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Bifurcations in nonlinear dynamical systems

Consider the nonlinear dynamical system
dx

dt
= f(x, μ) (1)

where μ is a real parameter which we are allowed to vary1. In this course note we study bifurcations of the
flow generated by (1) as we vary the parameters. Such bifurcations can be defined as topological changes
in the flow map and they can be grouped into two broad classes

• Local bifurcations: these bifurcations involve a small portion of the phase space. Examples of local
bifurcations are bifurcation of equilibria, e.g., zero-eigenvalue bifurcations (saddle-node, transcritical,
subcritical/supercritical pitchfork), Hopf bifurcations, Bogdanov-Takens bifurcation, etc.

• Non-local bifurcations: these bifurcations usually involve large portions of the phase space. Ex-
amples of non-local/global bifurcations are homoclinic and heteroclinic bifurcations (see Figure 1),
saddle-node bifurcation of cycles, etc. Non-local bifurcations are usually associated with significant
changes in the phase portrait.

Bifurcations are related to the notion of structural stability of a dynamical system. Roughly speaking, if
the qualitative behavior of the system remains the same for all vector fields nearby a particular f(x, μ)
then the system (1) (or the vector field f(x, μ)) is said to be structurally stable. Mathematically we can
define structural stability as follows.

Definition 1 (Structural stability). A continuously differentiable vector field f is said to be structurally
stable if there exists ε > 0 such that for all continuously differentiable g that are “close enough” to f , i.e.,

‖f − g‖ < ε (2)

we have that f and g are topologically equivalent, i.e., there exists a homeomorphism whih maps trajectories
of ẋ = f(x) onto trajectories of ẋ = g(x) and preserves their orientation by time.

Note that this definition relies on finely detailed information about the structure of flows generated by
nonlinear dynamical systems, which is often very hard to obtain, especially in high dimensions. However,
in two-dimensions things are way more manageable due to topological constraints on 2D flows such the
Poincaré-Bendixson theorem. As a matter of fact, in 1962 Mauŕıcio Peixoto proved the following Theorem,
which completely characterizes structural stability in 2D systems.

Theorem 1 (Peixoto - Structural stability for planar systems). Let f(x, μ) be a continuously differentiable
field on a compact subset U of the phase plane. Then f is structurally stable if and only if: (i) the number
of fixed points and cycles U is finite and each is hyperbolic2; (ii) there are no trajectories connecting saddle
points (see Figure 1 for a counterexample); iii) the nonwandering set in U3 consists of periodic orbit and
fixed points alone.

According to this theorem, planar systems with non-hyperbolic fixed points are not structurally stable.
Unfortunately, no generalization of Peixoto’s theorem is available in higher dimensions (even in three
dimensions). The reason is that the definition of structural stability (Definition (1)) relies on finely detailed

1More generally, the dynamical system (1) can depend on multiple parameters

μ = (μ1, . . . , μM ).

2It is possible to have bifurcation of periodic orbits, e.g., saddle-node bifurcation of cycles.
3A point x ∈ U is called “nonwandering” if, for any neighborhood B of x , there exists T such that X(t, B) ∩ B 
= ∅ for

all t > T . The nonwandering set consists of all nonwandering points.
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Figure 1: Examples of homoclinic and heteroclinic bifurcations in two-dimensional dynamical systems. An
example of a two-dimensional system that yields the heteroclinic bifurcation shown above is ẋ1 = x21 − 1,
ẋ2 = −x2x1 + μ(x21 − 1).

information about the structure of flow and its perturbations, which is not generally available. This is one
of the reason why attempts to construct a systematic bifurcation theory for general nonlinear dynamical
systems led to very difficult technical questions. Of course, we can just focus our analysis on specific
types bifurcations of dynamical systems, e.g., local bifurcations of equilibria. In this case, there is a rather
systematic theory that allows us to come up with quantitative results.

Local bifurcations of equilibria. As is well known, the fixed points (equilibria) of the system (1) are
solution of the algebraic equation

f(x, μ) = 0. (3)

By using the implicit function theorem, it is immediate to conclude that as the parameter μ varies, the
fixed points x∗(μ) are described by smooth functions of μ, except at points (x∗, μ∗) where the Jacobian
Jf (x, μ) is not invertible, i.e., it has at least one zero eigenvalue.

Theorem 2 (Implicit function theorem). Let f(x, μ) be continuously differentiable in a neighborhood of
a fixed point (x∗, μ∗), i.e., a point such that f(x∗, μ∗) = 0. If the Jacobian matrix

Jf (x
∗, μ∗) =

⎡⎢⎢⎢⎢⎣
∂f1(x

∗, μ∗)
∂x1

· · · ∂f1(x
∗, μ∗)

∂xn
...

. . .
...

∂fn(x
∗, μ∗)

∂x1
· · · ∂fn(x

∗, μ∗)
∂xn

⎤⎥⎥⎥⎥⎦ (4)

is nonsingular (invertible) then there exists a neighborhood B of μ∗ (i.e., an interval that includes μ∗) in
which the zero level set of f(x, μ) can be represented as a graph of a smooth function x∗(μ), i.e.,

f(x∗(μ), μ) = 0 for all μ ∈ B. (5)
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Figure 2: Bifurcation diagrams corresponding to a saddle-node bifurcation and a supercritical pitchfork
bifurcation in a two-dimensional dynamical system. The stability properties of each of the fixed points can
change as μ is varied. For instance, a stable node can turn into a stable spiral as μ is varied.

The function x∗(μ) is continuously differentiable with respect to μ in B, and it interpolates (x∗, μ∗).
Moreover4,

dx∗(μ∗)
dμ

= −J−1
f (x∗, μ∗)

∂f(x∗, μ∗)
∂μ

. (8)

Broadly speaking, the implicit function theorem asserts that if Jf (x
∗, μ∗) is invertible (no-zero eigenvalues)

then the graph of each function x∗(μ) is a smooth branch of equilibria of (1) (see Figure 2). On the other,
hand if Jf (x

∗, μ∗) is not invertible at some point (x∗, μ∗) then several branches of equilibria may (or may
not) intersect there. In this case, (x∗, μ∗) is potential bifurcation point.

In Figure 2 we sketch the bifurcation diagrams corresponding to two rather common bifurcations, i.e., a
saddle-node bifurcation and a pitchfork bifurcation in two dimensions. Both these bifurcations are called
zero eigenvalue bifurcations, because they are characterized by a single real eigenvalue of the Jacobian
matrix crossing the imaginary axis as the parameter μ is varied.

Hereafter we study two types of local bifurcations of equilibria depending on one real parameter μ:

1) Zero-eigenvalue bifurcations: These bifurcations are characterized by a single real eigenvalue
crossing the imaginary axis as μ is varied (see Figure 3). Examples of zero-eigenvalue bifurcations:

• Saddle-node bifurcation,

• Transcritical bifurcation,

• Supercritical/Subcritical pitchfork bifurcation,

• (. . . ).

4Property (8) follows by differentiating (5) with respect to μ and evaluating the derivative at at μ = μ∗. In fact,

f(x∗(μ), μ) = 0 ⇒ df(x∗(μ), μ)
dμ

=
∂f(x∗(μ), μ)

∂μ
+

n∑
j=1

∂f(x∗(μ), μ)
∂xj

dx∗
j (μ)

dμ
= 0. (6)

This equation can be written as

Jf (x
∗(μ), μ)

dx∗(μ)
dμ

= −∂f(x∗(μ), μ)
∂μ

. (7)

Recalling that x∗(μ∗) = x∗ and evaluating (7) at μ = μ∗ yields (8).
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Figure 3: Zero eigenvalue bifurcations are characterized by a single real eigenvalue crossing the imaginary
axis as the parameter μ is varied. Shown is a sketch of the eigenvalues λj(μ) of the Jacobain matrix
Jf (x

∗(μ), μ) evaluated at the fixed point x∗(μ). As μ is varied the eigenvalues move from the red dots to
the black dots. At μ = μ∗ one real eigenvalue crosses the imaginary axis.

2) Hopf bifurcations: These bifurcations are characterized by a pair of complex conjugate eigenval-
ues crossing the imaginary axis as μ is varied (see Figure 8). There are two main kinds of Hopf
bifurcations:

• Supercritical Hopf bifurcation,

• Subcritical Hopf bifurcation.

To study bifurcations of equilibria it is convenient to write the parametric dependence in (1) in terms of
an additional ODE as ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= f(x, μ)

dμ

dt
= 0

(9)

This is called extended system. By using the normal form theorem and the local center manifold theorem
(see the course note 5) applied to the extended system (9), it is possible two write the local behavior of
the system at any bifurcation point. The normal form of the system at the bifurcation point depends on
the particular bifurcation.

Zero-eigenvalue bifurcations. Zero eigenvalue bifurcations are characterized by a single real eigenvalue
λi(μ) of the Jacobian matrix Jf (x

∗(μ), μ) crossing the imaginary axis with non-zero “velocity” dλi/dμ
as the parameter μ is varied (see Figure 3). Let us begin our analysis of zero-eigenvalue bifurcations by
considering two-dimensional systems of the form⎧⎨⎩ẋ1 = f1(x1, x2, μ)

ẋ2 = f2(x1, x2, μ)
(10)

In this case, zero-eigenvalue bifurcations have a clear geometric interpretation.

Theorem 3 (Zero-eigenvalue bifurcations in two-dimensional systems). Zero-eigenvalue bifurcations in
two-dimensional systems of the form (10) occur at points where the nullclines of the system are either
tangent to each other, or at points5 where one of the gradients ∇f1 or ∇f2 is zero.

5Note that the gradient of fi(x1, x2) is zero at points in which the zero level set of fi intersect itself, e.g., the point
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Figure 4: Graphical illustration of Theorem 3 for saddle-node and pitchfork bifurcations. The bifurcations
occurs at locations where the nullclines are tangent. This makes the Jacobian matrix of the the vector
field not invertible, i.e., the Jacobian has one zero eigenvalue.

Proof. Let us recall that the nullclines of a two-dimensional system are defined to be the zero level sets of
f1(x1, x2, μ) and f1(x1, x2, μ), i.e.,

f1(x1, x2, μ) = 0 (ẋ1 = 0 nullcline), f2(x1, x2, μ) = 0 (ẋ2 = 0 nullcline). (11)

We also know that the gradients

∇f1 =

(
∂f1
∂x1

,
∂f1
∂x2

)
, ∇f2 =

(
∂f2
∂x1

,
∂f2
∂x2

)
(12)

are orthogonal to each level set of f1 and f2, respectively. In particular, they are orthogonal to the zero
level sets of f1 and f2. The Jacobian matrix of (10) can be written as

Jf =

⎡⎢⎢⎣
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤⎥⎥⎦ =

[∇f1
∇f2

]
. (13)

At this point we notice that if the vector ∇f1 is a scalar multiple of the vector ∇f2, i.e., if ∇f1 and ∇f2
are parallel then the Jacobian (13) Jf is rank one. Therefore det(Jf ) = 0, implying that there exists
a zero eigenvalue with algebraic multiplicity one or two. Similarly, if ∇f1 = 0 or/and ∇f2 = 0 then
det(Jf ) = 0.

