AM 10 Prof. Daniele Venturi

Lecture 1: Real numbers

In this lecture we briefly discuss the set of real numbers R, and show how such set can be
constructed based on successive extensions of the set of natural numbers

N=1{1,2,3,...}.
The main steps are:

1. Construct Z = {0,+1,£2,43,...}  (integer numbers).

2. Construct Q = {]—j S p.qE€EL, qF 0} (rational numbers).
q

3. Define the set of irrational numbers and add it to the set of rational numbers to obtain the
set of real numbers.

~
~

Of course we can go on and look for four more rational numbers between 0 and 1/5, i.e.,
1 2 3 4
ar’ o’ o’ o [ (1)
25725725725

NcZcQ. (2)

Rational numbers either have a finite number of decimal digits or an infinite number of decimal
digits repeating periodically. For example:

etc. Clearly, we have!

=0.75 (finite number of decimals),
=0.333333...=0.3 (infinite decimals repeating periodically),

=0. 142857 142857 ... = 0.142857 (infinite decimals repeating periodically).
S——

NP Wl w

'In mathematics, the symbol “C” means “subset of”. Note that N is a subset of Z because Z includes all integer
numbers {1,2,3,...}. In addition, Z includes the negative of all integer numbers and the element zero {0}. Of
course, the set of rational numbers Q includes, by definition, the set of natural numbers as well as the set of integer
numbers.
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Moreover, the sum or the products of two rational numbers is still a rational number. For example,

1 2 7 1 2 2

Z - i 3
37 1 371 15 )
You may have heard that the set of rational numbers is not “complete”. In other words, there are

numbers on the (continuum) horizontal lines sketched above that cannot be represented as a ratio
between two integers, i.e., as a rational number. One of such numbers is the square root of 2

V2 = 1.41421356237309504880168872420969807856967187 - - - (4)

which has an infinite number of decimals that do not repeat periodically as in the case of rational
numbers.

The number v/2 is indeed an #rrational number that can be visualized by rotating the diagonal of
a unit square by 45 degrees clockwise as follows

1

Recall, in fact, that by the Pythagorean theorem, the length of the diagonal of the unit square is
VIZ+12 =2 (5)

Remarkably, no matter how hard we try to cover the continuum line with rational numbers we
find out that the number of “holes” left to be filled is infinite and uncountable (cardinality larger
than N). Hereafter we rigorously show that /2 is indeed not a rational number. To this end, we
formulate the following Theorem?:

Theorem. There is no rational number the square of which equals 2. Equivalently, there is no
rational number that equals v/2.

Proof. Suppose that there exists a rational number p/q (irreducible fraction®) the square of which

equals two:

2

<Z—)> =2 = p=24 (6)
q

Clearly, p* = 2¢? is an even natural number (2 times the natural number ¢* is necessarily even).
This implies that p is an even integer number, and therefore can be written as

p=2s for some s € Z. (7)

2A Theorem is a statement that is not self-evident but can be proved (or disproved) by a sequence of logical or
mathematical operations.

3An irreducible fraction is a fraction that cannot be simplified any further. For example, 3/2 is an irreducible
fraction while 6/4 is not an irreducible fraction as both the numerator and the denominator can be divided by 2 to
obtain 3/2.
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Substituting equation (7) into (6) yields

2252
— =2 = ¢* =2s> = ¢ isan even number. (8)
q
But this contradicts the fact that p/q is an irreducible fraction. Indeed, we just concluded that
both p and ¢q are divisible by 2 since they are both even numbers. In summary, the assumption that
there exists a rational number p/q equals to V2 yields a contradiction, and therefore the assumption
must be wrong, meaning that such a rational number cannot exist.

[]

The technique we just used to prove the Theorem above is known as “proof by contradiction”
(“Reductio ad absurdum” in Latin). Essentially it is a form of argument that establishes a statement
by arriving at a contradiction or at something that is impossible or absurd, even when the initial
assumption is the negation of the statement to be proved. For example, let us prove the following
statement

“There isn’t a smallest positive rational number”

by using the proof by contradiction technique. To this end, we first assume that there is a smallest
positive rational number (negation of the statement) and immediately notice that dividing such
rational number by 2 (or any other integer number larger than 2) yields another rational number
that is smaller than the one we started with. This contradicts the hypothesis that there is a small-
est rational number. Therefore the statement “There isn’t a smallest rational number” must be true.

There are many other examples of numbers that cannot be represented as a ratio between two integer
numbers (i.e., rationals). Such numbers are called irrational numbers, and they have an infinite
number of decimals (non-repeating). Moreover, there are infinite irrational numbers (uncountably
many!). Well known examples of irrational numbers are: 7 = 3.141592653 - - -, V2 =1.41421356 - - -,
V3 = 1.73205080 - - -, e = 2.71828182845 - - - (Napier number).

Remarkably, all irrational numbers can be obtained as limits of suitable sequences of rational num-
bers. For example,

= (—1)" 11 1 1
7T:4Z( ) :4(1———1—5—?4—5—“-) (Leibnitz sequence)

=1 1 1 1
ez;ﬁzl+1+§+6+ﬁ+m

Similarly, v/2 can be obtained by iterating (an infinite number of times) the following sequence of
rational numbers:

Sh 1
Sn+1_7+s_n So—l (9)
ie.,
3 17 — YN
So =1, S) = 3= 1.5, Sy = = 1.416, S = 108~ 1.4142156862745098039,

The sequences above are not unique, meaning that there are many other sequences of rationals
converging to the same irrationals. In any case, such sequences do exist, and they can represent (in
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their limit) all irrational numbers?. By adding (formally) the set of irrational numbers (denoted by
), which is uncountable, to the set of the rationals Q we obtain the set of real numbers’:

R=QUI (10)

A remarkable result of number theory says that both Q and I are “dense” in R. This means that
any real number can be obtained as limit point of sequences of rational numbers or sequences of
irrational numbers. Moreover, between any two distinct real numbers there always exists a rational
number and an irrational one.

Axiomatic definition of R

The set of real numbers can be defined in an axiomatic way. An axiom is statement or a
proposition which is regarded as being established, accepted, or self-evidently true. Hence, by
defining R in terms of axioms we specify properties of R that are self-evidently true.

Field axioms. The set of real number R is a (algebraic) field, i.e., it is a set in which we can define
two operations (addition “+” and multiplication®) with the following properties:

1. Associative property”:

Ve,y,z€R, (r+y)+z=x+(y+2) and (zy)z=2x(yz).
2. Commutative property:
Ve,yeR, 2 +y=y+2x and zy=yx.
3. Additive neutral element:

There exists an element of R, denoted by 0, such that Vxr e R, x + 0 = z.

4. Multiplicative neutral element:

There exists an element of R, denoted by 1, such that Vo € R, 1x = .

5. Inverse with respect to addition:

Vo € R, there exists y € R such that x +y =0(y = —z) (v is the opposite of z).

6. Inverse with respect to multiplication:

Vo € R\ {0}, there exists y € R| -y =1 (y is the inverse of z).

4The sequences are actually used in practice to compute approximations of irrational numbers. For example, in
2016 Ron Watkins used the sequence (9) to compute 10 trillion digits of /2 (see http://www.numberworld.org/
digits/Sqrt(2)).

5Note that R can also be thought of as Q plus all limit points of converging sequences of rational numbers.

5The multiplication operation between two elements x,7y € R is denoted simply as zy.

"In mathematics, the symbol V means “for all”, while the symbol € means “in”. Hence, writing Vz,y, z € R can
be spelled out as follows: “for all z, y and z in the set of real numbers”.
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7. Distributive property of multiplication:
Ve,y,z € R z(y+z) =zy + xz.

Remark: The set R is closed under addition and multiplication. This means that addition and
product of real numbers is still a real number. In general, any set satisfying properties 1.-7. is a
called a (algebraic) field. In particular, it can be verified that: 1) N is not a field; 2) Z is not a field
(the inverse with respect to multiplication is not in Z); 3) Q is a field; 4) I = R\ Q is not a field
(the product of two irrationals can be an integer V242 = 2).

By using the field axioms it is easy define subtraction and division between two real numbers as:

Subtraction: ~ Vz,y € R, x —y = x4+ (—y) (subtraction seen as adding the opposite of y).

Division:  Vx,y € R, y #0, /y = zy~' (division seen as multiplying by the inverse of y).

Ordering axioms. The field of real numbers R is totally ordered, i.e., we can define in R an
ordering relation < such that for all z,y € R:

LLze<y = z+z<y+z, Vz e R.

2.z <y = zz<uyz, Vz > 0.

The mathematical symbol < means “less or equal”. Similarly, “>" means “greater or equal”. So the
ordering axiom number 2. can be phrased as follows: “Let x and y be two arbitrary real numbers;
if x is smaller or equal than y, and z is any non-negative real number, then xz is smaller or equal
than yz.”

Remark: The ordering axioms say that all elements of R are ordered, i.e., we can always tell which
element is bigger or smaller than any other element. That is why the lines sketched at Page 1 and
Page 2 have one arrow (not two!) that indicates the direction in which the numbers are increasing.

Completeness axiom. R is a field that is totally ordered and complete. “Complete” means that

for every subsets A, B C R not empty and separated (i.e., such that « < b Va € A and Vb € B)
there exists at least one ¢ € R such that a < ¢ <b.

A B

The completeness axiom assures that the set R has no “holes” in it. Also, it can be shown that
between two real numbers there is always an irrational and a rational, and between two rational
numbers there is always a real number and an irrational number.

Absolute value. The absolute value of a real number is a function defined as

|-]: R —R"

v = || = x ifx>0 (11)
-z ifz<0
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Here, R denotes the set of non-negative real numbers, i.e., Rt = {x € R: z > 0}.

A

The absolute value function satisfies a certain number of properties summarized in the following
Theorem. Each of the properties can be proved based on the definition of | - |.

Theorem (Properties of the absolute value). Let a,b € R. Then we have
1. |a| >0
2. la]=0&a=0
3. la] =] —q|
4. —|a| <a <|al

5. |al? = a?

6. |ab| = |a||b]
7. la+b| < |a| + |b] (Triangle inequality)
8. la+0b| > ||a] — |b]| (Reverse triangle inequality)

Proof. Let us prove the triangle inequality and the reverse triangle inequality. For every a,b € R
we have®

a+b<la|+|b] and a+0b> —|a|] —|b|. (12)
This implies that
= (la[ +[b]) < a+b < |a] +[b] (13)
ie.,
la+b] <la| +1b] forall a,beR. (14)

The last step follows from the fact that if ¢ is any non-negative real number then

la|<¢ & —c<a<ec (15)

8To prove (12) we notice that for all a,b € R we have a < |a] and b < |b|. Therefore a + b < |a| + |b]. Similarly,
we have —|a| < a and —|b| < b, which imply that —|a| — |b] < a + b. Multiplying the last inequality by —1 yields
—(a+b) < la|+[b].
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Similarly, for the reverse triangle inequality we observe that

a=a+b—0>b =la| <l|a+bl+1b|, (16)
b=b+a—a =|b<l|a+bl+|al. (17)
Therefore
—la+0f <la| — o] <fa+b| (18)
ie.,
llal = 1bl| < |a+0]. (19)
O]

By using the definition of absolute value we can define closed and open intervals of the real line
with endpoint a and b (a,b € R, a < b) as

b b—

[a,b) ={z e Rl a <z <b} = {x eER: |z — a—21— < 5 a} (closed interval), (20)
b b —

la,b[={z € Rl a <z < b} = {x eER: |z — a—2|— < a} (open interval). (21)

Solution to linear and nonlinear equations

It is good practice to specify in which space we are looking for solutions of a certain equation. For
instance, the following linear equation
2 =1 (22)

has no solution in N and no solution in Z, but it has a unique solution in Q equal to x = 1/2, and
of course a unique solution in R (since Q@ C R). Many nonlinear equations, however, do not admit
a solution in R. For example, the following polynomial (quadratic) equation

22 +1=0 (23)

has no solution in R. In fact, the square of any real number x is non-negative, i.e., 2 > 0 for all
r € R. Hence, there is no element in R such that 22 = —1, and therefore (23) has no solution in R.

If we are interested in defining a solutions to equation (23), then we need to utilize a different set of
numbers. In particular, such a set should include particular type of numbers the square of which is
negative and real. As we will see such numbers are called imaginary numbers, and will be described
in detail in the next lecture. Imaginary numbers are a subset of a more general set of numbers which
is complex numbers and denoted as C. Complex numbers were historically developed to make sense
of solutions of polynomial equations (i.e., zeros of polynomials). For instance it was shown that:

Theorem (Fundamental theorem of algebra). Every non-constant polynomial of the form
Pu(2) = an2" + an 12"+ -+ arz + ag (24)

with real or complex coefficients {a,, ..., ao} has at least one complex root.
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By applying this theorem recursively, it can be shown that every polynomial of degree n has exactly
n complex roots (which may not be all distinct).

Complex numbers and complex functions pay a fundamental role in a variety of applications,
e.g., series expansions of periodic functions, signal processing, solution to PDEs via Fourier se-
ries/transforms, quantum mechanics (e.g., Schrodinger equation), fluid dynamics (e.g., Joukowsky
transformations for airfoil design), conformal maps, nonlinear dynamics and control, image process-
ing, wave propagation, etc.
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Lecture 2: Complex numbers

The quadratic equation

Z+1=0 (1)

has no solution in R. In fact, there is no real number such that z?> = —1 (recall that the square
of any real number is either positive or equal to zero). However, we can still define solutions of
equation (1), but we have to seek them in a different set of numbers. In particular, such a set must
include new types of numbers the square of which is a negative real number. These numbers are
called imaginary numbers.

Let “” be one of such numbers, i.e., an imaginary number defined as
1=+v—1. (2)

Clearly, z = i is a solution of equation (1). In fact,

Z24+1=24+1=—-1+1=0. (3)
Moreover, z = —i is another solution of equation (1) since
P2rl=(=i)+1=(-1)**+1=-1+1=0. (4)

Next, consider the polynomial equation
2 +z4+1=0. (5)

We can rearrange such polynomial equation as

Upon definition of

we can write (6) as

3 3
U2 = _Z_l & U = :]:Z% (8)

Substituting u; » back into (7) yields the following two solutions to equation (5)

1, V3
21,2 = —5 + 27. (9)
This suggests that the new set of numbers we are interested in (at lest from the viewpoint of solving

quadratic polynomial equations) has the form
z=x+1y (complex number), (10)

where z and y are real numbers and i is the imaginary unit defined in equation (2). Specifically, x
is called the real part of z, and y is called the imaginary part of z. The real and imaginary parts of
z are often denotes as

Re(z) == and Im(z) =v. (11)

Page 1
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Numbers of the form (10) are called complex numbers. The set of all complex numbers will be
denoted by
C={z=z+iy: z,y e R} (12)

As we shall see hereafter, C is an algebraic field, i.e., is possible to define in C addition and
multiplication operations satisfying the same field axioms we have seen in Lecture 1 for R (field
axioms for real numbers).

Addition and multiplication. Consider the following complex numbers
21 =X+ Zyl 2o = To + Zyg (13)

It is natural to define addition and multiplication in C by using the addition and multiplication
operations we defined in R (see Lecture 1). Specifically, we define

2+ 20 = (21 + 22) +i(yr + y2) (addition operation) (14)

Note that z; 4 23 is still of the form x + iy (with = = (21 + 23) and y = (y1 + y2)). Therefore C is
closed! under the addition operation “+” defined in (14). Similarly,

2129 =(21 + 1) (22 + 1Y)
=(z129 — Y1y2) + i(@1Y2 + T2y1) (multiplication operation) (15)

Again, 225 is a complex number, i.e., a number of the form x + iy (with x = (x129 — y1y2) and
y = (21Y2 + x2y1)). This means that C is closed under the multiplication operation defined in (15)

It is easy to show that the set of complex numbers C, with the addition and multiplication operations
defined in (14) and (15) is a field. In other words, for all z1, 29, 23 € C we have that:

1. Addition and multiplication are commutative

21+ 29 = 29 + 23 2129 = 2921 (16)

2. Addition and multiplication in are associative

(214 29) + 23 = 21 + (22 + 23) (2122)23 = 21(2223) (17)

3. The distributive property of multiplication relative to addition holds

21(22 + 23) = 2129 + Z1%3 (18)

4. There exists neutral elements for both addition and multiplication

21+2m=2 = 2z2=0+10 (additive neutral element)
2129 = 21 = 29=14+10 (multiplicative neutral element)

(19)

We say that C is closed under the addition operation + defined in (14) if for all 21,20 € C we have that
(21 + 2’2) e C.
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Based on the definition of additive and multiplicative neutrals it is straightforward to define the
opposite and the inverse of a complex number. To this end, let z =2z +y

24+21=0+0 = 2z =—-x—1y (opposite of z)

c (20)

—1
x2+y2 $2+y2

229 =1+0i = 2= (inverse of z)

Let us denote z; as —z and 2, as 1/z. Note that equations (20) allow us to define subtraction and
division between two complex numbers in terms of addition and multiplication. In fact, subtraction
of zy from z; is the same as adding the opposite of z3 to z;. Similarly, z; /2 is the same as multiplying
z1 by the inverse of zs.

Remark: We have now set up all the machinery to perform any type of algebraic calculation between
complex numbers, including addition, subtraction, multiplication and division.

Remark: From what has been said, it is clear that C includes R as a subset, i.e., R C C. This
can be seen by noting that real numbers are simply complex numbers with zero imaginary part.
Moreover, the addition and multiplication operations we defined in C, i.e., equations (14)-(15),

reduce to addition and multiplication between real numbers if we set to zero the imaginary parts.
Hence R C C.

Remark: C is not an ordered field. In other words, it does not make sense to write inequalities
between complex numbers.

Graphical representation of complex numbers. There is a one-to-one correspondence between
the complex number

z=x+1y
and the pair of real numbers x,y € R. This means that z identifies uniquely = and y, and conversely
the pair (x,y) identifies uniquely the complex number z. This suggests that we could represent (z, y)
as a point (or a vector) in the Cartesian plane.

When the Cartesian plane is used to represent complex numbers, it is usually called complez plane.
In this setting, the z-axis is called real azis while the y-axis is called imaginary axis.

Im(Z) A
- Z:X'l'd'.y
4 |
|
>
0 X Re(z)

Recall that for the complex number z = x + 1y we defined

Re(z) =a (real part of z) Im(z) =y (imaginary part of z). (21)
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The complex plane allows us to easily visualize addition between complex numbers (parallelogram
rule), and other operations such as the opposite of a complex number, and the complex conjugate
(reflections with respect to the real axis).

ADDITION OPPOSITE COMPLEX CONJUGATE
Im(2) 4 : 2,44, Im(2) 4 Tm(2) 4
p
2,/ iz, Z, E,
0 _ !
0 Roe) Re(2) 0 T R
-Z 1Z:

Complex conjugate. Let z = x 4 iy be a complex number. The complex conjugate of z is the
complex number
2f=x—iy (complex conjugate). (22)

Note that z* has the same real part of z, but opposite imaginary part. With this notation, we have
the following characterization of the complex conjugate.

Theorem 1 (Properties of the complex conjugate). Let z,w € C be two arbitrary complex numbers.
Then

1. (%) ==z

2. (z4+w) =" +w*

3. (zw)* = z*w*

4. z+4 z* = 2Re(2)

5. z —z* = 2iIm(2)

6. 22* = Re(2)? + Im(z2)?
7. 2=2"2z€R

Proof. Let us prove property 3, property 4, and property 6. The proof of the other properties is
left as exercise. Let z = x + 1y and w = a + b be two arbitrary complex numbers.

Property 3.
(zw)* = ((x+iy)(a+ib))" = (ra—yb+i(zb+ya))" = ra—yb—i(zb+ya) = (x—iy)(a—ib) = z*w™.

Property 4.
242" = (z +iy) + (v +iy)* = 22 + iy — iy = 2 Re(2).

Property 6.
22" = (v +iy)(x +iy)* = (z +iy)(x — iy) = 2° + y* = Re(2)? + Im(2)*.
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]

Remark: By using the complex conjugate, it is easy to express the quotient between two complex
numbers, e.g.,

3—2i

—142:
in an standard algebraic form. We know that such ratio is a complex number?, and therefore it can
written is the form x + 7y. The question is what is  and what is y? There is a shortcut to answer
this question. In practice, given a quotient between two complex numbers z; and 2y (i.e., z1/22) we
can multiply the numerator and the denominator by 25 to obtain the algebraic form

(23)

A _ A% (24)
Z9 2929

The denominator in (24) a real number (by property 6. in Theorem 1).

Example: Let z; = 3 — 21 and 2z, = —1 + 2i. Compute the algebraic form of the complex number

z1/z3. We have

3-2  (3-2)(-1-2) (3-2)(~-1-2) 7 4

—1+4+2 (=1+2i)(-1-2i) 5 5
- - J\“r -
21 2y

Modulus of a complex number. The modulus of a complex number z = x + iy is a real number

defined as
2] = Va2 +y? = Vzzt (modulus of z)

The modulus of z represents the length of the vector defined by the point (z,y) in the complex
plane.

