)ds = x0 +

∫ t

0
A(I +At)x0ds =

(
I +At+

t2

2
A2

)
x0.

By induction it is straightforward to show that

X(n)(t,x0) =

(
n∑

k=0

Aktk

k!

)
x0.

Clearly,

X(t,x0) = lim
n→∞X(n)(t,x0) =

(
lim
n→∞

n∑
k=0

Aktk

k!

)
x0 = etAx0. (186)

Page 27