In Figure 4 we provide a graphical illustration of Theorem 3 for saddle-node and pitchfork bifurcations.
It is important to emphasize that the tangency condition of the nullclines mentioned in Theorem 3 is not
necessary nor sufficient for a bifurcation to occur. In fact, ∇f1 and ∇f2 can be parallel at some fixed point
and yet not generate any bifurcation.

Example: The nonlinear dynamical system⎧⎨⎩ẋ1 = x1x2 − x21 − x1

ẋ2 = x2 − x21 − μ
(14)

undergoes a saddle-node bifurcation at μ∗ = 1.25, and a transcritical bifurcation at μ∗ = 1. In Figure 5 we
show the phase portraits of (14) as μ is varied within the range [0.9, 1.35]. The Jacobian of (14) is

(x1, x2) = (0, 1) in Figure 5.
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μ = 1.35 μ = 1.25 μ = 1.15

μ = 1.1 μ = 1 μ = 0.9

Figure 5: Phase portraits of the system (14) for different μ. For μ = 1.25 the system undergoes a saddle
node bifurcation at xA = (0.5, 1.5). Note that for μ = 1.25 the nullclines ẋ1 = 0 and ẋ2 = 0 are tangent at
xA. For μ = 1 the system undergoes a second zero-eigenvalue bifurcation at x∗

B = (0, 1). Such bifurcation
is a transcritical bifurcation where two fixed points “exchange stability”. At both bifurcation points there
is a single real eigenvalue of the Jacobian crossing the imaginary axis with non-zero velocity .

Jf (x1, x2) =

[
x2 − 2x1 − 1 x1

−2x1 1

]
(15)

For μ∗
A = 5/4 the system undergoes a saddle-node bifurcation at the fixed point

x∗
A =

(
1

2
,
3

2

)
. (16)

Evaluating the Jacobian (15) at (x∗
A, μ

∗
A) yields

Jf (x
∗
A) =

1

2

[−1 1
−2 2

]
. (17)

Hence, the two nullclines ẋ1 = 0 and ẋ2 = 0 are tangent at x∗
A. Note, in fact, that that the rows of Jf (x

∗
B)

(which represent the gradients of f1 and f2) are linearly dependent. The eigenvalues of (17) are

λ1 =
1

2
λ2 = 0. (18)

As seen in Figure 5, as we decrease μ we have that the parabola representing the level set ẋ2 = 0 translates
downward, and the fixed point x∗

A splits into two (hyperbolic) fixed points. As we keep reducing μ, one
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of the two fixed points that came out of the saddle node bifurcation heads towards the fixed point fixed
point x∗(μ) = (0, μ). The Jacobian at x∗(μ) is

Jf (x
∗(μ)) =

[
μ− 1 0
0 1

]
(19)

and has eigenvalues
λ1(μ) = μ− 1 λ2(μ) = 1. (20)

As seen in Figure 5, at μ = μ∗
B = 1 the fixed point x∗(μ) = (0, μ) collides with one of the two fixed

point that came out of the saddle-node bifurcation. This yields another zero-eigenvalue bifurcation, i.e., a
transcritical bifurcation. Note that at the transcritical bifurcation point

x∗
B = (0, 1) μ∗

B = 1 (21)

the nullcline ẋ1 = 0 intersects itself, and therefore the gradient ∇f1 is zero at x∗
B = (0, 1), consistently

with Theorem 3. The eigenvalues of Jf (x
∗
B) are (λ1, λ2) = (0, 1).

Normal form of dynamical systems at zero-eigenvalue bifurcations. The normal form a dynamical
system at zero eigenvalue bifurcations can be computed using the normal form theorem and the local center
manifold theorem applied to the extended system (87) at the bifurcation point. The main steps are:

• Write the extended dynamical system (87) at bifurcation point (x∗, μ∗) via the simple change of
coordinates η = x(t)− x∗, r = μ− μ∗.

• Expand the system at the bifurcation point as

η̇ = Jf (x
∗, μ∗)η + g(η, μ∗), (22)

where Jf (x
∗, μ∗) is the Jacobian at (x∗, μ∗) and g represents the residual of the Taylor series. The

spectral decomposition of Jf (x
∗, μ∗) yields stable (V c), unstable (V u), and center (V c) subspaces,

and corresponding phase variables (see the course note 5).

• Compute the local center manifold of the extended system at the bifurcation point, and write the
system in a normal form in the neighborhood of (η, r) = (0, 0).

In Appendix A we provide two examples of calculation of normal forms in two-dimensional dynamical
systems using this procedure. Specifically, we study a transcritical and a saddle-node bifurcation. The
examples in Appendix A clearly demonstrate that by using local center manifolds analysis applied to
the normal form of the extended dynamical system at the bifurcation point it is possible to characterize
the zero-eigenvalue bifurcation in terms of a decoupled system that involves the center manifold and the
stable/unstable manifolds. The bifurcation process develops entirely on the center manifold of the extended
system. The dynamics on the stable/unstable manifolds is trivial. In Figure 6 we sketch the flow defined by
the normal form of a two-dimensional dynamical systems that undergoes a saddle-node and supercritical
pitchfork bifurcations.

The results obtained for the two-dimensional systems in Appendix A can be generalized to n-dimensional
dynamical systems. For example, the normal form of a supercritical pitchfork bifurcation in a n-dimensional
system is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ċ = cr − c3 (center manifold)

ṡ = Bs (stable subspace)

u̇ = Cu (unstable subspace)

(23)
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Figure 6: Normal form of two-dimensional saddle-node and supercritical pitchfork bifurcations. In these
plots we assume that the bifurcation point is characterized by center (c variable) and stable (s variable)
manifolds.

where B has eigenvalues with negative real part, and C has eigenvalues with positive real part.

In Figure 7 we provide an example of a thermal-fluid system that undergoes a supercritical pitchfork
bifurcation at the onset of convective instability. The bifurcation diagram is computed numerically, and
the type of bifurcation is identified using Sotomayor’s Theorem 6.

Conditions for existence of saddle-node, transcritical, and pitchfork bifurcations. Is it possi-
ble to identify which type of zero-eigenvalue bifurcation takes place in an n-dimensional system without
computing the normal form? The answer, is yes and the procedure is given in the following theorems due
to Jorge Sotomayor.

Theorem 4 (Sotomayor’s theorem for saddle-node bifurcations). Suppose that the system (1) has a fixed
point (x∗, μ∗) satisfying the following conditions

a) Jf (x
∗, μ∗) has a simple eigenvalue 0 with right eigenvector v and left eigenvector6 w, and k eigen-

6The left eigenvector of a square matrix A is a row vector such that wA = λw. Taking the transpose, we see that the left
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Figure 7: Onset of convective instability in a square cavity heated from below and cooled from above
(isothermal horizontal walls), and adiabatic sidewalls. This fluid system transitions from a state of no-
motion to a one-roll stable convection pattern via a supercritical pitchfork bifurcation. The bifurcation
parameter is the Rayleigh number Ra = gβL3ΔT/(να). Here g is gravity, β is the isobaric compressibility
of the fluid, L is the side length of the cavity, ΔT is the temperature difference between the horizontal
walls, nu is the kinematic viscosity and α is the thermal diffusivity of the fluid.

values with negative real part,

b)

n∑
i=1

wi
∂fi(x

∗, μ∗)
∂μ

	= 0,

c)

n∑
i=1

wi

⎡⎣ n∑
l,p=1

∂2fi(x
∗, μ∗)

∂xl∂xp
vlvp

⎤⎦ 	= 0.

Then there is a smooth curve of equilibrium points of (1) passing through (x∗, μ∗). Depending on the
signs of the expressions in b) and c), there are no equilibrium points of (1) near x∗ when μ < μ∗ (or when
μ > μ∗), and there are two fixed points points of (1) near when μ > μ∗ (or when μ < μ∗). The two fixed
points are hyperbolic and have stable manifolds of dimensions k and k+1 respectively; i.e., the system (1)
experiences a saddle-node bifurcation at the equilibrium point x∗ as the parameter μ passes through the

eigenvector A is a right eigenvector of the matrix transpose AT .
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bifurcation value μ = μ∗.

Example: Let us apply Theorem 4 to the system⎧⎨⎩ẋ1 = x2

ẋ2 = x2 − x21 − μ
(24)

As discussed in Appendix A, the Jacobian of (24) at (x∗, μ∗) = (0, 0)

Jf (0, 0) =

[
0 1
0 1

]
(25)

has one zero eigenvalue λ1 = 0 and one positive eigenvalue λ2 = 1. The left and right eigenvectors
corresponding to the zero eigenvalue are, respectively

v =

[
1
0

]
, w =

[−1
1

]
. (26)

Let us now check if conditions b) and c) in Theorem 4 are satisfied.

b)

2∑
i=1

wi
∂fi(0, 0)

∂μ
= 0− 1 = −1 	= 0, (27)

c)

2∑
i=1

wi

⎡⎣ 2∑
l,p=1

∂2fi(0, 0)

∂xl∂xp
vlvp

⎤⎦ = −2 	= 0. (28)

Hence, the system (24) undergoes a saddle node bifurcation at (x∗, μ∗) = (0, 0).

Theorem 5 (Sotomayor’s theorem for transcritical bifurcations). Suppose that the system (1) has a fixed
point (x∗, μ∗) for which the following conditions are satisfied:

a) Jf (x
∗, μ∗) has a simple eigenvalue 0 with right eigenvector v and left eigenvector w,

b)

n∑
i=1

wi
∂fi(x

∗, μ∗)
∂μ

= 0, c)

n∑
i=1

wi

[
n∑

l=1

∂fi(x
∗, μ)

∂μ∂xl
vl

]
	= 0, d)

n∑
i=1

wi

⎡⎣ n∑
l,p=1

∂2fi(x
∗, μ)

∂xl∂xp
vlvp

⎤⎦ 	= 0.

Then the system (1) undergoes a transcritical bifurcation at the equilibrium point x∗ as the parameter μ
varies through the bifurcation value μ∗.