Im(Z) A
‘M'/ Z=4+4
'4/|=4.0 IZ|=5
> >
1 Re(z)

2In fact for any z;, z2 € C we have that z; /22 is the multiplication of z; by the inverse of zo (which is a complex
number). Recall that multiplication between two complex numbers is a complex number. Therefore z;/29 is a
complex number that can be written in the algebraic form x + iy.
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Clearly, the modulus of the imaginary number i is
i| =0+ 1i] = V02 + 12 = 1. (25)
Similarly, the modulus of the complex number z =1+ is
2] = |1+ Li| = VI2+ 12 = V2, (26)

The modulus of a complex number satisfies a certain number of properties which are summarized
in the following Theorem.

Theorem 2 (Properties of the modulus). Let z,w € C be two arbitrary complex numbers. Then,

L. |2/]=0&2=0

2. |2*| = |7

3. {|Re(2)|, [Tm(2)[} < [z < [Re(z)] + |Im(2)|

4. [zw] = [2]|w]

5. |z+w| < |z| + |w| (triangle inequality)

6. ||z| — |w|]| < |z+w| (reverse triangle inequality)

Proof. Let us prove property 4, and property 5. The proof of the other properties is left as exercise.
Let z and w be two arbitrary complex numbers.

Property 4.
lzw|? = zwtw* = 22'ww* = |2 |w]* = |zw| = |z]|w).

Property 5.

|z +w|? = (z +w)(z" +w*)
=zZ" +tww +w +wz
= |2|* + |w|* + 2 Re(wz*)

< 2 + |w]? + 2| Re(wz")]. (27)
At this point we notice that?
Re(wz")? = [wz"[* — Im(wz")? < |wz*|* = [w]]2** = [w]*]2%, (28)
le.,
| Re(wz")] < [wl[2]. (29)

A substitution of this equation into (27) yields
|2 +wl? < 12 + Jwl + 2|wf?[2* = (2] + [w])*. (30)

By taking the square root of (30) we obtain Property 5.

3Equation (28) follows from property 6 in Theorem 1, and property 2 and 4 in Theorem 2.

Page 6



AM 10 Prof. Daniele Venturi

]

Polar form of a complex number. We have seen in Theorem 2 (property 4) that given two
arbitrary complex numbers the norm of their product is equal to the product of their norms, i.e.,

|zw| = |z||w| Vz,w e C. (31)

This implies implies that the product of two complex numbers with modulus one is still a complex
number with modulus one. In other words, the set

U={z€C: |z|] =1} (unit circle in the complex plane) (32)
is closed under multiplication. For example, consider the following two complex numbers z and w
z=—41— w=—+1i= (33)

both of which have modulus equal to one (verify it!). Clearly, we have

|zw| = |i] = 1. (34)

Im, Im, Z=1ZIuw(?)

2
; =2, .4

Wz=4 weZ e U/
0 > ) >

The inverse of a complex number on the unit circle (32) coincides with the complex conjugate. In
fact,

ZP=1 = 22*=1 = 22=-. (35)
Clearly, by using elements of the set U defined in (32) we can represent any complex number as
z = |z]u(?) u(v) e U. (36)

Note that u(1) depends only one parameter, i.e., the angle ¢ (arclength on the unit circle). Moreover,
by using well-known results of trigonometry we can write the complex number u(?) as

u() = cos(¥) + isin(1)). (37)
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Complex exponential function. Consider two arbitrary complex numbers on the unit circle (32)
u(¥1) = cos(v) + isin(vh) u(¥2) = cos(Vs) + isin(vq) (38)
and take their product
u(Vh)u(¥a) = cos(y) cos(e) — sin(¥y) sin(ds) + ¢ [sin(vy) cos(Vs) + i cos(vq) sin(vs)]

=cos(th + U2) + isin(th + 02)

Remark: This means that the function u(J) defined in (37) transforms sums into products, i.e.,

u(V1 + o) = u(Vr)u(dy).

|
'1 0 1 Re

M +9) = M (8;) . ( 8)

The similarity between the function u(1)) and the real exponential function e* (z € R) is quite
remarkable. In fact, we have

r1+x2

e = "™, for all xy,29 € R. (40)

This suggests the following definition of complex exponential function

" = cos(d) + isin(¥). (41)

Remark: There are several other reasons supporting the definition of complex exponential function
(41). For instance, consider the Taylor series of the real exponential function

x S x
e => (42)
It is known that such series converges for all 2 € R. By substituting x with 0 in (42) we obtain

o .
-, Zkﬁk
e = ——
k!
k=1

92 9t 93 A
:(1_7+ﬁ_...)_|_Z(19_E_|_1_20_...)

=cos(¥) + isin(?). (43)
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In fact, recall that the Taylor series of cos(¢}) and sin(+)) are

v 9! , VANV
cos(ﬁ)zl—g-l—z—l—“- 5111(19):19—5—1—5—---. (44)

Another reason why it makes sense to define the complex exponential as in (41) is that

d 105 )
C‘; =i, (45)

This can be verified by calculating the derivatives of the right hand side of (41) with respect to ¥.

In summary, the complex exponential function (41) has the same properties of the real exponential
function, e.g., Taylor expansion, derivatives, and the product rule

i01402) _ i il (46)

Euler’s formulas. By using equation (41) is straightforward to express sin(¢) and cos(?) in terms
of complex exponential functions. To this end, we first evaluate (41) at —v

e = cos(¥9) — isin(v9). (47)
Then we add and subtract (47) to (41) to obtain

" L
cos(¥) = % and sin() = S (48)

Argument of a complex number. We have seen that an arbitrary complex number z € C can
be written in three equivalent forms:

1. z =z + iy (algebraic form)
2. z = |z|e" (polar form)
3. z=|z| (cos(¥) + isin(v))) (trigonometric form)

The real number ¥ is called argument of the complex number z, and it represents the arclength (in
radiants) identified by the point z/|z| on the unit circle U (see Eq. (32)). To calculate the argument
of z, consider the following relations between algebraic form of z and the trigonometric form

x = |z| cos() y = |z| sin(¥) (49)
The ratio y/x coincides with the tangent of ¥

tan(9) = 2 (50)

x
How do we extract the angle ¥/ from the previous equation? One possibility is to use the inverse of
the tangent function, i.e., arctan(-), and write

Y = arctan (%) (51)
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The problem with this simple approach is that function arctan(z) is defined only in the open interval
| = m/2,7/2[. Hence, the expression (51) can be used only to compute the argument of complex
number with strictly positive real part? (first and fourth quadrants of the complex plane).

To compute the argument of arbitrary complex number = x + iy we need to shift arctan(y/z)
by 7 if the real part z is negative

arctan <Q> x>0
T
arg(z) = gsign(y) =0 (52)
arctan (Q) +7m <0
T

With this definition ¥ = arg(z) is unique for all z € C and it ranges in [—7/2, 37/2][.

Im, Im,

ar%(Z) Ar%(z)

A AR
NI D

Alternatively, we can define the argument as (note that here we use capitalized Arg(-) to distinguish
it from (52))

[ arctan <g> x>0
T
gsign(y) =0
Arg(2) = ) (53)
arctan (—) +7m7 z<0,y>0
T
arctan (Q) —m x<0,y<0

. T

With this definition ¢ = Arg(z) is unique for all z € C and it ranges in [, 7[.

4Complex numbers with argument ¥ €] — 7/2, 7/2| are either in first quadrant (¥ € [0,7/2[) or in the fourth
quadrant (¢ €] — w/2,0]) of the complex plane.
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Remark: If we shift the argument of a complex number by 2k7 (k € Z, the number is not going to
change. Hence, the following complex numbers

5= 3ei7r/3 y = 3613i7r/3 5= 36—5i7r/3 (54)

are actually the same complex number. This is due to the 2m-periodicity of the circular functions
defining the complex exponential (42).

Integer powers of a complex number (De Moivre’s formula). Consider a complex number

z expressed in a polar form ‘
2= |z|e", (55)

where |z| is the modulus of z and ¢ denotes its argument. By multiplying z recursively by itself we
obtain

22 = |z|2e®?, 2=z, L. (56)
Similarly,
P 1 — Z_* - ’Z_|€—i19 _ ie—w _ |z|_1e_“9 (57)

By multiplying 1/z recursively by itself we obtain

272 = |z e, 2= B, (58)
Therefore we proved the following Theorem.

Theorem 3 (De Moivre’s formula). Let z be any complex number with modulus |z| and argument
Y. Then '
2" = |z|"e™ Vn € Z. (59)

Remark: The powers of a complex number complex are points on a spiral in the complex plane. In
fact, that the parametric form of a spiral in the Cartesian plane is

x(t) = a’ cos(bt) y(t) = a' sin(bt), (60)

where t is the spiral parameter, and a, b are fixed real numbers. These equations coincide with the
real and imaginary parts of the powers of z. In fact,

Re(z") = |z|" cos(nd)) Im(2") = |z|" sin(nd) n € Z. (61)
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Lecture 3: Roots of complex polynomials
To characterize the roots of complex polynomials we first study the roots of a complex number.

Roots of a complex number. Let z,w € C be two complex numbers, and n € N a natural
number. We have seen how to compute the n-th power of z (or w) using De Moivre’s formula (see
Lecture 2), i.e.,

z=z[e” = 2" =|z"e™. (1)

Now we consider the inverse operation, i.e., how to compute the n-th root of a complex number.
We say that z is the n-th root! of w if
2" = w. (2)

This is the simplest polynomial equation involving complex numbers: here w € C is given while
z € Cis to be determined. We shall see hereafter that the polynomial equation (2) has exactly n
solutions in C. To compute such solutions it is convenient to first write both z and w in a polar
form as

w = |wle’ and 2= |z]e”. (3)

Taking the n-th power of z as in (1) and substituting it into (2) yields
[2["e™ = |w]e™ (4)
This equation is equivalent to the following system of equations
2" = |w], ™=, (5)
The first one admits the unique solution?
2l = ¥/Jwl. (6)

The second equation e’ = e is an equality between two vectors on the unit circle in the complex
plane, and it has exactly n distinct solutions {y, ..., %,_1}. To compute such solutions we simply
rewrite the equality ™ = e in a trigonometric form as

9

cos(nd) = cos(t), sin(nd) = sin(t). (7)
This is a system of two nonlinear equations in the unknown variable .

How do we solve the nonlinear system (7) for ¥? How many distinct solutions does it have?

e (learly
nd =t. (8)

is a solution to the system (7) since it satisfies both equations. In fact, substituting ni =t
into (7) yields two identities: cos(t) = cos(t) and sin(t) = sin(t). However, (8) is not the only
solution. In fact, by using the periodicity of the cosine and sine functions we have that

cos(t + 2km) = cos(t) sin(t + 2kw) = sin(t) for all k € Z (9)

n equation (2) w is the n-th power of z while z is the n-th root of w.
2Recall that |2| > 0 and |w| > 0. Therefore there exists a unique solution to |z|" = |w].
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This means that
nd=t+2kr keZ (10)

are solutions. These solutions however are not all distinct. In fact, we have seen that ¥ £+ 27
identifies the same complex number on the unit circle. Therefore the only distinct solutions
of (7) are

ndy =t + 2krw k=0,....,n—1. (11)

Therefore, the complex n-the roots of a number w € C can be written explicitly as follows:

: t+ 2k
2" =w & 2z, = {/Jwle™ Yy = kT k=0,...,n—1 (12)
n

where |w| and t are, respectively, the modulus and the argument of the complex number w. Note
that all complex roots of a number w lie on a circle with radius {/|w| in the complex plane.

Example: Compute the complex 4-th roots the real number w = —1. Such roots are defined by the

(complex) solutions to the equation
2t = 1. (13)

By applying formula (12) we immediately get
2 = ! THHM/A (1,2, 3.

In fact, the modulus of w is equal to 1, and therefore \/|w| = 1. The four complex 4-th roots of -1
can be written in an algebraic form as follows

141 -1+ —1—1 1—1
20 = 9 z21 = Y R2 = ) <3 = :
NG RG] V2 V2
Im,
T Z,
[ X
-1 1 Re
22 Z3
It can be verified that each z, in (14) satisfies indeed 2z} = —1. For example, using the algebraic
form we have
s (40" A+ (1+9)?  (29)?* .
0T T 1 ~ Ty T
—1 4 -1 N2(—1 2\ 2 —94)2
zf:( Z—z) :( +l)4( + 1) :< 4Z> -1 (14)
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Ezxample: Compute the complex cubic roots of the real number w = 2. The cubic roots are complex

solutions of the polynomial equation
23 =2 (15)

By using (12) we immediately obtain

2 = V2e2FT8 | =0,1,2

ie.,

>
[\

(—1+z’\/§), 22:\3/—5(—1—i\/§).

20:\3/57 z1 = 9

Inm, . |
CIRCLE WITH

/_ / RADIVS ?{E‘

Zo >
|/
-z Re

Z,

We remark that if we solve 22> = 1 in R instead of C then we obtain a unique solution, i.e., z = 1.
On the other hand in C we have three solutions: one real, and two complex conjugates.

Remark: Formula (12) suggests that once the first n-th root z is found, then all others can be
obtained by simply dividing the circle with radius |z| = {/|w| into n evenly-spaced parts!

Roots of quadratic polynomial equations in C. Consider the following quadratic polynomial?
az’ +bz+c=0, (17)

where a, b, and ¢ can be complex numbers. Divide (17) by a

b
2424520
a a

and complete the square

b\> ¢ B
(Z+%> +a—47a2—0. (18)
Upon definition of
b
- —_ 1
d=2z+ 5 (19)

3An example of a quadratic polynomial with complex coefficients is

(1+1i)22 +52—i=0. (16)
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we can write (18) as
b? — dac
4a?
This equation can be solved by taking the square root of the complex number b* — 4ac/4a®. As

is well-known, this yields two complex numbers ¢ and —d opposite to each other and sitting on a
circle with radius |b* — 4ac|'/?/(2|al).

6% =

Im,
/ .
NVE
CIRCLE WITH b
RADIVS = Ve~ 4a.c) -
210l

By using (19) we see that the solution of the quadratic polynomial equation (17) is then

A
/\ \\
\\ é.
20
\
0 \\' Re
\
\
Lem T2y
-0
Ezxample: Consider the polynomial equation
Z+z+1=0. (21)

This equation has real coefficients but no solution in R. By using the mathematical steps discussed
above it can be shown that (21) can be written as

1
6 = —% where d=z+ 3 (22)
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Therefore the two complex solutions are

V3

1
— ¥ 23
20,1 5 T (23)

Quadratic polynomials with real coefficients have roots that are either real or complex conjugates.
The roots can also be computed with the standard quadratic formula in this case.

Example: Consider the polynomial equation
2 +iz+1+i=0. (24)

By using the mathematical steps discussed above it can be shown that (24) can be written as

5:z+% ﬁ:—g—i (25)
The polar form of the complex number —5/4 — i is
5 Vil pilarctan(4/5)+m) (26)
4 4
Therefore, the two solutions of 6% = —5/4 — i are
Sy = %ei(arctan(4/5)+7r)/27 5 = %ei(arctan(4/5)+37r)/2. (27)
This implies that the roots of (24) are
o — % <_Z- . \‘l/ﬁei(arctan(4/5)+7r)/2) = % (_i n \‘yﬁei(arctan(4/5)+37r)/2) . (28)

Roots of complex polynomials. In the previous section we have seen how to compute the roots
of quadratic polynomials with complex coefficients. A natural question is whether it is possible to
generalize such computations to complex polynomials of degree n > 2. These polynomials can be
written as

p(2) = ap2" + -+ a1z +ap a; € C. (29)

An even deeper question is whether polynomials of the form (29) actually have roots. This question
was answered in 1799 by Gauss.

Theorem 1 (Fundamental theorem of algebra, Gauss 1799). Every non-constant polynomial of the
form (29) has at least one complex root.

By applying Gauss’s theorem recursively it is straightforward to conclude that (29) has exactly n
complex roots. This is summarized in the following Corollary.

Corollary 1. Every non-constant polynomial of the form (29) has exactly n complex roots.

Proof. Let z; € C be a root of (29). We known that such a root exists because of Theorem 1. Let
us first transform (29) to a monic polynomial (just divide by a,, # 0)
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P(2) = 2"+ by12" - bz + by, bj=— i=0,...,n—1 (30)

Obviously we can factor out z; as

p(z) = (2 — 21)p1(2) (31)
where p;(z) is a polynomial of degree n — 1 obtained by dividing p(x) by (z — z1). The reminder
of such polynomial division is zero because z; is a root of p(z). At this point we apply Theorem 1

again to p(z) to conclude that there exists another root z; and a polynomial py(x) of degree n — 2
such that

p(2) = (2 — 21)(z — 22)Pa(2). (32)

Proceeding recursively we conclude that the polynomial (29) can be factorized as

p(z)=(z—21)(z — 22) - (2 — zp). (33)

This means that p(z) has exactly n roots in C (not necessarily distinct).
[

Regarding the computation of the roots, Ruffini (1799) and Abel (1824) proved that it is impossible
to obtain closed form expressions for the roots of arbitrary polynomials of degree n > 5. This means
that if we are interested in computing the roots of a given polynomial with degree n > 5 then we
have to proceed numerically.

Remark: Effective algorithms to compute the roots of (29) are based on eigenvalue solvers. In fact,
it can be shown that eigenvalues of the following companion matrix

00 -+ 0 —=b
10 -0 —=bh

A=10 1 -+ 0 —bo (34)
00 -+ 1 —by]

coincide with the roots of the polynomials (30) and (29).

The following theorem characterizes the roots of polynomials with real coefficients.

Theorem 2. Let zp € C be a root of a polynomial with real coefficients. Then z{ (complex
conjugate of zy) is also a root.

Proof. Let
p(z) =) a2 (35)
k=0
be a polynomial with real coefficients {ay,...,ao}. If 2 is a root of p(z) then

> apzh =0. (36)
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By taking the complex conjugate of (36) and recalling that?
(20)" = (%)"  a=a

we obtain
n

Z ar(25)" = 0.

k=0

Therefore if zg is a root of p(z) then 2§ is also a root of p(z).

(37)

(38)

]

Theorem 2 essentially states the roots of a polynomial of degree n with real coefficients are either
real or complex conjugates. This implies that the number of complex roots is always even for

polynomials with real coefficients.

4Equation (37) follows from (23)* = (2020)* = 2328 = (28)°.
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Lecture 4: Matrices and vectors

A matrix is a rectangular table with entries arranged in rows and columns. The entries can be
numbers, functions, operators, matrices, symbols, etc. For example, the following matrix is a 2 x 3
matrix (2 rows and 3 columns) with real entries

1 7 2
A= |:—7T 1 O} (1)
Similarly,

cos(f) — sin(&)] 2)

R(6) = [sin(@) cos(0)

is a matrix of trigonometric functions known as rotation matriz'. In general, an m x n matrix with
entries in some set V' has the form

J-th column

all PRI a/lj o e a/ln
A= a1t Qg Qi | i-th row (3)
_a/ml DY am] PR amn-

Denote the set of m x n matrices with entries in V' as M,,x, (V). For example, we have:

o M,,xn(R): set of m x n matrices with real entries
® M,,xn(C): set of m x n matrices with complex entries

 Mxn(Co([0,27])): set of mxn matrices with entries in the space continuous functions defined
on the interval [0, 27]. An element of this set for n = m = 2 is the matrix defined in (2), i.e.,
R(0) € May2(Co([0,27])). Indeed, the entries of R(#) are continuous functions in [0, 27].

Ezample (plotting functions and surfaces): Let us provide a simple example of how vectors and
matrices can be used to plot one-dimensional and two-dimensional functions. To this end, consider

=sin(z)+2  z€[0,2n]. (4)
We are interested in plotting this function “point-by-point”, i.e., map a set of points {z1,...,z,} to
y; = sin(z;) +2 (¢ =1,...,n) one by one. In particular, we choose the set of evenly-spaced points
27
Tig1 = 7 1=0,...,n—1 5)
= )

!The rotation matrix (2) defines rigid rotations of the Cartesian plane by an angle 6.
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, l.e., a row vec

ith one row and n columns

1X W

ts 1into a matr

11

We can then map each entry of the vector z into the corresponding entry of another row vector y

We collect all these po
as

AM 10
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“AM 107
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Aaddddddddddddoeoeddddddddddddddddddooeeodddddddddd

Aaddddddddddddeeeodddddddddddddddddd oo o ddddddddd
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2
Ezxample (Matrices representing images)

1S represen

Yi
Hereafter we show the results of this procedure for n = 10 in one and two d
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Addition between matrices. It makes sense to define addition between matrices with the same
number of rows and and the same number of columns. To this end, let A and B are two n x m
matrices

aip - Qip bin -+ biy
A= : B=|: : (8)
i Qo bt - b
We define
aig +by o0 Ay + by
A+ B= : (9)
Q1 + bml o QT bmn

In this way A+ B is still an m x n matrix, i.e., the set of n x m matrices is closed under the addition
operation defined in (9).

