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Stability analysis of equilibria in nonlinear systems

Consider the n-dimensional nonlinear dynamical system⎧⎪⎨⎪⎩
dx

dt
= f(x)

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a vector of phase variables, f : D → R
n, and D is a subset of Rn. In this

course note we study the behavior of the nonlinear system (1) in a neighborhood of a fixed point. As is
well known, fixed points are solutions to the nonlinear system of algebraic equations

f(x∗) = 0. (2)

To study the flow in a neighborhood of a fixed point x∗ we consider a local coordinate system centered at
x∗, i.e. we define the new phase variables

η(t,x0) = X(t,x0)− x∗. (3)

Assuming that the initial condition x0 is sufficiently close to x∗ and that f is sufficiently smooth, we
expand

f(X(t,x0)) = f(x∗ + η(t,x0)) (4)

in a neighborhood of x∗, i.e., for small η(t,x0). This yields

f(x∗ + η(t,x0)) = f(x∗)︸ ︷︷ ︸
=0

+Jf (x
∗)η(t,x0) + g(η), (5)

where

Jf (x
∗) =

⎡⎢⎢⎢⎢⎣
∂f1(x

∗)
∂x1

· · · ∂f1(x
∗)

∂xn
...

. . .
...

∂fn(x
∗)

∂x1
· · · ∂fn(x

∗)
∂xn

⎤⎥⎥⎥⎥⎦ (6)

is the Jacobian1 of f(x) evaluated at the fixed point x∗, and g(η) is the reminder of the Taylor series at
x∗. Of course g(η) depends on x∗. Moreover,

g(0) = 0 and Jg(x
∗) = 0. (7)

These conditions imply that η = 0 is indeed a fixed point, and that that g(η) is at least quadratic in η.
This allows us to write the nonlinear dynamical system (1) at x∗ as⎧⎪⎨⎪⎩

dη

dt
= Jf (x

∗)η + g(η)

η(0,x0) = x0 − x∗
(8)

Note that (8) is completely equivalent to (1), since we retained all nonlinearities. Such nonlinerities are
responsible for the slight variations in the local phase portraits displayed in Figure 1.

1The Jacobian of f(x) is a matrix-valued function that takes in a function f(x) and it returns a n × n matrix-valued
function. The entries of such Jacobian matrix are functions. Of course, if we evaluate the Jacobian of f(x) at a specific point
x∗ then we obtain a matrix with real entries (provided f is real).
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Figure 1: Geometric meaning of the Hartmman-Grobman Theorem 1. The trajectories of a nonlinear sys-
tem in a neighborhood of any hyperbolic fixed point are homeomorphic to the trajectories of the linearized
system at x∗. This means that the trajectories of the nonlinear and linearized system are not exactly the
same in the neighborhood of x∗, but they can be mapped to each other by a continuous transformation
that has a continuous inverse. The reason why the trajectories are not the same can be traced back to the
term g(η) in equation (8).

Theorem 1 (Hartman-Grobman). Let x∗ ∈ R
n be a fixed point of the dynamical system (1). If the

Jacobian (6) has no eigenvalue with zero real part then there exists a homeomorphism (i.e., continuous
invertible mapping with continuous inverse) defined on some neighborhood of x∗ that takes orbits of the
linear system η̇ = Jf (x

∗)η and maps them into orbits of the system (8). The mapping preserves the
orientation of the orbits.

This Theorem is stating that if x∗ is a hyperbolic2 fixed point then the flow of the nonlinear dynamical sys-
tem (8) is “homemorphic” (i.e., it can be mapped back and forth by a continuous nonlinear transformation)
to the flow of the linearized system η̇ = Jf (x

∗)η.

Stable, unstable, and center subspaces. In general, the eigenvalues of the Jacobian matrix Jf (x
∗)

and the associated subspaces can be grouped into three main classes (see Figure 2):

• Stable subspace. We denote the subspace spanned by the eigenvectors and the generalized eigen-
vectors associated with eigenvalues with negative real part as V s. The subspace V s is called stable
subspace (or stable eigenspace if it is spanned by eigenvectors).

• Unstable subspace. We denote the subspace spanned by the eigenvectors and the generalized
eigenvectors associated with eigenvalues with positive real part as V u. The subspace V u is called
unstable subspace (or unstable eigenspace if it is spanned by eigenvectors).

2A fixed point x∗ is called hyperbolic if the Jacobian of Jf (x
∗) has no eigenvalue with zero real part. Historically, the

definition of hyperbolic fixed point stem from the fact that the orbits nearby a particular type of fixed point (saddle node) in
two-dimensional non-dissipative systems resemble hyperbolas. This fails to hold in general.
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Figure 2: Eigenvalues of the Jacobian matrix Jf (x
∗), and definition of the associated subspaces.

• Center subspace. We denote the subspace spanned by the eigenvectors and the generalized eigen-
vectors associated with eigenvalues with zero real part as V c. The subspace V c is called center
subspace (or center eigenspace if it is spanned by eigenvectors).

The Hartman-Grobman theorem applies to a fixed point x∗ with center subspace V c reducing to just one
element, i.e., V c = {0Rn}. This means that dim(V c) = 0, i.e., the center subspace is zero dimensional.
On the other hand, the center manifold3 theorem discussed hereafter provides useful information on the
stable, unstable, and center manifolds associated to a fixed point x∗.

Theorem 2 (Center manifold theorem). Let x∗ ∈ R
n be a fixed point of the dynamical system (1), and let

V s, V u and V c be the stable, unstable and center subspaces defined by (generalized) eigendecomposition
of the Jacobian matrix Jf (x

∗) defined in (6). Then there exist two unique stable and unstable invariant
manifolds4 W s and W u of the same dimension of V s and V u and tangential to V s and V c at x∗, and a
(not necessarily unique5) center manifold W c of the same dimension of V c and tangential to V c at x∗. If
f in (1) is of class Ck then W s and W u are of class Ck, while W c is of class Ck−1.

It is useful to sketch the stable and unstable subspaces V s and V u together with the stable and stable
manifolds W s and W u for 2D a saddle node and for a 2D stable node. In the latter case, the stable
subspace has dimension 2, and therefore all curves in a neighborhood of x∗ are part of the stable manifold
W s.

Stability analysis of hyperbolic fixed points in two-dimensional systems. In this section we pro-
vide a few examples of stability analysis of a hyperbolic fixed point in two-dimensional nonlinear dynamical
systems.

3A manifold can be thought of as a geometric object embedded in the Euclidean space R
n. For example, a smooth (non-

intersecting) curve in R
2 or a smooth surface in R

3 are examples of manifolds. More generally one can define a manifold as a
space that is locally Euclidean.

4An invariant manifold W ⊆ R
n is a manifold such that for all x0 ∈W we have that X(t,x0) ∈W .

5If f(x) is C∞ then it is possible to find a Cr center manifold for each r <∞.
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Figure 3: Stable and unstable eigenspaces V s and V u, and stable and unstable manifolds W s and W u

of a two-dimensional saddle node and a two-dimensional stable node. Note that the stable and unstable
manifolds of the saddle node are one-dimensional and tangent to the stable and unstable eigenspaces at
fixed point. The stable eigenspace of the stable node is two-dimensional. Hence the the stable manifold
is two-dimensional as well. Hence the tangency condition of W s to V s in this case reduces to the trivial
statement that all trajectories belong to the stable manifold, at least locally.

Stability analysis of hyperbolic fixed points. Consider the following Volterra-Lotka model governing
the population dynamics two interacting species competing for some common resource.⎧⎪⎪⎨⎪⎪⎩

dx1
dt

= x1(3− x1 − 2x2)

dx2
dt

= x2(2− x1 − x2)

(9)

The nullclines are

ẋ1 = 0 ⇒ x1 = 0, x2 =
3

2
− 1

2
x1, (10)

ẋ2 = 0 ⇒ x2 = 0, x2 = 2− x1. (11)

Fixed points are located at the intersections of the nullclines. As shown in Figure 4 we obtain

x∗
A = (0, 0), x∗

B = (0, 2), x∗
C = (1, 1), x∗

D = (3, 0). (12)

The Jacobian of (9) is easily obtained as

Jf (x) =

[
3− 2x1 − 2x2 −2x1

−x2 2− x1 − 2x2

]
(13)

Let us study the flow of the nonlinear system in a neighborhood of the fixed point x∗
C = (1, 1). The

Jacobian at x∗
C is

Jf (x
∗
C) =

[−1 −2
−1 −1

]
, (14)

ans it has eigenvalues
λ1 = −1−

√
2 < 0, λ2 = −1 +

√
2 > 0. (15)

Therefore the fixed point x∗
C is hyperbolic (saddle node). The stable and unstable eigenspaces of the saddle

node are spanned by the vectors

v1 =

[√
2
1

]
, v2 =

[−√2
1

]
(16)
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Figure 4: Fixed points of the Volterra-Lotka model (9).

Figure 5: Phase portrait of the Volterra-Lotka model (9). The stable manifold of the saddle node determines
which species is going to survive.

which are eigenvectors of (14) corresponding to λ1 and λ2. Based on Theorem 2, the stable and unstable
manifolds of the saddle node are tangent to the tangent eigenspaces stable and unstable manifolds are
tangent to the eigendirections. Proceeding similarly for the other points, it is straightforward to find that
x∗
A is an unstable node, while x∗

B and x∗
D are stable nodes. In Figure 5 we sketch the phase portrait of

the system, and compare it with a numerically computed portrait.

Example: Consider the nonlinear system⎧⎪⎪⎨⎪⎪⎩
dx1
dt

= 1− (μ+ 1)x1 + x21x2

dx2
dt

= μx1 − x21x2

(17)

where μ > 0 is a real parameter. We allow μ to vary6, since this will change the location of the fixed points

6By allowing μ in (17) to vary, we are effectively studying potential bifurcations of the system, in particular bifurcations
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and their stability properties. The nullclines are obtained by setting

{
1− (μ+ 1)x1 + x21x2 = 0

x1(μ− x1x2) = 0
⇒

⎧⎪⎨⎪⎩
x2 =

μ+ 1

x1
− 1

x21
(for x1 	= 0)

x1 = 0, or x2 =
μ

x1

The fixed points are at the intersections of the nullclines. By substituting x2 = μ/x1 into the equation
defining the nullcline ẋ1 = 0 we obtain

μ

x1
=

μ+ 1

x1
− 1

x21
⇒ x∗1(μ) = 1. (18)

Correspondingly,

x∗2(μ) =
μ+ 1

x∗1(μ)
− 1

x∗1(μ)2

=μ+ 1− 1

=μ. (19)

Therefore, we obtain the unique fixed point

(x∗1(μ), x
∗
2(μ)) = (1, μ). (20)

The Jacobian of the system (17) is

Jf (x1, x2, μ) =

[ −(μ+ 1) + 2x1x2 x21
μ− 2x1x2 −x21

]
. (21)

The (linear) stability of the fixed point (20) is determined by the eigenvalues of

Jf (x
∗
1(μ), x

∗
2(μ), μ) =

[
μ− 1 1
−μ −1

]
(22)

The associated characteristic polynomial

p(λ) = λ2 − (μ− 2)λ+ 1 (23)

has roots

λ1,2(μ) =
(μ− 2)±√

(μ− 2)2 − 4

2
. (24)

In Figure 6 we plot the eigenvalues (24) as a function of μ. Based on such eigenvalue analysis, it is seen
that the fixed point (20) is:

• a stable spiral for 0 < μ < 2;

• a non-hyperbolic fixed point for μ = 2. Center manifold analysis outlined later in this course note
allows us to conclude that the non-hyperbolic fixed point is a stable spiral;

• an unstable spiral for 2 < μ < 4;

• an unstable degenerate node for μ = 4;

• a repellor for μ > 4.
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Figure 6: Eigenvalues of the Jacobian matrix (22) as a function of μ.

μ = 1 μ = 2 μ = 3

Figure 7: Phase portraits of (17) for different values of μ.

For μ = 2 linear stability analysis predicts a center (λ1,2 = ±i). However, such fixed point is not hyperbolic
and therefore such conclusion does not hold. Indeed the analysis of the center manifold outlined later in
this course note allows us to conclude that for μ = 2 we have a stable spiral. For μ = 4 we have λ1,2 = 1.
The geometric multiplicity of such eigenvalue is 1, and therefore at μ = 4 we have an unstable degenerate
node. The phase portrait of the system is shown in Figure 7 for different values of μ.