Example: Let us apply Theorem 5 to the system⎧⎨⎩ẋ1 = x2

ẋ2 = −x2 + μx1 − x21

(29)

As discussed in Appendix A, the Jacobian of (29) at (x∗, μ∗) = (0, 0)

Jf (0, 0) =

[
0 1
0 1

]
(30)

has one zero eigenvalue λ1 = 0 and one negative eigenvalue λ2 = −1 The left and right eigenvectors
corresponding to λ1 = 0 are, respectively

v =

[
1
0

]
, w =

[−1
1

]
. (31)
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Let us now check if conditions b), c) and d) in Theorem 5 are satisfied.

b)

n∑
i=1

wi
∂fi(0, 0)

∂μ
= 0, (32)

c)

n∑
i=1

wi

[
2∑

l=1

∂2fi(0, 0)

∂μ∂xl
vl

]
= 1 	= 0, (33)

d)
n∑

i=1

wi

⎡⎣ 2∑
l,p=1

∂2fi(x
∗, μ∗)

∂xl∂xp
vlvp

⎤⎦ = −1 	= 0. (34)

Hence, (29) undergoes a transcritical bifurcation at (x∗, μ∗) = (0, 0).

Theorem 6 (Sotomayor’s theorem for pitchfork bifurcations). Suppose that the system (1) has a fixed
point (x∗, μ∗) for which the following conditions are satisfied:

a) Jf (x
∗, μ∗) has a simple eigenvalue 0 with right eigenvector v and left eigenvector w.

b)
n∑

i=1

wi
∂fi(x

∗, μ∗)
∂μ

= 0, c)

n∑
i=1

wi

[
n∑

l=1

∂fi(x
∗, μ)

∂μ∂xl
vl

]
	= 0,

d)

n∑
i=1

wi

⎡⎣ n∑
l,p=1

∂2fi(x
∗, μ)

∂xl∂xp
vlvp

⎤⎦ = 0, e)

n∑
i=1

wi

⎡⎣ n∑
l,p,q=1

∂3fi(x
∗, μ)

∂xl∂xp∂xq
vlvpvq

⎤⎦ 	= 0.

Then the system (1) undergoes a pitchfork bifurcation at the equilibrium point x∗ as the parameter μ
varies through the bifurcation value μ∗.

Theorem 6 was used to identify the pitchfork bifurcation in the high-dimensional nonlinear dynamical
system discussed in Figure 7.

Hopf bifurcation. So far we studied bifurcations of equilibria characterized by a single real eigenvalue
crossing the imaginary axis as a real parameter μ is varied. We called such bifurcations zero eigenvalue
bifurcations, and studied their properties using center-manifold theory applied to the extended system (87).
At the beginning of this course note we emphasized that local bifurcations of equilibria can occur at any
non-hyperbolic fixed point (see, e.g., Peixoto’s theorem 1 on the structural stability of two-dimensional
systems). Hence, it is natural to ask what happens to an equilibrium point x(μ) if the Jacobian Jf (x

∗(μ), μ)
has a pair of complex conjugate eigenvalues λ1,2(μ) crossing the imaginary axis with nonzero velocity
dλ1,2(μ)/dμ 	= 0 as μ is varied (see Figure 8).

In this case the system undergoes a Hopf bifurcation. Such bifurcation is not characterized by fixed points
merging together or branching out of a fixed point, but rather by a local change of stability that yields
the creation or annihilation of a limit cycle surrounding the fixed point. The normal form theorem gives
us all required information about the structure of the local center manifold in a neighborhood of a Hopf
bifurcation point.

Theorem 7 (Hopf bifurcation (1942)). Suppose that the system (1) has a fixed point (x∗, μ∗) at which
the following properties are satisfied:

a) The Jacobian matrix Jf (x
∗, μ∗) has a pair of pure imaginary eigenvalues λ1,2(μ

∗) = ±ωi and no
other eigenvalues with zero real part7.

7If condition a) in Theorem 7 is satisfied then there exists a smooth curve x∗(μ) representing the location of the fixed point
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Figure 8: Hopf bifurcations are characterized by a pair of complex conjugate eigenvalues crossing the imag-
inary axis with non-zero velocity. Shown is a sketch of the eigenvalues of the Jacobain matrix Jf (x

∗(μ), μ)
evaluated at the fixed point x∗(μ). As μ is varied the eigenvalues move from the red dots to the black
dots. At μ = μ∗ one we have a pair of imaginary eigenvalues and no other eigenvalue with zero real part.

b) The complex conjugate eigenvalues λ1,2(μ) cross the imaginary axis with non-zero “velocity”

dRe [λ1,2(μ
∗)]

dμ
= D 	= 0. (35)

Then there exists a unique three-dimensional center manifold passing through (x∗, μ∗) and a smooth
coordinates system for which the Taylor expansion of degree 3 on the center manifold is given by⎧⎨⎩Ṙ = rDR+AR3 +O(r2R, rR3, R5)

ϑ̇ = ω + rC +BR2 +O(r2, rR2, R4)
(36)

where

C =
d Im[λ1,2(μ

∗)]
dμ

, (37)

r = μ− μ∗ is the transformed bifurcation parameter (r = 0 corresponds to μ = μ∗), (R, ϑ) are polar
coordinates, D is given in (35), and A and B are constants that depend on the system.

The system (36) can be written in local Cartesian coordinates as

⎧⎨⎩ċ1 = rDc1 − (ω + rC)c2 +Ac1(c
2
1 + c22)−Bc2(c

2
1 + c22) + · · ·

ċ2 = (ω + rC)c1 + rDc2 +Bc1(c
2
1 + c22)−Ac2(c

2
1 + c22) + · · ·

(38)

(see Appendix B for the derivation).

Existence of limit cycles. The normal form (36) appearing in Hopf’s bifurcation Theorem 7 implies
that for A 	= 08 there exists a limit cycle surrounding the fixed point located at R = 0. Note that the fixed
point at R = 0 in normal coordinates corresponds to some fixed point x∗(μ) in Cartesian coordinates.

as a function of μ in a neighborhood of μ∗. The existence of such smooth curve follows immediately from the implicit function
Theorem 2.

8If A = 0 the Taylor expansion in (36) is insufficient to describe the system. This implies that if A = 0 then we need to
add more terms.
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Figure 9: Stable and unstable limit cycles associated with a supercritical and a subcritical Hopf bifurcation
in normal coordinates.

In fact, the analysis of the Hopf bifurcation is performed by setting up a local coordinate system that is
constantly sitting at the fixed point, very much in the same way as in (22).

Setting Ṙ = 0 in (36) yields two equilibrium solutions

R = 0 (fixed point), and R =

√
−rD

A
(limit cycle). (39)

The solution to the second equation at R =
√−rD/A is easily obtained as

ϑ(t) = ϑ0 +

(
ω + rC − r

BD

A

)
t. (40)

Hence, the Hopf bifurcation yields a limit cycle the radius of which is grows like the square root of the
bifurcation parameter r The analysis of the vector field

Ṙ = rDR+AR3 (41)

allows us to study the stability of the limit cycle (see Figure 9). Specifically, we see that

• for A > 0 the limit cycle is unstable and it exists for rD < 0,

• for A < 0 the limit cycle is stable and it exists for rD > 0.

Supercritical and subcritical Hopf bifurcations. Depending on the sign of the parameter A in (36),
(38) and (41) we can have two different types of Hopf bifurcations, namely

• a supercritical Hopf bifurcation for A < 0,

• a subcritical Hopf bifurcation for A > 0.
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Figure 10: Supercritical (A < 0) and subcritical (A > 0) Hopf bifurcations on the three dimensional center
manifold mentioned in Theorem 7.

To understand these two bifurcations it is convenient to set D = 1 (complex conjugate eigenvalues are
crossing the imaginary axis from left to right with velocity one as μ increases) and C = 0 in (36). This
yields the simplified system ⎧⎨⎩Ṙ = rR+AR3 + · · ·

ϑ̇ = ω +BR2 + · · ·
(42)

The phase portraits of the system (42) are sketched in Figure 10 for different values of μ, and different A.

It is important to emphasize that the direction in which the complex conjugate eigenvalues cross the
imaginary axis during the bifurcation process do not identify the type of Hopf bifurcation. In other words,
it is possible to have a supercritical Hopf bifurcation with complex conjugate eigenvalues crossing the
imaginary axis from left to right or from right to left. Similarly it is possible to have a subcritical Hopf
bifurcation with complex with complex conjugate eigenvalues crossing the imaginary axis from left to right
or from right to left. This symmetry is due to the fact that the radius of the limit defined by (39) depends
on the product rD, where D represents the velocity (with sign) by which the eigenvalues are crossing the
imaginary axis (see Eq. (35)).

Supercritical Hopf bifurcations are usually associated with transitions from steady states/equilibria to
periodic states. In Figure 11 we show one of such transition in a high-dimensional fluid system described
by the Navier-Stokes equations (incompressible fluid flow past a circular cylinder).

Hopf bifurcations in two-dimensional systems. For large systems of equations, computation of the
normal form (36) and the cubic coefficient A, which determines the stability of the limit cycle, can be a
substantial undertaking. However, for two-dimensional systems the calculation of A is not too difficult,
and can be done directly by writing the system at the bifurcation point in a canonical form shown below
(Eq. (49)), and then using center manifold theory. To this end, consider the system (10), and suppose
that there exits a fixed point x∗(μ) with Jacobian that has two complex conjugate eigenvalues crossing the
imaginary axis at μ = μ∗ with nonzero velocity. How do we figure out what kind of Hopf bifurcation is
taking place? As we know, this is determined by the value of the parameter A in (36). To determine such
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Figure 11: Transition from steady flow to periodic flow (Von-Karman periodic wake wake past a cylinder)
via a supercritical Hopf bifurcation at Re = 47 in a fluid system. In this application, the bifurcation
parameter is the Reynolds number Re = δU/ν of the flow, which depends on the cylinder diameter δ, the
upstream fluid velocity U , and the kinematic viscosity of the fluid ν.

parameter, let us first write the system ⎧⎨⎩ẋ1 = f1(x1, x2, μ)

ẋ2 = f2(x1, x2, μ)
(43)

in a normal form. To this end, we first change the coordinates and rewrite the system at the Hopf
bifurcation point (x∗, μ∗) as

dη

dt
= Jf (x

∗(μ∗), μ∗)η + g(η, μ∗), (44)

where
η = X(t,x0)− x∗(μ∗). (45)

The Jacobian matrix Jf (x
∗(μ∗), μ∗) has a pair of imaginary eigenvalues of the form