Example: Consider the following matrices:

10 3 00 1 10 4
A‘{412}’ B_[123} = A+B_[535}' (10)

We also define the product between a matrix and number ¢ (real or complex) as

Ca1q s CAyp
cA=| : S (11)
Cmy -+ Clhmn
Clearly cA is a m X n matrix.
Ezxamples: ]
1 0 3 3 09
A‘[412} = 34=11 3 ¢
i 0 3+2i C 10 243 (12)
B=|141 1 2 = 1B=|—-141 —1 21
1 0 6i i 0 -6
It is clear that the neutral element for the addition operation (9) is the zero matriz
0 --- 0
0 --- 0

In fact, for any m x n matrix A we have A+ 0,,x, = A. The opposite of the matrix A is the matrix?

_all DR _aln
—A=| F- (14)

—Qm1 " —Qmn

2The opposite of a matrix A is, by definition, the element B such that A + B = 0, xp.
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Vector space of matrices. The addition and multiplication by a number operations defined in
(9) and (11) satisfy the following properties

1. A+ B=DB+ A (matrix addition is commutative)
(A+B)+C=A+ (B+C) (matrix addition is associative)

A+ 0pxn =0pxn + A=A (additive neutral, i.e., the zero matrix)
A—A=0,xn (opposite matrix —A)

c(A+B)=cA+cB ceR (orC)

(a+b)A=aA+bA a,beR (or C)

7. (ab)A = a(bA) ceR (or C)

I A S

In technical terms, we say that the space of n x m matrices over the field of complex numbers
forms a vector space. More generally, any set in which we define an addition operation “+” and a
multiplication by ¢ € C satisfying properties 1-7 listed above forms is a wvector space over C. The
set of matrices with positive real entries is not a vector space since the opposite of a matrix with
positive entries is not a matrix with positive entries.

The elements of a vector space are called vectors. Hence, a matrix is a vector in the vector space
of matrices. A function f(x) = sin(z)? is a vector in the vector space continuous functions from R
into R.

Matrix multiplication. Let us consider two matrices A and B and suppose that the number of
columns of A (say p) coincides with the number of rows of B

aix - Al bii -+ bip
, B=|: e (15)

. by - bpn

A:

The (standard) matriz product between A and B is defined as
(AB),-j:ai1b1j+---+aipbpj, z'zl,...,m, z:l,,n (16)

Here, (AB);; denotes the (ij)-th entry of the matrix m x n matrix AB. Note that if the matrix A
has size m X p and the matrix B has size p X n then the matrix AB defined in (16) has size m x n.

The matrix product (16) corresponds to the so-called row-column rule in which the entries of the

i-th row of the matrix A are multiplied by the entries j-the column of B and the results of all these
multiplications are summed up to obtain the ij-entry of AB

N

———
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Example: Consider the two matrices
1 -1

A:E ; _21] B=|2 —2|. (17)
1 -3

The matrix product AB is well-defined and it is computed as follows:

| (1+6+2) (-1-6-6)| |9 -13
AB—{(1+10—1) (—1—1o+3)}_{1o —8} (18)

Similarly, the matrix product BA in this case is well-defined® and it corresponds to the 3 x 3 matrix

0 -2 3
BA=|0 -4 6. (19)
—2 -12 5

Remark: For square matrices A and B (i.e., matrices with size m = p = n) both products AB and
BA are well-defined and they yield n x n matrices. However, the matrix product is (in general) not
commutative, i.e., AB # BA. For example

1 1 11
ol eef
do not commute. In fact, we have
1 1)1 1 2 3
a=ly S0 o= 2]

1 1)1 1 4 —1
BA= {1 2} {3 —2} - {7 —3]
The matrix C' = AB — BA is called matriz commutator of A and B and it often denoted by
C = [A,B]. If AB = BA then we say that A and B commute. If A and B commute then the

commutator [A, B] is the necessarily the zero matrix.

(21)

Remark: A very important example of matrix product is the so-called matriz-vector product, in
which a m x n matrix A is multiplied by a column vector* with n entries

a1; - Aip x
a11T1 + - + a1y

Am1ZT1 + -+ QppTn
Am1 = Amnp T,

Clearly, Az is a column vector with entries

(Ax)i = Q11+ + Qi Ty 1=1,...m. (23)

3More generally, if A € M,,«.m and B € M,,«» then AB € M,,«,, and BA € M, xm.
4A column vector with n entries is a n x 1 matrix.
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Remark: The neutral element for the multiplication operation (16) is called identity matriz

1 -+ 0
]n =|: . | € Mnxn(R) (24)
0 --- 1

The identity matrix is a square matrix with ones along the main diagonal and zeros everywhere
else. If A is a m x n matrix then

I,A=AL = A (25)

Theorem 1 (Properties of the matrix product). Let A, B and C three matrices for which the
following products and sums are well-defined. Then:

1. A(BC)=(AB)C (matrix multiplication is associative),
2. AB+C)=AB+ AC (left distributive property),

3. (A+ B)C =AC+ BC (right distributive property),

4. ¢(AB) = A(eB), ceC.

Proof. Properties 1 to 4 can be proved simply by using the definition (9), (11) and (16). Let us
prove property 2. To this end, let B,C € M,y and A € My, so that the matrix multiplication
in property 2 is well-defined. The ij entry of the matrix A(B + C') can be written as

n

(A B + C Z CL,p bzy + Cp] = Z aipbij —+ Z aipcij = (AB)Z] —+ (AO)U (26)

p=1 p=1

]

Remark: Consider an arbitrary square matrix A and a positive integer p. The p-th power of A is
the matrix

AP =AA--- A (matrix power). (27)

p times

For example, the square of the matrix A defined in equation (20) is
, [1 1]t 1] _[4 =1
A= [3 —2} [3 —2} - {—3 7] (28)

Remark: 1t is possible to define other types of matrix products, e.g., the Kronecker product “®”
or the Hadamard product “o”. These types of products are different from the matrix product (16),
and they satisfy different properties. For example, the Hadamard product between the matrices

ap; -0 Ay bin -+ by
A= : : and B =

Am1 = Amn bml bmn
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is defined as

aitbi -0 abin
Ao B = : : (Hadamard product). (29)

amlbml amnbmn

and it is clearly commutative®, i.e., AoB = BoA. On the other hand, given two matrices A € M,
and B € M,,, their Kronecker product is defined as defined as

allB ce alnB
A® B = ; : (Kronecker product). (30)
amB - amnB

Note that that A ® B is a block matrix of size np x mq. In fact, each entry of A ® B is a matrix of
size p X q.

Transpose of a matrix. The transpose of the m x n matrix

@113 - Aip

Am1 = Amnp

is the matrix obtained by switching the row and column indices of A, i.e.,
aip - Qim
AT = : (32)
A1 - o

For example,

1 0
12 103 r 12 =2

A‘{o —241} e A=y (33)
3 1

Theorem 2 (Properties of transpose matrix). Let A and B two matrices for which the following
operations are well-defined. Then:

L (AT =A
2. (A+B) =AT+ BT
3. (AB)T = BTAT

4. (cA)T = cAT ceC

SRecall that the standard matrix product between two square matrices is (in general) not commutative, i.e,
AB # BA.
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Proof. Let us prove property 3. To this end, let A € M, «,, and B € M,,x,. The ij entry of the
matrix AB is (see equation (16))

(AB)i; = Z it brj (34)
k=1

To obtain the ij entry of (AB)T we simply need to switch 4 and j. This yields,

m m

((AB)T)Z‘J' - Zaikb’” - Z (BT)ilc (AT)kj - (BTAT)z‘j (35)

k=1 k=1

All other properties can be proved in a similar way.

O
Remark: Let A, B, C' and D four matrices such that the product ABCD is well-defined. Then
(ABCD)" = DTCT BT AT (36)
In fact, by applying property 3 in Theorem 2 recursively we have
(ABCD)" = (CD)'(AB)T = DTCTBT AT (37)

Remark (Conjugate transpose): For matrices with complex entries we can also define the conjugate
transpose as

AP = (AT (38)
The conjugate transpose of a matrix A has entries
H _
a;; = aj;. (39)

Symmetric and skew-symmetric matrices. Let A € M, ., be a square matrix®.
If A= AT then we say that A is symmetric.
If A= —AT  then we say that A is skew-symmetric (or anti-symmetric).

Examples of symmetric and skew-symmetric matrices are

-1 3 1 0 3 1
A=13 =3 5| (symmetric), B=|-3 0 —4| (skew-symmetric). (40)
1 5 0 -1 4 0

By definition, the entries of a symmetric matrix A satisfy a,; = aj. Similarly, the entries of a
skew-symmetric matrix satisfy a;; = —aj;. Note that this implies that the diagonal entries of a
skew symmetric matrix are necessarily zero

Qi = — Q4 = Qi = 0. (41)

5The definition of symmetric and skew-symmetric matrices makes sense only for square matrices. In fact, the
statements A = AT and A = —A7T are legitimate only for square matrix. Otherwise we are saying that, e.g., a 3 x 2
matrix equals a 2 X 3 matrix.
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Any square matrix A € M,, can be decomposed into a sum of a symmetric matrix and a skew-
symmetric matrix as follows

1 1
A:§(A+AT)+ §(A—AT). (42)
h sym?n,(;tric s\kew—s;nrlmetri::

The following result holds for arbitrary rectangular matrices.

Theorem 3. Let A € M,,,, be an arbitrary n x m matrix. Then AA” is a n x n symmetric matrix
and AT A is a m x m symmetric matrix.

The proof is left as exercise.

Remark: If A is a n x n square matrix then AT A and AAT are both n x n symmetric matrices. In
general, ATA # AAT. However, if A is symmetric then AAT = AT A (show it!).

Matrix inverse. Let A € M, ., be a square matrix. We say that A is invertible if there exists a
n x n matrix A~! such that

AAT =1, AT'A=1, (43)
where I, is the identity matrix (24).
Theorem 4 (Uniqueness of the inverse matrix). The matrix A™! satisfying (43) is unique.
Proof. Suppose that there are two matrices B; and B, such that
AB, =1,, BiA=1, and ABy =1,, ByA=1,. (44)

Then
By = Byl,, = By(ABy) = (B2A)By = By, (45)

i.e., By = B;. This means that for any matrix A, the inverse is unique (if it exists).

Hence, if A is invertible” then there exists a unique matrix A~! that commutes with A such that
the matrix product between A and A™! yields the identity matrix (24).

Theorem 5 (Properties of the inverse matrix). Let A and B be two n x n invertible matrices.
Then

L. (A =4
2. (AB)"' =B 4!
3. (AT) =A™
Proof. Let us prove properties 1, 2 and 3.
1. Let C be the inverse of A~!. Then
A'C=1, CA'=1I,. (46)

Theorem 3 says that there exists only one matrix that satisfies (46), and that matrix is A.
Thus, the inverse of A~ is A.

"We will derive conditions for the invertibility of a matrix A in subsequent lecture notes. As we will see, not every
square matrix admits an inverse.
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2. The following identities
I, = AB(B™'A™Y), I, =(B'AHYAB (47)
imply that the inverse of the matrix AB is B~1A~%

3. Consider
I, = (AA_l)T = (A_l)TAT 1, = (A_lA)T = AT(A_l)T. (48)

Therefore the inverse of AT, i.e. (A7), is equal to (A~1)T.

Orthogonal and unitary matrices. Let A € M, ., be a square matrix with real entries. We say
that A is an orthogonal matriz ® if

AAT = ATA =1, (49)
Clearly, if A is an orthogonal matrix then (by using the definition of the inverse and its uniqueness)
AT = A7 (50)
Moreover, if A is an orthogonal matrix then the commutator
A, AT = AAT —ATA=1,-1,=0y,,,. (51)
If the matrix A has complex entries then we say that A is a unitary matriz if
AAT = AP A =1, (52)

where A is the conjugate transpose of A.

Linear systems of equations. Consider the linear system of equations (m equations in n un-
knowns)
anxry + -+ a1y, = b1
a1T1 + -+ + Aoy = b2

(53)
W11 + 0+ QT = by
Upon definition of
a1 Qi by
A= | L b= (54)
Al Qo by,

we can write (53) in a matrix-vector product form as

Ax =b. (55)
In the particular case where m = n (number equations equals the number of unknowns) we have
that if the matrix A is invertible then the system (53) admit the unique solution®

r=A"b (56)
As we shall see in the next lecture, there is no need to compute the inverse matrix A~! to solve the
linear system (53).

8As we will see, the reason why we call the matrix A satisfying (49) an orthogonal matrix follows from the fact
that the rows (or the columns) of such matrix are orthonormal relative to standard “dot product” in R™.
9By applying A~! to both sides of (55) we obtain A~ 'Axz = A1, i.e., x = A~ 'b.
I’IL
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Lecture 5: Linear equations
An equation in n variables is linear if it can be written in the form
AnTy + ...+ ayzy = b. (1)
The numbers {ay,...,a,} are the coefficients of the equation, while b is usually called constant

term.

The variables z; and the constant term b can be elements of rather general vector spaces. For
example, x; can be vectors in R", n x m matrices with real entries, or real-valued continuous
functions, while a; are usually real or complex numbers!.

Ezamples: Let us provide a few simple examples of linear equations in the space R™ for n = 2 and
n = 3. The elements of R™ are n-tuples of real numbers of the form

r=(x1,...,7,) z; € R. (2)

In a matrix setting,  can be represented as a row vector or as a column vector

T
r= |11, r=[z - ). (3)
Tn
(a) The linear equation
11 + Ay = b ai, ag, beR (4)

represents a line in R2. In fact, if as # 0 then we can express » in terms of x; as

b
oy = — gy 4+ —. (5)
(05} a9

The graph x, versus z is, e.g.,

b

Qy

If aa = 0 and a; # 0 we obtain the vertical line 21 = b/ay. Lastly, if a; = as = 0 then we
necessarily have b = 0 and the linear equation reduces to 0 = 0, which is uninformative.

'The vast majority of vector spaces are constructed over the field R or C.
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(b) The linear equation
asrs + asxrs + arxy = b a;, beR (6)

represents a plane in R3. Such a plane is a two-dimensional surface embedded in three dimen-
sional space, which can be sketched as follows

This plane can be also expressed as a linear combination (linear equation) of two 3D vectors
lying on the plane, plus a constant 3D vector.

(c¢) The following linear equation represents a so-called hyper-plane in R™ (n > 4).
ApTy + -+ ayx; =>b a;,b € R (7)
Systems of linear equations. A system of m linear equations of the form (1) can be written
as

a1ry+ ...+ ATy = bl
(8)

Am1T1 + ...+ QnTy = by,

For example,

3 209 =1
Tt St 2 equations in 2 variables
T — 5[E2 =0
or1 —x3 =3
A 2 equations in 3 variables
.T1—|—2.CE2—8333 =5

A solution to the linear system (8) is a set n variables (xy,...,x,) satisfying all equations in (8).
In general, linear systems can have

1. Exactly one solution
2. No solution

3. Infinite solutions
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Geometric interpretation:

e We have seen that a linear equation in R? defines a line in the Cartesian plane. Hence, the
following system of two equations in R?

a1171 + ajpry = by
a21T1 + GgaTo = by

(9)

defines two lines. Such lines can intersect at one point (unique solution), can be parallel (no
solutions) or they can be superimposed (infinite solutions).

ONE SOLUTION NO SOLUTION INFINITE SOLUTIONS
Xz A le

3
UNIQUE
| SOLUTIiON
[
I /

0 X, 0 X, 0 Xy

A
Xa

v

v

e We have seen that a linear equation in R? defines a plane in the three-dimensional space.
Hence, the following three equations in R?

1121 + a12%2 + a13x3 = by
2171 + A22%2 + A23T2 = by (10)

a3171 + a3aT2 + aszrz = b

define three planes. Such planes can intersect at one point (unique solution), can be parallel
and distinct (no solution if just two planes are parallel), or they can intersect along one

line (infinite solutions, one-dimensional set), or even be the same plane (infinite solutions,
two-dimensional set).

ONE SOLUTION NO SOLUTION INFINITE SOLUTIONS

PLANE 3

PLANE 1

PLANE 2

PLANE 3

PLANE 1 AND 2
COINCiDE
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Remark: A linear system of m equations in n variables can be written in a compact matrix-vector
form as

Ax =b (11)

where
aiyr ... Qp T bl

A= . 0, x={:|, b=|:]. (12)

Aml - Qmn Tn b

Solving a linear system of equations. Let us begin with the the following simple example of a
system of 2 linear equations in 2 unknowns

{.Tl + X9 = 3 (13)

Ty — 2.1'2 =1
Clearly, we can express x; in terms of x5 by using the second equation,i.e.,

and then substitute this result into the first equation to obtain
142054+ 20=3 = 1x9=

2
I1:1+2(§) = I =

Note that z; = 2/3 and x5 = 7/3 satisfy (13). The method we just described, is not very efficient
for linear systems in higher dimensions, e.g.,

(15)

(16)

Wl 3 Wl

(x1+x2+x3+x4—3x5—:1

T1 — X9+ T3 — x4 — 1225 = 2

31 —3x0+ T3+ x4 + a5 = —2
—T1 + 229+ 23 + 14 + —4a5 = —2

\—4%1—5(724‘.7}3—'—5(744‘3}5:—2

A more effective method relies on transforming a linear system into an equivalent one, i.e., a systems
with the same solutions, that is easier to solve. The key observation is the following:

The solution of a linear system does not change if we replace one equation with a linear combination
of that equation and others in the system (we will see why!).

Is this true? Let us verify the statement in the simplest possible setting, i.e., for the 2 x 2 linear
system

IL‘1+.’L'2:O
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This system can be written in a matrix-vector form as

2 1| (=] |1
-0 )
——— =~
A T b
The solution is clearly ;7 = 1 and xo = —1. Let us now replace the second equation in (17), i.e.,

1 + x5 = 0, with the first equation multiplied by 2 plus the second. This yields

2 =1
{331—|—$2 (19)

521 + 319 = 2
which still has the unique solution x; = 1 and x5 = —1. So the statement seems to be true.

If we replace the second equation in (17) by the second equation multiplied by 2 itself minus the
first equation we can eliminate the variable x; to obtain

2 =1
{ 1+ T2 (20)
To = —1
This system can be written in a matrix-vector form as
2 1) || |1
R ey
—— =

A1 x b1

The matrix A has an upper-trianglar triangular structure which allows us to solve the system by
using backward substitution, i.e., solving the last equation first and then substituting the result back
into into the previous equations.

Remark: Note that the operation we just described, i.e, “subtract the first equation from the second
multiplied by 2”7 can be represented by a lower-triangular (invertible) matrix

1 0
nefl) ] o
In fact, by applying T3 to equation (18) we obtain equation (21), i.e.,

TlAZE = le == All' = b1 (23)

This can be verified by a direct calculation
1 0]]2 1 2 1 1 0|1 1
O [ R R O [ (Y

Gauss elimination method and row echelon forms of a matrix. The method we just
described to transform a linear system in an “upper triangular” form is known as Gauss elimination
method, and it can be applied to linear systems with an arbitrary number of linear equations and
an arbitrary number of unknowns.
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When performing Gaussian elimination is also convenient to interchange the rows of the augmented
matrix so that the row with largest (in absolute value) entry acts as a pivot for the elimination step.
This procedure is called Gauss elimination method with pivoting by row. In general, the following
elementary row operations performed on the augmented matrix do not change the solution of the
associated linear system of equations:

1. multiplication of one row by a non-zero number,
2. addition of one row to another, and
3. interchange two rows.

All these operations can be represented by invertible matrices. This implies that they do not change
the solution of the system. In fact, if T is an invertible matrix then

Az =b < TAz=T0>. (25)

In orther words, Az = b and T'Axz = T'b have the same solution. Note that it is possible to transform
T Az = Tb back into Az = b if and only if T is invertible?. On the other hand, if T' is not invertible
then

Ar =0 = TAx=Tb, but TAx =Tb =~ Az =D. (26)

This means that the systems are not equivalent if 7" is not invertible. Let us clarify why elementary
row operations on a matrix can be represented as multiplications by invertible matrices.

Example: Consider the following 2 x 4 matrix

1 21 1
{—3 1 2 —2} (27)
The interchange of the first and the second row is represented by the matrix 73
-3 1 2 =2 0O 1|1 2 1] 1
[1 2 1 1}:[1 0“—312’—2] (28)
——
T

Similarly, multiplication of the first row by —1/3 is represented by the matrix 75

{1 ~1/3 —2/3 2/3}:{—1/3 0] [0 1} {1 2 1 1} (29)

12 1 1 O 1|1 0j|-3 1 2 -2
——

Ts T

Finally, the subtraction of the first row from the second one is represented by the matrix T3

e R | i ) PR

2Just apply T~! to T Az = Th to obtain Az = b.
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The matrices Ty, T and Ty are all invertible, and therefore their product 7' = T5T57 is invertible?.
The invertibility of 7" establishes a one-to-one correspondence between the matrix (27) and the
matrix at the left hand side of (30).