Calculation of one-dimensional local center manifolds in two-dimensional systems. Next, we
study stability of non-hyperbolic fixed points in a two-dimensional dynamical system with one zero eigen-
value. Such stability can be studied by computing the dynamics on the center manifold W c in a neighbor-
hood of the fixed point x∗ ∈ R

2. To this end, we represent such local center manifold W c as a graph of a
smooth function h, i.e.,

W c = {(x1, x2) ∈ R
2 such that x2 = h(x1) for all x1 in a neighborhood of x∗1}. (25)

According to the center manifold Theorem 2, there are three conditions that the function h(x1) needs to
satisfy in order to represent the center manifold in a neighborhood of the fixed point x∗:

of equilibria.
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1. (x1, h(x1)) needs to pass through the fixed point, i.e.,

x∗2 = h(x∗1) (26)

2. h(x1) needs to be tangent to V c at the fixed point x∗. This means that the slope h(x1) must be the
same as the slope7 of V c at x∗1. Such slope is identified by the “center” eigenvector of Jf (x

∗).

3. W c must be an invariant manifold. This means that any trajectory trajectory (x1(t), x2(t)) on W c

must satisfy

x2(t) = h(x1(t)) ⇒ dx2
dt

=
dh(x1)

dx1

dx1
dt

, (27)

i.e.,

f2(x1, h(x1)) =
dh(x1)

dx1
f1(x1, h(x1)). (28)

These three conditions allow us to determine a power series expansion of the (one-dimensional) center
manifold W c in a neighborhood of the fixed point x∗. Let’s see some examples.

Example: Consider the nonlinear system ⎧⎪⎨⎪⎩
dx1
dt

= x1x2

dx2
dt

= −x2 − x21

(29)

The nullclines are

ẋ1 =0 ⇔ x1 = 0 or x2 = 0, (30)

ẋ2 =0 ⇔ x2 = −x21. (31)

Hence, there exists only one fixed point at the intersection of the nullclines which is

x∗ = (0, 0). (32)

The Jacobian of the system (29) is

Jf (x) =

[
x2 x1
−2x1 −1

]
. (33)

By evaluating Jf (x) at the fixed point x∗ = (0, 0) we obtain

Jf (0) =

[
0 0
0 −1

]
. (34)

The eigenvalues of Jf (0) are
λc = 0 and λs = −1. (35)

Correspondingly, we have a center eigenspace V c and a stable eigenspace V s, both of dimension one. Such
eigenspaces are spanned by the eigenvectors

vc =

[
1
0

]
, and vs =

[
0
1

]
. (36)

In Figure 8 we sketch the nullclines and the eigenspaces V c and V s. Next, we compute the local center

7If the center subspace V s is a vertical line then we need to compute a preliminary coordinate transformation, e.g., use the
so-called normal coordinates.
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Figure 8: Nonlinear system (29). Stable (V s) and center (V c) eigenspaces associated with the fixed point
x∗ = (0, 0).

manifold W c in a neighborhood of the fixed point x∗ = (0, 0). To this end, we consider the following power
series expansion of the function h(x1) appearing in (25)

x2 = h(x1) = a+ bx1 + cx21 + dx31 + · · · , (37)

where a, b, c, etc. are coefficients to be determined. By enforcing that W c passes through the fixed point
(0, 0) and is tangent to V c at (0, 0) we obtain⎧⎨⎩0 = h(0) = a ⇔ a = 0

0 = h′(0) = b ⇔ b = 0
(38)

Therefore we are left with
h(x1) = cx21 + dx31 + ex41 + · · · (39)

At this point we impose that the dynamics on the local center manifold W c is invariant, which means that
any trajectory with initial condition on W c stays on W c. This condition is expressed mathematically by
equation (28), which can written the system (29) as

−h(x1)− x21 =
(
2cx1 + 3dx21 + · · ·

)︸ ︷︷ ︸
h′(x1)

x1h(x1). (40)

Substituting h(x1) yields

− (
cx21 + dx31 + ex41 · · ·

)− x21 =
(
2cx1 + 3dx21 + · · ·

)
x1

(
cx21 + dx31 + · · ·

)
, (41)

i.e.,
− (c+ 1)x21 − dx31 − ex41 + · · · = 2c2x41 + 5cdx51 + · · · . (42)
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(velocity on the center manifold W c) (phase portrait)

Figure 9: Nonlinear system (29). Local center manifold W c at the non-hyperbolic fixed point (0, 0).

Since we are free to choose x1 as small as we like, the previous equation yields the following conditions
(match the coefficients multiplying the same power of x1 at the left and the right hand sides)

c+ 1 = 0, d = 0, −e = 2c2, (43)

i.e.,
c = −1, d = 0, e = −2. (44)

This yields the following power series expansion of the local center manifold W c

x2 = h(x1) = −x21 − 2x41 + · · · . (45)

The dynamics on this manifold can be obtained by substituting x2 = h(x1) into the first equation of the
system (29). This yields

dx1
dt

= −x31 − 2x51 + · · · (46)

Hence ẋ1 always points towards the origin when evaluated along the manifold W c, i.e., W c is stable (see
Figure 9). In Figure 10 we plot the phase portrait of (29) computed numerically.

Example: Let us provide another example of analysis of a two-dimensional non-hyperbolic fixed point. To
this end, consider the nonlinear system ⎧⎪⎨⎪⎩

dx1
dt

= −x1x2
dx2
dt

= x1 − x2

(47)

The nullclines are

ẋ1 =0 ⇔ x1 = 0 or x2 = 0, (48)

ẋ2 =0 ⇔ x2 = x1. (49)

Hence, there exists only one fixed point at
x∗ = (0, 0). (50)
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Figure 10: Phase portrait of the dynamical system (29). Note that the numerical results indicate that
there may be an infinite number of center manifolds at x∗ = (0, 0) (all curves passing through (0, 0) with
horizontal tangent at (0, 0)). However, the Taylor series expansions of any two center manifolds at (0, 0)
agree to all orders.

The Jacobian of the system (47) is

Jf (x) =

[−x2 −x1
1 −1

]
(51)

By evaluating Jf (x) at the fixed point x∗ = (0, 0) we obtain

Jf (0) =

[
0 0
1 −1

]
. (52)

The eigenvalues of Jf (0) are
λc = 0 and λs = −1. (53)

Correspondingly we have a center eigenspace V c and a stable eigenspace V s, both of dimension one. Such
eigenspaces are spanned by the eigenvectors

vs =

[
0
1

]
, and vc =

[
1
1

]
. (54)

To study stability of the non-hyperbolic fixed point x∗ = (0, 0), we compute the local center manifold W c

at x∗. Based on Theorem 2, W c is a C∞ one-dimensional manifold and therefore it can be represented
locally as a graph of a C∞ one-dimensional function h as

x2 = h(x1). (55)

The function h must satisfies the conditions⎧⎨⎩h(0) = 0 W c passes through the fixed point x∗ = (0, 0),

h′(0) = 1 W c is tangent to V c at the fixed point x∗ = (0, 0).
(56)
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Expanding h(x1) in a power series at x∗ = (0, 0) yields

h(x1) = a+ bx1 + cx21 + dx31 + · · · . (57)

By enforcing conditions (56) we obtain
a = 0, b = 1. (58)

Hence,
h(x1) = x1 + cx21 + dx31 + · · · . (59)

As before, the other coefficients can be obtained by imposing that W c is an invariant manifold, i.e., that
trajectories starting in W c stay in W c. This is equivalent to imposing that the dynamical system (47) has
(55) as trajectory, i.e.,

x2(t) = h(x1(t)) for all t ≥ 0, (60)

where (x1(t), x2(t)) is a solution of (47). Differentiating (60) with respect to time yields and using (47)
yields

x1 − h(x1) = −dh(x1)

dx1
x1h(x1). (61)

Substituting the power series (59) into the previous equation we obtain

x1 − x1 − cx21 − dx31 − · · · = −x1
(
1 + 2cx1 + 3dx21 + · · · .

) (
x1 + cx21 + dx31 + · · ·

)
, (62)

i.e.,
−cx21 − dx31 − · · · = −x21 − 3cx31 + · · · ⇒ c = 1, d = 3. (63)

Hence, the power series expansion of the center manifold W c in a neighborhood of x∗ = (0, 0) is

x2 = h(x1) = x1 + x21 + 3x31 + · · · . (64)

The dynamics on the manifold W c is obtained by substituting (60) into (47). This yields

ẋ1 = −x1(x1 + x21 + 3x31 + · · · ) = −x21 − x31 − 3x41 + · · · . (65)

The right hand side suggests of this equation that the x1 component of the velocity on the center manifold
W c always points left (see Figure 11). Hence the fixed point (0, 0) is unstable. In Figure 12 we plot the
phase portrait of (29) computed numerically.

Non-uniqueness of center manifolds. We’ve mentioned in Theorem 2 that center manifolds need not
be unique. This can be seen from the following simple example. Consider the dynamical system⎧⎪⎨⎪⎩

dx1
dt

= x21

dx2
dt

= −x2
(66)

clearly, (x1, x2) = (0, 0) is a fixed point. The stable manifold W s is the vertical axis x1 = 0. Moreover,
x2 = 0 is an invariant center manifold, but there are other center manifolds. In fact, eliminating t as the
independent variable in (66), we obtain (for x1 	= 0)

dx2
dx1

= −x2
x21

⇒ x2(x1) = βe1/x1 β ∈ R. (67)

Thus, the curves given by

h(x1) =

{
βe1/x1 x1 < 0

0 x1 ≥ 0
(68)
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(velocity on the center manifold W c) (phase portrait)

Figure 11: Nonlinear system (47). Stable and center eigenspaces V s and V c, and local center manifold W c

at the non-hyperbolic fixed point (0, 0).

are a one-parameter (parametrized by β) family of center manifolds of (x1, x2) = (0, 0). These center
manifolds are shown in Figure 13. It is easy to verify indeed that x2(t) = βe1/x1(t) is an invariant manifold
for the system (66). Moreover it is tangent to V c (x1 axis), and it passes through (0, 0) (for x1 → 0−).

This example immediately brings up the following question: In approximating the local center manifold
via power series expansions, which center manifold is actually being approximated? It can be shown that
any two center manifolds of a given fixed point differ by (at most) transcendentally small terms. Thus, the
Taylor series expansions of any two center manifolds at a given fixed point agree to all orders. Moreover,
it can be shown that for an analytical system, if the series expansion of h converges, then there exists a
unique analytical center manifold.

Two-dimensional center manifolds. Let us consider the case where the Jacobian matrix Jf (x
∗) in (8)

has two imaginary (complex conjugate) eigenvalues, i.e.,

λ1 = iω λ2 = −iω, (69)

where ω is a nonzero real number. In Appendix A we show that the real Jordan form of Jf (x
∗) is

A =

[
0 ω
−ω 0

]
. (70)

Such real Jordan form is obtained by a real similarity transformation P that has the real and the imaginary
part of one eigenvector as columns. By defining new variables

q = P−1η (71)

it is straightforward to transform the dynamical system (8) to⎧⎪⎨⎪⎩
dq1
dt

= ωq2 +H1(q1, q2)

dq2
dt

= −ωq1 +H2(q1, q2)

(72)

To study stability of the fixed point x∗, we need to study the orbits of the nonlinear dynamical system
(72) nearby q = 0. A rather lengthy calculation establishes the local equivalency of (72) to the following
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Figure 12: Phase portrait of the dynamical system (47).

dynamical system in polar coordinates (r and θ are radius and angle of the phase vector with components
(q1, q2) ⎧⎪⎨⎪⎩

dr

dt
= ar3

dθ

dt
= −ω + br2

(73)

where a a suitable constant. Therefore the trajectories nearby the fixed point fixed point x∗ are either
spirals or centers, depending on the parameter a. It can be shown (see, e.g., the book by Guckenheimer and
Holmes, “Nonlinear oscillations, dynamical systems and bifurcations of vector fields”, p. 154) that

a =
1

16

[
∂3H1

∂q31
+

∂3H1

∂q1∂q22
+

∂3H2

∂q21∂q2
+

∂3H2

∂q32

]
+

1

16ω

[
∂2H1

∂q1∂q2

(
∂2H1

∂q21
+

∂2H1

∂q22

)
− ∂2H2

∂q1∂q2

(
∂2H2

∂q21
+

∂2H2

∂q22

)
−

∂2H1

∂q21

∂2H2

∂q21
+

∂2H1

∂q22

∂2H2

∂q22

]
, (74)

where all derivatives of H1(η1, η2) and H2(η1, η2) are evaluated at (0, 0). Hence, if a < 0 we get a stable
spiral and if a > 0 we get an unstable spiral. The case a = 0 requires higher order Taylor expansions.

Example: Consider the dynamical system⎧⎪⎨⎪⎩
dx1
dt

= −x2 − (x21 + x22) + x1x2

dx2
dt

= x1 − (x21 + x22)− x1x2

(75)

The system has a fixed point at x∗ = (0, 0). The Jacobian of (75) at (0, 0) is

Jf (x) =

[ −2x1 + x2 −1− 2x2 + x1
1− 2x1 − x2 −2x2 − x1

]
⇒ Jf (0, 0) =

[
0 −1
1 0

]
(76)
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Figure 13: Non-uniqueness of center manifold for the fixed point x∗ = (0, 0) of the dynamical system (66).