λ1,2 = ±ωi, (46)

where ω is a real number (positive or negative). By computing the real Jordan form9 of Jf (x
∗(μ∗), μ∗) and

the corresponding similarity transformation P defined by the real and imaginary parts of one eigenvector
(see Appendix A in the course note 5) we can change the variables as

q = P−1η. (48)

9The real Jordan form of a 2× 2 matrix J with complex conjugate eigenvalues λ1,2 = ±iω is

K =

[
0 ±ω
∓ω 0

]
. (47)

The similarity transformation P that takes the matrix J into the skew symmetric matrix K = PJP−1 has the real and the
imaginary parts of one eigenvector of J as columns.
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μ = 1.5 μ = 2 μ = 2.5

Figure 12: Phase portraits of the system (51) for different μ. The system undergoes a supercritical Hopf
bifurcation at x∗ = (1, 2) for μ∗ = 2.

and transform the dynamical system (44) into the standard form⎧⎪⎨⎪⎩
dq1
dt

= ωq2 +H1(q1, q2)

dq2
dt

= −ωq1 +H2(q1, q2)

(49)

where ω can be positive or negative. The coefficient A appearing in (36) can be now expressed in terms of
H1, H2 and ω by the formula10

A =
1

16

[
∂3H1

∂q31
+

∂3H1

∂q1∂q22
+

∂3H2

∂q21∂q2
+

∂3H2

∂q32

]
+

1

16ω

[
∂2H1

∂q1∂q2

(
∂2H1

∂q21
+

∂2H1

∂q22

)
− ∂2H2

∂q1∂q2

(
∂2H2

∂q21
+

∂2H2

∂q22

)
−

∂2H1

∂q21

∂2H2

∂q21
+

∂2H1

∂q22

∂2H2

∂q22

]
, (50)

where all derivatives of H1(q1, q2) and H2(q1, q2) are evaluated at (0, 0).

Example: The nonlinear dynamical system⎧⎨⎩ẋ1 = 1− (μ+ 1)x1 + x21x2

ẋ2 = μx1 − x21x2

(51)

undergoes a supercritical Hopf bifurcation at x∗ = (1, 2) for μ∗ = 2. To show this, let us first notice that
the system has only one fixed point located at

x∗(μ) = (1, μ), (52)

(see Figure 12). The Jacobian of (51) is

Jf (x, μ) =

[ −(μ+ 1) + 2x1x2 x21
μ− 2x1x2 −x21

]
. (53)

10The proof of (50) is given in the book by Guckenheimer and Holmes, “Nonlinear oscillations, dynamical systems and
bifurcations of vector fields” at page 154.
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Evaluating (53) at the fixed point (52) yields

Jf (x
∗(μ), μ) =

[
μ− 1 1
−μ −1

]
. (54)

The eigenvalues of Jf (x
∗(μ), μ) are

λ1,2(μ) =
(μ− 2)±√

(μ− 2)2 − 4

2
. (55)

Clearly, at μ∗ = 2 the complex conjugate eigenvalues (55) cross the imaginary axis (from left to right as μ
increases) with nonzero velocity

D =
dRe(λ1,2(μ))

dμ

∣∣∣∣
μ=μ∗

=
1

2
. (56)

Therefore there is Hopf bifurcation at x∗(μ∗) = (1, 2), μ∗ = 2. Which one? Subcritical or supercritical?
To answer this question, we rewrite the system (51) at the fixed point (52). This is achieved by shifting
the phase variables as

η(t) = x(t)− x∗(μ), (57)

i.e.,
η1 = x1 − 1 η2 = x2 − μ, (58)

and expanding the system in the new variables at (1, μ) via Taylor theorem. A substitution of (58) into
(51) yields ⎧⎨⎩η̇1 = (μ− 1)η1 + η2 + η21η2 + 2η1η2 + μη21

η̇2 = −μη1 − η2 − η21η2 − 2η1η2 − μη21

(59)

At the bifurcation μ∗ = 2 point we have⎧⎨⎩η̇1 = η1 + η2 + η21η2 + 2η1η2 + 2η21

η̇2 = −2η1 − η2 − η21η2 − 2η1η2 − 2η21

(60)

This system can be written in the form (45), i.e.,

η̇ = Jf (x
∗(μ∗), μ∗)η + g(η, μ∗), (61)

where

Jf (x
∗(μ∗), μ∗) =

[
1 1
−2 −1

]
(62)

is the Jacobian (54) evaluated at μ∗ = 2, and

g1(η, μ
∗) = η21η2 + 2η1η2 + 2η21, g2(η, μ

∗) = −η21η2 − 2η1η2 − 2η21. (63)

The real Jordan form of (62) is[
0 −1
1 0

]
=

[
1 0
−1 −1

]
︸ ︷︷ ︸

P

[
1 1
−2 −1

]
︸ ︷︷ ︸
Jf (x∗(μ∗),μ∗)

[
1 0
−1 −1

]
︸ ︷︷ ︸

P−1

. (64)

The matrix P has the real and the imaginary part of one eigenvector of Jf (x
∗(μ∗), μ∗) as columns, and it

defines a transformation between η and new set of variables q as (see equation (48))

q = P−1η, (65)
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i.e.,
η1 = q1, η2 = −q1 − q2. (66)

Such a transformation allows us to write the system (61) in the form (49) as⎧⎪⎨⎪⎩
dq1
dt

= −q2 +H1(q1, q2)

dq2
dt

= q1 +H2(q1, q2)

(67)

where
H1(q1, q2) = −q31 − q21q2 − 2q1q2, H2(q1, q2) = q31 + q21q2 + 2q1q2 = −H1(q1, q2). (68)

At this point we can evaluate the coefficient (50). The only nonzero terms are

A =
1

16

[
∂3H1

∂q31
+

∂3H2

∂q21∂q2

]
=

1

16
[−6 + 1] = − 5

16
. (69)

Hence, the fixed point (52) undergoes a supercritical Hopf bifurcation at μ∗ = 2. This implies that there
exist a stable limit cycle surrounding the fixed point x∗(μ) = (1, μ) for μ > 2.

Bifurcations depending on multiple parameters. There are many other bifurcations of equilibria that
can take place in dynamical systems. Some of these bifurcations are characterized by multiple parameters.
For instance,

• Bogdanov-Takens bifurcation. The Bogdanov-Takens bifurcation is a local bifurcation of an
equilibrium point at which the Jacobian of the system has a zero eigenvalue of algebraic multiplic-
ity two (see the book of Gukenheimer and Holmes, Section 7.3). The bifurcation depends on two
parameters. For nearby parameter values, the system has two equilibria (a saddle and a nonsaddle)
which collide and disappear via a saddle-node bifurcation. The nonsaddle equilibrium undergoes an
Andronov-Hopf bifurcation generating a limit cycle. This cycle degenerates into an orbit homoclinic
to the saddle and disappears via a saddle homoclinic bifurcation.

• Saddle-node Hopf bifurcation. The saddle-node Hopf bifurcation is a bifurcation of an equilib-
rium point in a two-parameter family of autonomous ODEs at which the Jacobian of the system has
a zero eigenvalue and a pair of purely imaginary eigenvalues. This bifurcation is described in the
book of Gukenheimer and Holmes, Section 7.4.

Appendix A: Calculation of the normal form of zero-eigenvalue bifurcations in 2D

In this Appendix we provide a detailed calculation of the normal form of two zero-eigenvalue bifurcations
(transcritical and saddle node) arising in two-dimensional dynamical systems. In particular, The procedure
can is general and it can be applied to other zero eigenvalue bifurcations.

Transcritical bifurcation. Consider the two-dimensional system⎧⎨⎩ẋ1 = x2

ẋ2 = −x2 + μx1 − x21

(70)

In Figure 13 we plot phase portraits of the system (70) for different μ. The system has two fixed points
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μ = −1/2 μ = 0 μ = 1/2

Figure 13: Phase portraits of the system (70) for different μ. Note that the system seems to have a spiral
before and after the bifurcation, but actually when μ approaches zero such spiral becomes a stable node
as predicted by the normal form in Figure 15. Note also that since the bifurcation is local we have that
index is preserved before and after the bifurcation. In other word, the index of the non-hyperbolic fixed
point at (x1, x2, μ) = (0, 0, 0) is zero (saddle node + attractor).

located at
x∗
A = (0, 0) and x∗

B = (μ, 0). (71)

The Jacobian of the system evaluated at xA = (0, 0) is

Jf (x
∗
B(μ), μ) =

[
0 1
−μ −1

]
(72)

and it has eigenvalues (see Figure 14)

λ1,2(μ) =
−1±√1− 4μ

2
. (73)

For μ∗ = 0 the two fixed point are both located at (0, 0) and the system has eigenvalues

λ1(μ
∗) = −1, λ2(μ

∗) = 0. (74)

Hence for μ∗ = 0 the fixed point (0, 0) is non-hyperbolic. The eigenvectors of Jf corresponding to λ1(μ
∗)

and λ2(μ
∗) are

v1 =

[
1
−1

]
, v1 =

[
1
0

]
. (75)

To study the normal form of the system at the fixed point (0, 0), we include μ as phase variable, i.e., we
consider the extended system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −x2 + μx1 − x21

μ̇ = 0

(76)

The Jacobian at (x1, x2, μ) = (0, 0, 0) is

Jf (0, 0, 0) =

⎡⎣0 1 0
0 −1 0
0 0 0

⎤⎦ (77)
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Figure 14: Eigenvalues of the Jacobian matrix (72) as a function of μ.

and it has eigenvalues

λ1 = 0 (multiplicity 2), λ2 = −1 (multiplicity 1). (78)

Therefore the system has a two-dimensional center subspace V c, and a one-dimensional stable subspace
V s spanned by the eigenvectors

V c = span

⎧⎨⎩
⎡⎣10
0

⎤⎦ ,

⎡⎣00
1

⎤⎦⎫⎬⎭ , V s = span

⎧⎨⎩
⎡⎣ 1
−1
0

⎤⎦⎫⎬⎭ . (79)

We choose the similarity matrix P that transforms Jf (0, 0, 0) to a diagonal form as

P =

⎡⎣1 1 0
0 −1 0
0 0 1

⎤⎦ . (80)

In this way we have

Jf (0, 0, 0) = PΛP−1 where Λ =

⎡⎣0 0 0
0 −1 0
0 0 0

⎤⎦ . (81)

That matrix factorization (81) defines the change of variables11⎡⎣cs
r

⎤⎦ =

⎡⎣1 1 0
0 −1 0
0 0 1

⎤⎦
︸ ︷︷ ︸

P−1

⎡⎣x1x2
μ

⎤⎦ =

⎡⎣x1 + x2
−x2
μ

⎤⎦ ⇔
⎡⎣x1x2
μ

⎤⎦ =

⎡⎣1 1 0
0 −1 0
0 0 1

⎤⎦
︸ ︷︷ ︸

P

⎡⎣cs
r

⎤⎦ =

⎡⎣c+ s
−s
r

⎤⎦ . (84)