The matrix (30) is said to be in row echelon form A matrix is in row echelon form if:

Whenever two successive rows do not consist entirely of zeros, then the second row starts with a
non-zero entry at least one step further to the right than the first row. All the rows consisting
entirely of zeros are at the bottom of the matriz. The row echelon form of a matriz is not unique.

Let us now show how to solve a linear system by using Gauss elimination with pivoting by row. To
this end, consider the linear system

1+ 229 + 13 = 2
201 + 1o+ 23 =1 (32)

1+ X9+ X3 = 1
This system can be written in a matrix-vector form as

12 17 [x 2
2 1 1| |a| = |1]. (33)
11 1] |as 1

A

x

Define the following augmented matriz associated with (32) (or equivalently (33))
1 2 12
A= |2 1 1|1 (34)
11 1)1

Note that the augmented matrix is obtained by concatenating the column vector b to the right of
the matrix A. As we shall see hereafter, the Gauss elimination method with pivoting by row yields
an augmented matrix in row echelon form.

Let us know describe the Gauss elimination method with pivoting by row which will transform the
augmented matrix (34) in row echelon form.

1. Pivoting step: We select the equation with the largest absolute value of a;1, i.e., the second
equation in (33), and we interchange it with the first to obtain

LU1+2£C2+LE3:2 I 2 1]2
1 1 1|1

T+ To+ T3 = 1
(Augmented matrix of the new system)

3Recall that the inverse of a production of invertible matrices T, T» and T3 is invertible and that

(TsToTy) ™' =17t (31)
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2. Elimination step: We multiply the first equation by —1/2 and add it to the second and the
third equation. This yields,

2x1+x2+x3:1 2ZE1+$2+ZE3:1
x1+2x2+I3—x1—1x2—1x3:2—1 = §I2+l$3:§
2 2 2 2 2 2
1 1 1 1 1 1
$1+x2+$3—x1—§$2—§x3:1—§ §$2+§.’E3:§

Therefore, we obtain
2513'1 + T2 + T3 = 1

] 3 2 1 1 1

—To+ —I5 = — 0 3/2 1/2]3/2

2 2 2

. ) 1 0 1/2 1/2|1/2

5532 + 5553 9 (Augmented matrix of the new system)

3. Pivoting step: We look for the equation with the maximum absolute value of the coefficient
aj2, (j > 2). In this case, it is the second equation. Hence, we do not do any permutation.

4. Elimination step: We multiply the second equation by —1/3 and we add it to the last one to
eliminate w9

2£L’1+I2+ZL’3:1 2I1+ZL’2+I3:1
3 +1 3 3 +1 3
22T Ty R P
1 1 1 1 1 1 1
2T T T Ty T ) 37
Thus, we obtained
2Z‘1+l’2+l‘3:1 9 1 1 1
3 1 3
—x2+§x3:§ 0 3/2 1/2] 3/2 (35)
1 0 0 1/3| 0
37 =

(Augmented matrix in row echelon form)

At this point we can now use backward substitution (i.e. solve the system of equations form the
bottom to the top). This yields the following unique solution to the system (33)

]33:0
23 1 2/(3 1
“—§(§—§“>—5(§—%”)—1
1 1

Remark: For a given system of linear equations, the row echelon forms is not unique. In fact there
is infinite number of ways by which the augmented matrix of a linear system can be transformed in
a row echelon form. For example, if we perform Gauss elimination without pivoting in (33), then
we obtain the following row echelon form
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1+ 279 + 13 = 2

1 2 1 2
31y — a3 = —3 0 -3 —1|-3 (36)
Lo 0 0 1/3] 0
37~ (Augmented matrix in row echelon form)

The row echelon forms (35) and (36) are different, but they are both obtained from by apply
elementary row operations to the same linear system (33).

Reduced row echelon form. The Gauss elimination method with pivoting by row can be applied
to any linear system of equations (e.g., 2 equations in 3 unknowns) to obtain a row echelon form.
Once the row echelon form is available, then we can normalize the entries of a certain row by
dividing them by the pivot, and then perform backward elimination to remove all entries above such
pivot. In numerical linear algebra this is known as Jordan backward elimination. Let us show how
this works. To this end, consider the system

Ty + 209 + 3 = 2 12 112
1
3 00 110
x3:O

( row echelon form)

Multiply the third equation by 1/3 and 1, respectively, and subtract it from the second and first
equation, respectively. This yields

=0 00 1[0

(still in row echelon form)

Finally, multiply the second equation by 2 and subtract it from the first equation to obtain

1 =0 1 0 0]0
— 0 0 1(0
x3—0

(reduced row echelon form)

The augmented matrix of a linear system is in a reduced row echelon form if: 1) it is in an echelon
form; and 2) in every pivot column, the pivot value is 1 and all other entries are 0. The reduced
row echelon form of a matrix or linear system is unique.
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Example: Consider the augmented matrix in row echelon form we obtained by performing Gauss
elimination on (33) without pivoting, i.e.,

T+ 2%9 + 23 = 2 1 2 1 2
0 -3 —-1] -3

3%z — 2 = =3 0 0 1/3] 0

1

303 = 0 (row echelon form)

To obtain the reduced row echelon form, we first rescale the third equation equation by multiplying
it by 3. This yields,

Ty + 2w + 23 =2 1 2 1] 2
20— 0 0 0 1]0

(row echelon form)

Next, we perform backward elimination of x3 to obtain

$1+2l‘2: 1 2 0 2
31y = -3 0 —3 0| -3
=0 0 0 1|0

(row echelon form)

At this point, we rescale the second equation by —1/3 and use it to eliminate x5 in the first equation.
This yields

1 =0 1 0 0]0
T3 =0 00 1[0

(reduced row echelon form)

Note that the last column of the reduced-row echelon form is the solution of the system (33).

Ezxample: The following matrices are in a reduced row echelon form

1206 0 0
1000 L0000 L 000 00100 O
, 01 3 0f, 0 0 1 —4],
015 7 000 1 000 0 00001 =2
000O0O0 O
Ezxample: The following matrices are not in a reduced row echelon form
12000 O
1000 L0000 L 000 00100 O
, 000 1f, 00 1 —4],
0 2 5 7 0130 000 1 00001 =2
00010 O
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Remark: A linear system is said to be consistent if admits a solution. A system admits a solution
(and therefore it is consistent) if and only if the row echelon form (or the reduced row echelon form)
of the augmented matrix has no row of the form:

[O 0 ... Olz}, z2#0

If the system is consistent then we can have one (unique) solution or infinitely many. An example
of a system that is not consistent is the following

.CL’1+33'2—$3:1
1’1+$2—$C3:4

This system defines two parallel planes (not intersecting). The reduced row echelon form of the
augmented matrix is

11 —1(1

{0 0 O ‘ 4} ’

and therefore the system is not consistent.

Computation of the inverse matrix. Let A € M, «,, be an invertible matrix. By definition, the
inverse of A is a square matrix denoted as A~! with the following properties

AA =1, AT'A=1, (37)
where I, is the n x n identity matrix. Let h; be the columns of the matrix A~} i.e.,
At =[hy hy - Ry hi € M1 i=1,...,n. (38)
By definition of matrix-vector product we have
AA™Y = [Ahy  Ahy -+ Al (39)

At this point we define the following column vectors e; € M,,»; (i = 1,...,n)

1 0 0
0 1 0

er=|.|, €2= 1.1, Ty, €n = (40)
0 0 1

Note that e; is the i¢-th column of the identity matrix I,,. With this notation we can write the
matrix equation AA~! = I, as

[Ahl Ahg cee Ahn] = [61 €9 s €n]. (41)
Hence, the n columns of the inverse matrix A=, i.e., hq, ...., h, are solutions to n linear systems
Ah1 = €1, Ah2 = €9, ceey Ah,n = €n. (42)

To solve these systems we can compute the reduced row echelon form of the following augmented
matrices

(A ], (A €], e [A] €] (43)
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If A is invertible, then A can be row-reduced to I,,. This means that the reduced row echelon form
of the systems (43) is

(L | M), [In] he]. ooy L] Pl (44)
where h; is the i-the column of the inverse matrix.

More compactly, we can compute the reduced row echelon form of the matrix

(A 1] to obtain (I, | A7 (45)

Ezxample: Compute the inverse of the following 2 x 2 matrix

1 2
7 w0
We begin by constructing the augmented matrix [A|/l5]
1 210
[Al ]2] - L 1’ 0 1} (47)
Then we transform the augmented matrix into row-reduced echelon form as
1 211 0 Rs: Ry — Ry 1 2 1 0 Ry : —Rs 1 211 O
[1 1}0 1} [0 —1‘—1 11 [0 1‘1 —11 (48)
Ry :Ri—2R> 1 0| -1 2
{ 0 1 ‘ 11 } (49)
—_——
A1
Hence, the inverse of the matrix A defined in (46) is
4|1 2
AT = { L 1l (50)

It is good practice to verify that A~! is indeed the inverse of A. To this end, we just need to check

that AA™' =1,
ot 211 2 10
A4 1:[1 1] [1 —1}:[0 1]212 (51)

FExample: Compute the inverse of the following 3 x 3 matrix

1 20

A=111 1/. (52)
101
As before,
1 20/100 1 2 0|1 00 1 2 0] 1 o0
Ro: Ry — Ry Ry : —R>
11 1|0 1 o 2B g 1 1|—-1 1 o] 2= o 1 1|1 -1
10 1|l0 0 1] MM 0 -2 1| -1 0 1 0 -2 1 |-1 0



AM 10

Prof. Daniele Venturi

R3 : R3 + 2Ro
e

0 0 _
1 o feizhs
-2 1
0
1 R1:Ri—2Rs

0
0 Ro: Ro + R3
_1_
2
-1 (53)
_1—
(54)
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Lecture 6: Vector spaces

Vector spaces are sets in which we define an addition operation and a multiplication by a scalar
satisfying certain number of properties. Let us first give a formal definition of vector space and
then provide a few examples. Consider a nonempty set V' in which define an addition operation
“+” satisfying the following properties!:

Vu,veV (u+v) eV (V' is closed under the addition operation)

Vu,oeVut+v=v+u

(addition is commutative)

Vu,v,w eV (u+v)+w=u+w+w)eV
40y € V such that u + 0y =u Yu eV

(addition is associative)

(additive neutral)

SAREE R

Yu € V, dv € V such that u+ v = 0y

(opposite element)

We also define the multiplication operation between an element of the set V' and an element of a
field K (e.g., R or C) with the following properties:

awv €V Yae K, YveV
(a+bv=av+bv Va,be K, YveV
a(v+tw)=av+aw VaeK, YoweV
(ab)v = a(bv) Va,be K, YveV
lv=v 1eK,YveV

A

Definition (Vector space). A nonempty set V in which we define an addition operation and a
multiplication operation satisfying the properties listed above is called vector space over K.

Let us provide a few examples of vector spaces over the real or complex numbers.

e The space R™ (n-tuples of real numbers) with the addition operation defined as u + v =
(g, .oy up)+(v1, .. 0,) = (ug+vy, ..., up+0y,) i a vector space over R. The neutral element
with respect to the addition operation is Og» = (0,0,...,0). Here is a simple visualization of
a vector u in the vector spaces R? and R3.

X A X3
2 Mz
~
M=y Hp) N M (e ey 5)
Mg | :
f |
1 » o,o’o) 1 M2 >
(0,0) oy, ( N
~N
My L — N
Xy

LA set V satisfying properties 1 to 5 is called “Abelian group”.
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o V = M,x,(R), ie., the set of real m x n matrices with the addition operation we defined
in Lecture 4, is a vector space over R. The neutral element with respect to the addition
operation is

00 -0
OMpsens = |71 7o (zero matrix). (1)
00 -0
o V= M,n(C) is a vector space over C and over R.

o V =P, (R), i.e., the space of polynomials of degree n with real coefficients, is a vector space
over R. An element of P, (R) is

p(z) = ap+ a1z + - + apa”, a; € R, weR. 2)

The addition operation between two polynomials, say p(z) = a9 + a1z + -+ + a,z"™ and
q(z) = by + byx + - - - + b,x™, is defined as

p(z) + q(x) = (ag + bo) + (@ + by)x + - - - + (ay, + by)z", aj,b; e R, zeR. (3)
The neutral element with respect to the addition operation is the zero polynomial p(z) = 0.

e V = CW(R) (space of real-valued continuously differentiable functions defined on the real
line) is a vector space over R. An element of CM(R) is, e.g., v(x) = e * sin(z). The neutral
element with respect to the addition operation is the zero function v(x) = 0.

e Then space of linear transformations between two vector spaces V and W is a vector space
over R. The elements of such vector space are linear maps £ : V — W.

Vector subspace. Let V' be a vector space over a field K. We say that W C V' is a vector subspace
of V if

1. 0y e W
2. u,veW = (utv)eW
3.cueW NueW, Vee K

Clearly, a vector subspace is itself a vector space. Note that the only condition we need for W C V
to be a vector subspace of V' is that it is closed under addition and multiplication.

Example 1: A line passing through the origin of a Cartesian coordinate system is a vector subspace
of R%. In fact, such line is defined by the set of points (z1,75) € R? satisfying the equation
a1x1 + agxe = 0 (for some ay,ay € R). As we shall see hereafter, the set

W = {(z1,22) € R?* : ayz; + aszy = 0}, (4)
which represents the line, can be equivalently written as (assuming as # 0)
W={ueR®: u=z(l,—a1/as), z€R}. (5)

Clearly, W is a vector subspace of R%. In fact, 1) the zero of R? is in W (the line passes through
the origin); 2) a rescaling of a vector u on the line W is either zero or a vector that is still on the
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line; 3) the addition of two vectors w and v on the line is either zero or it is a vector that sits on
the same line.

Xq

/

Example 2: A plane passing through the origin of a three-dimensional Cartesian coordinate system
is a vector subspace of R?. Such plane can be defined as

W = {(x1, x5, 23) € R3 : a1xy + agxs + asxs =0 ai, as, az € R}. (6)

Clearly, W is a vector subspace of R®. In fact, 1) the zero of R? is in T (the plane passes through
the origin); 2) a rescaling of a vector u on the plane is either zero or a vector that is still on the
plane; 3) the addition of two vectors on the plane is either zero or a vector on the plane.

w ’

Ezxample 3: The space of continuously differentiable functions is a vector subspace of the space of
continuous functions. In fact: 1) the addition between two differentiable functions f(z) and g(z) is
a differentiable function f(z) + g(x); 2) multiplication of a differentiable function f(z) by a scalar
c is a differentiable function cf(x).

Ezample 4: The space 3 x 3 symmetric matrices is a vector subspace of Msy3(R). In fact, if A and
B are symmetric then: 1) A+ B is symmetric, 2) the zero matrix 0y, , is symmetric, and 3) cA is
symmetric for all ¢ € R.
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Ezample 5: The space of polynomials of degree at most 3, i.e., P3(R), is a vector subspace of the
space of polynomials of degree at most 8, i.e., Pg(R).

Linear combination. Let V be a vector space over K. A linear combination of vy,...,v, € V is
an expression of the form
T1U] + -+ T Uy, (7)
We say that the set of vectors vy, ..., v, € V generates V if for every v € V there exist n numbers
Z1,...,%, € K such that
V=201 F - Ty (8)
Ezample 1: The vectors
(e (170)7 (e (17 1)7 (9)
generate R2.
Ezrample 2: The matrices
2 0 10 0 1 01
U1 = |:O O:| ) Vg = |:1 0:| ; Vg = |:1 0:| ) Vg = |:1 1:| ) (10)
generate the space of 2 x 2 matrices with real coefficients Msyo(R). Similarly, the matrices
10 0 0 0 1
U1 = |:0 O:| ) Vg = |:O 1:| ) U3 = |:1 0:| (1]‘)

generate the space of 2 x 2 symmetric matrices.

Example 3: The polynomials

pi(z) =1, po(x) =2 ps(z) =a® (12)

generate the vector space of polynomials of degree at most 2.

Definition. Let V' be a vector space over K. The space generated by vy,...,v, € V is called span
of vy,...,v, and denoted by span{vy,...,v,}.

Theorem 1. Let V be a vector space over K. The span of an arbitrary number of vectors vy, ..., v, €
V' is a vector subspace of V.

Proof. Let vy, ..., v, be vectors in V. Consider the space generated by v1,...,v,, i.e.,
W =span{vy,...,v,} ={v eV iv=av,+ -+ 2,0, x €K} (13)
and pick two elements in W
u =101 + - + TpUyp, U =101+ YUy (14)
Clearly, Oy € Q, (u+v) € W, and cu € W (for all ¢ € K).
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By using the last theorem we immediately see why lines and planes are vector subspaces of R3. In
fact, a line is a vector subspace generated by a nonzero vector u € R3. Specifically, consider the
line (w1, —3x1,2x,) (for all z; € R). This line is generated by the vector u = (1, —3,2). Similarly,
the plane x1 + x5 — 2x3 = 0 is generated, e.g., by the two vectors v; = (1,1,1) and v = (2,0,1). In
fact, any element on the plane can be expressed as a linear combination of v; and wvs.

Linear independence. Let V' be a vector space over K, vy,...,v, € V. We say that n vectors
vy, ..., 0, are linearly independent if
T+t xn, =0y = x,...,7,=0 (15)

Ezample 1: The following vectors of R?

1 1
v = L} y U2 = {_1] (16)
are linearly independent. In fact,

. 1 1 T1 . 0 T = 0
101 + Tovg = Op2 & |:1 _11 |:$2:| = |;;| 4 {ng _0 (17)

Ezample 2: The following two vectors of R?
1 1
V1 = 1 5 Vo = 2 (18)
2 3
are linearly independent. In fact,

11 . 0
T101 + Tovy = Op2 ~ 1 2 |:ZL’1:| = (0] . (19)
2 3| L7 0
Let us compute the reduced row echelon form of the augmented matrix
1 110 1 0]0
1 210 = 0 1(0]. (20)
2 310 0 00

Hence, the system is consistent (see the last row), i.e., it has a solution. Moreover, the solution is
unique and given by z; = x5 = 0.
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Example 3: The following 2 x 2 matrices

By ol el

are linearly dependent. In fact,

. 1’1+ZE2+25L‘3 $1+£L‘2+2I3 . 0 0
A+ oB+ 20 =00 & [m 4y + 315 3w+ T2 + 4x3] - {0 0] (22)
which yields the system
£E1+3172+2[L'3:0 Ty = —XT3
201 + 29+ 323 =0 54 To = —T3 (23)
321 +x9+423=0 T3 free
Therefore the condition 214 4+ x2B 4 23C = 0y, implies that
13A + 138 = 23C Vrs € R (24)

and therefore the matrices A, B and C are linearly dependent.

Basis of a vector space. Let V be a vector space over K. A basis of V is a set of linearly
independent vectors in V' that generate V.

=[] o[

are a basis for the vector space R?. In fact, they are linearly independent and they generate R2.
To show that they generate R? we need to show that every vector u € R? can be represented as a
linear combination of v; and v,. In other words, given u € R? we need to show that there exist x;
and x4 such that

Ezxample: The vectors

T1V] + ToUy = . (26)

This is equivalent to show that the following linear system of equations has a unique solution

et R il &

which is obvious since the matrix of coefficients is invertible.

Definition (Coordinates relative to a basis). Let V be a vector space over K, vy,...,v, € V a basis
for V, and v € V. The numbers z1,...,x, such that v = x v, + - - -+ x,v, are called coordinates of
v relative vy, ..., vU,.