The eigenvalues of Jf (0, 0) are
λ1,2 = ±i. (77)

Hence, x∗ = (0, 0) is a non-hyperbolic fixed point with an associated two-dimensional center manifold.
To study the dynamics nearby x∗ = (0, 0) we use the normal form (73) and calculate the coefficient (74)
for

H1(x1, x2) = −(x21 + x22) + x1x2 H2(x1, x2) = −(x21 + x22)− x1x2 (78)

Note that in this case ω is equal to one (compare (75) and (72)) and the third derivatives of (H1, H2) are
both equal to zero. Moreover,

∂2H1

∂x1x2
= 1,

∂2H2

∂x1x2
= −1, ∂2Hi

∂x2j
= −2, (i, j = 1, 2). (79)

Substituting these derivatives in (74) we yields

a =
1

16
[1× (−2− 2)− (−1)× (−2− 2)− (−2)× (−2) + (−2)× (−2)]

=
1

16
[−4− 4− 4 + 4]

=− 1

2
(80)

Hence, we conclude that the non-hyperbolic fixed point (0, 0) is a stable spiral. The phase portrait is for
this system is shown in Figure 14. Note that the stable spiral is enclosed by a homoclinic orbit, i.e., a
trajectory that connect the unstable manifold and the stable manifold of the saddle node located nearby
the spiral.

Normal form of nonlinear dynamical systems at fixed points. The center manifold Theorem 2
allows us to write any dynamical system in a neighborhood of an equilibrium point in a “normal form”.
Such normal form differs from a standard linearization in that the dynamics on the subspace V c is nonlinear.
To obtain such normal form let us start from the nonlinear system (8), which represents (1) at the fixed
point x∗. We group the eigenvalues of the Jacobian J(x∗) as in Figure 2, and denote by

K =

⎡⎣A B
C

⎤⎦ (81)
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Figure 14: Phase portraint of the system (75). The system has a non-hyperbolic fixed point at x∗ = (0, 0),
which turns out to be a stable spiral. The stable spiral is enclosed by a homoclinic trajectory, i.e., an
trajectory that connect the unstable manifold and the stable manifold of the saddle node that is located
nearby.

The Jordan form of the Jacobian matrix J(x∗). The projection matrix P is

P =
[
Pc Ps Pu

]
(82)

where Pc, Ps and Pu are projection matrices onto V c, V s and V u. Such projection matrices are made
of generalized eigenvectors (columnwise) spanning each of the subspaces V c, V s and V u. The Jordan
factorization of J(x∗) takes the form

J(x∗) = PKP−1. (83)

Next, define a new set of variables
q = P−1η. (84)

A substitution of (83) and (84) into (8) yields

dq

dt
= Kq + P−1g(Pq). (85)

Upon definition of

q =

⎡⎣c
s
u

⎤⎦ (86)

this system can be split as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dc

dt
= Ac+ fc(c, s,u) dynamics in V c (A has eigenvalues with zero real part)

ds

dt
= Bs+ fs(c, s,u) dynamics in V s (B has eigenvalues with negative real part)

du

dt
= Cu+ fu(c, s,u) dynamics in V u (C has eigenvalues with positive real part)

(87)
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If ‖q‖ is very small then the nonlinear terms fs and fu are negligible with respect to Bs and Cu,
respectively. This leaves us with the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dc

dt
= Ac+ fc(c, s,u)

ds

dt
= Bs

du

dt
= Cu

(88)

By using the center manifold theorem we can express the dynamics on W c as a vector map

W c = {(c, s,u) ∈ R
n : s = hs(c) and u = hu(c)} (89)

subject to the conditions

hs(0) = 0, hu(0) = 0, (W c passes through η = 0),

∇hs(0) = 0, ∇hu(0) = 0, (W c is tangent to V s at η = 0).

(90)

With the center manifold (89) available, we can decouple the system (88) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dc

dt
= Ac+ fc(c,hs(c),hu(c))

ds

dt
= Bs

du

dt
= Cu

(91)

This system of equations represents the generalization of the Hartman-Grobman theorem for non-hyperbolic
fixed points. From (91) we see that the dynamics on the stable and stable subspaces of are trivial in normal
coordinates, while the dynamics on the center manifold is essentially nonlinear.

Appendix A: Real Jordan form of a 2D matrix with imaginary eigenvalues

In this Appendix we briefly describe the procedure to compute the real Jordan form of a 2 × 2 matrix
with complex conjugate eigenvalues. The generalization to n×n matrices with real and complex conjugate
eigenvalues is straightforward and can be built based the technique discussed hereafter and in the Appendix
A of the course note 4. Let us illustrate how to compute the real Jordan form of a 2 × 2 matrix using a
simple example. To this end, consider the matrix

A =

[
1 2
−2 −1

]
. (92)

The eigenvalues of A are
λ1,2 = ±

√
3i, (93)

while the eigenvectors are

v1 =

[
2

−1 +
√
3i

]
, v2 =

[
2

−1−
√
3i

]
. (94)

Denote by λi,vi the complex conjugates of the eigenvalues and eigenvectors. Clearly, for i = 1, 2

Avi = λivi ⇒ Avi = λivi ⇒ Avi = λivi, (95)
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i.e., if vi is an eigenvector corresponding to λi then vi is an eigenvector corresponding to λi. So, in practice,
we just need to compute one eigenvector of A, since the other one is going to be the complex conjugate of
such vector. To compute the real Jordan form, we simply replace the complex eigenvectors (94) with the
real and imaginary component of one vector8, i.e., we consider the real basis

P =

[
2 0

−1 √
3

]
(97)

We have

AP =

[
1 2
−2 −1

]
︸ ︷︷ ︸

A

[
2 0

−1 √
3

]
︸ ︷︷ ︸

P

=

[
0 2

√
3

−3 −√3

]
=

[
2 0

−1 √
3

]
︸ ︷︷ ︸

P

[
0

√
3

−√3 0

]
︸ ︷︷ ︸

J

(98)

Hence the real Jordan form9 is the skew-symmetric matrix

J =

[
0

√
3

−√3 0

]
(101)

and the similarity transformation (97) has real entries. Of course, we are also allowed to consider the
transformation

P =

[−2 0

1 −√3

]
, (102)

which yields the real Jordan form

J =

[
0 −√3√
3 0

]
. (103)

If a 2× 2 matrix A has complex conjugate eigenvalues of the form

λ1,2 = μ± iω (104)

then the real Jordan form of A is

J =

[
μ ±ω
∓ω μ

]
. (105)

8Note that the real component of both vectors v1 and v2 in (94) is

[
2
−1

]
, while the imaginary component is

[
0√
3

]
. (96)

9On the other hand, the complex Jordan form is obtained by the methods we studies in the course note 4. In fact the
matrix A is diagonalizable Hence, we have

J =

[√
3i 0

0 −√3i

]
(99)

and the (complex) similarity transformation

P =

[ −2 −2
1−√3i 1 +

√
3i

]
. (100)
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Conservative and gradient systems

Conservative systems. We say the n-dimensional nonlinear dynamical system⎧⎪⎨⎪⎩
dx

dt
= f(x)

x(0) = x0

(1)

is conservative if there exists a scalar field E(x), i.e., a function from R
n into R, that is constant1 along

each trajectory of (1) and non-constant in any open set D ⊆ R
n. This definition implies that trajectories

of a conservative system (1) are level sets of E(x), i.e.,

E(X(t,x0)) = E(x0), (2)

where X(t,x0) is the trajectory generated by (1) for some given x0.

A condition for a system to be conservative. Consider the system (1). How do we check if the system
is conservative, i.e., if there exists a scalar field E(x) that is preserved along trajectories? By definition
E(x) is preserved along trajectories if and only if

dE

dt
= 0 ⇒ ∇E(x) · dx

dt
= 0 ⇒ ∇E(x) · f(x) = 0. (3)

Hence, a system is conservative if and only if we can find a function E(x) the gradient of which is orthogonal
to f(x) at each point x. In other words, the system (1) is conservative if there exists a solution to the
following partial differential equation (PDE)

∇E(x) · f(x) = 0, (4)

where E(x) is unknown and f(x) is the vector field at the right hand side of (1).

Point mass moving on a line. Consider a point particle moving on a straight line under the action of
an external force F (x) depending only on the position x of the particle.

The equation of motion is the Newton’s second law

m
d2x

dt2
= F (x), (5)

where m is the mass of the particle. We have seen in the course note 1 that F (x) can be always written
in terms of a potential energy function V (x) as

F (x) = −dV (x)

dx
. (6)

1The constant depend on the particular trajectory, i.e., on the initial condition x0 (see Eq. (2)).
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Multiplying (5) by the velocity dx(t)/dt of the particle and collecting terms yields

d

dt

[
1

2
m

(
dx

dt

)2

+ V (x)

]
= 0. (7)

Hence, the quantity

E

(
x,

dx

dt

)
︸ ︷︷ ︸
total energy

=
1

2
m

(
dx

dt

)2

︸ ︷︷ ︸
kinetic energy

+ V (x)︸ ︷︷ ︸
potential energy

, (8)

is conserved along trajectories of (5). Upon definition of x1(x) = x(t) and x(t) = dx(t)/dt, we can re-write
(5) as a two-dimensional system of first-order ODEs⎧⎪⎪⎨⎪⎪⎩

dx1
dt

= x2

dx2
dt

= − 1

m

dV (x1)

dx1

(9)

This allows us to write the energy function (8) as

E(x1, x2) =
1

2
mx22 + V (x1). (10)

Note that the gradient of energy function E(x1, x2) is orthogonal to the vector field at the right hand side
of (9). In fact,

∇E(x1, x2) · f(x) =
(
dV

dx1
,mx2

)
·
(
x2,− 1

m

dV

dx1

)
=

dV

dx1
x2 − dV

dx1
x2 = 0. (11)

Therefore condition (4) is satisfied.

Duffing oscillator. The Duffing equation is a non-linear second-order differential equation that models
certain oscillators. In its simplest form the equation can be written as 2

d2x

dt2
= x− x3, (13)

The “potential energy” corresponding to x− x3 is

V (x) = −x2

2
+

x4

4
. (14)

We rewrite the system (13) as ⎧⎪⎨⎪⎩
dx1
dt

= x2

dx2
dt

= x1 − x31

(15)

2The full form of the Duffing equation has a friction term proportional to ẋ and a sinusoidal driving force

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (12)

This system can exhibit very complex dynamics, including chaotic phase similarities and recurrences (see, e.g., C. Bonatto, J.
A. C. Gallas, and Y. Ueda, “Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator” Phys. Rev. E,
77, 026217 (2008).
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Figure 1: The Duffing oscillator (13) is a conservative system. Shown are the energy function (17) and some
of its level sets. Such level sets are trajectories of the system (15). This means that we can construct the
phase portrait of the system by taking sections of the energy function and then projecting such level sets
onto the (x1, x2) plane. The Duffing oscillator has three fixed points: one saddle node at (x1, x2) = (0, 0)
and two centers at (x1, x2) = (±1, 0).

Multiplying the second equation by x2 yields

x2
dx2
dt

= (x1 − x31)x2 = −
dV (x1)

dt
⇒ d

dt

[
x22
2

+ V (x1)

]
= 0 (16)

Hence, the following quantity is conserved along the trajectories

E(x1, x2) =
1

2

(
x22 − x21

)
+

x41
4
, (17)

i.e., trajectories are level sets of E(x1, x2). As before the gradient of E(x1, x2) satisfies the orthogonality
condition (4). In Figure 1 we demonstrate the correspondence between the levels sets of the energy function
(17) and trajectories of the system (15).

Nonlinear pendulum. Consider the pendulum sketched in Figure 2. We know from classical mechanics
that the equation of motion is (see the course note 3 for a derivation)

d2θ

dt2
= − g

L
sin(θ). (18)

As before, set x1(t) = θ(t) and x2(t) = dθ(t)/dt. This allows us to write the second-order nonlinear ODE
(18) as a two-dimensional dynamical system⎧⎪⎨⎪⎩

dx1
dt

= x2

dx2
dt

= − g

L
sin(x1)

(19)
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Figure 2: Sketch of a pendulum. The pendulum is assumed to have no friction, i.e., the only external force
acting on the point mass m is gravity.

The “potential energy” corresponding to the force F (x) = − g

L
sin(x1) is (modulus an arbitrary con-

stant)

V (x1) = − g

L
cos(x1). (20)

Multiplying the second equation in (19) by x2 we obtain

x2
dx2
dt

=
g

L

d cos(x1)

dt
⇒ d

dt

[
x22
2
− g

L
cos(x1)

]
= 0 (21)

Therefore the following quantity (total energy)

E(x1, x2) =
1

2
x22 −

g

L
cos(x1) (22)

is preserved along any trajectory of the system (19). This implies that the trajectories of the pendulum
in the phase space (x1, x2) (cylindrical phase space) are level sets of (22) (see Figure 3). As before the
gradient of E(x1, x2) satisfies the orthogonality condition (4).