11Recall that we can always write a nonlinear dynamical system ẋ = f(x) at a fixed point x∗ as

η̇ =Jf (x
∗)η + g(η)

=PΛP−1η + g(η). (82)

Defining q = P−1η and substituting it in the equation above yields

q̇ = Λq + P−1g(Pq). (83)
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This allows us to transform the system (70) in coordinates (c, s, r) as

ċ =ẋ1 + ẋ2 = x2 − x2 + μx1 − x21 = r(c+ s)− (c+ s)2, (85)

ṡ =− ẋ2 = x2 − μx1 + x21 = −s− r(c+ s) + (c+ s)2, (86)

i.e., ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ċ = r(c+ s)− (c+ s)2

ṡ = −s− r(c+ s) + (c+ s)2

ṙ = 0

(87)

Now we calculate the center manifold of the system (87). Such manifold must be: 1) pass through the
point (c, s, r) = (0, 0, 0), be tangent to V c at (c, s, r) = (0, 0, 0), be invariant under (87), 2) The vectors
defining the center subspace V c in the new coordinate system (c, s, r) are (see V c in equation (79))⎡⎣1 1 0

0 −1 0
0 0 1

⎤⎦
︸ ︷︷ ︸

P−1

⎡⎣10
0

⎤⎦ =

⎡⎣10
0

⎤⎦ ,

⎡⎣1 1 0
0 −1 0
0 0 1

⎤⎦
︸ ︷︷ ︸

P−1

⎡⎣00
1

⎤⎦ =

⎡⎣00
1

⎤⎦ (88)

The local center manifold can be represented by the two-dimensional polynomial

s = h(c, r) = a0 + a1c+ a2r + a3c
2 + a4cr + a5r

2 + · · · . (89)

By definition, the center manifold passes through the fixed point (c, s, r) = (0, 0, 0) and is tangent to

V c = span

⎧⎨⎩
⎡⎣10
0

⎤⎦ ,

⎡⎣00
1

⎤⎦⎫⎬⎭ (90)

at (c, s, r) = (0, 0, 0). Imposing these two conditions yields

h(0, 0) = 0 ⇒ a0 = 0, ∇h(0, 0) = (0, 0) ⇒ a1 = 0, a2 = 0. (91)

Hence we are left with the expression

s = h(c, r) = a3c
2 + a4cr + a5r

2 + · · · . (92)

The coefficients {a3, a4, . . . , } can be determined by imposing that the center manifold is an invariant
manifold, i.e.,

ṡ =
∂h(c, r)

∂c
ċ+

∂h

∂r
ṙ =

∂h

∂c
ċ+

∂h

∂r
0 =

∂h

∂c
ċ. (93)

Substituting the equations of motion (87) into (93) yields

−s− r(c+ s) + (c+ s)2 = (2a3c+ a4r)
(
r(c+ s)− (c+ s)2

)
. (94)

Now we replace s with the power series expansion (92) and we match the coefficients multiplying the same
powers of c and r. This yields (after some algebra)

a3 = 1, a4 = −1, a5 = 0. (95)

Therefore the local center manifold (92) can be written as

s = h(c, r) = c2 − rc+ · · · (96)
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Figure 15: Sketch of the 2D transcritical bifurcation process described by the normal form (98).

Substituting this result back into (87) and assuming that c, s and r are very small yields the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ċ = r(c+ c2 − rc)− (c+ c2 − rc)2  rc− c2

ṡ = −s− r(c+ s) + (c+ s)2  −s

ṙ = 0

(97)

Hence, in a neighborhood of the the fixed point (c, s, r) = (0, 0, 0), the system (87) can be written as⎧⎨⎩ċ = rc− c2

ṡ = −s
(98)

This is the normal form of a transcritical bifurcation in two dimensions. The phase portraits of (98) for
different r are sketched in Figure 15.

Saddle-node bifurcation. Consider the two dimensional system⎧⎨⎩ẋ1 = x2

ẋ2 = x2 − x21 − μ
(99)

For μ < 0 the system has two fixed points located at

x∗
A,B = (±√−μ, 0). (100)

Clearly, for μ = 0 these two points coincide and they both disappear for μ > 0 (see Figure 16). So, it
seems that the system is undergoes a saddle-node bifurcation. Let us verify analytically that this is indeed
the case. The Jacobian of the system evaluated at the fixed point (x∗1, x∗2, μ∗) = (0, 0, 0) is

Jf (0, 0, 0) =

[
0 1
0 1

]
(101)

and it has eigenvalues (see Figure 14)
λ1 = 0, λ2 = 1. (102)

the corresponding eigenvectors are

v1 =

[
1
0

]
, v2 =

[
1
1

]
. (103)
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μ = −0.2 μ = 0 μ = 0.2

Figure 16: Phase portraits of the system (99) for different μ. Note that the system seems to have a spiral
before and after the bifurcation, but actually when μ approaches zero such spiral becomes a stable node
as predicted by the normal form (123). Note also that since the bifurcation is local the index is preserved
before and after bifurcation. Therefore, the index of the non-hyperbolic fixed point at (x∗1, x∗2, μ∗) = (0, 0, 0)
is zero (saddle node + repellor).

To compute the normal form of the system at the bifurcation point (Jacobian non-invertible) we consider
the extended system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = x2 − x21 − μ

μ̇ = 0

(104)

The Jacobian of the extended system (104) at (x1, x2, μ) = (0, 0, 0) is

Jf (0, 0, 0)

⎡⎣0 1 0
0 1 −1
0 0 0

⎤⎦ (105)

and has eigenvalues
λ1 = 0 (multiplicity 2), λ2 = 1 (multiplicity 1). (106)

In this case the eigenvalue λ1 = 0 has geometric multiplicity one and therefore the center subspace V c is
spanned by

V c = span

⎧⎨⎩
⎡⎣10
0

⎤⎦ (eigenvector),

⎡⎣01
1

⎤⎦ (generalized eigenvector)

⎫⎬⎭ . (107)

The unstable subspace V u is spanned by the eigenvector

V u = span

⎧⎨⎩
⎡⎣11
0

⎤⎦⎫⎬⎭ . (108)

We consider the similarity transformation

P =

⎡⎣1 1 0
0 1 1
0 0 1

⎤⎦ (109)
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P transform Jf (0, 0, 0) into the Jordan form

K =

⎡⎣0 0 1
0 1 0
0 0 0

⎤⎦ via Jf (0, 0, 0) = PKP−1. (110)

The transformation P also defines the coordinate change⎡⎣c
u
r

⎤⎦ =

⎡⎣1 −1 1
0 1 −1
0 0 1

⎤⎦
︸ ︷︷ ︸

P−1

⎡⎣x1x2
μ

⎤⎦ =

⎡⎣x1 − x2 + μ
x2 − μ

μ

⎤⎦ ⇔
⎡⎣x1x2
μ

⎤⎦ =

⎡⎣1 1 0
0 1 1
0 0 1

⎤⎦
︸ ︷︷ ︸

P

⎡⎣c
u
r

⎤⎦ =

⎡⎣c+ u
u+ r
r

⎤⎦ . (111)

The center subspace and the unstable subspace can be written in coordinates (c, u, r) as12

V c = span

⎧⎨⎩
⎡⎣10
0

⎤⎦ ,

⎡⎣00
1

⎤⎦⎫⎬⎭ , V u = span

⎧⎨⎩
⎡⎣01
0

⎤⎦⎫⎬⎭ . (113)

Similarly, the system (99) can be written in coordinates (c, u, r) using the mapping (111) as

ċ =ẋ1 − ẋ2 + μ̇ = x2 − x2 + x21 + μ = x21 + μ = (c+ u)2 + r, (114)

u̇ =ẋ2 − μ̇ = x2 − x21 − μ = (u+ r)− (c+ u)2 − r = u− (c+ u)2. (115)

This yields the following extended system in coordinates (c, u, r)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ċ = (c+ u)2 + r

u̇ = u− (c+ u)2

ṙ = 0

(116)

This system is completely equivalent to (104). Next, we calculate the center manifold u = h(c, r) at
(c, u, r) = (0, 0, 0). As before, such center manifold must pass through (c, u, r) = (0, 0, 0), be tangent to
V c in (113), and be invariant under (116). This immediately implies that the polynomial expansion of the
local center manifold is

u = h(c, r) = a1c
2 + a2cr + a3r

2 + · · · . (117)

By imposing that the center manifold is invariant manifold we obtain

u̇ =
∂h

∂c
ċ+

∂h

∂r
ṙ︸︷︷︸

ṙ=0

=
∂h

∂c
ċ. (118)

Substituting (116) and (117) into (118) yields

u− (c+ h(c, r))2 = (2a1c+ a2r + · · · )
(
(c+ h(c, r))2 + r

)
, (119)

12Note that ⎡
⎣1 −1 1
0 1 −1
0 0 1

⎤
⎦

︸ ︷︷ ︸
P−1

⎡
⎣10
0

⎤
⎦

︸︷︷︸
∈V c

=

⎡
⎣10
0

⎤
⎦ ,

⎡
⎣1 −1 1
0 1 −1
0 0 1

⎤
⎦

︸ ︷︷ ︸
P−1

⎡
⎣01
1

⎤
⎦

︸︷︷︸
∈V c

=

⎡
⎣00
1

⎤
⎦ ,

⎡
⎣1 −1 1
0 1 −1
0 0 1

⎤
⎦

︸ ︷︷ ︸
P−1

⎡
⎣11
0

⎤
⎦

︸︷︷︸
∈V u

=

⎡
⎣01
0

⎤
⎦ . (112)
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i.e., (
a1c

2 + a2cr + a3r
2 + · · · )− [

c+
(
a1c

2 + a2cr + a3r
2 + · · · )]2 =

(2a1c+ a2r + · · · )
[(
c+

(
a1c

2 + a2cr + a3r
2 + · · · ))2 + r

]
. (120)

By matching the coefficients multiplying the same powers in the previous equation we obtain (after quite
a bit of algebra)

a1 = 1, a2 = 2, a3 = 2. (121)

Hence, the local center manifold is

u = h(c, r) = c2 + 2rc+ 2r2 + · · · (122)

Substituting this manifold into (116) and assuming that c, u and r are very small yields⎧⎨⎩ċ = c2 + r

u̇ = u
(123)

which is the normal form of a saddle node bifurcation in two dimensions.