Theorem 2. The coordinates of an arbitrary vector v in a vector space V' are uniquely determined
by the basis.
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Proof. Let vy, ..., v, be a basis for V. Suppose that for some v € V there are two set of coordinates
{z;} and {y;} such that

V=201 4+ TV = 01+ Yptn = (1 —y)vr+ o+ (T — Yn) v = Oy (28)

This implies that x; = y; since the vectors vy,...,v, are linearly independent.
O
Ezxample: The coordinates of v = g] relative to v; = E and v = {_91 O] can be computed by
solving the linear system of equations ]
T10] + Ty =V = B _910 {ij = E} (29)

Ezample: Find the coordinates of p(z) = x® + z + 1 relative to the following basis of P3(R)

po(x) =5, m(z) ==z, pa(r) = 2% + 1, p3(x) = 2° — 2°. (30)

Let o, ..., ys be the coordinates of p(x) relative to {po(x),...,ps(x)}. We have,
yopo(x) + -+ ysps(z) = 2° + o + 1. (31)
Developing the products we find
yst’ + (2 —ys)2* + rx + (5yo +92) = 2° + 2 + 1, (32)

Which yields the linear system

yz =1 yz =1
—ya=0 =1
Y2 — Y3 N Y2 (33)
h=-1 h=-1
Yo +y2 =1 Yo =0

Example: The coordinates of the symmetric matrix
-2 3
=38 (34)

relative to the basis vy, vy and v3 defined in Eqs. (11) are zy = —2, 25 = 4 and x3 = 3.
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Dimension of a vector space. The dimension of a vector space V is the number of linearly
independent vectors required to generate V', i.e., the number of elements in any basis of V. We
denote the dimension of V' as dim(V'). We have, for example,

o dim (Max2(R)) = 4,
e dim (R?) = 3,

e dim (P4(R)) = 5,

o dim (CO(R)) = 0o

It is easy to show that if vq,...,v, is a basis of V and wy,...,w,, are m > n vectors of V' then
wy, . .., W, are necessarily linear dependent. This means that number of vectors in every basis of
V' is that minimum one that is needed to generate V. To show this, we let us write each vector w;
in terms of the basis

Wy = L1101 + -+ T1pUp

(35)
W, = Tmp1V1 + -+ ° + TynUp,
Now, suppose that wq, ..., w,, are linearly independent, i.e.,
Oy =y1wy + -+ YWy = Y1yes Ym = 0. (36)

By substituting (35) into (36) we obtain,
Oy = 1w+ YW = (1Z11 + ** + YmZm1)01 + -+ (W1Z10 + YT Vs (37)
which implies that
Y1711+ YT = 0
: (38)
Y1%in + + YmTn = 0

This is a homogeneous linear system of n < m equation in m unknowns (yi, ..., ¥m,). which always
admits a nontrivial (i.e., nonzero) solution. Hence, yi, ...,y cannot be all zero, and therefore
wy, ..., Wy, are necessarily linearly dependent.

We conclude this section by emphasizing that a set of p linearly independent vectors in a vector
space V' of dimension n > p can be always complemented with additional linearly independent
vectors to become a basis of V.

The rank of a matrix. Consider the following m x n matrix

aipy - Qin
A= | : Col (39)
Am1 - Gmn
The columns of A generate a vector space called column space of A. Similarly, the rows of A generate
a vector space called row space of A
ai a2 A1n
Column space of A: span = I N P . (40)

Am1 Am2 Amn
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Row space of A: span = {[aH e aln} , [agl e agn] e [aml . amn] } ) (41)
Note that the column space of A is a vector subspace of R™, while the row space of A is a vector

subspace of R™.

The dimension of the column space is called column rank, while the dimension of the row space
is called row rank. Both ranks can be computed by reducing the matrix to an echelon form using
elementary row or column operations, i.e.,

1. Adding a scalar multiple of one row (column) to another row (column);

2. Interchange rows (columns),

3. Multiplying one row (column) by a non-zero number.
Theorem 3. Elementary row or column operations do not change the row rank nor the column
rank of a matrix?.

This statement follows immediately by noting that linear taking linear combinations of a fixed
number of vectors does not change the dimension of the span of such vectors. Moreover, taking
permutations of the entries of a set of vectors in the same way for all vectors does not alter linear
independence.

By performing both rows and column operations it is possible to transform any m x n matrix into
the following canonical form (block matrix)

A — I, 0er<n77-)) : (42)
OM(mf'r)X'r OM(mfr)X(nf'r)

where I, is a r X r identity matrix, and all other matrices are zero matrices.

This means that the dimension of the row space of a matrix is always the same as the dimension of
the column space. Phrasing this differently:

Theorem 4. The row rank of a matrix is always the same as the column rank.

Hence, we can omit “row” or “column” and just speak of the rank of a matrixz. Clearly, for an m xn
matrix the rank r is always smaller or equal than the minimum between the number of rows m and
the number of columns n, i.e.,

r < min{m,n}. (43)

Ezxample 1: By using elementary row and column operations reduce the matrix

11 2 -1

210 1 (44)
014 -1

N O =

2Note that elementary column operations can change the solution to a linear system of equations. In fact, if we
perform Gauss elimination along a row we are essentially eliminating the coefficient multiplying, say, xj; using the
coefficient of the variable x;. Clearly, this changes the solution of the linear system.
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to the canonical form (

1 1 1 2 1 1 2 -1 1 0 0 0 0
0210 fofaz2l o201 0 1| 222% 00 2 1 0 1] (45)
2.0 1 4 0 -2 -1 0 1] @92 19 2 -1 0 1
. 10000 o~0010000 090/210000
ooty o2 10 1] 292200 010 0f —7%10 100 0| (46)
00002 ™ oooo0z2 =% loo100
Hence, the rank of the matrix (44) is r = 3.
Ezxample 2: Find the rank of the matrix
1 3 4
A=|11 -1 (47)
2 6 0
A is row equivalent to the following matrix®
1 3 4
A=10 -2 -5 (48)
0 0 -8
Clearly, the columns of this matrix are linearly independent and therefore the rank is 3.
Example: The rank of the following matrices is equal to 2
11 1 2 1 1112 -1 (1) ;
A:{OJ,BZO01,0:0210—1,1):20 (49)
-1 -2 0 2 01 4 -1 11

3Recall that elementary row or column operations do not change the rank of a matrix.
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Lecture 7: Linear transformations

Let V and W be two vector spaces over a field K. We say that a transformation
F: V=W
is linear if
1. Flu4+wv)=F(u)+ F(v) Yu,v €V,
2. F(cu) = cF(u) VueV, VeeK.
Conditions 1. and 2. imply that
F(au+ bv) = aF(u) + bF (v) Vu,v €V, Va,be K.

Let us discuss a few examples of linear and nonlinear transformations.

e Fzample 1: The transformation

F:R—R
x — sin(x)

is nonlinear. In fact, sin(xz + y) # sin(x) + sin(y) for arbitrary = and y in R.

o Example 2: Let V = CW(R) (vector space of real-valued continuously differentiable functions),
W = CO(R) (vector space of real-valued continuous functions), K = R. The transformation

F: CYR) — C°(R)

df ()
o) = g
is linear. In fact, we have
d df (z dg(z
%(af(:r)—i—bg(x)) =a ]Zi(x) +5b g(]i(x) Vf,ge COR), Va,beR. (3)
o Fxample 3: The transformation
F:R* > R?

o T, —T
x2_>[12]

201 + 29 — 73
x3

is linear. In fact, we have

T U1 531
a(zy —x2) + (1 — y2)
F b -
a|r2| +blyo a(2ry s —x3) + b2y + g —ye)|
XT3 Y3 "

n
+bF yQ

Y3
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e Fzample 4: The transformation

F:R3>— R?
T
| = [ ot 1} (4)
T3 + T
xs3
is not linear. In fact,
x1 Y1 T n
Fl x| + |y #F | |2 + F | |y
T3 Y3 I3 Y3

Transformations of the form (4) are called affine transformations. Affine transformations are
obtained by adding a constant vector to a linear transformation. For the transformation (4)

we have
X1 X1
1 10 1
Fl |zl | = [1 0 1] 2o | + M - (5)
€3 €3

~~ constant vector
linear transformation

e Example 5: The transformation!

trace : Myxn(R) = R

A— Z agr  (trace of the matrix A) (6)
k=1
is linear. In fact,
trace(aA + bB) = atrace(A) + btrace(B). (7)

Hereafter we show that the composition of two linear transformation is a linear transformation.

Theorem 1. Let U, V, and W be vector spaces. Consider the linear transformations F': U — V
and G : V — W. Then G(F(u)) : U — W is a linear transformation.

Proof. If F' and G are linear transformations then
G(F(au+ b)) = G(aF(u) + bF (v)) = aG(F(u)) + bG(F (v)). (8)

Hence, the composition of F' and G is a linear transformation.

IThe trace of a square matrix is defined to be the sum of all diagonal entries of A.
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Injective, surjective and invertible transformations. Let V' and W be two vector spaces.
Consider the following transformation
F:V—->W 9)

Here, F' can be linear on nonlinear.

1. We say that F is injective or one-to-one if:

forall w,oeV F(u)=F(v) = u=v (10)

2. We say that F'is surjective or onto if

for all w € W there exists (at least one) w €V such that F(u)=w (11)

[

Vv W/

Note that there may be more than one element in V' that is mapped onto w. In the figure
above, two elements u and v are mapped onto the same element w.

3. We say that F is invertible® if is is one-to-one and onto (injective and surjective).

2Invertible transformations are often called bijections or bijective transformations.
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Ezxample 6: The nonlinear transformation
F:R—R
x — sin(x)

is not injective nor surjective on the real line.

- - T SiN(*)
!
-2m g w lamr

! X

,

In fact, there are multiple points on the x axis with the same value of sin(x). For example,
sin(1) = sin(1 + 2k7) k € Z. (12)
Hence the function is not injective. The function sin(z) is also not surjective in R, as there is no

x € R such that sin(x) = 2. However, if we restrict the domain and range of F' as follows

™ T

R
2 2

| =11
xr — sin(x)

then F is invertible, since it is injective and surjective. The inverse function is denoted by sin™*(z)
or arcsin(x)

Ezxample 7: The linear transformation

F:R* > R?
vl N 1 2 T _ I1+2I2 :
To —1 1| |29 —X1 + T
~—— T/v

is one-to-one and onto. In fact it is easy to show Axr = Ay implies © = y (inejctivity), and that for
each y € R there exits z € R? such that Az = y. Therefore the transformation F is invertible. The
inverse transformation is defined by the inverse matrix A~!

F1:R? 5 R?

T _}1 1 -2 T _1 Il—QCL’Q
To 31 1 To _3 T+ T .

—~— e

T A1 T
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Definition. Let V., W be vector spaces, F' : V — W a linear transformation. If F' is invertible
then we say that F'is an isomorphism between V' and W. If there exists an isomorphism between
the vector spaces V and W (i.e., an invertible linear trasformation) then we say that V and W are
1somorphic.

Theorem 2. Let V' be a vector space of dimension n over a field K. Then V is isomorphic to K.

Proof. Let vq,...,v, € V be a basis of F. Any vector v € V' can be represented uniquely relative
to the basis as
V=T0] + -+ TpUp x; € K. (13)
The transformation
F:V - K" (14)
T
v— | (15)
Tn

is linear, one-to-one and onto. These properties follow immediately from the definition of basis
(surjectivity), and from the fact that the coordinates of v € V relative to a basis are unique
(injectivity). Hence, (15) defines a bijection between V and K™. This means that V' is isomorphic
to K".

]

Ezample 8: The space of polynomials of degree at most 4 with real coefficients, i.e., P4(R), is
isomorphic to R®. In fact, if we set up a basis for P4(R), i.e., a set of 5 linearly independent
polynomials of degree at most 4, e.g.,

pa(x) =2 =3z, py(x) =2°, pola) =2’ +2°+1, pi(x) =2 -2, po(z)=2+1, (16)
then we see that each polynomial in p € P4(R) is uniquely identified by 5 real coefficients (z, . . ., 4):
p(x) = z4pa(z) + x3ps(x) + T2p2(z) + 211 (2) + Topo(2). (17)

Hence, there exists a bijection between R® and the space of polynomials P4(R). In other words,

P4(R) and R® are isomorphic.

Ezxample 9: The vector space of 3 x 3 symmetric matrices with real coefficient is isomorphic to
RS.

Since the inverse of an isomorphism is an isomorphism we have that all vector spaces of dimension
n over some field K are isomorphic to one another. For example, the vector space of polynomials
of degree at most 3 is isomorphic to the vector space of 2 x 2 matrices with real coefficients.

Theorem 3. The set of all linear mappings between two vector spaces V and W is a vector space.

Such a space is denoted by L(V, W).
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Nullspace and range of a linear transformation. Let V', W be vector spaces. Consider the
linear transformation

F:V oW (18)

e The nullspace (or kernel®) of F is the set vectors in V that are mapped into Oy, (zero vector
of W), ie.,

N(F)={v eV suchthat F(v)=0w} (nullspace of F). (19)

Clearly, since F' is linear we have that the element 0y is always mapped onto Oy,. Therefore,
Oy is always in the nullspace of F.

I
A

e The range of F' is the set of vectors w in W such that w is the image of some v € V under F',
i.e., there exists v € V such that F'(v) = w.

R(F)={F(v) € W such that veV} (20)

Note that the range of R(F’) has Oy in it. In fact, since F' is linear we have that F'(Oy) = Ow.
Let us determine the nullspace and the range of simple linear transformations.

Example 10: Consider the following linear transformation

F:R?> > R?
T T
1+ X9+ X3 o 1 11
x3 —— x3

The nullspace of F' is the set of vectors in R? that mapped onto the zero vector of R%. Hence, the
nullspace of F' is defined by the following homogeneous linear system of equations

{1’1 + 29 + T3 — 0 = {371 = —X9 (22>
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XIN

N(F)={tx, x:, x3) € R
X3=0, X22 ’)‘4-}

X2

N
-

Xy

Note that the nullspace of F' is a vector subspace of R? (line passing through the origin). The range
of F' can be constructed by taking an arbitrary element of R® and mapping it via F. Such range
coincides with column space of the matrix A, i.e., the span of the columns of A. In fact,

1+ To + T3 o -1 1 -1-
|: 3 :| =T O:| + X9 |:0:| +$3 _1_ . (23)

R o R ) S,

Theorem 4. Let V, W be vector spaces, F' : V — W linear. Then

Hence,

1. N(F) is a vector subspace of V.
2. R(F) is a vector subspace of W.

Proof. Let u,v € N(F). Clearly, u + v is in N(F'). In fact, since F' is linear we have F(u + v) =
F(u)+ F(v) = Oy. Thus, u+v isin N(F'). Moreover, Oy € N(F) and cu € N(F) for all u € N(F)
and all ¢ € K. This implies that N(F') is a vector subspace of V. To prove that R(F) is a vector
subspace of W, let w,s € R(F). This means that there exist u,v € V such that F(u) = w and
F(v) = s. Obviously, (w+s) € R(F). In fact, by using the linearity of F' we have F(u+v) = w+s,
and therefore w + s € R(F). Also, Oy is R(F) and cu € R(F) for all u € R(F). Thus, R(F) is a
vector subspace of W.

O

The nullspace and the range of linear transformation also characterize the injectivity and surjectivity
of the transformation. In particular we have the following theorems.

Theorem 5. Let V| W be vector spaces, ' : V — W a linear transformation. Then F' is injective
(one-to-one) if and only if N(F) = {0y}, i.e., the if nullspace of F' reduces the single element {0y }.

3The nullspace/kernel of a linear transformation F is often denoted as ker(F).
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Proof. To prove the theorem we need to prove two statements:
1. F is injective = N(F) = {0y }.

Suppose that F' is one-to-one. We want to show that this implies N(F) = {0y }. To this end,
let v € N(F), i.e.,, F(v) = Oy. Clearly v = Oy is mapped onto Oy, i.e., Oy € N(F). The
assumption that F' is one-to-one rules out the existence of any other element in V' mapped onto
Ow. In other words, Oy is the only element of V' mapped into Oy,. Hence, if F' is one-to-one

then N(F) = {Ov}
2. N(F)={0y} = F is injective.

Conversely, let us assume that N(F) = {0y }. We want to show that this implies that F' is
one-to-one. To this end, suppose there are two elements u,v € V such that F(u) = F(v). By
using the linearity of F' we have F(u —v) = Ow, i.e., (u —v) € N(F). Since, by assumption,
the only element in the nullspace of F'is 0y we have that u — v = Oy, i.e., u = v. In other
words, N(F') = {0y} implies that F' is one-to-one.

]

Theorem 6. Let V', W be vector spaces, F' : V' — W linear. Then F is surjective (onto) if and
only if dim(R(F')) = dim(W).
Proof. As before, to prove the theorem we need to prove two statements:

1. F is surjective = dim(R(F')) = dim(W),

2. F is surjective <= dim(R(F)) = dim (V).

Let F be surjective (or onto), i.e., Vw € W there exists at least one v € V such that F(v) =
w. This means that R(F) = W and therefore dim(R(F)) = dim(W). Conversely, suppose that
dim(R(F)) = dim(W). We know that R(F) is a vector subspace of W. Since the dimension of
R(F) and W are the same (by assumption) then R(F) = W, i.e., F' is surjective (or onto).

O
Next we discuss a very important theorem for linear transformations between vector spaces.

Theorem 7. Let V and W be vector space and F' : V — W be any linear transformation. Then
dim(V) = dim(N (F)) + dim(R(F)). (25)

Proof. If R(F) = Ow the statement is trivial since the entire V' is mapped to the Oy. This
implies N(F) = V, and of course dim(N(F)) = dim(V). Consider now dim(R(F)) = s > 0
and let {wq,...,ws} be a basis of R(F). Then there exist s elements vy,...,v; € V such that
F(v) =wy,..., F(vs) = ws. Suppose dim(N(F')) = ¢ and let {uy,...,u,} be a basis for N(F).

We would like to show that {uy,...,ug,v1,...,vs} is a basis of V% To this end, pick an arbitrary
v € V. Then, there exists x1,...,xs € K such that F(v) = xqw; + ... + z,w;, (since wy, ..., w; is a

“Note that if {u1,...,u4,v1,...,vs} is a basis of V then dim(V) = g+s, where ¢ = dim(N(F) and s = dim(R(F)).
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basis for R(F')). Recalling that F'(v) = wy, ..., F(vs) = w

F(v) =x1F(vy) + ...+ x:F(vs)
= F(z1v1 + ... + x505).

By using the linearity of F' we obtain

Flo—xv—--—x0) =0 = (v—mx01 — -+ —x505) € N(F).
At this point we represent (v — z1v; — - -+ — x505) relative to the basis of N(F)
V—T10] — ... — TUs = Y1U1 + ... + YqlUg,

ie.,
V=21V + ...+ TsVs + Y101 + ... + YgUyq-

This shows that V' = span{vi, ..., vs,u1,...,u,}, i.e., that V' is generated by {vq, ..., vs,u1, ..., ug}.
To prove the theorem it remains to prove that the the vectors {vi,...,vs,u1,...,u,} are linearly
independent. In this way we can claim that n = s+ ¢, i.e., dim(V) = dim(N(F)) + dim(R(F)).

To this end, consider the linear combination
101+ ..+ T0s Fyrug + .+ Ygu, = Oy (26)
By applying F' and recalling that F'(u;) = Ow (u; € N(F)) we obtain
rwy + ... +xw, =0 =  xq,...,25 =0. (27)

In fact {wy,...,w,} is a basis for R(F') and therefore w; are linearly independent. Substituting this
result back into (26) yields

yiur+ ...+ yue =0y = y,....y, =0 (28)

since {uy,...,u,} is a basis for N(F). Equations (27), (28) and (26) allow us to conclude that
{vi,...,vs,u1,...,u,} are linearly independent. Moreover the vectors {vy,...,vs,u1,...,us} gen-
erate V', and therefore they are a basis for V. This implies that

dim(V) = s+ ¢ = dim(N(F)) + dim(R(F)). (29)

O

Matrix rank theorem. Theorem 7 can be applied to linear transformations defined by matrices.
To this end, consider the transformation F': R" — R™ from R" into R™ defined as F(x) = Az,
where A is an m X n matrix:

T 11 - Qi T
= : (30)
Tn Am1 Amn Tn
Vo
x A x
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We know that range of F' coincides with the column space of A. Also the dimension of the column
space is the rank of the matrix A. Therefore from equation (25) it follows that

n = dim(/N(A)) + rank(A)|. (31)

Matrix associated with a linear transformation Let V and W be finite-dimensional vector
spaces, and let

F: VoW (32)

an arbitrary linear transformation. In this section we show how to represent F' in terms of a matrix.
To this end, suppose that

By ={v,...,u,} —  basisof V, dim(V) = n,
By = {ws,...,w,} — basisof W, dim(W)=m.

The transformation F' is uniquely determined by the image of the basis By under F i.e.,

{vi,..., o} = A{F(v1),...,F(v,)}. (33)

Clearly, for all i« = 1,...,n we have that F(v;) € R(F) C W. Therefore, each F(v;) can be
represented in terms of the basis By as

F('l)1> =anwi + -+ Qp1Wn

(34)
F(”n) = Q1pW1 + -+ AWy
Note that a;; is the i-th component of F(v;) relative to the basis {wy, ..., w,}. The matrix asso-
ciated with the linear transformation F' depends bases By and By, and it is defined as
aip - Qip
B . )
AV(F)y =1+ . . (35)
Am1 = Qmnp
Next, consider an arbitrary element v € V| and represent it in terms of the basis By
V=201 F -+ X0, (36)
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By applying F' and taking (34) into account we obtain
F(v) =z F(vy) + - - + 2, F(vy,)

=T (afllwl + -+ amlwm) + -+ T, (alnwl + -+ amnwm)
= (ap1x1 4+ -+ apzp) wi + -+ (@ + - F Gpn®n) Wi (37)

(. . J
-~ -~

Y1 Ym

At this point we define the following two column vectors
[U]Bv =1:1> [F(U)]BW = (38)

representing the coordinates of v and F(v) relative to the bases By and By, respectively®. With
this notation, we see from (37) and (35) that

)
[F ()]s, = Agy (F)[v]s, (39)

Therefore, the coordinates of F'(v) relative to By, are obtained by taking the matrix-vector product
between the matrix Agy(F ) and the coordinates of v relative to By .