Dynamics of a point mass in three-dimensional space. Consider Newton’s second law

m
d2x

dt2
= F (x) (23)

describing the dynamics of a point mass m subject to the external force F (x). Such force depends only on
the position of the particle, and it could be due to gravity, electromagnetic fields, etc. If the force F (x)
is conservative (see Appendix A for a review of conservative vector fields), then there exists a potential
energy V (x) such that

F (x) = −∇V (x). (24)

This allows us to write equation (23) as

m
d2x

dt2
= −∇V (x). (25)

By taking the scalar (dot) product of the vector equation (23) by dx/dt we obtain

m
dx

dt
· d

2x

dt2
= m

(
dx1
dt

d2x1
dt2

+
dx2
dt

d2x2
dt2

+
dx3
dt

d2x3
dt2

)
= −dx1

dt

∂V

∂x1
− dx2

dt

∂V

∂x2
− dx3

dt

∂V

∂x3
, (26)
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Figure 3: Nonlinear pendulum (18) for g = 9.8 m/s2, and L = 0.5 m. Shown are the energy function (22)
and some of its level sets. Such level sets are trajectories of the system (18). This means that we can
construct the phase portrait of the system by taking sections of the energy function and projecting the
corresponding level sets onto the (x1, x2) plane. The pendulum has two fixed points repeating periodically
(with period 2π): a saddle node at (x1, x2) = (π, 0) and a center at (x1, x2) = (0, 0).

i.e.,
d

dt

(
1

2
m ‖ẋ‖2 + V (x)

)
= 0. (27)

Once again, the total energy (sum of kinetic and potential energy)

E(x, ẋ) =
1

2
m ‖ẋ‖22 + V (x) (28)

is conserved along trajectories if F (x) in (23) is a potential vector field.

Dynamics of a point mass on a surface. Consider a point mass moving without friction on a surface
S(x1, x2) under the effect of gravity (Figure 4). The coordinates of the point mass in the three dimensional
space are

(x1(t), x2(t), S(x1(t), x2(t))) . (29)

This implies that the velocity v(t) of the particle on the surface can be expressed as

v(t) =

(
ẋ1(t), ẋ2(t),

∂S(x1(t), x2(t))

∂x1
ẋ1(t) +

∂S(x1(t), x2(t))

∂x2
ẋ2(t)

)
(30)

Hence, the kinetic energy of the particle is

T (ẋ1, ẋ2, x1, x2) =
1

2
m

[
ẋ21 + ẋ22 +

(
∂S(x1, x2)

∂x1
ẋ1 +

∂S(x1, x2)

∂x2
ẋ2

)2
]

1

2
m

[
ẋ21

(
1 +

∂S(x1, x2)

∂x1

)
+ ẋ22

(
1 +

∂S(x1, x2)

∂x2

)
+ 2ẋ1ẋ2

∂S(x1, x2)

∂x1

∂S(x1, x2)

∂x1

]
.

(31)

On the other hand, the potential energy due to gravity is

V (x1, x2) = mgS(x1, x2). (32)
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Figure 4: Dynamics of a point mass on a surface S(x1, x2) under the effect of the gravity.

Figure 5: Sketch of a double pendulum. Gravity acts on both masses. There is also an interaction between
m1 and m2 through the rod of length L2.

The total energy of the system is

E(ẋ1, ẋ2, x1, x2) = T (ẋ1, ẋ2, x1, x2) + V (x1, x2), (33)

where T and V are given in (31) and (32). Since there is no friction E(ẋ1, ẋ2, x1, x2) is conserved along
trajectories, i.e., the system is conservative. Hence, the trajectories are level sets of E(ẋ1, ẋ2, x1, x2). In
other words, the relation between the coordinates (x1, x2) and velocity (ẋ1, ẋ2) of the point mass m is fully
determined by the level sets of E(ẋ1, ẋ2, x1, x2). The value of the level set depends on the initial condition
of the particle (position and velocity). In the case where the surface S is a sphere, this system is called
spherical pendulum. In the next course note on Lagrangian and Hamiltonian dynamics we will see how to
derive the equations of motion for this system.

Double pendulum. Consider the double pendulum sketched in Figure 5 We can can express the position
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of the point masses m1 and m2 relative to the coordinate system (x, y) as{
x1 = L1 sin(θ1)

y1 = L1 cos(θ1)

{
x2 = x1 + L2 sin(θ2)

y2 = y1 + L2 cos(θ1)
(34)

The total potential energy is the sum of the potential gravitational energies of both masses

V (θ1, θ2) = (m1 +m2)gL1 (1− cos(θ1)) +m2gL2 (1− cos(θ2)) . (35)

On the other hand, the kinetic energy is

T (θ1, θ2, θ̇1, θ̇2) =
1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
m2

(
ẋ22 + ẏ22

)
=
1

2
m1L

2
1θ̇

2
1 +

1

2
m2

(
L2
1θ̇

2
1 + L2

2θ̇
2
2 + 2L1L2θ̇

2
1 θ̇

2
2 cos(θ1 − θ2)

)
. (36)

Note that the kinetic energy is a quadratic form in θ̇1 and θ̇2. In this case, the total energy of the system
can be written as

E(θ1, θ2, θ̇1, θ̇2) =T (θ1, θ2, θ̇1, θ̇2) + V (θ1, θ2)

=
1

2
m1L

2
1θ̇

2
1 +

1

2
m2

(
L2
1θ̇

2
1 + L2

2θ̇
2
2 + 2L1L2θ̇

2
1 θ̇

2
2 cos(θ1 − θ2)

)
+

(m1 +m2)gL1 (1− cos(θ1)) +m2gL2 (1− cos(θ2)) . (37)

Remarkably, the trajectories of the double pendulum can be chaotic. Yet, they are level sets of the four-
dimensional energy function (37). In the next course note on Lagrangian and Hamiltonian dynamics we
will see how to derive the equations of motion for this system.

Properties of conservative systems. Trajectories of conservative systems are level sets of some energy
function E(x) (see Equation (2)). Based on this observation it is straightforward to prove the following
properties

• Relative maxima and relative minima of the energy function E(x) are fixed points of the system.
Moreover, trajectories nearby such fixed points are necessarily closed. In two dimensions maxima and
minima of the energy function E(x) are centers (see Figure 1 and Figure 3). In higher dimensions
such local maxima and minima define a closed trajectory on a high-dimensional torus.

• Conservative systems cannot have attractors or repellors. This includes stable/unstable nodes, spi-
rals, limit cycles, and any other attracting or repelling set (e.g., fractal attractors).

• Saddle nodes in 2D conservative system are saddle points of the energy function. This is clearly
demonstrated in Figure 1 and Figure 3.

Gradient systems. We say that the n-dimensional dynamical system (1) is a gradient system if it can
be written as

dx

dt
= −∇V (x). (38)

In other words, a gradient system is a first-order dynamical system in which the vector field f(x) is
conservative3 (see Appendix A for a review of conservative vector fields). The function V (x) in (38) is
called potential energy of f(x). Note that V (x) is the opposite of the potential function ϕ(x) discussed

3It is important to distinguish second-order dynamical systems with potential forces (e.g., (25)) from first-order gradient
system of the form (38). Gradient systems are, in general, not conservative.
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Figure 6: Geometric meaning of the gradient −∇V (x1, x2).

in Appendix A. To check if a dynamical system is a gradient system, we simply need to check if f(x) is
conservative (conditions given in Appendix A).

As shown in Figure 6, the vector −∇V (x) is orthogonal to the level set of V (x) passing through x, and
it points in the direction where V (x) decreases the most. To prove orthogonality, consider a point x and
parameterize the level set V (x) via a curve s(λ) such that s(0) = x (λ is the parameter of the curve). By
expanding s(λ) in a Taylor series at λ = 0 yields

s(λ) = s(0) +
ds(0)

dλ
λ+ · · · (39)

Evaluate V (x) along the curve (39) to obtain

V (s(λ)) = V (s(0)) +∇V (s(0)) · ds(0)
dλ

λ+ · · · ⇒ ∇V (x) · ds(0)
dλ

= 0. (40)

This implies that ∇V (x) ⊥ ds(0)/dλ, i.e., that ∇V (x) is orthogonal to the level set of V (x) passing
through x. To see why, simply recall that the vector ds(0)/dλ is tangent to the curve s(λ) at s(0) = x.
On the other hand, trajectories of conservative systems are level sets of some energy function.

Gradient system arise very often in optimization theory, e.g., when computing the (relative) minimum of
a function V (x). In this context, (38) represents a continuous version of the so-called gradient descent
scheme, in which the relative minimum of a cost function V (x) is computed iteratively via

xk+1 = xk − γ∇V (xk), (41)

where γ > 0 is a real number called “learning rate”.

Clearly, the critical points of V (x), i.e., maxima, minima, saddles, and any other point x∗ satisfying

∇V (x∗) = 0

are fixed points of the system (38). Moreover, V (x) decreases monotonically along trajectories of the
system (38) (recall that ∇V is orthogonal to the level sets of V ). This can be also shown by a direct
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(a) (b) (c)

Figure 7: Gradient systems cannot have limit cycles (a), homoclinic orbits (b), or heteroclinic cycles (c).

calculation,

V (x(t2)) =V (x(t1)) +

∫ t2

t1

dV (x(t))

dt
dt t2 ≥ t1

=V (x(t1)) +

∫ t2

t1

∇V (x(t)) · dx(s)
dt

dt

=V (x(t1))−
∫ t2

t1

∇V (x(t)) · ∇V (x(t))dt

=V (x(t1))−
∫ t2

t1

‖∇V (x(t))‖22 dt

≤V (x(t1)), (42)

where the equality sign holds if and only if ‖∇V (x(t))‖2 = 0, i.e., only at fixed points of (38). Equation
(42) rules out the possibility of any closed orbit in gradient systems, including limit cycles, homoclinic
orbits, and heteroclinic cycles (see Figure 7).

The Jacobian matrix of a gradient system is necessarily symmetric (see Eq. (44)). Therefore it can only
have real eigenvalues. This implies that the flow of a gradient system nearby a hyperbolic fixed points
cannot have any rotating component due to complex conjugate eigenvalues, i.e., no spirals. In other words,
hyperbolic fixed points of gradient systems can only be sources, sinks, or saddle nodes!

Appendix A: Conservative vector fields

Let F (x) be a continuously differentiable vector field defined in a simply connected domain4 D ⊆ R
n. We

say that F (x) is conservative if it can be written as a gradient of some function ϕ : D ⊆ R
n → R, i.e.,

F (x) = ∇ϕ(x). (43)

There are several equivalent conditions that characterize conservative vector fields in a simply connected
domain:

a) The Jacobian of F (x) is symmetric, i.e.,

∂Fi(x)

∂xj
=

∂Fj(x)

∂xi
for all x ∈ D and for all i, j = 1, . . . , n. (44)

In two and three dimensions this condition is equivalent to the well known condition expressing the
fact that F (x) is “irrotational” or curl-free.

4A domain D ⊆ R
n is called simply connected if any closed curve in D can be shrunk to a point without getting out of D.
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Figure 8: Sketch of a simply connected domain D ⊆ R
n. Shown are two points x0,x1 ∈ D, a path s(λ)

connecting x0 = s(0) to x1 = s(1) the vector field F (x) along the path, and the velocity vector ds(λ)/dλ.
If F (x) is conservative, then the line integral (45) does not depend on the path connecting x0 to x1.

b) The line integral of F (x) along a smooth curve s(λ) in D connecting two arbitrary points x0,x1 ∈ D

ϕ(x1) = ϕ(x0) +

∫ 1

0
F (s(λ)) · ds(λ)

dλ
dλ (45)

does not depend on the path connecting x0 to x1 (see Figure 8).

c) The line integral of F (x) along any smooth closed curve5 s(λ) is zero, i.e.,∫ 1

0
F (s(λ)) · ds(λ)

dλ
dλ = 0 (46)

This follows immediately from (46) if we set x1 = x0.

It can be shown that (43), (44), and path independence of (45) all imply each other. For example, if the
symmetry condition (44) is satisfied for all x ∈ D (D simply connected) then there exists a potential ϕ(x)
satisfying (43).