Appendix B: Hopf bifurcation in Cartesian coordinates

Any trajectory (c1(t), c(t)) in a Cartesian plane (c1, c2). can be equivalently expressed in polar coordinates
(R(t), ϑ(t)) and vice versa via the well-known transformation⎧⎨⎩c1(t) = R(t) cos(ϑ(t))

c2(t) = R(t) sin(ϑ(t))
⇔

⎧⎪⎨⎪⎩
R2(t) = c21(t) + c22(t)

tan(ϑ(t)) =
c2(t)

c1(t)

(124)

Differentiate these formulas with respect to time⎧⎪⎪⎪⎨⎪⎪⎪⎩
ċ1 = Ṙ cos(ϑ)−R sin(ϑ)ϑ̇ =

Ṙ

R
c1 − c2ϑ̇

ċ2 = Ṙ sin(ϑ) +R cos(ϑ)ϑ̇ =
Ṙ

R
c2 + c1ϑ̇

(125)

and substitute the expressions for Ṙ and ϑ̇ appearing in (36) to obtain⎧⎪⎪⎨⎪⎪⎩
ċ1 =

rDR+AR3

r
c1 − c2(ω + CH +BR2) = (rD +AR2)c1 − c2(ω + rC +BR2),

ċ2 =
rDR+AR3

R
c2 + c1(ω + rC +BR2) = (rD +AR2)c2 + c1(ω + rC +BR2).

(126)

Recalling that R2 = c21 + c22 these expression can be written as⎧⎨⎩ċ1 =
[
rD +A(c21 + c22)

]
c1 − c2

[
ω + rC +B(c21 + c22)

]
,

ċ2 =
[
rD +A(c21 + c22)

]
c2 + c1

[
ω + rC +B(c21 + c22)

]
,

(127)

which coincide with (38).
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Lorenz equations

In 1963 Ed Lorenz published a paper titled “Deterministic non-periodic flows” in the Journal of Atmo-
spheric Sciences in which he studied an idealization of a hydrodynamical system represented by a fluid
layer between two free surfaces. The system is sketched in Figure 1.

Figure 1: Fluid layer between two free surfaces. The “free surface” boundary conditions are defined by
setting vertical component of the fluid velocity vz equal zero at z = 0 and z = H (Dirichlet boundary
conditions), and the derivative of the horizontal component with respect to the vertical axis ∂vx/∂z equal
to zero at z = 0 and z = H (Neumann boundary conditions). The free surfaces are kept at constant
temperature Thot (bottom surface) and Tcold ≤ Thot (top surface).

The equations of motion for this system are1⎧⎪⎪⎨⎪⎪⎩
∂∇2Ψ

∂t
+

∂Ψ

∂z

∂

∂x
∇2Ψ− ∂Ψ

∂x

∂

∂z
∇2Ψ = ν∇4Ψ+ gβ

∂θ

∂x
,

∂θ

∂t
+

∂Ψ

∂z

∂θ

∂x
− ∂Ψ

∂x

∂θ

∂z
= κ∇2θ +

ΔT

H

∂Ψ

∂x
,

(1)

where Ψ(x, z, t) is the streamfunction that defines the fluid velocity components as

vx(x, z, t) =
∂Ψ(x, z, t)

∂z
, vz(x, z, t) = −∂Ψ(x, z, t)

∂x
, (2)

θ(x, z, t) represents the deviation of the temperature distribution in the fluid layer from the pure thermal
conduction state, i.e.,

θ(x, z, t) = T (x, z, t)−
(
ΔT

H
z

)
, (3)

ΔT = Thot−Tcold is the temperature difference between the isothermal horizonal fluid layers at z = 0 (hot)
and z = H (cold), H is the depth of the fluid layer, and g, β, ν and κ are, respectively, the acceleration of
gravity, the isobaric compressibility, the kinematic viscosity, and the thermal diffusivity of the fluid. When
studying natural convection problems it is convenient to define the following dimensionless number

Ra =
gβH3ΔT

νκ
(Rayleigh number) (4)

which represents the relative importance between the effects of the buoyancy forces due to temperature
differences, and the effects of the viscosity forces.

1The model equations (1) are called Oberbeck-Boussinesq approximation of the natural convection problem. The first
equation in (1) is the Navier-Stokes equation written in a 2D streamfunction-vorticity formulation. The second equation is
the Fourier equation governing the the propagation of temperature within the fluid layer due to diffusion and transport by
the fluid velocity.
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Figure 2: One-roll convection patterns arising in the infinite fluid layer system sketched in Figure 1. The
convection patter is generated for Rayleigh numbers Ra slightly above the critical one Rac = 657.5 (onset
of convective instability).

Intuitively, when the buoyancy forces exceed some threshold depending on thermal diffusivity and viscosity
the fluid then the system transitions from a state of pure thermal conduction to natural convection,
with an infinite number of one-roll patterns as shown in Figure 2. The critical Rayleigh number that
characterizes the transition point between thermal condition and natural convection is called onset of
convective instability. For the system sketched in Figure 1 the critical Rayleigh number can be computed
analytically as

Rac =
27π4

4
= 657.5. (5)

For Ra < Rac the fluid does not move, while for Ra slightly above Rac we have an infinite number of one-roll
convection patterns (see Figure 2). The system transitions from the no-flow state to the one-roll convection
pattern state via a supercritical pitchfork bifurcation. By expanding θ and Ψ in (1) in a double Fourier series
as and projecting onto the Fourier basis it is possible to transform (1) into a finite-dimensional nonlinear
system of differential equations for the time-dependent functions (Fourier coefficients) representing the
coefficients of the expansion.

In certain cases, all except three Fourier coefficients eventually tend to zero, and those three modes undergo
irregular non-periodic fluctuations. Lorenz observed that the same solutions would have been obtained if
the Fourier series had at the start been truncated to include a total number of three terms. Accordingly,
he looked for time-dependent solutions of (1) in the form

Ψ(x, z, t) =3κX(t) sin

(
π√
2H

x

)
sin

( π

H
z
)
, (6)

θ(x, z, t) =
ΔTRac
πRa

[√
2Y (t) cos

(
π√
2H

x

)
sin

( π

H
z
)
− Z(t) sin

(
2π

H
z

)]
, (7)

where X(t), Y (t) and Z(t) are the Fourier coefficients (functions of time alone). By substituting (6)-(7)
into (1) and omitting trigonometric terms other that those occurring in (6)-(7) we obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ẋ = −σX + σY

Ẏ = rX − Y −XZ

Ż = XY − bZ

(Lorenz system) (8)

In ODE system above, the time derivative is with respect to the dimensionless time

τ =
3π2κ

2H2
t, (9)
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and the parameters r, σ and b are defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r =
Ra

Rac
(relative Rayleigh number)

σ =
ν

κ
(Prandtl number)

b =
8

3

(10)

The system of equations (6)-(8) represents a simplified solution to the natural convection equations (1).
In fact, with X(t), Y (t) and Z(t) available from (8) we can then reconstruct the velocity and temperature
fields within the fluid layer by using (6) and(7).

Properties of the Lorenz system. The Lorenz system is a three-dimensional nonlinear dynamical
system with quadratic polynomial non-linearities. Additionally, it possesses the following fundamental
properties.

• Symmetry. The transformation (X,Y ) → (−X,−Y ) leaves the system (8) invariant. This implies
that the phase portrait is symmetric with respect to the Z-axis. As a consequence, trajectories with
initial condition on Z-axis stay on the Z-axis for all times. This can be also seen by noting that the
initial condition (0, 0, Z0) yields a trajectory described by the system Ẋ = 0, Ẏ = 0, Ż = −bZ.

• Volume contraction. The volume of any compact region D(t) ⊂ R
3 advected by the flow of any

three dimensional system evolves in time as (see Theorem 2 in Appendix A)

dV (t)

dt
=

∫
D(t)

∇ · f(x)dx. (11)

The divergence of vector field at the right hand side of the Lorenz system (8) is

∇ · f =
∂f1
∂X

+
∂f2
∂Y

+
∂f3
∂Z

=
∂

∂X
(−σX + σY ) +

∂

∂Y
(rX − Y −XZ) +

∂

∂Z
(XY − bZ)

=− (σ + b+ 1). (12)

Recalling that σ and b are positive numbers we see that ∇ · f < 0 at each point in phase space. By
substituting (12) into (11) we obtain

dV (t)

dt
= −(σ + b+ 1)

∫
D(t)

1dx = −(σ + b+ 1)V (t), (13)

i.e
V (t) = V (0)e−(σ+b+1)t. (14)

Hence, the volume of any compact region advected by the flow generated by (8) shrinks to zero
exponentially fast in time, independently of where we pick the region, or its initial shape.
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Figure 3: Trajectories of the Lorenz system do not escape the ellipsoid (15) if Q is chosen large enough.

• Trajectories are bounded. Consider the ellipsoid

E(Q) = {(x, y, z) ∈ R
3 : rx2 + σy2 + σ(z − 2r)2 = Q}, (15)

where Q is a positive number representing how big the ellipsoid is2. The outward normal to the
surface of the ellipsoid is (see Figure 3)

n = (2rx, 2σy, 2σ(z − 2r)) (18)

and it coincides with the components of the gradient of

F (x, y, z) = rx2 + σy2 + σ(z − 2r)−Q (19)

evaluated at the zero level set of F . The tangent vector to an arbitrary trajectory intersecting the
surface of the ellipsoid (15) at a point (xe, ye, ze) ∈ E(Q) is given by the right hand side of (8)
evaluated at (xe, ye, ze), i.e.,

t = (−σxe + σye, rxe − ye − xeze, xeye − bze) . (20)

Taking the dot product between the outward normal vector (18) and the vector tangent to a trajectory
passing through an arbitrary point on the ellipsoid (15) yields

n · t =2rxe(−σxe + σye) + 2σye(rxe − ye − xeze) + 2σ(ze − 2r)(xeye − bze)

=− 2σ
(
rx2e + y2e + b(ze − r)2 − br2

)
. (21)

Clearly, if
rx2e + y2e + b(ze − r)2 > br2, (22)

2Note that the ellipsoid (15) is centered at (x, y, z) = (0, 0, 2r) and it can be written as

x2

Q/r
+

y2

Q/σ
+

(z − 2r)2

Q/σ
= 1. (16)

In this form we see that the semi-axes are

a1 =

√
Q

r
, a2 =

√
Q

σ
, a3 =

√
Q

σ
. (17)
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Figure 4: Fixed points of the Lorenz system for r > 1.

then n · t < 0, i.e., the vector tangent to the trajectory intersecting the surface of the ellipsoid points
inward. Of course, if Q in (15) is sufficiently large, then all points on the surface of the ellipsoid
E(Q) will satisfy condition (22). This proves that the ellipsoid itself will serve as the boundary for
the trajectories corresponding to any initial condition on its surface or inside it.