Ezample 11: Let V and W be vector spaces of dimension dim (V') = 2 and dim (W) = 3, respectively.
We consider the following bases in V' and W:

BV = {U17U2}7 BW = {?,Ul,UJQ,'UJg}. (40)

Relative to such bases, suppose that F' is defined as

F(’Ul) = W — 2102 — W3 (41)
F(vy) = wy + wy + w3

Then the matrix representing F' is

1 1
Apv(F)=|-2 1]. (42)
-1 1

If v = x1v1 + 2909 is an arbitrary vector in V' then
F(v) =z F(vy) + 2o F(v2)
:xl(wl — 211}2 — U)3) + l’g(wl + wo + wg)
= (11 + 22) wy + (x9 — 221) Wy + (T2 — 1) W3. (43)
—_——— —_—— ———
Y1 Y2 Y3

Note that the coordinates of F'(v) relative to the basis By, i.e., {y1, Yo, y3} are given by the standard
matrix-vector product

Y1 I 1 =
| =1-2 1 Ll] (44)
Ys -1 1| L7

®We know from Lecture 6 that such coordinates are uniquely defined by the basis.
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Change of basis transformation Consider the following two bases in the vector space V'

Bl :{ul,...,un}
82: {vl,...,vn}

Obviously, we can express any element in B; as a linear combination of elements in B, and vice
versa. For example,

V1 = QU]+ + QiU

(45)
Up = Q1pUy + -+ + Qpply
The matrix associated with the linear transformation “change of basis from By to B;” is
Qqyp 0 Qin
MG =1: . . (46)
Qi Qo

Such a matrix is invertible and it allows us to transform the coordinates of any vector v € V' from
those relative to B; to those relative to By, i.e.,

[v]s, = Mg2[v]5,- (47)
Moreover, we have
-1 S ~1
[v]p, = Mg; [v]|p, = (Mgf) [v]g, which implies Mg; = (Mgf) ) (48)
The change of basis transformation can be also used to represent a linear transformation F' : V. — W
relative to different bases in V' and W. To show this, let

Bi, By — BasesofV, dim(V)=n,
Bs, B, — Basesof W, dim(W)=m.

We have,
[F(0)]s, = Mg, [F(0)]s, = Mg A [vls, = My A, Mg [v]s, (49)
N’
Af}ll
ie.,
ARt = MG ABME?. (50)

The matrix Ag‘i represents the linear transformation F' relative to the bases By (basis of V') and By

(basis of W). Similarly, Agg represents the linear transformation F' relative to the bases By (basis
of V') and Bs (basis of W).

Ezample 12: (Change of basis in R?) Consider the following bases of R?

By = {e1, e}, e = B} , ey = {ﬂ (canonical basis of R?),

By = {vr, ), v = H o= H .
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Define the change of basis transformation

as

Clearly,

Any vector v € R? can be expressed relatively to By or Bs:

UV =T1V] + ToU2
=z1(e1 + e2) + za(ey + 2es)
=(z1 + x2)e1 + (1 + 225)es. (54)

Denote by

Y2 T2

the coordinates of v relative to By and B, respectively. Then equation (54) implies that

wm:ﬁﬂ, M&ZP} (55)

1 1
[v]p, = Mg; (V] 5y, where Mz% — [1 2] ) (56)

Mgzl is the matrix associated with the change of basis transformation By — By. Clearly, M gzl is
invertible with inverse

R &

M gf is the matrix associated with the change of basis transformation B; — B,. Let us see if this is
true. To this end, we consider the vector v = e; and compute the coordinates of this vector relative

to By. We have
s =] = =2 = [A (59

By
M81
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Ezample 13: (Rotations in R?) Consider the linear transformation F': R? — R? defined as follows
(counterclockwise rotation of the basis vectors by an angle 6)

{F(61) = cos(f)e; + sin(f)e; (59)

F(eq) = —sin(f)e; + cos(f)ez

where

ool el

is the canonical basis of R2.

€l
- ~
F(ez‘ F(e))
/ 0 \
| N
' A -
\ /
N /

The matrix associated with the transformation F' relative to the basis By = {e1,e2} is

cos(d) - sin(@)} (2D rotation matrix). (61)

By —
A (F) = [sin(é’) cos(6)
is rotated to a vector F'(v) with components

[F(0)ls, = Ag) [V]s,- (62)

Any vector with components [v]z,

2 . . . o
} has components { } relative to the canonical basis By, and it is

2
For example, the vector v = [ 1

1
transformed to a vector F'(v) with components

Pl = [l 0[] < [t st =

In particular, if 6 = 7/2 (90 degrees counterclockwise rotation) then
—1

The inverse transformation (inverse rotation) is obtained by replacing 6 with —6 in (61), i.e.,

A =Tl o)) @
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It is straightforward to verify that for all 6 € [0, 27] we have

[ABY(F)] " ABY(F) = I, (66)
In fact,
cosf —sinf cos sinf| cos? 6 + sin? 6 0 |10
sinf cosf | |—sinf cosf| 0 cos26 +sin?6| — |0 1|

The rotation matrix is an orthogonal matria®.

Example 14: (Rotations in R?) We can define rotations along each of the three axes of a 3D Cartesian
coordinate system, i.e.,

cosfl3 —sinf3 0
Rs = |sinfl3 cosf; O
0 0 1

1 0 0
R,y =10 cosf; —sinb,
0 sinf; cosb,

cosbtly 0 —sinfy
Ry, = 0 1 0
sinf, 0 cosb,

Note that the composition of two rotations in R? does not commute. For example,

RiRs # R3R,.

In general, we say that A € M, «,(R) is orthogonal if
AT =471 (67)
This is equivalent to the statement that orthogonal matrices satisfy

AAT =1,,. (68)
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Ezample 15: (Orthogonal projection) Consider

F:R>—R3
and the canonical bases of R?
1 0 0
Bg = {61, €2, 63} = 0 s 1 s 0
0 0 1

We define F' by mapping the basis Bs as follows

F(el) = €1, F(€2) = €2, F(63) = 0R3-

The associated matrix defines an orthogonal projection onto the (z1,x2)

P = (69)

OO =
o = O
o O O

Note that P? = P. The orthogonal projection transformation basically project any vector v € R3
onto the plane spanned by e; and ey. If we are interested in a projection onto different plane, we
can use e.g., the 3D rotation matrices R; and rotate the plane before applying the projection. Note
that with just R; and R3 we can orient the plane (z1,x2) in all possible directions. We maintain
that

P(61,05) = Ry(61)Rs(03) PRy (63) RY (61) (70)

is an orthogonal projection onto a tilted plane identified by the angles (6,6;). To explain this
formula suppose for simplicity that we just rotate the plane (z1,x2) counterclockwise of an angle
0, around the z; axis. The projection of any object onto such plane is obtained by rotating the
object clockwise of an angle ; around z; (matrix RY(6s) projecting onto the (x1,zs) plane and
then rotating the result back (matrix R;(f3)). Clearly, (70) satisfies the condition for orthogonal
projections,

P2(91,03) - P(91,63>. (71)
U1
Ezample 16: (Oblique projection) Let v = |vy| be a vector of R? representing the direction of a
U3
x
light beam. A light beam passing through an arbitrary point £ = |x5| has the form
3
Y1 U1 1
Yo | =clvg| + |22 where ¢ € R (72)
Y3 U3 T3
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%3
Ball Plane
Counterclockwise
plane rotation and
orthogonal projection [N
| N
'@

%
Xs X | |
%3
><2 W \ > Xl

\ \I
.

Clockwise rotation of 9’4_

the ball and projection Counterclockwise rotation

< X of the projected ball

If we set y3 = 0 we obtain ¢ = —z3/v3. With such a value for ¢, the light beam passing through the
point z intersects the horizontal plane. The linear transformation defined by

U1
Y1 =——T3+ T
U3
v
Yo = ——21’3 + 29 (73)
U3
y3 =0

defines an oblique projection onto the horizontal plane. The matrix associated with such oblique
projection transformation (relative to the canonical basis of R?) is

1 0 —v/us
P=10 1 —vy/vs (74)
0 0 0

The oblique projection can be used to compute the shadow of any object in 3D. The following figure
shows the shadow projected by a horse for various angles of the light beam.

Note that for v; = vy = 0 the oblique projection reduces to the projection we studied in the previous
example.
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3

Example 17: Let Py = span{1,z, 2% 23, 2%} be the space of polynomials of degree at most 4. Define

the linear transformation

F. Py — P

p(r) — d];(;:) .

The canonical bases of P, and P5 are

84 = {17 z, Iza x37 .T4},

By = {1,z,2°% 2°}.

We define the derivative transformation by mapping each element of P, and representing the result
in terms of P3. This yields

F(1)=0, F(x)=1,  F@*) =2z, F(*) =32%  F(2*) =42"

The matrix associated with F' (derivative operator) relative to the bases By and Bj is

o O =
o NN O
w O O
O OO

Bs __
AB4 —

o O O O

0 0 0 4

For example, let us compute the derivative of the polynomial
p(z) =1 — 3z + 62°. (75)
The coordinates of p(z) relative to B, are

p()s, =[1 -3 0 6 0]",
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This implies that

0100 0], -3
dp(x 00 200 0
:{ di:)} Aglr@ls =15 o 0 3 o | 9] = |18
B
’ 00004/ |9 0
0
Therefore we obtained
d
]Z;m) = —3+ 0z + 1822 + 02° = —3 + 1822, (76)
X

which is indeed the derivative of the polynomial (75).
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Lecture 8: Scalar products, norms and orthogonality

Let U, V and W be three real vector spaces. We say that the transformation?
G:UxVe=W (2)
is bilinear if for all uy,us € U, all v1,v, € V', and all c € R
1. G(uy + ug,v1) = G(ug,v1) + G(ug, vq),
2. G(uy,v1 +v2) = G(uy,v1) + G(uy, va),
3. G(cuy,v1) = G(uq, cvr) = cG(uq,vy).

If the bilinear transformation G is real-valued, i.e.,
G:UxV =R, (3)

then we say that F'is a bilinear form.

Ezample 1: Consider U = R™, V = R" and a matrix A € M,,«x,(R). Then
G:R™"xR"—= R
(U, U) — Z Z uiAijUj
i=1 j=1

is a bilinear form.

If U =V then we say that G : V x V +— R is a bilinear form on V. Moreover, if for all v;,v, € V'

we have that
G (v1,v2) = G(vg,v1) (4)

then we say that the bilinear form on V' is symmetric.

Matrix associated to a bilinear form. Similarly to linear transformations, it is possible to
define the matrix associated to a bilinear form on V. To this end, suppose that V' is n-dimensional
and consider the basis By = {vy,...,v,}. Let u,v € V such that

=210+ T, V= Y10 F o YU (5)
The coordinates of v and v relative to By, are

I n
g, = |+ |, [ls,=|:]. (6)
Ln Yn

!The multiplication symbol x in (2) means “Cartesian product” of two sets. The elements of the set U x V are
of pairs of vectors (u,v) where u € V and v € V. We have already seen an example of a vector space constructed
using multiple Cartesian products, i.e.,

R"=RxRx---xR. (1)

n times
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A substitution of u and v into G(u,v) yields

n n

G(u,v) = Z Z z;G (v, v;)Yy;.- (7)

i=1 j=1

Define the matrix Ap, associated with G(u,v) relative to By as

G<U1a Ul) Tt G(Ula 'Un)
A, = : : (8)
G(vp,v1) -+ G(ug,vy)
This allows us to write (7) as
G(u,v) = [u]p, Asy [v]5, (9)

If G is symmetric then Ap, is a symmetric matrix.

Scalar products. A scalar product on a real vector space V is a symmetric bilinear form on V.
The scalar product between two vectors in V is a real number?. We denote such scalar product
as

(u,v) = G(u,v) Yu,v € V. (10)

A scalar product in V' is also called “inner product” in V.

Ezxamples of scalar products:

L. V=R" (uv) = Zuivi (scalar product on R™). This scalar product is often called “dot-
i=1
product” and denoted as w - v. The matrix associated with the dot product is the identity
matrix.

n n
2.V =R™ (u,v) = ZZuigijvj where g¢;; is a n X n symmetric matrix. In differential
i=1 j=1
geometry and in the theory of general relativity g;; is called metric tensor and it represents
the metric properties of the space-time (the curvature of the space-time is a nonlinear function

3.V = My(R): (A,B) = Tr(AB") = )~ Ay;By; for all A, B € M, (R) (scalar product
ij=1
between two matrices). Here Tr(ABT) denotes the trace of the matrix AB?, which is clearly
a symmetric bilinear forms3.

2Tt is possible to define scalar products on complex vector spaces. In this setting, the symmetric bilinear form
returns a complex number and it is called Hermitian bilinear form.
3In fact,

Tr(ABT) = Tr(BAT), Tr((A + C)BT) = Tr(AB") + Tr(CBT) = Tr(B(A + C)T) (11)
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4. V = C°([0,1]) (space of continuous functions defined on [0,1]). The integral

(u,v) = /0 1 u(z)o(z)dz

is a symmetric bilinear form on C°([0, 1]) which defines a scalar product. In particular, if u
and v are two polynomials of degree at most n defined on [0, 1] then (u,v) is a scalar product
on P,.
A scalar product on (-,-) : V x V — R is said to be non-degenerate if
(v,w) =0 forallw = v =0y. (12)
Theorem 1. Let V' be a real vector space of dimension n. A scalar product
() VxV =R

is non-degenerate if and only if the matrix associated with (-,-) relative to any basis By =
{v1,...,v,} is invertible.

Proof. We know that for all u,v € V'
(u,v) = [u]g, As, [v]5,- (13)
If the inner product is non-degenerate then, by definition
[u]gvABV [U}BV =0 for all [U]Bv = [U]BV = Ogn. (14)

This implies that the nullspace of Ap, reduces to the singleton {Og»}. In fact if there exists another
nonzero vector [w] in the nullspace of Ag, then clearly Ap, [w] = Og» and the implication in (14)
is not true. Conversely, suppose that Ap, is invertible. Consider the column vector Ag, [v]s, and
take all “dot products” with the elements the canonical basis of R™. This yields the system

[ekz]TABV['U]BV =0 k= 1,...,n, (15)
which is a homogeneous linear system of equations in n unknowns [v]g, that can be written as
Ap, [v]g, = Ogn. (16)

The solution to this system is clearly [v]g, = Ogn, since Ap, is invertible by assumption.

Examples of non-degenerate scalar products: The scalar products 1., 2. (with g;; invertible) and 3.
at page 2, and 4. at page 3 are all non-degenerate scalar products. Let us show that 3. is indeed a
non-degenerate scalar product on M, «,(R). We need to show that

Tr(ABT) =0 forall B € M,x,(R) implies A =0y, .. (17)
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The trace of the matrix product can be expressed as

ij=1

Since B is arbitrary it easily follows form Tr(ABT) = 0 that A = 0yp,.,. In fact, evaluate the

equation above using B equal to each element of the canonical basis of M, ., (R). This yields
Aij =0.

Ezxamples of degenerate scalar products: Hereafter we provide a few examples of degenerate scalar
products.

1. Let V = R2. Consider two vectors

the scalar product

is degenerate. In fact, the condition

(x,y) =0 forall y € R* doesnot imply z = [8] : (21)

To see this simply consider the vector x = [(1)] Alternatively, we observe that the scalar

product (20) can be written as

(z,y) = [11 9] Ll) 8} [yl] (22)

——

Ap,,

Recalling Theorem 2, we see that the matrix Ag, associated with the scalar product relative
to the canonical basis of R? is not invertible and therefore the scalar product is degenerate.

Positive definite scalar products. Let V be a real vector space. A scalar product on V' is said
to be positive definite if
(v,v) >0 for all nonzero v e V. (23)

Clearly, if v = Oy then (v,v) = 0.

Examples of positive definite scalar products: The scalar products 1., 3. and 4. defined at page 2
are all non-degenerate and positive definite. The scalar product 2. at page 2 is non-degenerate and
positive definite if and only if the matrix g;; is positive definite, i.e., if

n

Z gijx;x; >0  for all nozero vectors =z € R". (24)
ij=1
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Positive definite matrices are necessarily invertible. In fact, from condition (24) it follows that for
any nonzero vector z, gz is nonzero. Therefore g is full rank (= nullspace reduces to the Og») and
therefore invertible.

Norms. A norm on a vector space V' is is a function ||-|| : V' — R with the following properties

—_

. lav|| = |a| ||v|| for all v € V" and for all a € R (or C).

2. lu+ ol < flull + [Jv]]
3. [ul=0 < wu=0y
4. |lu]| >0  for all nonzero u € V.

The norm defines the length of vectors in a vector space. We have already seen a norm when we
studied complex numbers, i.e., the modulus of a complex number. Let us provide a few examples
of norms.

Ezxamples:

o Let V =R". For every v € R" we define

[oll, = Z il (1-norm) (25)

n 1/2
Joll, = (Z |vz~|2> (2-norm) (20)

n 1/p

Jvll, = (Z ]vi‘l’> (p-norm, p > 1 real number) (27)
i=1

vl = max v (infinity norm) (28)

=1,...,

All these norms satisfy properties 1.-4. above. Moreover, it can be shown that

ol = lim [l (29)

e Let V = C°0,1]) (space of continuous functions in [0, 1]). We define

ull, = xrg[%?l{] lu(x)| (uniform norm), (30)
lull, = /0 lu(2)[*de (L* ([0, 1])-norm). (31)

o Let V= M,«,(R) (space of n x n matrices with real coefficients). Let us define the following

matrix norm
| Av]|,
|Al| = max = max [|Av
v#£0gn ||v||p [o]],,=1

p>1. (32)

I,
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It is straightforward to show that

Al = max. (Z rAij\) , (33)
j=1
IAlly = max (Z_; IAZ-J-I) - (34)

For example,

[Av][ = max
i=1,...,n

Z AUU]'

-----

< ax <Z | Aij] \Uj|> < vl max (2 |Az‘j|> (35)
J:

Jj=1 j=1
which implies that
Aol o
ol < max E | A for all v # Ogn, (36)
v i=1,....n
le.,
| Av]| -
max * = max 1Ay ] = lAll - (37)
vA0zn ||V]| i=1,m ]21 J

The matrix norms (33) and (34) are said to be compatible with associated vector norms (or
induced by the vector norms) since they verify the inequalities

[Av]l, <[IA[l, lvll,  p=1,00. (38)

Norms induced by scalar products. Any non-degenerate positive-definite scalar product on V

induces a norm?
]l = v/ {v,v). (39)

In particular, the standard dot product in R™

3

induces the 2-norm defined in (26). Similarly, the scalar product between two matrices A, B €
Mxn(R)
(A,B) = Tr (AB")

induces the following norm in the space of matrices M, «,(R)

(Frobenious norm). (40)

The Frobenious norm is compatible with the vector norm in the sense that || Az, < || A||z [|z|ls-

41t is straightforward to show that properties 1.-4. at page 5 are all satisfied by the norm (39).
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Theorem 2 (Cauchy-Schwarz inequality). Let V' be a real vector space. Then for all u,v € V we
have
[(w, )| < [[ul] [|v]], (41)

where ||u|| = /{u,u) and ||v]| = 1/(v,v).

Proof. For v = 0y the inequality reduces to 0 = 0. Let u,v € V' be nonzero. The vector

),
u 0.0 (42)

is orthogonal® to v since

Next, consider the identity

We have

o) .

ek

From the last inequality we have |(u, v)|> < ||u|? |[v]|*. Taking the square root yields equation (41).

O
Cosine similarity. The Cauchy-Schwartz inequality (41) implies that
P LRSS (46)
[l o]
The quantity
(u, v)
cos(¥) = ———— (47)
[l [o]

is known as cosine similarity between the vectors uw and v. In the case where u and v are vectors
of R?, R3 or R, the cosine similarity coincides with cosine of the angle between the two vectors.
Such an angle is measures on the two-dimensional plane spanned by the two vectors. From (47) it
follows that
2 2 2
[ = of|” = [lull™ + lo]]” = 2[Jul| o]} cos(¥). (48)

which is the well-known law of cosines for triangles. The cosine similarity is practically utilized in
many different fields, e.g., natural language processing (similarity between texts) and econometrics
(analysis of time series).