The potential ϕ(x) can be determined by computing the line integral (45) along any path connecting two
points in D. In particular, if D is convex we can consider a simple line as a path

s(λ) = (1− λ)x0 + λx1 λ ∈ [0, 1]. (47)

Example: Consider the two dimensional vector field F (x) = (F1(x1, x2), F2(x1, x2)) where

F1(x1, x2) = 2x1x2, F2(x1, x2) = x21. (48)

It is straightforward to show that F (x) conservative. In fact, the Jacobain of F is symmetric for all
x ∈ R

2

∂F1(x1, x2)

∂x2
= 2x1 =

∂F2(x1, x2)

∂x1
. (49)

Therefore the symmetry condition (44) is satisfied. To compute a potential ϕ(x) consider a line (47)
connecting an arbitrary point x to the origin, i.e.,

s(λ) = λx
ds(λ)

dλ
= x. (50)

5A closed curve satisfies x0 = s(0) = s(1) = x1.
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We are free to choose any curve we like to evaluate the integral (45) (we already know that the vector field
is conservative). We have,

ϕ(x) =ϕ(0) +

∫ 1

0
F (s(λ)) · ds(λ)

dλ
dλ

=ϕ(0) +

∫ 1

0
F (λx) · xdλ

=ϕ(0) +

∫ 1

0

(
2λ2x21x2 + λ2x21x2

)
dλ

=ϕ(0) + x21x2. (51)

The additive constant ϕ(0) does not change the gradient representing F (x) in (43). Therefore we can set
it to zero. This yields the potential

ϕ(x) = x21x2. (52)

Let us verify that the gradient of (52) coincides with F (x). We have

ϕ(x) =

(
∂ϕ

∂x1
,
∂ϕ

∂x2

)
. (53)

yields the vector field (48). We have,

∂ϕ

∂x1
=2x1x2 (same as F1(x1, x2)),

∂ϕ

∂x2
=x21 (same as F2(x1, x2)).

Path invariance implies symmetry of the Jacobian. It is instructive to show how (44) follows
directly from (45). To this end, consider a point x and its infinitesimal neighborhood. All points in such
neighborhood can be connected via two straight lines as follows

By imposing that the line integral of F (x) along the paths A and B above are identical we obtain6

εF (x) · η + νF (x+ εη) · ξ = νF (x) · ξ + εF (x+ νξ) · ξ. (56)

6Note that along the infinitesimal path (line) s(ε) = x+ εη∫ ε

0

F (s(ε)) · ds(ε)
dε

dε = εF (x) · η. (54)

Similarly, along the path s(ν) = x+ εη + νξ∫ ν

0

F (s(ν)) · ds(ν)
dν

dν = νF (x+ εη) · ξ. (55)

Page 11



AM 114/214 Prof. Daniele Venturi

This equation can be simplified further by expanding F (x + εη) and F (x + νξ) in a first-order Taylor
series, i.e.,

F (x+ εη) F (x) + εJF (x)η,

F (x+ νξ) F (x) + εJF (x)ν. (57)

A substitution of these expansions into (56) yields

[JF (x)η] · ξ = [JF (x)ξ] · η. (58)

This condition implies (for ξ and η arbitrary) that the Jacobian of F (x) must be a symmetric matrix at
x.
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Lagrangian and Hamiltonian dynamics

In this course note we provide a brief introduction to Lagrangian and Hamiltonian dynamics, and show
some applications. To this end, we consider a system with configuration described by n generalized coor-
dinates

q(t) = (q1(t), q2(t), . . . , qn(t)) , (1)

and corresponding generalized velocities

q̇(t) = (q̇1(t), q̇2(t), . . . , q̇n(t)) . (2)

The generalized coordinates q(t) can be any set of independent variables, e.g., angles and displacements,
that uniquely identify the configuration of the system. The state system is 2n-dimensional and defined by
the pair (q, q̇)

Kinetic energy, potential energy, and total energy. We consider dynamical systems in which the
kinetic energy can be written as

T (q, q̇, t) =
1

2

n∑
i,j=1

aij(q, t)q̇iq̇j +

n∑
i=1

bi(q, t)q̇i + c(q, t), (3)

where aij(q, t) is a symmetric, positive-definite matrix1 for all q and t. We will see examples of systems
with kinetic in the form (3) later in this note. Furthermore we assume that the potential energy V (q, t)
depends only on the configuration variables q and eventually time. The total energy of the system can be
written as

E (q, q̇, t) = T (q, q̇, t) + V (q, t) . (4)

Note that due to the time dependence, the total energy E (q, q̇, t) may not be conserved in time, i.e., the
system may not be conservative. On the other hand, if E (q, q̇, t) does not depend on time then E is a
conserved quantity.

Lagrangian function and the principle of stationary action. Define the Lagrangian function

L(q, q̇, t) = T (q, q̇, t)− V (q, t) , (5)

and the action functional

A ([q]) =

∫ t2

t1

L (q(t), q̇(t), t) dt. (6)

The Lagrangian function contains all physical information concerning the system and the forces acting on
it. Remarkably, the differential equations governing the dynamics of the system can be derived based on
the knowledge of the Lagrangian (5) and the following principle.

• Principle of stationary action (Hamilton’s principle): The dynamics of a nonlinear dynamical
system with Lagrangian function (5) makes the action (6) stationary relative to all possible paths
q(t) connecting two given admissible configurations q(t1) to q(t2).

The basic idea of Hamilton’s principle is sketched in Figure 1, and it can be expressed mathematically
as

δA ([q]) = A ([q + εη])−A ([q]) = 0, (7)

for arbitrary perturbations η(t) satisfying

η(t1) = η(t2) = 0. (8)
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Figure 1: Sketch of the configuration space Γ and two paths connecting two admissible configurations q(t0)
and q(t1). The path taken by the system makes the action (6) stationary (i.e., δA ([q]) = 0) relative to
arbitrary small perturbations εη(t) satisfying η(t1) = η(t2) = 0.

The quantity δA is the called first variation of the functional A ([q]) at q(t).

Euler-Lagrange equations. Using elementary calculus of variations applied to the action functional (6),
it is possible to derive the equations of motion of a nonlinear system just based on the specification of the
Lagrangian function (5). This makes the process of deriving such equations very straightforward, and it
allows us to proceed in those cases where physical intuition may be difficult to apply. To this end, consider
perturbed trajectory

q̃(t) = q(t) + εη(t) (9)

where η(t) is an arbitrary function satisfying the conditions η(t1) = η(t2) = 0, so that each path q̃(t) has
the same endpoints. By evaluating the action functional (6) at q(t) + εη(t) we obtain

A ([q + εη]) =

∫ t2

t1

L(q(t) + εη(t), q̇(t) + εη̇(t), t)dt. (10)

The Hamilton’s principle can be formulated mathematically as2

dA[q + εη]

dε

∣∣∣∣
ε=0

=
d

dε

[∫ t2

t1

L(q(t) + εη(t), q̇(t) + εη̇(t), t)dt

]
ε=0

= 0. (12)

Developing the derivatives and evaluating everything at ε = 0 yields∫ t2

t1

n∑
i=1

[
∂L(q(t), q̇(t), t)

∂qi
ηi(t) +

∂L(q(t), q̇(t), t)
∂q̇i

η̇i(t)

]
dt = 0. (13)

By using integration by parts and recalling that the boundary conditions for η(t1) = η(t1) = 0 are zero
we can write∫ t2

t1

∂L(q(t), q̇(t), t)
∂q̇i

η̇i(t)dt =

[
∂L(q(t), q̇(t), t)

∂q̇i
ηi(t)

]t2
t1︸ ︷︷ ︸

=0

−
∫ t2

t1

d

dt

∂L(q(t), q̇(t), t)
∂q̇i

ηi(t)dt. (14)

1Recall that positive-definite matrices have strictly positive eigenvalues and therefore they are necessarily invertible.
2Note that to first order in ε we have

δA([q]) = ε
dA[q + εη]

dε

∣∣∣∣
ε=0

. (11)

Hence (12) is equivalent to (7).

Page 2



AM 114/214 Prof. Daniele Venturi

Figure 2: Dynamics of a point mass in 3D under the action of a conservative vector field F (x).

Substituting this back into (13) yields∫ t2

t1

n∑
i=1

[
∂L(q(t), q̇(t), t)

∂qi
− d

dt

∂L(q(t), q̇(t), t)
∂q̇i

]
ηi(t)dt = 0. (15)

Finally, recalling that ηi(t) is arbitrary we obtain the Euler-Lagrange equations

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 i = 1, . . . , n. (16)

This is a system of n second-order nonlinear ODEs. The system is not necessarily in a normal form3.

Dynamics of a point mass in three-dimensional space. Consider the dynamics of a point mass m
subject to conservative vector field F (x) = −∇V (x). Let

x(t) = (x1(t), x2(t), x3(t)), (18)

be the coordinates of the particle relative to a Cartesian coordinate system (see Figure 2). Such coordinates
identify the configuration of the system, i.e., they are the variables q(t) of this problem. The Lagrangian
for this system is

L(x, ẋ) = 1

2
m

(
ẋ21 + ẋ22 + ẋ23

)
︸ ︷︷ ︸

kinetic energy

−V (x) (19)

Differentiating the Lagrangian with respect to xi and ẋi

∂L
∂ẋi

= mẋi,
∂L
∂xi

= −∂V

∂xi
i = 1, 2, 3 (20)

and substituting these expressions into the Euler-Lagrange equations (16) yields

d

dt

(
∂L
∂ẋi

)
=

∂L
∂xi

⇒ m
d2xi
dt2

= −∂V

∂xi
= Fi(x). (21)

Hence, the Hamilton’s principle and the corresponding Euler-Lagrange equations for the Lagrangian (19)
are completely equivalent to the Netwton’s equations of motion in this case.

3A system of second-order differential equations is said to be in a normal form if the second derivatives can be expressed
explicitly as

ẍ = g(ẋ,x, t). (17)
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Figure 3: Sketch of a simple pendulum. The pendulum is assumed to have no friction, i.e., the only external
force acting on the point mass m is gravity.

Nonlinear pendulum. Consider the pendulum sketched in Figure 3. The configuration variable is
q(t) = θ(t), while the state of the system is specified by (q, q̇) = (θ, θ̇). The kinetic energy of the pendulum
is

T (θ̇) =
1

2
mv2 =

1

2
mL2θ̇2 (22)

while the potential energy relative to the vertical position is

V (θ) = mgL (1− cos(θ)) = −mgL cos(θ) + C, (23)

where C is a constant. Hence, the Lagrangian for the pendulum is

L(θ, θ̇) = 1

2
mL2θ̇2 −mgL (1− cos(θ)) . (24)

Differentiating the Lagrangian with respect to θ̇ and θ

∂L
∂θ̇

= mL2θ̇,
∂L
∂θ

= −mgL sin(θ) (25)

and substituting the derivatives into the Euler-Lagrange equations (16) yields

d

dt

(
∂L
∂θ̇

)
=

∂L
∂θ

⇒ θ̈ = − g

L
sin(θ), (26)

i.e., we obtain the differential equation of motion governing the dynamics of the pendulum.

Double pendulum. Consider the double pendulum sketched in Figure 4 We choose the configuration
variables to be (θ1(t), θ2(t)). We have seen in the course note 6 that the potential energy and the kinetic
potential energy for this system can be written as

V (θ1, θ2) = −(m1 +m2) cos(θ1)−m2gL2 cos(θ2). (27)

On the other hand, the kinetic energy is

T (θ1, θ2, θ̇1, θ̇2) =
1

2
(m1 +m2)L

2
1θ̇

2
1 +

1

2
m2L

2
2θ̇

2
2 +m2L1L2θ̇1θ̇2 cos(θ1 − θ2). (28)
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Figure 4: Sketch of a double pendulum. Gravity acts on both masses. There is also an interaction between
m1 and m2 through the rod of length L2.

Hence, the Lagrangian function for this system is

L(θ1, θ2, θ̇1, θ̇2) =1

2
(m1 +m2)L

2
1θ̇

2
1 +

1

2
m2L

2
2θ̇

2
2 +m2L1L2θ̇1θ̇2 cos(θ1 − θ2)+

(m1 +m2) cos(θ1) +m2gL2 cos(θ2), (29)

while the Euler Lagrange equations (16) take the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

dt

(
∂L
∂θ̇1

)
=

∂L
∂θ1

,

d

dt

(
∂L
∂θ̇2

)
=

∂L
∂θ2

.