Stability analysis of fixed points. The nullclines of (8) are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X = Y

Y = rX −XZ

Z =
XY

b

(23)

Substituting last equation into the second and taking the first into account yields

X − rX +
X3

b
= 0 ⇒ X

(
1− r +

X2

b

)
= 0 ⇒

{
X∗ = 0

X∗ = ±√
b(r − 1)

(24)

By Substituting this back into (23) we obtain the following three fixed points:

(0, 0, 0) for all r (25)

and
C± =

(
±
√

b(r − 1),±
√
b(r − 1), r − 1

)
for r > 1. (26)

These fixed points shown in Figure 4 for r > 1. The stability of the fixed points is determined by the
eigenvalues of the Jacobian matrix

Jf (X,Y, Z) =

⎡⎣ −σ σ 0
r − Z −1 −X
Y X −b

⎤⎦ (27)

evaluated at (X∗, Y ∗, Z∗) = (0, 0, 0) and (X∗, Y ∗, Z∗) = C±.
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Figure 5: Stability analysis of the origin. Shown are eigenvalues of the Jacobian matrix (28) as a function
of r for b = 8/3 and σ = 10. The origin undergoes a zero-eigenvalue bifurcation (supercritical pitchfork)
for r = 1.

• Stability analysis of the origin. Evaluating the Jacobian (27) at (X∗, Y ∗, Z∗) = (0, 0, 0) yields

Jf (0, 0, 0) =

⎡⎣−σ σ 0
r −1 0
0 0 −b

⎤⎦ (28)

The eigenvalues are the roots of the third-order characteristic polynomial

p(λ) = det (Jf − λI) = −(b+ λ) [(σ + λ)(1 + λ)− rσ] , (29)

i.e.,

λ1,2 =
−(σ + 1)±√

(σ + 1)2 − 4σ(1− r)

2
, λ3 = −b. (30)

It is easy to show that all eigenvalues are real3 for each r (see Figure 5).

Specifically,

a) For r < 1 we have that λ1,2,3 < 0, i.e., the origin is a stable node. Such stable node is globally
attracting, i.e., it attracts all trajectories disregarding where the initial condition is.

b) For r = 1 we have that λ2,3 < 0, and λ1 = 0, i.e., the origin is a non-hyperbolic fixed point. For
r = 1 the Jacobian (28) has one zero eigenvalue, i.e., the system undergoes a zero-eigenvalue
bifurcation. Using Sotomayor’s Theorem 6 in course note 9, it can be shown that such bifurcation
is a supercritical pitchfork bifurcation representing the onset of convective instability of the fluid
layer (note that for r = 1 we have Ra = Rac in (10)). Such bifurcation generates three fixed
point for r ≥ 1, i.e., the origin (which becomes a 3D saddle node) and two stable nodes C±.

c) For r > 1 we have that λ2,3 < 0, and λ1 > 0, i.e., the origin is a three-dimensional saddle node
with two stable manifolds and one unstable manifold. The eigenvectors corresponding to λ1 < 0
and λ2 > 0 lie in the (X,Y )-plane, while the eigenvector corresponding to λ3 = −b < 0 lies on
the Z-axis.

3Note that the smallest value of the quantity within the square root in λ1,2 defined in (30) is positive. In fact, such value
is achieved for r = 0 and can be written as

(σ + 1)2 − 4σ = (σ − 1)2 > 0. (31)
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Figure 6: Stability analysis of C±. Shown are eigenvalues of the Jacobian matrix (32) as a function of r
for b = 8/3 and σ = 10. The fixed points C± undergo a subcritical Hopf bifurcation for r = 24.74.

• Stability analysis of C±. Evaluating the Jacobian (27) at (X∗, Y ∗, Z∗) = C± yields

Jf

(
C±)

=

⎡⎣ −σ σ 0

1 −1 ∓√
b(r − 1)

±√
b(r − 1) ±√

b(r − 1) −b

⎤⎦ (32)

The eigenvalues of Jf (C
±) are roots of the characteristic polynomial

p(λ) = det (Jf − λI) = −(σ + λ) [(1 + λ)(b+ λ) + b(r − 1)] + σ [(b+ λ)− b(r − 1)] , (33)

i.e.,
λ3 + (σ + b+ 1)λ2 + (r + σ)bλ+ 2bσ(r − 1) = 0. (34)

In Figure 6 we plot the eigenvalues of (32), i.e., the roots of (34), as a function of r. We see that

a) For 1 < r ≤ 1.35 the fixed points C± are stable nodes.

b) For 1.35 < r < 24.74 the fixed points C± are still stable but there exist two complex conjugate
eigenvalues with negative real part. The real Jordan form of (32) allow us to identify a plane on
which the local dynamics around C± is equivalent to a stable spiral (see Figure 7 in the course
note 4).

c) For r = 24.74 both fixed points C± undergo a subcritical Hopf bifurcation. To identify the value
of r at which such Hopf bifurcation occurs we set λ = ωi in (34), i.e.,

−iω3 − (σ + b+ 1)ω2 + i(r + σ)bω + 2bσ(r − 1) = 0. (35)

In other words, we look for the value of r that yields an imaginary eigenvalue. Setting the real
and the imaginary parts of the complex number at the left hand side of (35) equal to zero yields,
respectively,

ω2 =
2bσ(r − 1)

σ + b+ 1
, ω2 = (r + σ)b. (36)

By substituting ω2 from one equation into the other we obtain

rH = σ
σ + b+ 3

σ − (b+ 1)
. (37)
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Figure 7: Homoclinic butterfly for r = 13.92655741, σ = 10 and b = 8/3. For r > 13.92655741 a
complicated set is created at the origin of the system via a process called “homoclinic explosion”. This
process is described, e.g., in the book “The Lorenz Equations: Bifurcations, Chaos,and Strange Attractors”,
by Colin Sparrow (Springer 1984). The set arising form the homoclinic explosion can yield transient chaos
(see Figure 8).

This is the critical value of the relative Rayleigh number r at which the subcritical Hopf bifur-
cation occurs. For σ = 10 and b = 8/3 (37) yields rH = 24.74 (see Figure 6).

d) For r > 24.74 the fixed points C± are unstable spirals in 3D, with a stable manifold of dimension
1 (we have a one-dimensional eigenspace corresponding to a negative eigenvalue).

Summary of the bifurcation analysis of equilibria. Let us provide a brief summary of our findings
related to the stability analysis of the fixed points as a function of the relative Rayleigh number r.

• For r < 1 there is only one fixed point at the origin (stable node) and it is globally attracting.

• For r = 1 the origin is non-hyperbolic (but still a stable node). The origin undergoes a supercritical
pitchfork bifurcation, which yields two new fixed points C±.

• For 1 < r < rH the origin is unstable (3D saddle node with a one-dimensional unstable manifold)
while C± turn from stable nodes to 3D stable spirals. Such transition happens at r = 1.35 for σ = 10
and b = 8/3. As r approaches rH from the left, two unstable limit cycles approach the stable spirals
at C±.

• For r = rH both fixed points C± undergo a subcritical Hopf bifurcation in which the unstable cycles
mentioned above are created and exist for r < rH . As we reduce r below rH , the two unstable
cycles become bigger and bigger and they eventually end up touching each other at the origin for
r∗ = 13.92655741, creating the so-called homoclinc butterfly shown in Figure 7. For r > r∗ a
complicated set is created at the origin via a bifurcation process called “homoclinic explosion”. This
process is described, e.g., in the book “The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors”, by Colin Sparrow (Springer 1984). The set arising form the homoclinic explosion can
yield transient chaotic trajectories, as shown in Figure 8.

• For r > rH the fixed points C± are both three-dimensional unstable spirals. Both spirals have a
one-dimensional stable manifold.

Hence, for r > rH there are no stable fixed points as both the origin and C± are unstable. However, we
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Figure 8: Transient chaos for r = 20, σ = 10 and b = 8/3. Note that for t > 75 the trajectory is spiraling
towards C+ and will eventually get there in an infinite time.

have seen that volumes in the phase space shrinks to zero asymptotically fast in time. Moreover, there
exists an ellipsoid that behaves like a trapping region (positively invariant set).

The natural question at this point is: is what is attracting the trajectories entering the ellipsoid for r > rH?
Of course it cannot be any of the fixed points since they are all unstable. How about a stable isolated limit
cycle living within the ellipsoid?

Ruling out stable limit cycles. Lorenz came up with an ingenious heuristic approach to rule out the
existence of stable limit cycles within the ellipsoidal trapping region for r > rH . To this end, let us set
σ = 10 and b = 8/3. This set of parameters yields rH = 24.74. We choose r = 28, which is greater than rH
so that no stable fixed points exist, and plot one trajectory of the system corresponding to and arbitrary
initial condition for sufficiently long time. With such trajectory available we can identify the relative
maxima of the phase variable Z(t) (see Figure 9) Let us call such sequence of relative maxima

{z1, z2, z3, . . .}. (38)

Next, look for a map f that takes in one relative maximum and it returns the next one, i.e.,

zn+1 = f(zn). (39)

The map f is called Lorenz’s map and it is plotted in Figure 10 using simulation data shown in Figure 9.

Period-1 orbits: A period-1 orbit, i.e. a state in which the previous relative maximum is mapped
to itself, is identified by the condition

z∗ = f(z∗), (40)

i.e., it is a fixed point of the Lorenz map (see Figure 10). Of course if such fixed point is stable then
Z(t) should eventually hit the basin of attraction of such point and settle to a period-1 orbit. To
study stability of z∗ we investigate the dynamics of a small perturbation η0 via the iteration

z∗ + ηn+1 = f(z∗ + ηn)  f(z∗) + f ′(z∗)ηn. (41)
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Figure 9: Trajectory of the Lorenz system (8) for r = 28, σ = 10 and b = 8/3. Shown is the phase variable
Z(t) and its maxima zn. A necessary condition for the system to settle on a stable periodic orbit is that
Z(t) repeats itself after some finite period of time.
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Figure 10: Lorenz’s map for r = 28, σ = 10 and b = 8/3. Note that blue points are not exactly sitting on
a line but rather on an very thin set.