®We say that to vectors u,w € V are orthogonal with respect to the scalar product (-,-) if (u,w) = 0.
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Orthogonality. Consider a vector space V' and a non-degenerate positive definite scalar product
(-,-) on V. Two vectors u,v € V are said to be orthogonal relative to (-, -) if

(u,v) = 0. (49)

Ezxamples:

e V =R2. The following vectors

) [

are orthogonal in R? relative to the standard inner product
2
(u,v) :Zuivi:—l—i—l:(). (51)
i=1

o V= My,s(R). The following matrices

NS

are orthogonal in Ms,(R) relative to the inner product

(A,B) = Tr (AB"). (53)
In fact,
-~ 1 0] o 0]\ 0 o]\
Tr (AB )_Tr([o 0} L OD_Tr({O OD_O. (54)
o V =1Py([—1,1]) (vector space of polynomials of degree at most two). The polynomials
3, 1
pi(z) == and pa(z) = P (55)

are orthogonal with respect to the scalar product

(b1, pa) = / (@) (56)

In fact,

(p1,p2) = /_1 pi(x)pa(z)de = /1 (grc?’ - %x> dx = Ex“ — ixz] 11 =0. (57)

1 -1

Orthogonal projections. Consider two vectors u and v in a vector space V. The orthogonal
projection of u onto v is defined as

Pu = %v - <u ﬁ> ﬁ (58)
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where ||-|| is the norm induced by the scalar product. Clearly v/ ||v|| is a vector with norm equal to
one, i.e., a unit vector.

Ezxamples:

e Let V =R? and consider the following vectors

) )

NY S
A\

The projection of v onto v is

a2 1)
{u,v)
(v, v)

Note that if we subtract

v from u we obtain a vector that is orthogonal to v.

(u,v) 1 1 0
u— — = ) 61
o)~ 1) o) T I oy
e V =R3. Given three vectors vy, vs, v3 € R® we can compute the orthogonal projection of any
vector onto any other vector, e.g., the orthogonal projection of vy onto vy

(v2, v1)
(v1,v1)

Pvlvg = V1. (62)

We can also construct an orthogonal set of vector by transforming the given set of linearly
independent vectors {vy,ve,v3} as follows

Uy =01,
o <'U2,U1>
T ey !
s =v5 — <03>U1>u _ <U37U2>u2‘
<U1, Ul) <U2> U2>
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This procedure is known as Gram-Schmidt orthogonalization, and it allows us to transform
any set of linearly independent vectors into an orthogonal one. Such set of ortogonal vectors
can be then normalized.

Gram-Schmidt orthogonalization. The previous example suggests that we can transform any
basis {vy,...,v,} of a n-dimensional vector space V into an orthonormal basis® by using the Gram-
Schmidt procedure. In fact, we can first compute

u; =1,
. <U27 U1>

Ug =V2 — U1,
<u17 U1>

Uz =v3 — <U3,U1> uy — <U3a U2> us,
(1, uq) (ug, ug

U, =v, — <Un, u1>ul . <'Un7un—1> L
<U1, u1> <un—17 un—1>

and then normalize the vectors {uy,...,u,} to obtain the orthonormal basis

U1l Up,
e . (63)
{Hulll Hun||}

Alternatively, we can normalize each vector u; right after we compute it. This reduces the number
of calculations in the Gram-Schmidt procedure as we can write

Uy ="y, U = Ul/ ||U1H )
Uy =V2 — <’02,@1> Uy Uy = Uz/ HU2H )
U3 =v3 — <'U37a1> uy — <U3732> Us ﬁ3 = U3/ ||U3|| )

It is straightforward to show that
2
(uir us) = 04 [|us ]| (64)

where §;; is the Kronecker delta function”. For example,

(ur, uz) = <vl,v2 - <“2’“1>u1> = o) — 820y (66)

(v1,v1) (v1,v1)

Ezample: Let us use the Gram-Schmidt procedure to orthogonalize the following vectors in R?

b ol

6Note that the orthogonal basis we obtain from the Gram-Schmidt procedure is not unique. In fact a reordering

of the vectors {v1,...,v,} yields a different orthogonal basis at the end of the procedure.
"The Kronecher delta is defined as:
1 ifi=y
dij = I (65)
0 ifiz£j
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We have
_ _ <U2,U1>
Uy = 1, Uz = V2 — 5 U1-
[
The norm of u; = vy is
lual|* = [vs[|* = (v1,01) = 2° +1° = 5. (67)

This implies that

o B RE R e R

Note that u; and us are orthogonal. In fact,

(g, ug) = 2 % (-2) +2=0 (68)

The norm of wusy is

9 36 3v5
[uall = V/{uz, u2) = 3w T =5 (69)

{Wm} - {%g m ? m} (70)

is an orthonormal basis of R?. Note that uy/ ||uz|| can be obtained by rotating ui/ ||u;] by 90
degrees counterclockwise.

This means that

Representation of vectors relative to orthonormal bases. Let By = {uy,...,u,} be an
orthonormal basis of a n-dimensional vector space V. Any vector v € V' can be represented relative
to the basis By as

V= 21U A Ty, (71)

by projecting the vector v onto u; and taking into account the orthonormality conditions (u;, u;) =
d;; yields
(v, 1) = (T1ly + -+ - + Tnln, Uy)
=1 (U1, Uj) + -+ + @ (Un, Uj)

=x; (Uj, Uj)

i.e., the j-the coordinate of v relative to By coincides with the projection of v onto w;. On the other
hand, if we consider an orthogonal basis {us, ..., u,} we obtain

V=ur Yy, = T = <U’uj>. (73)

(uj, uj)

Theorem 3. Let By = {uy,...,u,} be an orthonormal basis of a n-dimensional vector space V.
Then for any vector v € V we have

v =201 + - + 2,0, and || :sz (74)

k=1
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Orthogonal complement. Let S be a subspace of V. The orthogonal complement of S in V' is
defined as
St={veV:(wuw) =0 forall weS}

It can be shown that S+ is a vector subspace of V. Any vector v € V can be expressed as a sum
of two vectors w; € S and w, € S*, i.e.,

U= Wi + W (75)
Equivalently, we say that V is the direct sum of S and S+, and write
V=Sost (76)

For example, any vector v € V = R? defines a one-dimensional vector subspace S. The orthogonal
complement of S in R? is a plane orthogonal S. Such plane is denoted by S+

,’s
v

- S'L (PLANE)

The plane, i.e., the vector space S+, is identified mathematically by the condition
(x,0) =0 (v is given, x € R? is arbitrary) (77)
ie.,
V1T1 + VoXg + V33 = 0 (78)

We know this expression very well, but now we learned something new, i.e., that the coefficients of
v1, v and v3 are the components of a vector that is orthogonal to the plane. Similarly, given two
linearly independent vectors vectors v; and vy in R3, it is possible to determine the space that is
orthogonal to the span of v; and v, by solving the system of equations

(x,v1) =0, (r,0) =0 =z €R>. (79)

This system represents the intersection of two planes orthogonal to v; and ws.

(PLANE)

o <X >=0

<X,v>=0
(PLANE)
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Orthogonal complement of the range and the nullspace of a matrix. Next consider a m xn
matrix A and let {vy,...,v,} be the columns of A. Denote by

R(A) = span{vy,...,v,} (80)

the column space of A, i.e., the range of the matrix A. We known that such space is a vector
subspace of R™. The orthogonal complement of R(A) is

[RA))"={veR™: (v,w) =0 forall we R(A)}. (81)

Let us write the condition (v, w) = 0 a more explicitly.

To this end, we notice that R(A) can be characterized as the set of vectors w € R™ such that such
that w = Az. Hence,

ve[RA)T & (v,Az)=0 forallzeR"
& <ATv,x> =0 forallzeR"
o ATy = Ogn
& ve NAD.
This means that
[R(A)]" = N(AT). (82)

In other words, the orthogonal complement of the column space of a matrix coincides with the
nullspace of the matrix transpose. We can also prove the equality the other way around, i.e.,

ve NAT) & ATv=0 veR™
& <w,ATv> =0 forall weR"
& (Aw,v) =0 for all w € R"
& wvelRA)].

Repeating this simple proof for N(A) yields
[R(AT)]" = N(4). (83)

i.e., the orthogonal complement of the row space of A (i.e., the column space of AT) coincides with
the nullspace of A. Similarly, it can be shown that

N = RAT)  and  [N(AT)]" = R(A). (84)
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Lecture 9: Determinants

Let A € M,, be a square matrix with real or complex entries

11 - Qip
A= | 0 (1)

Ap1 - Gpp

The determinant of A is the real or complex number

det(A) = Z(—l)”jaij det(AY) (for every fixed i), (2)

J=1

where a;; are the entries of A, and A% is a matrix obtained from A by crossing out the i-th row
and the j-th column'.

The expression (2) is called Laplace expansion of the determinant along the i-th row. As we will
see hereafter det(A) = det(AT) and therefore there exists an equivalent Laplace expansion along
the j-th column, which is

det(A) = > (=1)Ma;; det(A7)  (for every fixed j). (4)

=1

Remark: The fact that we can arbitrarily choose the row or the column along which develop the
determinant and always obtain the same result suggests that the determinant is a rather special
function. From a technical viewpoint it can be shown that (2) is the a unique alternating multilinear
function?

A():R"x---xR" =R
~—_———

n times

(a1,...,a,) = Aay, ..., ap) (6)
satisfying

Aler, ... eq) =1, (7)
where {ej,...,e,} is the canonical basis of R". In other words, we have

det(A) = A(aq, ..., a,), (8)
where a; is the j-th column of A.
!The number
¢l = (1)1 det(A™) (3)

is often called co-factor of a;; in the determinant expansion.
2An alternating multilinear function is a function A(as,...,a,) that is linear in each argument a;, e.g.,

A(al, as + b, Clg) = A(Cll, az, ag) + A(al, ba, CL3)7
and changes sign if we interchange a; with a;. For instance,

A(a1,a2,a3) = —A(az,a1,a3) = Aas, a1, az). (5)
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If A= ais anumber then we set det(A) = a. Note that the determinant of a matrix is a nonlinear
function of the matrix entries which is defined recursively in terms of determinants of the matrices
A which have smaller dimension.

Ezxamples: Let us provide a few examples of calculation of determinants

1. A = a (real number). In this case we have det(A) = a.

2. A= BH 2121. We develop the determinant along the first row, i.e., set ¢ = 1 in (2).
21 Q22

This yields
det(A) = (—1)"ay; det(A") + (=1)"2as; det(A'?), (9)

where

AH = 92, A12 = a921. (10)

Therefore we obtain
det(A) = 11122 — A12a921. (].1)

Note that we obtain exactly the same formula if we develop the determinant along the second
row, the first column or the second column.

aip Qr2 a3
3. A= |as az ass|. We develop the determinant along the first row, i.e., set i = 1 in (2).
agy az2 433

This yields
det(A) = (—1)1+1a11 det(AH) + (—1)1+26L12 det(A12) + (—1)1+3(113 det(A13) (12)

where

Al — [@22 a23] A2 — {am a23} AN — {aﬂ 022] _ (13>

32 A33 a31 ass azyp ass

Computing the determinants of A", A2 and A'? yields the formula

det(A) = Cln(a22a33 - a32a23) - CL12(CL216L33 - a31a23) + a13(a21<l32 - a31a22). (14)

Note that we obtain exactly the same formula if we develop the determinant along any other
row or column.

Since we can equivalently expand the determinant along arbitrary rows orcolumns of A it is conve-
nient to choose the row or the column with the largest number of zeros. This minimizes the number
of calculations when computing the determinant using (2) or (4). For example, it is clear that it is
convenient to compute the determinant of the following matrix along the second column:

’ L idet ({—11 §D —1(-5-2)=T. (15)

1
det -1 0
1 0

4
2
)
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Properties of the determinant. The determinant of any n x n matrix A satisfies the following
important properties:

1. det(A) = det (AT)

2. det(A) is a linear function of the columns (or the rows) of the matrix A. In other words, if
we denote by a; the i-th column of A and B a column vector of the same length of a; then

(a) det( [a1-~(ai—|—b)---an}) :det( [al---ai---an})+det( [al---b--~an}),
(b) det( [a1~~~cai~-an]) :cdet( [a1-~~ai~~an]),
where q; is the ¢-th column of A.

3. If the columns or the rows of A are linearly dependent then det(A) = 0. If the columns or
the rows or A are linearly independent (i.e., A is full rank) then det(A) # 0.

4. If a multiple of one row (or one column) is added or subtracted to another row (or column)
then the determinant does not change (this follows from property 2 by setting with B = cA;,
and property 3).

5. If two rows (or two columns) are interchanged then the determinant changes sign.

These properties can be easily verified for 2 x 2 and 3 x 3 matrices. The proof of these properties
for general n x n matrices can be found in the book.

Note that from property 2(b) it follows that for any number ¢ and any n x n matrix A:
det(cA) = " det(A). (16)

In fact, the matrix cA has all columns (n in total) multiplied by ec.

Ezxample: Let us show properties 1. to 5. for the simple matrix

1 2
A= L 3} , det(A) = 1. (17)
We have:

1. det (AT) = det (B ;}D = 1= det (A).

s sl ) -on( pron( s

(b) Multiply the second column of A by 3. This yields det L3 — 3 =3det(A).
29 ——

3. A has rank 2 and therefore its columns are linearly independent. However, if we consider the

rank 1 matrix L3 then
1 3
1 3
[ ) =s-5-0 "
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4. Multiply the first row of A by 2 and add it to the second row to obtain
1 2
det <{3 7]) =7—-6=1=det(A). (19)

5. Interchange the first and the second row of A to obtain

det (|1 2]) =2-3= 1= —det(A). (20)
()

From Property 3. at page 3 it follows that:

Theorem 1. Let A be a n x n matrix, b a n x 1 column vector. Then
1. A is invertible < det(A) # 0.
2. A has linearly independent rows/columns < det(A) # 0.

3. The linear system of equations Az = b has a unique solution < det(A) # 0.
Determinant of matrix products and matrix inverses. By using the definition of determinant
(2) it can be shown that for every A, B € M,y,, we have
det(AB) = det(A) det(B). (21)
Clearly, this implies that
det(AB) = det(BA) and det(A”) = det(A)? for all p € N. (22)
By using these identities it is straightforward to show, e.g.,
det(ABT ACAB) = det(A)? det(B)?* det(C), (23)
where A, B and C are three n x n matrices. Moreover, if A is an invertible matrix then

1
~ det(A)’

1 =det(AA™ ) =det(A)det(A™) = det(A™) (24)

i.e. the determinant of the inverse matrix is the inverse of the determinant.

Computing the determinant of a matrix efficiently. How do we actually compute the deter-
minant of a matrix? We have seen that one possibility is to use the definition (2), i.e., the Laplace
rule. However, this not really computationally efficient if the dimension of the matrix is even mod-
erately high, e.g., larger than 10 or 20. In fact, it can be shown that the number of operations to
compute (2) is exactly

p=|nle] —2. (25)

In this formula, e = 2.7183... is the Napier number and the symbol |nle| denotes the nearest integer
number smaller or equal than nle, where n! is the factorial of n. For instance, if n = 2 we have

p=|2le] —2=|54366] —2=5—2=3.
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In fact, as we see from equation (11), to compute the determinant we need two multiplications and
one subtraction. Similarly, for 3 x 3 matrices (n = 3) we need

p=|[3le] —2=]16.3097| —2=16—2 =14

operations. In fact, as we see from equation (12), to compute the determinant we need 9 multipli-
cations and 5 subtractions. The number of operations increases exponentially fast as we increase
the dimension of the matrix. For example, for a 20 x 20 matrix the Laplace rule (2) requires

p=[20le] —2~6.61 x 10'®  operations.

The 2022 Apple M2 Max processor is capable of 13.6 Teraflops in single precision (32 bits), i.e., 13.6x
10'2 single-precision floating point operations per second. Hence, to compute the determinant of a
20 x 20 matrix by using the Laplace rule on the latest MacBook Pro with M2 Max processor/GPU
we need to let our laptop run for approximately

6.61 x 10'® operations

— 5 ~
36 <102 flops 4.86 x 10” seconds ~ 5.62 days (26)

to complete the calculation. Repeating a similar calculation for a 22 x 22 would require

30.554 x 10%° operations
13.6 x 102 flops

= 2.2632 x 10® seconds ~ 7.18 years. (27)

Fortunately, there is a more efficient algorithm to compute the determinant of a matrix. In fact,
by using elementary row operations we known that we can reduce the matrix A to the following
matrix in row-echelon form

U1 Uiz -+ Uin

0 u . e u n
v=1|. (28)

0 0 - Upp

The matrix U has the same determinant of A, up to a sign (i.e., + or —) determined by how many
times we interchange rows in the Gauss elimination with pivoting-by-row process. If we denote by
s the number of row permutations we take in the Gauss elimination process we have

det(A) = (—1)5 ﬁukk (29)
k=1

In fact, the determinant of an upper-triangular (or a lower-triangular) matrix is simply the product
of the diagonal elements. The total number of operations to transform an n x n matrix A into the

upper triangular form U is
2., n* n
-n’——=——. 30
3" T2 6 (30)

The number of products in (29) is n, while taking the exponential is one operation. Hence, the
total number of operations to compute the determinant with Gauss elimination is
2 n> n

2 1 )
3 3 2
o2 1=2p3_Z Z 1 31
3n 5 6+n+ 3n 5" +6n+ (31)
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For a 22 x 22 matrix we get 6876 operations. If we use a 2022 Apple M2 Max processor, this

requires
6876 operations

=5.06 x 107" ds. 32
13.6 x 102 flops 8 POCONES (32)
Example: Consider the matrix
1 -1 3 1 -1 3
A=11 =21 —  Gauss elimination — U= [0 —1 =2 (33)
-1 1 3 0 0 6

Since we did not perform any permutation we have s = 0 in (29) and therefore

det(A) = det(U) = —6.

Cramer’s rule. It is possible to express the solution to a linear system of equations in terms of
determinants. Specifically, let

Az =b (34)

be a system of n linear equations in n unknowns. Suppose that the system has a unique solution

(i.e., det(A) # 0). Then
det([ar ---b---ay)), (35)

X

~ det(A)
where [a;---b---a,] is a matrix obtained by replacing the i-th column of A (denoted by a;) with
the column vector b.

Example: Compute the solution to the following system of equations using Cramer’s rule:

b )= b 2
Y ¥

We have det(A) = 1, and therefore

S (1) IR -

An explicit formula for A~! . Let A be an invertible matrix. By definition, the inverse of A is
a square matrix (denoted as A™') with the following properties

AAT =1, ATA =1, (38)
where I, is the n x n identity matrix. Let h; be the columns of the matrix A%, i.e.,
At=1[h hy -+ hy  hiE€Myy i=1,...,n (39)
By definition of matrix-vector product we have

AA™Y = [Ahy  Ahy -+ Al (40)

Page 6
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At this point, define the following column vectors e; € M, 1 (i = 1,...,n)

1 0 0
0 1 0

e1r=1|.1, ea=1|.1], en=1.1]- (41)
0 0 1

Note that e; is the i¢-th column of the identity matrix [,,. With this notation we can write the
matrix equation AA™! = I, as

[Ahy  Ahy -+ Ahy)=le1 e -+ e (42)
Hence, the n columns of the inverse matrix A=, i.e., hq, ...., h, are solutions to n linear systems
Ahy = ey, Ahy = e, o Ah,, = e, (43)
By using Cramer’s rule we obtain that the i-th component of the column vector h; is
by — mdet([al---ej---an]) (44)
where [ay---€;---a,] is a matrix in which we replaced the i-th column a; with e;. By using the
Laplace rule along the i-th column of [a; ---¢€; - - - a,] we obtain
det ([ay -+ -ej---a,)]) = (=1)" det(AT") = O (4, 1)-cofactor. (45)
This yields the following expression
o LGt
1 o :

-1 _
A= det(A)

Cnl ..o O

Fxample: Compute the inverse of the following matrix
-2 4
[ w
We have det(A) = —22, and

O = det (o1 a]) = det ( |
0 = det ([ar e]) = det (:‘42 éD — 4,
0 = det ([es as]) = det ( _

(

022 = det ([al 62}) = det

Therefore,
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Volumes of parallelograms. The determinant of a matrix represents the volume enclosed by the
vectors defined by the columns (or the rows) or the matrix.

g

i

sz 7 O ,Ra

A - |det (7)) V- et (c%, %2 %))

At this point we notice that there are quite a lot of properties of A and V following from the
properties of determinant. For example, if we add a scalar multiple of v; to v, then the area of
the parallelogram defined by the two vectors does not change. This follows from the fact that the
determinant is a linear function of the columns, and that the determinant of a matrix with linearly
dependent columns is equal to zero. For example,

(o )= I ®

H

A:

1]

4

"R

Of course, the green and blue areas are the same. Other properties of the area of a parallelogram
can be derived from properties of the determinant. Next, consider an invertible transformation

F:R” R™, represented by n x n invertible matrix L. We know that if {vq,...,v,} is a basis of
R™ then
[ul un] = [Lvl Lvn] =L [vl vn} (50)
is also a basis of R™. The volume of the parallelograms enclosed by {v1,...,v,} and {u, ..., u,}
are
Voz}det([vl vn])|, Vlz‘det([ul un])| (51)

By applying the determinant operator to equation (50), and using the fact that the determinant of
the matrix product is the product of the matrix determinants we see that

Vi = |det(L)| Vo. (52)

This formula is very important in a variety of fields ranging from multi-dimensional integration
theory to continuum mechanics.