(30)

A rather lengthy calculation of all derivatives in (30) yields the system

θ̈1 + a1(θ1, θ2)θ̈2 =b1

(
θ1, θ2, θ̇1, θ̇2

)
, (31)

θ̈2 + a2(θ1, θ2)θ̈1 =b2

(
θ1, θ2, θ̇1, θ̇2

)
, (32)

where

a1(θ1, θ2) =
L2

L1

(
m2

m1 +m2

)
cos(θ1 − θ2), (33)

a2(θ1, θ2) =
L1

L2
cos(θ1 − θ2), (34)

and

b1

(
θ1, θ2, θ̇1, θ̇2

)
=− L2

L1

(
m2

m1 +m2

)
θ̇21 sin(θ1 − θ2)− g

L1
sin(θ1), (35)

b2

(
θ1, θ2, θ̇1, θ̇2

)
=
L1

L2
θ̇21 sin(θ1 − θ2)− g

L2
sin(θ2). (36)

Note that the system (31)-(32) can be written in a matrix-vector form as[
1 a1(θ1, θ2)

a2(θ1, θ2) 1

] [
θ̈1
θ̈2

]
=

[
b1(θ1, θ2, θ̇1, θ̇2)

b2(θ1, θ2, θ̇1, θ̇2)

]
. (37)
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Note that the system (37) is not in a normal form, but it can be transformed to a normal form by inverting
the matrix multiplying (θ̈1, θ̈2) at left hand side of (37), i.e.,[

1 a1(θ1, θ2)
a2(θ1, θ2) 1

]
. (38)

Such matrix is invertible since

det

([
1 a1(θ1, θ2)

a2(θ1, θ2) 1

])
= 1− a1(θ1, θ2)a2(θ1, θ2) = 1−

(
m2

m1 +m2

)
cos2(θ1 − θ2) > 0. (39)

Hamiltonian dynamics. Consider the Lagrangian function (5) and define the canonical momenta

pi =
∂L
∂q̇i

i = 1, . . . , n. (40)

A substitution of the Lagrangian (5) into (40) yields

pi =
n∑

j=1

aij(q, t)q̇j + bi(q, t). (41)

The matrix aij(q, t) is, by hypothesis, symmetric and positive definite. Therefore it is always invertible.
This implies that the linear system⎡⎢⎣a11(q, t) · · · a1n(q, t)

...
. . .

...
an1(q, t) · · · ann(q, t)

⎤⎥⎦
︸ ︷︷ ︸

A(q,t)

⎡⎢⎣q̇1...
q̇n

⎤⎥⎦
︸ ︷︷ ︸

q̇

=

⎡⎢⎣p1 − b1(q, t)
...

pn − bn(q, t)

⎤⎥⎦
︸ ︷︷ ︸

p−b(q,t)

(42)

can be uniquely solved for q̇. In other words, we can uniquely express the generalized velocities q̇(t)
as a function of the canonical momenta p(t), and vice versa. This transformation is called Legendre
transformation and it is written explicitly as

q̇ = A−1(q, t) [p− b(q, t)] . (43)

Next we define the Hamilton’s function (or Hamiltonian)

H(q, q̇, t) =
n∑

i=1

∂L(q, q̇, t)
∂q̇i︸ ︷︷ ︸

pi(q,q̇,t)

q̇i − L(q, q̇, t). (44)

Clearly, by using the Legendre transformation (43) it is possible to write the Hamilton’s function as a
function of p, q, and t. Hereafter we provide two fundamental theorems of Hamiltonian dynamics.

Theorem 1 (Hamilton’s equations). Consider a nonlinear system with Lagrangian (5) and Hamiltonian
(44). The dynamics of the system is governed by the following system of 2n first-order ordinary differential
equations in a normal form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

q̇i =
∂H(p, q, t)

∂pi
,

ṗi = −∂H(p, q, t)

∂qi
.

(45)
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Figure 5: Sketch of an elastic pendulum. The spring can be compressed or extended and it generates a
force F (x) = −κx, where κ is the elastic constant of the spring.

Theorem 2 (Conservative systems). If the Lagrangian (5) does not explicitly depend on time t, then the
Hamiltonian (44) is conserved along trajectories of the system. In other words, every system described
by a time-independent Lagrangian is conservative4, and its trajectories are level sets of the Hamiltonian
H(p, q). Note that the Hamiltonian coincides with the total energy of the system.

The proofs of Theorem 1 and Theorem 2 are given in Appendix A. Note that Hamilton’s equations are
always in a normal form. This means that they are always in a form that can be easily integrated numeri-
cally.

Symplectic geometry. The geometric properties of vector fields associated with Hamiltonian dynamical
systems are extremely interesting from a mathematical viewpoint. Indeed, they ended up generating a
new research field in mathematics called symplectic geometry. Symplectic geometry has its origins in the
Hamiltonian formulation of classical mechanics where the phase space of classical systems takes on the
structure of a symplectic manifold. It can be shown that Hamiltonian dynamics (both conservative and
non-conservative) is always volume-preserving in the phase space. This implies that Hamiltonian systems,
whether they are conservative or not, cannot have attractors or repellors.

Hamiltonian formulation of the elastic pendulum. Consider the elastic pendulum sketched in Figure
5. The configuration space is two-dimensional and defined by the variables x(t) and θ(t). Hence the phase
space is four-dimensional. The kinetic and the potential energy for for this system are, respectively,

T =
1

2
m

(
ẋ2 + (L+ x)2θ̇2

)
, (46)

V =−mg(L+ x) cos(θ) +
1

2
κx2, (47)

where κ is the spring elasticity constant. Hence the Lagrangian L = T − V is

L(x, θ, ẋ, θ̇) = 1

2
m

(
ẋ2 + (L+ x)2θ̇2

)
+mg(L+ x) cos(θ)− 1

2
κx2. (48)

The canonical momenta (40) are

px =
∂L
∂ẋ

= mẋ, (49)

pθ =
∂L
∂θ̇

= m(L+ x)2θ̇. (50)

4We proved this result using Nöether’s theorem (Eq. 94), as well as a direct calculation (Appendix A).
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Figure 6: Numerical simulation of the elastic pendulum shown in Figure 5 with mass m1 = 3.5 kg, length at
rest L = 0.5 m, and spring constant κ = 50 N/m. The solution is computed by integrating the Hamilton’s
equations (53) numerically with RK4.

In this case the Legendre transformation (43) is trivial. The Hamiltonian (44) can be written as

H =
∂L
∂ẋ

ẋ+
∂L
∂θ̇

θ̇ − L(x, θ, ẋ, θ̇). (51)

This can be written in terms of the canonical variables px, pθ, x and θ as

H =
p2x
m

+
p2θ

m(L+ x)2
− 1

2

(
p2x
m2

+ (L+ x)2
p2θ

m2(L+ x)4

)
−mg(L+ x) cos(θ)

1

2
κx

=
p2x
2m

+
p2θ

2m(L+ x)2
−mg(L+ x) cos(θ) +

1

2
κx2. (52)

This yields the following system Hamilton’s equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =
∂H
∂px

=
px
m

,

θ̇ =
∂H
∂pθ

=
pθ

m(L+ x)2
,

ṗx = −∂H
∂x

=
p2θ

m(L+ x)3
+mg cos(θ)− κx,

ṗθ = −∂H
∂θ

= −mg(L+ x) sin(θ).

(53)

The spring-mass pendulum can exhibit chaotic behavior. The nonlinear system of equations (53) is solved
numerically in Figure 6. .

Hamiltonian formulation of the double pendulum. Consider the double pendulum sketched in
Figure 4. The Lagrangian is given in (29) and it is hereafter rewritten for convenience

L(θ1, θ2, θ̇1, θ̇2) =1

2
(m1 +m2)L

2
1θ̇

2
1 +

1

2
m2L

2
2θ̇

2
2 +m2L1L2θ̇1θ̇2 cos(θ1 − θ2)+

(m1 +m2) cos(θ1) +m2gL2 cos(θ2). (54)
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Figure 7: Numerical simulation of a double pendulum with masses m1 = 4 kg, m2 = 2 kg and lengths
L1 = 1 m, L2 = 0.5 m. The solution is computed by integrating the Hamilton’s equations (62)-(??)
numerically with RK4.

The canonical momenta (40) are

pθ1 =
∂L
∂θ̇1

= (m1 +m2)L
2
1θ̇1 +m2L1L2θ̇2 cos(θ1 − θ2), (55)

pθ2 =
∂L
∂θ̇2

= m2L
2
2θ̇2 +m2L1L2θ̇1 cos(θ1 − θ2). (56)

This linear system can be written as[
(m1 +m2)L

2
1 m2L1L2 cos(θ2 − θ1)

m2L1L2 cos(θ2 − θ1) m2L
2
2

]
︸ ︷︷ ︸

A(θ1,θ2)

[
θ̇1
θ̇2

]
=

[
pθ1
pθ2

]
. (57)

The matrix A(θ1, θ2) is symmetric and positive definite. Therefore it can be inverted to obtain (see Eq.
(43))

θ̇1 =
L2pθ1 − L1pθ2 cos(θ1 − θ2)

L2L2
1

(
m1 +m2 sin

2(θ1 − θ2)
) , (58)

θ̇2 =
−m2L2pθ1 cos(θ1 − θ2) + (m1 +m2)L1pθ2

m2L1L2
2

(
m1 +m2 sin

2(θ1 − θ2)
) . (59)

The Hamilton’s function (44) for this system is

H =
∂L
∂θ̇1

θ̇1 +
∂L
∂θ̇2

θ̇2 − L(θ1, θ2, θ̇1, θ̇1). (60)

A substitution of (54)-(56) and (58)-(59) into (60) yields

H(pθ1 , pθ2 , θ1, θ2) =
m2L

2
2p

2
θ1

+ (m1 +m2)L
2
1p

2
θ2
− 2m2L1L2pθ1pθ2 cos(θ1 − θ2)

2m2L2
1L

2
2

(
m1 +m2 sin

2(θ1 − θ2)
) −

(m1 +m2)gL1 cos(θ1)−m2gL2 cos(θ2). (61)
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Hence, the Hamilton’s equations of motion are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇1 =
∂H
∂pθ1

=
L2pθ1 − L1pθ2 cos(θ1 − θ2)

L2L2
1

(
m1 +m2 sin

2(θ1 − θ2)
) ,

θ̇2 =
∂H
∂pθ2

=
−m2L2pθ1 cos(θ1 − θ2) + (m1 +m2)L1pθ2

m2L1L2
2

(
m1 +m2 sin

2(θ1 − θ2)
) ,

ṗθ1 = −∂H
∂θ1

= −(m1 +m2)gL1 sin(θ1)− α(pθ1 , pθ2 , θ1, θ2),

ṗθ2 = −∂H
∂θ2

= −m2gL2 sin(θ1) + α(pθ1 , pθ2 , θ1, θ2),

(62)

where

α(pθ1 , pθ2 , θ1, θ2) =
pθ1pθ2 sin(θ1 − θ2)

L1L2(m1 +m2 sin
2(θ1 − θ2))

−

sin(2(θ1 − θ2))
m2L

2
2p

2
θ1

+ (m1 +m2)L
1
1p

2
θ2
− 2m1L1L2pθ1pθ2 cos(θ1 − θ2)

2L2
1L

2
2(m1 +m2 sin

2(θ1 − θ2))
. (63)

The pendulum system can exhibit chaotic behavior. A numerical solution of Hamilton’s equations (62) is
shown in Figure 6.

Two-dimensional Hamiltonian systems. A two-dimensional Hamiltonian system can be written in
the form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx1
dt

=
∂H(x1, x2)

∂x2

dx1
dt

= −∂H(x1, x2)

∂x1

(64)

Hence, given a vector field f(x1, x2), if we can find a function H(x1, x2) such that

f1(x1, x2) =
∂H(x1, x2)

∂x2
f2(x1, x2) = −∂H(x1, x2)

∂x1
(65)

then we can immediately conclude that the system is conservative. In fact,

dH(x1(t), x2(t))

dt
=
∂H
∂x1

ẋ1 +
∂H
∂x2

ẋ2

=
∂H
∂x1

∂H
∂x2

− ∂H
∂x2

∂H
∂x1

=0. (66)

Note also that the vector field f(x1, x2) in (65) is divergence-free, i.e.,

∇ · f(x1, x2) = ∂f1
∂x1

+
∂f2
∂x2

=
∂2H

∂x1∂x2
− ∂2H

∂x1∂x2
. (67)

Therefore the flow gerated by (64) preserves volume in phase space. We emphasize that two-dimensional
divergence-free vector fields are necessarily Hamiltonian and therefore conservative.