Recalling (40), we see that the perturbation ηn satisfies

ηn+1 = f ′(z∗)ηn. (42)

Taking the absolute value and iterating back to the initial perturbation yields

|ηn+1| =
∣∣f ′(z∗)

∣∣ |ηn| = ∣∣f ′(z∗)
∣∣2 |ηn−1| = · · · =

∣∣f ′(z∗)
∣∣n |η0| . (43)

This equation shows that |ηn+1| → 0 as n goes to infinity if and only if∣∣f ′(z∗)
∣∣ < 1. (44)

However, the numerical results shown in Figure 10, suggest that the Lorenz map satisfies instead

|f ′(z)| > 1 for all z. (45)

Hence, period-1 orbits are unstable.
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Figure 11: (a)Lorenz’s attractor for r = 28, σ = 10 and b = 8/3. Shown is one orbit converging to
the attractor as t increases. (b) Sensitivity to initial conditions. Integration of the Lorenz system with
parameters r = 28, σ = 10 and b = 8/3 is restarted at t = 20 with an initial condition taken from the
non-restarted simulation and rounded to three decimal digits.

Period-2 orbits: By following a similar argument it is possible to rule out stability of period-2
orbits. Such orbits define a cycle satisfying

z∗ = f(f(z∗)). (46)

The stability of period-2 orbits can be studied as before, by investigating how a small perturbation
η0 in a neighborhood of z∗ propagates as the Lorenz map is iterated (46). We have,

z∗ + ηn+1 = f(f(z∗ + ηn)) = f(f(z∗) + f ′(z∗)ηn)) = f(f(z∗)) + f ′(f ′(z∗))f ′(z∗)ηn, (47)

i.e., (using (46))

ηn+1 = f ′(f ′(z∗))f ′(z∗)ηn ⇒ |ηn+1| =
∣∣f ′(f ′(z∗))f ′(z∗)

∣∣ |ηn| . (48)

Hence a necessary and sufficient condition for stability of period-2 orbits is∣∣f ′(f ′(z∗))f ′(z∗)
∣∣ = ∣∣f ′(f ′(z∗))

∣∣ ∣∣f ′(z∗)
∣∣ < 1, (49)

which is impossible because of (45). Hence there are no stable period-2 orbits.

Period-p orbits: By following a similar argument it is straightforward to show that if (45) is satisfied
then there are no stable period-p orbits.

In summary, there is no stable limit cycle within the ellipsoidal trapping region. What is attracting all
trajectories then?

The Lorenz attractor. What actually happens to the trajectories of the Lorenz system (8) for r = 28
(σ = 10 and b = 8/3) is that they are all attracted by a “non-standard” geometric object (a strange
attractor) with Hausdorff dimension4 2.0627, i.e., not a surface nor a volume but something in-between,
i.e., “almost a surface”. The “almost” part (and the reason why the Hausdorff dimension is not an integer)
is related to the roughness of the surface, which makes it look like a fractal object. The existence of the

4The Hausdorff dimension is a measure of dimension that was introduced in 1918 by the mathematician Felix Hausdorff.
Hausdorff dimension coincides with regular dimension of smooth objects such as surfaces (dim=2) and volumes (dim=3).
The calculation of the Hausdorff dimension is usually done numerically, e.g., in the paper “The fractal property of the Lorenz
attractor”, Physica D, vol. 190 (2004) 115–128.
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t = 0.4 t = 0.8 t = 1.2

Figure 12: (a)Lorenz’s attractor for r = 28, σ = 10 and b = 8/3, sensitivity to initial conditions. Shown
are trajectories corresponding to a small ball of initial conditions placed nearby the attractor. As time
increases such small ball of red initial conditions paints the entire attractor.

strange attractor for the Lorenz system was established in 1999 by Warwick Tucker in his PhD thesis, and
in a follow-up paper titled “The Lorenz attractor exists” (C. R. Acad. Sci. Paris, vol. 328, pp. 1197-1202).
The proof was based on a combination of normal form theory and rigorous numerical computations. In
other words, rather than producing a traditional mathematical proof, Tucker constructed an algorithm
which, if successfully executed, proves the existence of the strange attractor.

The Lorenz attractor yields long-term aperiodic behavior of all trajectories not sitting on the Z-axis, and a
high sensitivity to initial conditions. In Figure 12(a) we plot one trajectory of (8) for r = 28, σ = 10 and
b = 8/3. It is seen that such trajectory settles to an attractor that resemble a butterfly (hence the name
“butterfly attractor”). In Figure 12(b) we demonstrate what happens to a trajectory if the integration
process is restarted at t = 20 with an initial condition taken from the non-restarted simulation and rounded
to three decimal digits. The sensitivity to initial condition is also demonstrated in Figure ??

Appendix A: Liouville’s theorem

In this appendix we study how the volume of a compact region D0 ⊂ R
n changes in time when all of its

points x0 ∈ D0 are advected by the flow generated by the n-dimensional dynamical system⎧⎪⎨⎪⎩
dx

dt
= f(x),

x(0) = x0.

(50)

To this end, we assume that f(x) is at least continuously differentiable in xm and recall that the volume
of a region D(t) advected by the flow generated by (50) can be expressed as (see Figure 13)

V (t) =

∫
D(t)

1dx (51)

where dx = dx1 · · · dxn. Since the flow X(t,x0) is invertible, we can transform the coordinates back to x0

and write the integral (51) as

V (t) =

∫
D0

det

(
∂X(t,x0)

∂x0

)
dx0, (52)
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Figure 13: Sketch showing how a domain D0 ⊂ R
2 is transported to D(t) ⊂ R

2 by the flow X(t,x0)
generated by the the dynamical system (50). The rate of change in time of the volume/area of D(t), i.e.,
dV (t)/dt is given by Liouville’s Theorem 2.

where

det

(
∂X(t,x0)

∂x0

)
= det

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
∂X1(t,x0)

∂x01
· · · ∂X1(t,x0)

∂x0n
...

. . .
...

∂Xn(t,x0)

∂x01
· · · ∂Xn(t,x0)

∂x0n

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ (53)

is the Jacobian determinant of the coordinate change5 X(t,x0)↔ x0 at each time t.

Theorem 1. Let X(t,x0) be the flow generated by (50). Then the Jacobian determinant of X(t,x0), i.e.,
(53), satisfies

∂

∂t
det

(
∂X(t,x0)

∂x0

)
= ∇ · f(X(t,x0)) det

(
∂X(t,x0)

∂x0

)
. (54)

Proof. Let us prove the theorem for two-dimensional dynamical systems. In this case, the determinant
(53) can be written as

det

(
∂X(t,x0)

∂x0

)
=

∂X1

∂x01

∂X2

∂x02
− ∂X2

∂x01

∂X1

∂x02
. (55)

Differentiate (55) with respect to time to t to obtain

∂

∂t
det

(
∂X(t,x0)

∂x0

)
=

∂

∂x10

(
dX1(t,x0)

dt

)
∂X2(t,x0)

∂x20
+

∂X1(t,x0)

∂x10

∂

∂x20

(
dX2(t,x0)

dt

)
−

∂

∂x20

(
dX1(t,x0)

dt

)
∂X2(t,x0)

∂x10
− ∂X1(t,x0)

∂x20

∂

∂x10

(
dX2(t,x0)

dt

)
. (56)

At this point we recall that

dXi(t,x0)

dt
= fi (X1(t,x0), X2(t,x0)) , i = 1, 2, (57)

5We know that the flow map X(t,x0) generated by a smooth (at least C1) dynamical system is invertible at each point
where the solution to (50) exists and is unique (see the course note 3).
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which implies that

∂

∂x10

(
dX1(t,x0)

dt

)
=

∂f1 (X1(t,x0), X2(t,x0))

∂x10
=
∂f1
∂x1

∂X1

∂x10
+

∂f1
∂x2

∂X2

∂x10
,

∂

∂x20

(
dX1(t,x0)

dt

)
=

∂f1 (X1(t,x0), X2(t,x0))

∂x20
=
∂f1
∂x1

∂X1

∂x20
+

∂f1
∂x2

∂X2

∂x20
,

∂

∂x10

(
dX2(t,x0)

dt

)
=

∂f2 (X1(t,x0), X2(t,x0))

∂x10
=
∂f2
∂x1

∂X1

∂x10
+

∂f2
∂x2

∂X2

∂x10
,

∂

∂x20

(
dX2(t,x0)

dt

)
=

∂f2 (X1(t,x0), X2(t,x0))

∂x20
=
∂f2
∂x1

∂X1

∂x20
+

∂f2
∂x2

∂X2

∂x20
.

A substitution of these expressions back into (56) yields

∂

∂t
det

(
∂X(t,x0)

∂x0

)
=
∂f1
∂x1

∂X1

∂x10

∂X2

∂x20
+

∂f1
∂x2

∂X2

∂x10

∂X2

∂x20
+

∂f2
∂x1

∂X1

∂x20

∂X1

∂x10
+

∂f2
∂x2

∂X2

∂x20

∂X1

∂x10
−

∂f1
∂x1

∂X1

∂x20

∂X2

∂x10
− ∂f1

∂x2

∂X2

∂x20

∂X2

∂x10
− ∂f2

∂x1

∂X1

∂x10

∂X1

∂x20
− ∂f2

∂x2

∂X2

∂x10

∂X1

∂x20
,

=

(
∂f1
∂x1

+
∂f2
∂x2

)
︸ ︷︷ ︸

∇·f

det

(
∂X(t,x0)

∂x0

)
,

which proves the theorem. A similar proof can be given in n dimensions using the expression of the
determinant of a n× n matrix in terms of the Levi-Civita symbol.

Note that at t = 0 we have X(0,x0) = x0 and therefore

det

(
∂X(0,x0)

∂x0

)
= det(I) = 1. (58)

With this initial condition it is immediate to integrate the (separable) ODE (54) to obtain

det

(
∂X(t,x0)

∂x0

)
= exp

[∫ t

0
∇ · f(X(τ,x0))dτ

]
(59)

We now have all element to prove the following theorem due to Liouville.

Theorem 2 (Liouville’s theorem). The volume V (t) of a compact region D(t) ⊂ R
n advected by the flow

X(t,x0) generated by a smooth dynamical system of the form (50) satisfies

dV (t)

dt
=

∫
D(t)

∇ · f(x)dx (60)

Proof. The volume of D(t) can be expressed as (see equation (52))

V (t) =

∫
D0

det

(
∂X(t,x0)

∂x0

)
dx0 (61)
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Differentiating with respect to time and using (54) yields

dV (t)

dt
=

∂

∂t

∫
D0

det

(
∂X(t,x0)

∂x0

)
dx0

=

∫
D0

∂

∂t
det

(
∂X(t,x0)

∂x0

)
dx0

=

∫
D0

∇ · f (X(t,x0)) det

(
∂X(t,x0)

∂x0

)
dx0

=

∫
D(t)

∇ · f (x) dx. (62)
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