Page 8
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Lecture 11: Eigenvalues and Eigenvectors

Consider a vector space V' and the linear transformation transformation

F:V—V (1)
We say that A € R (or C) is an eigenvalue of F if there exists a nonzero vector v € V such that

F(v) = \v. (2)

We call v eigenvector of F' corresponding to the eigenvalue \.

Note that, by definition, we are not allowing eigenvectors to be zero, i.e., v = Oy is not an eigen-
vector. If we allow v = 0y to be an eigenvector, then any number A would be an eigenvalue of F.
However, we can have eigenvectors corresponding to zero eigenvalues. In this case the eigenvector
belongs to the nullspace of F, since A = 0 = F(v) = Oy.

Next, suppose that V' is n-dimensional and let By = {u1,...,u,} be a basis of V. Denote by Ag,
be the matrix associated with the linear transformation F' relative to the basis By. We have seen
that the coordinates of F'(v) relative to the basis By can be expressed as

[F(U)]BV - ABV [U]Bv (3>
where
[v]g, = | : (4)

are the coordinates of v relative to By,. We have
Fv)y=X & Ag,[vls, = A\v|s,- (5)

Hence, computing eigenvalues and eigenvectors of matrices is equivalent to compute eigenvalues
and eigenvectors of linear transformations between finite-dimensional vector spaces.

Remark: FEigenvalues and eigenvectors can be defined also for linear transformations between
infinite-dimensional vector spaces. For example, consider the derivative operator

F: C™)(R) = C™(R),

flz) — %

We have seen that d/dx defines a linear transformation (linear operator) between infinite-dimensional
vector spaces. an eigenvector of d/dz corrersponding to an eigenvalue A has the form (z) = e*.

In fact g 2 ()
e e x)
— = e = M), (6)

Eigenvectors belonging to function spaces are often called eigenfunctions.

Page 1
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Eigenvalues of a matrix. Consider a nxn matrix A with real or complex coefficients. If A € R (or
C) and v € R™ (or C") are, respectively, and eigenvalue of A and an eigenvector of A corresponding
to A then

Av = dv. (7)

Equation (7) is also called eigenvalue problem for the matrix A. We have
Av=X M & (A—A)v = Ogn, (8)

Hence, the eigenvector v (which is non-zero by definition) is in the nullspace of the matrix (A — AI).
This implies that the matrix A — AI is not injective and therefore not invertible. Equivalently, by
using the matrix rank theorem we have that

rank(A — A\) =n — Elim(N(A - AI)Z < . (9)

~—
>1

This shows that the matrix (A — AI) is not full rank and therefore it is not invertible. A necessary
and sufficient condition for (A — AI) to be not invertible is

p(A) =det(A—A)=0 (characterististic equation), (10)

The polynomial
p(A\) = det(A — ) (11)

is known as characteristic polynomial associated with the matrix A. The characteristic equation
(10) implies that the eigenvalues of a matrix A are roots of the characteristic polynomial p(\).

How many eigenvalues do we have for a given n x n matrix A? The characteristic polynomial p(\)
associated with a n x n matrix A is a polynomial of degree n with real or complex coefficients
(complex coefficients if the matrix A has complex entries). By using the fundamental theorem of
algebra (see Lecture 3) we conclude that every nxn matrix has exactly n complex eigenvalues. Some
of such eigenvalues may be repeated, in which case we say that they have “algebraic multiplicity”
greater than one. In other words, the multiplicity of an eigenvalue as a root of the characteristic
polynomial is called algebraic multiplicity the eigenvalue.

If the matrix A is real then the characteristic polynomial p(A) has real coefficients and therefore
the roots of p(\) are either real or complex conjugates.

Ezxample 1: Compute the eigenvalues of the matrix

2 3
AP 12
The characteristic polynomial is

2—-A 3

p()\):det(A—)\[):det[ 56—

}:—(2—)\)(6+>\)—9, (13)

ie.,

p(\) = A% +4) - 21. (14)
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The eigenvalues of A are roots of p()). Setting p(A) = 0 yields
)\172:—2:&\/4—}—2 =-—-2x5 = /\1:3, A= —T. (15)

In this case, both eigenvalues have algebraic multiplicity one, i.e., they are simple roots of p(A).
The characteristic polynomial can be factored as

pAA) = (A=3)(A+7), (16)

suggesting once again that A = 3 and A = —7 are simple roots.

Ezxample 2: Compute the eigenvalues of the matrix

2 51 -5
043 0
A=10 02 4 (17)
0 00 1
In this case we have
2— A 5 1 -5
0 4 — )\ 3 0
A—- )N = 0 0 9_ ) 4 (18)
0 0 0 1—A
and
p(A) =det(A— ) =(2— )\)2(4 —A)(1=A). (19)

Hence, the matrix A has three eigenvalues:

A =2 with algebraic multiplicity 2,
A =4 with algebraic multiplicity 1,
A3 =1 with algebraic multiplicity 1.
Note that the eigenvalues coincides with the diagonal entries of the matrix A. This is a general fact

about upper or or lower triangular matrices, i.e., the eigenvalues of such matrices coincides with
the diagonal entries of the matrix. For example, the following matrix

111 1
013 0
A= 000 —1 (20)
000 O
has two eigenvalues A\; = 1 and Ay = 0, both with algebraic multiplicity 2.
Ezample 3: Compute the eigenvalues of the following matrix
1 2
a7 -
The characteristic polynomial is
1—X 2 )
p(A\) = det(A — \I) = det 1 1. =—(1-X)*"+2, (22)
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ie.,

p(A) = A% —2)\ + 3. (23)

Hence, the eigenvalues are

M=1+ivV2  A=1-1iV2 (24)

Note that A\; and Ay are complex conjugates eigenvalues. Clearly, for 2 x 2 matrices with real entries
the fundamental theorem of algebra tells us that the eigenvalues are either both real or complex
conjugates.

Eigenvectors and eigenspaces. By definition, an eigenvector of a n X n matrix A is a nonzero
vector v € R™ such that
Av =\, (25)

This means that v is an element of the nullspace of (A — AI) since v is mapped onto the zero of R"
by (A — AI). We know that such a nullspace is a vector subspace of R".

In the context of eigenvalue problems, we call N(A — AI) the eigenspace of A corresponding to
the eigenvalue X\. The dimension of the eigenspace N(A — AI) is called geometric multiplicity of
the eigenvalue \. By definition, an eigenvector cannot be zero and therefore the eigenspace corre-
sponding to each eigenvalue has dimension at least equal to one. The dimension of the eigenspace
corresponding to a certain eigenvalue can be computed by using the matrix rank theorem.

Ezxample 4: Compute the eigenspaces of the matrix

a5y (26)

We have seen in a previous example that the eigenvalues of A are Ay = 3 and \y = —7. Let us
compute the eigenspace corresponding to A\;. To this end, we first compute the dimension of such
eigenspace by using the matrix rank theorem

dim(N(A — M\ 1)) =2 —rank(A — A\ 1) = 2 — rank ({_31 _39D =2-1=1 (27)
Hence, the eigenspace corresponding to \; has dimension one. Any vector of such an eigenspace
is an eigenvector of A corresponding to A;. To compute a basis for the eigenspace N(A — A1)
consider

(A= MDv=0g < {_31 _39} [Zj = m & —v 430, =0 (28)

v = m (29)

is a basis for N(A — A1), and an eigenvector of A corresponding to A;. All eigenvectors of A
corresponding to A; are in the form

Hence,

¢ m with ¢ 2 0. (30)
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Similarly, the eigenspace corresponding to A\, has dimension 1 and can be determined by solving
the linear system

(A= MD)v =0p2 & {g ﬂ [zj = [8] & Bu+uy=0. (31)

Hence,

v = {_13] (32)

is a basis for N(A — A\o/) and an eigenvector of A corresponding to Ap. In summary, A; and Ay are
eigenvalues with algebraic multiplicity one and geometric multiplicity one. Geometric multiplicity
one means that the eigenspaces N(A — A\ I) and N(A — A\oI) are both one-dimensional. A basis for
N(A — X \I) and N(A — X\y1) is given by (29) and (32), respectively.

The following theorem establishes a relationship between the algebraic multiplicity and the geomet-
ric multiplicity of an eigenvalue \.

Theorem 1. Let )\ be an eigenvalue of a n X n matrix A. Denote by s the algebraic multiplicity
of A\. Then
dim(N(A — AI)) < s. (33)

In other words the geometric multiplicity of A (i.e., the dimension of the associated eigenspace) is
always smaller or equal than the algebraic multiplicity).

Of course, if A is a simple eigenvalue (s = 1) then dim(N(A — X)) = 1, i.e., the eigenspace
corresponding to simple eigenvalues is always one-dimensional. If A has algebraic multiplicity 2,
i.e., it is a repeated eigenvalue, then it is possible to have geometric multiplicity equal to one or
equal to two. In the latter case the eigenspace is two-dimensional and any vector in such eigenspace
(including linear combinations of multiple eigenvectors) is an eigenvector. Let us provide a simple
example of a 2x 2 matrix with one eigenvalue of algebraic multiplicity two and geometric multiplicity
one

Example 5: Consider the following matrix

A [g ;]. (34)

We know that A\ = 2 is the only eigenvalue and it has algebraic multiplicity two. In fact, the
characteristic polynomial is p(\) = (2 — A)%2. The geometric multiplicity of A = 2 can be calculated
by using the matrix rank theorem

0 0

TV
=1

dim(N(A — AT)) = 2 — rank(A — AT) = 2 — rank <[0 1D _9_1—1, (35)

Hence, the eigenspace associated with A\ = 2 is one-dimensional. A basis for such an eigenspace is
obtained as follows:

(A= Ao =0 < [g (1]] lzj = m & vy =0. (36)

Page 5



AM 10 Prof. Daniele Venturi

We can choose as basis

o= H | (37)

Example 6: Compute the eigenvalues and the eigenvectors of the following matrix

A= (38)

o o
O =
RO Ol

This is an upper triangular matrix and therefore the eigenvalues coincide with the diagonal entries.
Hence we have A\; = 2 with algebraic multiplicity two and Ay = 1 with algebraic multiplicity
one.

0 1 3
A-—XMI=1|0 -1 5 & dim(N(A — A\ 1)) =3 —rank(A—\1) =1 (39)
0 0 0 T
113
A—XI=10 0 5 & dim(N(A — Xol)) =3 —rank(A — N 1) =1 (40)
00 1 —

Therefore, the dimension of the eigenspaces associated with A; and Ay is one. Let us find a basis
for such eigenspaces.

0 1 3| |y 0 v, arbitrary
(A — >\1[)U = OR3 = 0 -1 5 Vo | = 0 ~ V9 + 31)3 =0 (41)
0 0 0 U3 0 —Vo + 51)3 =0
Hence, an eigenvector that spans N(A — A\ I) is
1
v=|0]. (42)
0
Similarly,
1 1 3 U1 0
Jvg =0
(A=DD)o=0m = 0 0 5| v =1]0] = {”l+v2+ v (43)
00 1] |us] [0 v =0
Hence, an eigenvector that spans N(A — \o1) is
1
v=[—1]. (44)
0
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Theorem 2. Eigenvectors corresponding to different eigenvalues are linearly independent.

Proof. Let vy and vy be two eigenvectors of a matrix A € M,, corresponding to two distinct
eigenvalues A\; and \s. We want to show that

TV + Tovy = Opn = 11 = 29 = 0. (45)
To this end we first multiply the equation above by Ay to obtain
T1 901 + TaAoUy = Ogn (46)
Then we apply the matrix A to x1v; + xov9 = Ogn to obtain
11 AV, + T2 AVs = 1AV + TaAavy = Opn (47)
Subtracting equation (46) from equation (47) yields

1 (/\1 — /\2) V1 = Ogn = r, = 0. (48)
Wv
#0 #0gn

Substituting ;1 = 0 into x1v1 + x2vs = Ogn yields x9 = 0. Hence v, and vy are linearly independent.

]

Similarity transformations. Let A, B € M, ,,. We say that A is similar to B is there exists an
invertible matrix P € M,,«,, such that

AP=PB &  A=PBpP! (49)

The transformation B — PBP~! is called similarity transformation. An example of similarity
transformation is the change of basis transformation.

Theorem 3. Similar matrices have the same eigenvalues.
Proof. Let A, B € M, , be two similar matrices, i.e., P € M,, such that

A=PBP. (50)
Then

det(A — \I) = det(PBP' — APP™!) = det(P) det(B — M) det(P~') = det(B — \I) (51)

]

This theorem implies that the eigenvalues of a linear transformation F': V +— V (dim(V') = n) do
not depend on the basis we choose to represent F'in V. In fact the matrices associated to F' relative
to different bases of V' are related by a similarity transformation.
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Diagonalization. Consider a n x n matrix A. We have seen in Theorem 2 that eigenvectors
corresponding to different eigenvalues are linearly independent. Hence, if the algebraic multiplicity
of each eigenvalue is equal to the geometric multiplicity then it is possible to construct a basis for
R™ made of eigenvectors of A. Let us organize such n eigenvectors as columns of a matrix P

P — [Ul e Un] . (52)
Clearly,
AN - 0
AP = [Avy -+ Avp) =[o1 -+ wv] |1 - 1| =PA, (53)
0 - A\,
—_——
A

where A is a diagonal matrix having the eigenvalues of A (counted with their multiplicity) along the
diagonal. Equation (53) shows that if A has n linearly independent eigenvectors then A is similar
to a diagonal matrix' A. The similarity transformation is defined by the matrix P in (52), i.e., the
matrix that has the eigenvectors of A as columns.

A corollary of this statement is that matrices with simple eigenvalues are always diagonalizable,
since they have n linearly independent eigenvectors. The following theorem summarizes what we
just said.

Theorem 4. Let A be a n x n matrix with eigenvalues {\1,...,\,} with algebraic multiplicities
{s1,...,s,}, respectively. Then A is diagonalizable if and only if

dim(N(A—NI))=s; forall i=1,...,p. (54)
Ezxample 7: The matrix
2 3
a-f o) -
is diagonalizable. In fact we have seen that the eigenvalues are A\; = 3 and Ay = —7 (simple eigen-

values). This implies that the dimension of the associated eigenspace is one for both eigenvalues.
The eigenvectors of A are

3 1]
v = L} and vy = {_3_ ) (56)
Define -
B 1301 A0 130
P = [’Ul 1)2} = |:1 _3:| s A= |:O )\2- = |:0 _7:| . (57)
It is straightforward to verify that
113 1
-1 _ =
ST L —3} (58)
and
A= PAP! or A =P AP (59)

'In general, we say that a matrix A is diagonalizable if there exists an invertible matrix P such that A is similar
to a diagonal matrix.
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Ezample 8: The matrix
2 1
A= ] -

is not diagonalizable. In fact the algebraic multiplicity of the eigenvalue A\ = 2 is two, while its
geometric multiplicity is one. It is possible to show that there exists a basis made of “generalized
eigenvectors” that makes A similar to a matrix .J called Jordan form of A. In this particular example,
the Jordan form of A coincides with A, i.e., A is already in a Jordan form (see the Remark at page

10).
Example 9: Verify that the matrix

1
A= 10 (61)
0

P )
)

is diagonalizable. The matrix is lower-triangular with eigenvalues A\; = 1 (algebraic multiplicity
two) and Ay = 2 (algebraic multiplicity one). To verify that A is diagonalizable we just need to
check that the geometric multiplicity of A\; = 1 is equal to two. To this end, we use the matrix rank
theorem:

dim(N(A — A\ 1)) =3 —rank(A — A\ ) = 3 — rank =3-1=2 (62)

o o O
_ o O
_ o O

This shows that the dimension of the nullspace of N(A — A\1I), i.e., the dimension of the eigenspace
associated with \; = 1 is two. Let us compute a basis for such an eigenspace. To this end,

0 0 0] [v 0 vy arbitrary
(A=—MDv =0 = 0 0 0] |val =10 = vy arbitrary (63)
011 U3 0 U3 = —Uy
Hence, a basis for the eigenspace corresponding to A; is
1 0
0,1 (64)
0 -1

On the other hand, the eigenspace N(A— Ay1) is spanned by a vector that can be computed as

-1 0 0] [uw 0 v =0
(A — )\2])1) = ORS = 0 -1 0 Vo | = 0 = Vo = 0 (65)
0 1 0] [vs 0 v3 arbitrary

Therefore a matrix P that diagonalizes A is

=)
—~
D
(@]
~—

1
P=10 1
0
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Indeed, it can be verified by a direct calculation that

1 00 10 011 001 O O
01 0f{=1010](01O01]0 1 O (67)
0 0 2 01 1[0 1 2] [0 =1 1

X P A P

Remark: It can be shown that the set of eigenvectors of any n x n matrix A can be complemented
to a basis of R™ (or C") by adding a certain number of generalized eigenvectors, as many as s; —
dim(N(A — N\I)) in case the eigenspace N(A — A\;/) has dimension smaller than the algebraic
multiplicity of A\;. For instance, consider the matrix

A= B ﬂ (63)

We know that the eigenspace corresponding to A = 2 is one-dimensional with basis

o= H | (69)

To complement v to a basis of R? we can construct another vector w as follows
(A—X)w = . (70)

Clearly, w is in the nullspace of the matrix (A — AI)%. It can be shown that w and v are linearly
independent. We obtain.

B 0 1] |wi| |1 wy arbitrary

T 01 R

At this point we can define

10 . . .

P=[ w|= [0 1] (matrix of generalized eigenvectors), (72)

and apply A to P to obtain
AP = [Av Aw] = [v w] AL =PJ (73)

0 A
7

Hence, A is similar to a matrix J in a particular form (not diagonal but almost diagonal), known as
Jordan canonical form. In this particular example, A is already in a Jordan form so the similarity
transformation defined by P turns out to be the identity transformation.

We conclude this section with an important theorem characterizing the spectral properties (i.e.,
eigenvalues and eigenvectors) of real symmetric matrices.
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Theorem 5 (Spectral theorem for symmetric matrices). If A € M, y,(R) is symmetric (i.e., A =

AT) then all eigenvalues are real and there exists an orthonormal basis of R” made of eigenvectors
of A.

Proof. To prove that the eigenvalues are real let us consider the following scalar product in C":

(u,v) = Z wv; (74)

Suppose that u is an eigenvector of A. Then
(Au,u) = (\u,u) = A (u, u) (75)

On the other hand,
(u, Au) = (u, Au) = \* (u,u) . (76)

The matrix A is symmetric. This implies that
(Au,u) = (u, Au) & A=, (77)

i.e., Ais real.

Let us now prove that eigenvectors of A corresponding to different eigenvalues are necessarily
orthogonal. To this end, suppose that u; and us are eigenvectors of A corresponding to two different
eigenvalues A\; and Ag. Then

A (up, ug) = (Aug, ug) = (ur, Aug) = Ao (ug, usg) . (78)

Since A; # Ay we have that the previous equality is possible if and only if (uy,us) = 0. This means
that u; and uy are orthogonal. Lastly, we need to prove that any symmetric matrix is diagonalizable.
This is a little bit technical so we skip this proof.

]

Note that, in general, the eigenvectors of a matrix A are not orthogonal relative to the standard
scalar product in R (or C"). However, if the matrix is symmetric then the eigenvectors are neces-
sarily orthogonal?, and they can be normalized, if needed. This yields a matrix of eigenvectors

P = [Ul un} satisfying PPT =1,.

The condition PPT = I, follows directly from (u;, u;) = d;; (orthonormal eigenvectors). Hence the
matrix P that contains the eigenvectors of a symmetric matrix is an orthogonal matrix.

Theorem 6. Let A be any n X n matrix. Then,
1. det(A) = Mg+ Ay,
2. trace(A) = A+ Aa 4+ -+ Ay,

where {\1, ..., \,} are the eigenvalues of A counted with their multiplicity.

2Eigenvectors corresponding to different eigenvalues are necessarily orthogonal, while eigenvectors corresponding
to the same eigenvalue with geometric multiplicity larger than one can be orthogonalized, e.g., by using Gram-Schmidt
procedure.
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Proof. To prove these identities, let us assume that A is diagonalizable®. In this case, we know that
there exists a matrix P that has the eigenvectors of A as columns such that

AN - 0
A= PAP, where A= ... (79)
0 - A,

is the diagonal matrix of eigenvalues. To prove 1. we simply notice that
det(A) = det(PAP™!) = det(P) det(P~ 1) det(A) = det(A) = A Ag--- A, (80)
To prove 2. we notice that?

trace(A) = trace(PAP ™) = Tr(PP*A) = trace(A) = Ay + - -+ + A, (81)

3The proof for the non-diagonalizable case is very much the same. The only difference is that we use the Jordan
canonical form of A instead of the diagonal matrix of eigenvalues A.
4Recall that if A and B are two square matrices of the same size we have

trace(AB) = trace(BA).
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