However, conservative systems are not necessarily Hamiltonian, nor volume preserving. It is rather straight-
forward indeed to manufacture systems that conserve specific quantities but are not Hamiltonian. As an
example, consider the function

E(x1, x2) = x21x2 + x2. (68)
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A two-dimensional dynamical systems conserves E(x1, x2) along a trajectory if an only if

∂E

∂x1
ẋ1 +

∂E

∂x2
ẋ2 = 0. (69)

Substituting equation (68) into (69) yields

2x1x2ẋ1 + (x21 + 1)ẋ2 = 0. (70)

At this point it is clear that the system ⎧⎪⎪⎨⎪⎪⎩
ẋ1 = −x22

ẋ2 =
2x1x

3
2

x21 + 1

(71)

conserves (68) along any trajectory (and therefore it is a conservative system), but it is not divergence-free
nor Hamiltonian. Moreover, it is clear that there exits an infinite number of dynamical systems conserving
(68). Another one is ⎧⎪⎪⎨⎪⎪⎩

ẋ1 = − sin(x2)

ẋ2 =
2x1x2 sin(x2)

x21 + 1

(72)

which clearly satisfies condition (70).
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Appendix A: Derivation of the Hamilton’s equations

The differential of the Hamilton’s function H(p, q, t) can be written as

dH(p, q, t) =

n∑
i=1

(
∂H
∂pi

dpi +
∂H
∂qi

dqi

)
+

∂H
∂t

dt. (73)

On the other hand, by using the definition (44) we obtain

dH(p, q, t) =

n∑
i=1

(
dpiq̇i + pidq̇i − ∂L

∂q̇i︸︷︷︸
pi

dq̇i − ∂L
∂qi

dqi

)
− ∂L

∂t
dt. (74)

Using the Euler-Lagrange equations (16) and the definition of canonical momenta (40) we have

∂L
∂qi

=
d

dt

(
∂L
∂q̇i

)
= ṗi. (75)

Setting the equality between (73) and (74), and taking into account (75) yields

n∑
i=1

[(
∂H
∂pi

− q̇i

)
dpi +

(
∂H
∂qi

+ ṗi

)
dq1

]
+

(
∂H
∂t

+
∂L
∂t

)
dt = 0. (76)

Assuming that dpi, dqi and dt are arbitrary, we obtain

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, and
∂H
∂t

= −∂L
∂t

, (77)

Which coincide with the Hamilton’s equations of motion (45).

Next, we prove that if the Lagrangian function does not depend explicitly on time then the Hamiltonian
is conserved along trajectories. To this end, we first notice that if L does not explicitly depend on time
then H does not explicitly dependent on time (by the last equation in (77)). Evaluating H(q, q̇) along a
trajectory of the system yields

H(q(t), q̇(t)) =
n∑

i=1

∂L(q(t), q̇(t)
∂q̇i

q̇i(t)− L(q(t), q̇(t)). (78)

Differentiating with respect to time yields

d

dt
H(q(t), q̇(t)) =

n∑
i=1

d

dt

(
∂L(q(t), q̇(t)

∂q̇i
q̇i(t)

)
− d

dt
L(q(t), q̇(t)). (79)

Note that

d

dt
L(q(t), q̇(t)) =

n∑
i=1

(
∂L(q(t), q̇(t))

∂qi
q̇i(t) +

∂L(q(t), q̇(t))
∂q̇i

q̈i(t)

)

=
n∑

i=1

(
d

dt

∂L(q(t), q̇(t))
∂q̇i

q̇i(t) +
∂L(q(t), q̇(t))

∂q̇i
q̈i(t)

)

=
n∑

i=1

d

dt

(
∂L(q(t), q̇(t))

∂q̇i
q̇i(t)

)
, (80)

where in the second equality we used the Euler-Lagrange equations (16). Substituting (80) into (79)
yields

d

dt
H(q(t), q̇(t)) = 0, (81)

which proves that the Hamiltonian is conserved along trajectories.
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Nöether’s theorem and conservation laws.

Any symmetry of the action functional (6), i.e., an invariance under a transformation group, is associated
with a conservation law for the system. This remarkable result was proved by Emmy Nöether in 1918.
To formalize Nöether’s theorem, let us consider one-parameter group of transformations generated by the
dynamical system ⎧⎪⎨⎪⎩

dQ(ε, q)

dε
= G (Q(ε, q))

Q(0, q) = q

(82)

where ε parameterizes the transformation. The vector field G generates the flow Q(ε, q). For small ε we
have the infinitesimal transformation

Q(ε, q) = q + εG(q). (83)

Setting up the condition for the action functional (6) to be invariant under the transformation group
(83)-(91) yields

A ([Q(ε, q)]) = A ([q]) . (84)

The first order condition that follows from (84) is

d

dε
A ([q + εQ(q)])|ε=0 = 0. (85)

This can be written as ∫ t2

t1

d

dε
L

(
q + εG(q), q̇ + ε

dG(q(t))

dt
, t

)∣∣∣∣
ε=0

dt = 0, (86)

i.e.,

0 =

∫ t2

t1

(
∂L
∂q
·G(q) +

∂L
∂q̇
· dG(q(t))

dt

)
dt

=

∫ t2

t1

(
∂L
∂q
·G(q)− d

dt

∂L
∂q̇
·G(q)

)
dt+

[
∂L
∂q̇
·G(q(t))

]t2
t1

=

∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
︸ ︷︷ ︸

=0 by Eq. (16)

·G(q)dt+

[
∂L
∂q̇
·G(q(t))

]t2
t1

=

[
∂L
∂q̇
·G(q(t))

]t2
t1

. (87)

This implies that the quantity

Λ =
∂L
∂q̇
·G(q) (88)

is a constant of motion for the system5, i.e., it is a conserved quantity. Such conserved quantities are also
called first integrals of the system.

5Note that (87) implies that

∂L (q(t2), q̇(t2), t2)

∂q̇
·G(q(t2)) =

∂L (q(t1), q̇(t1), t1)

∂q̇
·G(q(t1)) (89)

for arbitrary t1 and t2.
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More generally, it is possible to consider a transformation group that involves both the configuration
variables q, i.e., (83) as well as the time variable t via6

τ(ε, t) = t+ εT (t). (91)

The perturbed action functional in this case is

A ([q +G(q)]) =

∫ t2+εT (t2)

t1+εT (t1)
L

(
q + εG(q), q̇ + ε

dG(q(t))

dt
, t+ εT (t)

)
dt. (92)

By following the same steps that lead us to (87), i.e., by developing equation (85), it can be shown
that invariace of (92) under the transformation (83)-(91) is equivalent to conservation of the following
quantity

Λ =

(
∂L
∂q̇
· q̇ − L

)
T (t) +

∂L
∂q̇
·G(q). (93)

Energy conservation. If L does not depend explicitly on time, then of course L is invariant under the
time translation t→ t+ ε. Such a time translation is easily generated by setting T (t) = 1 in (91) and (93)
(together with G(q) = 0). Hence, if L does not depend explicitly on time then

H =

n∑
k=1

∂L(q, q̇)
∂q̇k

q̇k − L(q, q̇), (94)

is a constant of motion, i.e., it is conserved along trajectories of the system. The function H is called
Hamiltonian of the system.

6The infinitesimal time-warping transformation (91) is defined by the dynamical system

⎧⎪⎨
⎪⎩

dτ(ε, t)

dε
= T (τ(ε, t))

τ(0, t) = t

(90)
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Two dimensional nonlinear systems: global theory

We have seen that a great deal of quantitative information about nonlinear dynamical systems can be
obtained can be obtained by “zooming-in” on a small portion of the phase space. Examples of such
local analysis are the Hartman-Grobman linearization theorem , the existence of closed trajectories for
conservative systems nearby relative maxima and minima of the energy function, etc. We have also
discussed results for nonlinear systems that involve a large portion of the phase space. These results go
under the umbrella of “global theory” of dynamical systems (see L. Perko, “Differential equations and
dynamical systems”, Chapter 3), and their proof are often based on topological arguments. Examples of
results from global theory are: the center manifold theorem for fixed points1, the theorem on the existence
and uniqueness of global solutions for dynamical systems, etc.

It is usually harder to obtain information about the dynamics of nonlinear systems on large portions of
the phase space. For instance, can you tell if a dynamical systems has a limit cycle just by looking at the
differential equations? However, for two-dimensional systems of the form⎧⎨⎩ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(1)

it is possible to devise theorems that provide global information about the dynamics, i.e., statements about
the dynamics within large portions of the phase space. In this course note we discuss some results of such
”global theory”, i.e.,

a) Index theory,

b) The Poincaré-Bendixson theorem,

c) The Bendixson criterion to rule out limit cycles,

d) Liénard systems.

All these results hold for two-dimensional dynamical systems, i.e., there is no Poincaré-Bendixson theorem
or index theory for higher dimensional systems.

Index theory. Index theory provides global information about phase portraits of two-dimensional dy-
namical systems. In particular, it allows us to answer questions such as:

• Is there a fixed point inside a closed orbit?

• What types of fixed points can coalescence in a bifurcation?

• Is a certain phase portrait plausible or impossible?

The “index” is a number that is attached to a two-dimensional closed non-intersecting curve (i.e. a Jordan
curve) placed in the phase space. Such number represents the number of counterclockwise rotations of the
vector field f(x) = (f1(x1, x2), f2(x1, x2)) as we proceed counterclockwise along the curve and complete
one loop. Let us first define what a Jordan curve is.

Definition 1 (Jordan curve). A Jordan curve is a closed curve in R
2 that is homeomorphic to the unit

circle. This means that there exists an invertible transformation (continuous with continuous inverse) that
maps the unit circle into the Jordan curve and back (see Figure 1).

1There are versions of center manifold theorems for attracting sets other than fixed points, e.g., periodic orbits (see L.
Perko, “Differential equations and dynamical systems”, Section §3.5.
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Figure 1: Sketch of a Jordan curve. A Jordan curve cannot have have intersections and it is not necessarily
differentiable. For instance, it can be just piecewise continuous.

Figure 2: The index of a Jordan curve is the number of counterclockwise rotations of the vector field
f(x) = (f1(x1, x2), f2(x1, x2)) in (1) as we loop along the curve counterclockwise and complete one loop.

Based on this definition it is clear that a Jordan curve cannot have intersections with itself, and moreover
it is not necessarily differentiable. An example of a Jordan curve is shown in Figure 1.

Definition 2 (Index of a Jordan curve). Let C be a Jordan curve. The index of C is the number of
counterclockwise rotations of the vector field (f1(x1, x2), f2(x1, x2)) in (1) as we loop along the curve
counterclockwise and complete one round trip.

In Figure 2 we sketch the graphical process of calculating the index of Jordan curve. To calculate the index
of C, we simply integrate the angle ϑ (in radiants) of f(x) relative to the horizontal axis as we proceed
along the curve C, i.e.,

IC =
1

2π

∮
dϑ. (2)

The infinitesimal angle dϑ can be expressed as

dϑ =
d

dλ

[
arctan

(
f2(s1(λ), s2(λ))

f1(s1(λ), s2(λ))

)]
dλ, (3)

where s(λ) = (s1(λ), s2(λ)) is a parameterization of the Jordan curve. As an example, the unit circle is a
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Jordan curve that can be parameterized as

s1(λ) = cos(2πλ), s2(λ) = sin(2πλ), λ ∈ [0, 1]. (4)

By developing the expression (3) we obtain

dϑ =
d

dλ

[
arctan

(
f2(s1(λ), s2(λ))

f1(s1(λ), s2(λ))

)]
dλ

=
1

1 +

(
f2
f1

)2

[
∂

∂x1

(
f2
f1

)
ds1
dλ

+
∂

∂x2

(
f2
f1

)
ds2
dλ

]

=
1

f2
1 + f2

2

[
f1

(
∂f2
∂x1

ds1
dλ

+
∂f2
∂x2

ds2
dλ

)
− f2

(
∂f1
∂x1

ds1
dλ

+
∂f1
∂x2

ds2
dλ

)]
dλ. (5)

Hence, (2) can be written explicitly as

IC =
1

2π

∫ 1

0

1

f2
1 + f2

2

[
f1

(
∂f2
∂x1

ds1
dλ

+
∂f2
∂x2

ds2
dλ

)
− f2

(
∂f1
∂x1

ds1
dλ

+
∂f1
∂x2

ds2
dλ

)]
dλ (6)

for any closed curve, i.e., a curve satisfying s(0) = s(1). As mentioned above, a Jordan curve can be the
union of multiple smooth curves, e.g., four curves A, B, C, and D. In this case,

IC =
1

2π

(∫
A
dϑ+

∫
B
dϑ+

∫
C
dϑ+

∫
D
dϑ

)

Example: Consider the two-dimensional vector field f(x) with components

f1(x1, x2) = −x2, f2(x1, x2) = x1. (7)

Let us compute the index of the curve

C = {(x1, x2) ∈ R
2 : x21 + x22 = 1}. (8)

A simple parameterization of C is (see also Eq. (4))

s1(λ) = cos(2πλ), s2(λ) = sin(2πλ), λ ∈ [0, 1]. (9)

For this problem, equation (6) takes the form

IC =
1

2π

∫ 1

0

1

s21(λ) + s21(λ)

[
−s2(λ)ds1(λ)

dλ
+ s1(λ)

ds2(λ)

dλ

]
dλ

=
1

2π

∫ 1

0

2π

sin2(2πλ) + cos2(2πλ)

[
sin2(2πλ) + cos2(2πλ)

]
dλ

=1. (10)
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Figure 3: If there is no fixed point inside a Jordan curve C then the index of C is zero. In fact, we can
continuously shrink C to an infinitesimal curve that sees the vector field f(x) parallel.

Recall that the vector field (7) defines a linear dynamical system with flow corresponding to a center. The
trajectories of the system are circles rotating counterclockwise. This explains why the index of the curve
C defined in (8) is equal to one.

There are several theorems characterizing the properties of index of a Jordan curve.

Theorem 1. The index of a Jordan curve C does not change if we continuously deform C without passing
through any fixed points of the dynamical system (1).

The proof of the theorem relies on showing that an arbitrary infinitesimal deformation of the curve s(λ)
leaves IC unchanged, provided C does not intersect with a fixed point). Theorem 1 has several important
consequences:

1. The index of a Jordan curve C does not depend on the curve, but rather it depends only on the fixed
points enclosed by the curve.

2. If there is no fixed point inside the curve C then the index of C is zero. In fact, we can continuously
shrink C to an infinitesimal circle that sees the vector field f(x) parallel (see Figure 3).

3. The index of any closed orbit of a two-dimensional system is one.

Since the index of a Jordan curve depends only on the fixed points enclosed by the curve, it makes sense
to calculate the index of all jyperbolic fixed points we know of. To this end we pick an arbitrary Jordan
curve enclosing such fixed pints and calculate the index. The following theorem summarizes the graphical
findings shown in Figure 4.

Theorem 2 (Index of hyperbolic fixed points). Let x∗ be a hyperbolic fixed point of the two-dimensional
nonlinear system (1). Then for any Jordan curve C enclosing x∗

IC = sign (det(Jf (x
∗)) = sign(λ1λ2), (11)

where Jf (x
∗) is the Jacobian of the system (1) evaluated at x∗, and λ1, λ2 are the eigenvalues of Jf (x

∗).

For non-hyperbolic fixed points the index IC can be calculated using equation (2). It is easy to show that
if a Jordan curve C encloses multiple fixed points then its index is the sum of the index.

Theorem 3. The index of a Jordan curve enclosing n fixed points is the sum of the indexes of the fixed
points, i.e.,

IC = I1 + · · ·+ In. (12)

The proof if this theorem is based on the fact that we are free to shrink the black curve C to the curve
shown hereafter (union of blue and red curves) without the changing the index. Clearly, the contributions
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Figure 4: Index IC of common fixed points. It is seen that IC = 1 for spirals, stable and unstable nodes,
centers, degenerated nodes and stars. IC = −1 for saddle nodes.

to the index of the blue curves is zero as such curves do not include any fixed point. Hence, the index of
C is essentially determined by the curves in red, which have index equal to the index of fixed point they
enclose.

At this point one can draw all sorts of topological consequences related to the index. For example, a closed
orbit of a two-dimensional nonlinear dynamical system must enclose fixed points with indexes that add up
to one. In particular, we can have one spiral or one unstable node, but not just one saddle node2. It is
possible however, that the closed orbit encloses one saddle node and two stable nodes. In fact the index of
the sum in this case is IC = 2− 1 = 1, which is compatible with the closed orbit. In Figure 5 we sketch a
plausible phase portrait of a closed orbit enclosing one saddle node and two stable nodes.

2Recall that the index of a saddle node is −1.
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Figure 5: Closed orbit enclosing three fixed points (one saddle node and two stable nodes). The sum of the
indexes of all fixed points enclosed by the closed orbit (one saddle node and two stable nodes) is one. It is
impossible to have a closed orbit enclosing, e.g., only one saddle node and one stable node as the index of
the curve in this case would be zero, contradicting the fact that closed orbits must have index one.

Figure 6: Shetch of two ω-limits. The need for a sequence of time instants {t1, t2, . . .} in the definition of
the ω-limit (Definition 3) is clearly explained with reference to the spiraling trajectory.

Poincaré-Bendixson theorem. The Poincaré-Bendixson theorem theorem gives us a complete determi-
nation of the asymptotic behavior of a large class of flows on the plane, cylinder, two-dimensional sphere,
or more generally flows on smooth two-dimensional manifolds. The theorem, which was first conceived by
Henri Poincaré in 1892 and finally proved by Ivar Bendixson in 1901, essentially rules out the existence of
persistent (i.e., as t→∞) aperiodic orbits in bounded regions of any two-dimensional system.

To study the asymptotic behavior of the system (1) it is convenient to introduce the notion of ω-limit point
of a trajectory and ω-limit sets.

Definition 3 (ω-limit set of a trajectory). Let X(t,x0) be the flow generated by (1). A point x∗ is called
ω-limit of a trajectory with initial condition x0 if there exists a sequence of time instants3 {t1, t2, . . .}
(ti →∞) such that

lim
i→∞

X(ti,x0) = x∗. (13)

The set of all ω-limit points corresponding to a given x0 is called ω-limit set of the trajectory with initial
condition x0 and it denoted as ω(x0)

In Figure 6 we sketch a few ω limit sets corresponding to two-dimensional trajectories. More complex limit
sets characterized by a finite number of fixed points connected by homoclinic or heteroclinic trajectories
are are shown in Figure 7.

3Note that the sequence of time instants {t1, t2, . . .} mentioned in the Definition 3 is not unique.
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Figure 7: Sketch of ω-limit sets characterized by a finite number of fixed points connected by trajectories.
The red dashed lines are ω-limit sets corresponding to initial conditions in the yellow domains, assuming
that the fixed points represented by black dots are repellors.

Figure 8: Sketch of a trapping region.

Definition 4 (Trapping region). Let X(t,x0) be the flow generated by (1). A compact set U ⊆ R
2 is

called trapping region (or positively invariant set) if

X(t, U) ⊆ U for all t ≥ 0. (14)

In other words, a trapping region U ⊆ R
2 is a region from from which trajectories corresponding to x0 ∈ U

cannot escape U . This means that the vector field f(x) at the boundary of U is either tangent to the
boundary of U , or it points inward.

If the boundary of the region U is given as a level set of some function F (x1, x2), i.e., F (x1, x2) = c then
we can find a simple analytical condition for U to be a trapping region. In fact, we know that the gradient
of F is orthogonal to the level sets of F . Moreover, if F is smaller inside U and larger outside U we have
that ∇F points outward. In this case U ⊂ R

2 is a trapping region if

f(x) · ∇F (x) ≤ 0, (15)

for all points x on the level set of F (x), i.e., for all points at the boundary of U .

Example: Let us show that the unit disk

U = {(x1, x2) ∈ R
2 : x21 + x22 ≤ 1} (16)
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with boundary
C = {(x1, x2) ∈ R

2 : x21 + x22 = 1} (17)

is a trapping region for the system ⎧⎨⎩ẋ1 = x22 − x1

ẋ2 = −x1x2 − x2

(18)

To this end, let us first write the circle C as the zero level set of the function

F (x1, x2) = x21 + x22 − 1.

Note that F (0, 0) = −1 and F (2, 0) = 3. Therefore F increases as we go from the intererior of U towards
its boundary C and beyond. The gradient ∇F = (2x1, 2x2) is orthogonal to C and in this case it points
outward. Let us verify that the condition (15) is satisfied for the region (16) and the vector field (18). We
have,

f(x) · ∇F (x) = ẋ1
∂F

∂x1
+ ẋ2

∂F

∂x2
= 2x1(x

2
2 − x1) + 2x2(−x1x2 − x2) = −2(x21 + x22) < 0. (19)

Hence U is a trapping region for the system (18). Note also that the system has a stable node at (0, 0).

The next question is, what kind of dynamics can we expect in the trapping region? For instance, can
a trajectory in a trapping region wander around it forever without repeating itself (persistent aperiodic
behavior)? This question is answered by the Poincaré-Bendixson theorem.

Theorem 4 (Poincaré-Bendixson). Let U ⊆ R
2 be a trapping region for the system (1) containing a finite

number of fixed points {x∗
1, . . . ,x

∗
n}. Let x0 ∈ U , and ω(x0) the ω-limit set of the trajectory with initial

condition x0. Then one of the following possibilities holds:

1. ω(x0) is a fixed point;

2. ω(x0) is a closed orbit;

3. ω(x0) consists of a finite number of fixed points connected by orbits (see Figure 7).

Of course, if the trapping region has no fixed points in it then the only ω-limit set of a point x0 ∈ U
is an attracting closed orbit. Note that it is possible to have multiple closed orbits in a trapping region
with no fixed points in it. In fact, Theorem 4 is not saying that the closed orbit is unique, but rather
that a trajectory with initial condition x0 converges to a closed orbit if there are no fixed points in the
trapping region. The closed orbit depends on x0 ∈ U though. The next question is how many limit cycles4

can you have in a bounded region of R2? This is answered by the following theorem due to the French
mathematician Henri Dulac (1923).

Theorem 5 (Dulac’s theorem). In any bounded region of the plane, a planar system (1) with f(x) analytic
in R

2 has at most a finite number of limit cycles. Any polynomial system has at most a finite number of
limit cycles in R

2.

Bendixson’s criterion to rule out closed orbits. By using Gauss’s divergence theorem in two-
dimensions it is possible to develop a simple criterion to rule out periodic orbits in systems of the form (1).
This end, consider a simply connected domain D ⊂ R

2. Let γ be a closed orbit in D. Such closed orbit
identifies a subdomain of D which is denoted by R in Figure 9. Since the vector field f(x) is tangent to γ

4A limit cycle is an isolated closed trajectory in phase space. A center is not a limit cycle.
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Figure 9: Illustration of the Bendixson’s criterion to rule out periodic orbits in two-dimensional system. If
the divergence of f(x) is not identically zero and does not change sign in the domain D then (1) has no
closed orbits lying entirely in D. In this sketch the closed orbit is denoted by γ. The vector field f(x) is
tangent to each point of γ.

at each point we have that the flux f(x) through γ (boundary of R) is zero. By using Gauss’s divergence
theorem we obtain ∫

R
∇ · f(x)dx =

∫ 1

0
f(s(λ)) · n(s(λ))dλ︸ ︷︷ ︸

=0

= 0, (20)

where s(λ) is a parameterization of the closed curve γ, and n is the outward unit vector orthogonal to γ.
Equation (20) implies the following theorem.

Theorem 6 (Bendixson’s criterion). If on a simply connected region D ⊆ R
2 the divergence of the vector

field f(x) is not identically zero and does not change sign, then (1) has no closed orbits lying entirely in
D.

Example: The divergence of the system (18) is

∇ · f(x) = ∂f1
∂x1

+
∂f2
∂x2

= −x1 − 2. (21)

Hence, by using Bendixson’s criterion, we conclude that the system (18) cannot have periodic orbits
lying entirely in any simply connected region D located in the half plane x1 ≤ −2, or the half plane
x1 ≥ −2.

Liénard systems. The Poincaré-Bendixson Theorem can be used to establish the existence of limit cycles
for certain two-dimensional systems, provided we can identify a trapping region with no fixed points in it.
It is a far more delicate question to determine the exact number of limit cycles of a certain system or class
of systems depending on parameters. In this section we discuss a classical result on the uniqueness of a
stable limit cycle for systems of the form

ẍ+ h(x)ẋ+ g(x) = 0. (22)
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Figure 10: Phase portrait of the Van der Pol oscillator (24) for μ = 1.

This result was first established by the French physicist Alfred-Marie Liénard in 1928. To formulate
Liénard’s theorem, let us first define

H(x) =

∫ x

0
h(z)dz. (23)

Theorem 7 (Liénard’s theorem). The system (22) has exactly one stable limit cycle surrounding the
origin of the system (x, ẋ) = (0, 0) if the following conditions are satisfied:

1. h, g ∈ C1(R);

2. h is an even function h(−x) = h(x), and g is an odd function g(−x) = −g(x);
3. g(x) > 0 for all x > 0;

4. The function H(x) in (23) has the following properties:

• There unique zero a > 0 such that H(a) = 0

• H(x) < 0 for all 0 < x < a,

• H increases monotonically to infinity for x ≥ a.

Example (Van der Pol oscillator): The Van der Pol oscillator was originally proposed by the Dutch electrical
engineer and physicist Van der Pol while he was working at Philips. The differential equation defining the
oscillator is

ẍ+ μ(x2 − 1)ẋ+ x = 0 μ > 0. (24)

This is clearly a Liénard system. In fact the functions

h(x) = μ(x2 − 1) and g(x) = x, (25)
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satisfy all conditions listed in Theorem 7. Intuitively, the nonlinear term μ(x2 − 1)ẋ is responsible for the
creation of the limit cycle. In fact,

|x| < 1 ⇒ μ(x2 − 1) < 0 ⇒ negative damping ⇒ small oscillations amplified,

|x| > 1 ⇒ μ(x2 − 1) > 0 ⇒ positive damping ⇒ large oscillations decay.

We can rewrite (24) as a two-dimensional system⎧⎨⎩ẋ1 = x2

ẋ2 = −μ(x21 − 1)x2 − x1

(26)

In Figure 10 we plot the phase portrait generated by (26). As easily seen, the fixed point (0, 0) is an
unstable spiral. Looking at the orbits of the system, we see that it is not straightforward to identify a
trapping region in this case.
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