
AM 213B Prof. Daniele Venturi

Initial value problems for ODEs

In this lecture we briefly review the mathematical theory of initial value problems for systems of first-
order ordinary differential equations (ODEs). While systems of ODEs are of great importance on their
own (many real-world systems are modeled in terms of ODEs), they also play a fundamental role in the
numerical approximation of PDEs.

The initial value problem for one ODE. Let us begin with the following initial value problem for just
one ODE 

dy

dt
= f(y, t)

y(0) = y0

(1)

where f : D × [0, T ] 7→ R and D ⊆ R is a subset of R. In order for the initial value problem (1) to be
well-posed, i.e., for the problem to have a unique solution in a certain space of functions, we need to impose
some mild restrictions on f(y, t). As we will see, it is sufficient for f to be continuous in time and Lipschitz
continuous in the domain D.

Definition 1. Let D ⊆ R be a subset of R. We say that f : D × [0, T ]→ R is Lipschitz continuous in D
if there exists a positive constant 0 ≤ L <∞ (Lipschitz constant) such that

|f(y1, t)− f(y2, t)| ≤ L |y1 − y2| for all t ∈ [0, T ]. (2)

The smallest number L∗ such that the inequality above is satisfied is called “best” Lipschitz constant.

Lipschitz continuity is stronger than just continuity, which requires only that1

lim
y1→y±2

|f(y1, t)− f(y2, t)| = 0 for all t ∈ [0, T ] and for all y2 in the interior of D. (3)

Indeed, Lipschitz continuity implies that the rate at which f(y1, t) approaches f(y2, t) cannot be larger
than L for all y1 and y2 in D. In other words, a Lipschitz continuous function f(y, t) has a growth rate
that is bounded by L for all y1 and y2 in D.

Example: Let D = [−1, 1] be a closed interval, i.e., an interval including the endpoints −1 and 1. The
function f(y, t) = e−t

2
y1/3 is continuous in D for all t ∈ R (see Figure 1). However, f(y, t) is not Lipschitz

continuous in D. The problem here is that f(y, t) has infinite “slope” at the point y = 0 for all t ∈ R. In
other words, there is no constant 0 ≤ L <∞ such that

|f(y, t)− f(0, t)| ≤ L |y − 0| for all y ∈ D. (4)

This can be seen by substituting f(y, t) = e−t
2
y1/3 in (4)

|f(y, t)| ≤ L |y| ⇒ e−t
2

∣∣∣∣∣y1/3y
∣∣∣∣∣ = e−t

2

∣∣∣∣ 1

y2/3

∣∣∣∣ ≤ L for all y ∈ D. (5)

Clearly, if we send y to zero we have that L goes to infinity, and therefore f(y, t) is not Lipschitz con-
tinuous in D. Note that f(y, t) is Lipschitz continuous (actually infinitely differentiable with continuous
derivatives), e.g., in

D = [−1, 1] \ {0} = [−1, 0[ ∪ ]0, 1] or in D = [1, 10]. (6)

Page 1



AM 213B Prof. Daniele Venturi

fly, o) = yt 13

j
""÷%y

÷:

Figure 1: Sketch of f(y, t) = e−t
2
y1/3 in [−1, 1] at t = 0 and t = 1. The function has infinite slope at y = 0.

Figure 2: Geometric meaning of Lipschitz continuity.

The Lipschitz continuity condition (2) has a nice geometric interpretation. In practice it says that the
function f(y, t) can never enter a double cone with slope L and vertex on any point (y, f(y, t))) where
y ∈ D. In other words, if we can slide the vertex of the double cone over the (continuous) function f(y, t)
for y ∈ D and the function never enters the cone then f(y, t) is Lipschitz continuous in D. To explain this,
let us divide the inequality (2) by |y1 − y2| (for y1 6= y2). This yields∣∣∣∣f(y1, t)− f(y2, t)

y1 − y2

∣∣∣∣︸ ︷︷ ︸
|K|

≤ L for all y1, y2 ∈ D. (7)

For each fixed y1 and y2 inD we see thatK represents the slope of the line connecting the points (y1, f(y1, t))
and (y2, f(y2, t)) (see Figure 2). Clearly, the best Lipshitz constant is obtained as

L∗ = max
y1,y2∈D

∣∣∣∣f(y1, t)− f(y2, t)

y1 − y2

∣∣∣∣ . (8)

1The notation y1 → y±2 means that y1 is approaching y2 either from the left (“−”) or from the right (“+”). Note that we
can equivalently write (3) as

lim
y1→y+2

f(y1, t) = lim
y1→y−2

f(y1, t) = f(y2, t).
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Any L ≥ L∗ is still a Lipschitz constant. If the function f(y, t) is continuously differentiable in y ∈ D and
D is compact then

L∗ = max
y∈D

∣∣∣∣∂f(y, t)

∂y

∣∣∣∣ <∞. (9)

Lemma 1. If f(y, t) is of class C1 in a compact subset D ⊆ R for all t ∈ [0, T ] then f(y, t) is Lipschitz
continuous in D.

Proof. By assumption the derivative of ∂f(y, t)/∂y is continuous on the compact domain D ⊆ R. This
implies that the minimum and the maximum of ∂f(y, t)/∂y is attained at some points in D. By using the
mean value theorem we immediately see that

|f(y1, t)− f(y2, t)| =
∣∣∣∣∂f(y∗, t)

∂y

∣∣∣∣ |y1 − y2| . (10)

where y∗ is some point within the interval [y1, y2]. The point y∗ depends on f , y1 and y2. The right hand
side of (10) can be bounded as

|f(y1, t)− f(y2, t)| ≤ max
y∈D

∣∣∣∣∂f(y, t)

∂y

∣∣∣∣︸ ︷︷ ︸
L∗

|y1 − y2| for all y1, y2 ∈ D. (11)

Example: The function f(y) = y2 is of class C∞ (infinitely differentiable with continuous derivative) in any
bounded subset of R. The function is not Lipshitz continuous at y = ±∞, since the slope of the first-order
derivative f ′(y) = 2y grows unboundedly as y → ±∞.

Remark: The initial value problem (1) can be equivalently written as

y(t) = y0 +

∫ T

0

dy(s)

ds
ds = y0 +

∫ t

0
f(y(s), s)ds (12)

i.e., as an integral equation for y(s). This formulation is quite convenient for developing numerical methods
for ODEs based on numerical quadrature formulas, i.e., numerical approximations of the temporal integral
appearing at the right hand side of (12). For example, consider a discretization of the time interval [0, T ]
in terms of N + 1 evenly-spaced time instants

ti = i∆t i = 0, 1, . . . , N where ∆t =
T

N
. (13)

By applying (12) within each time interval [ti, ti+1] we obtain

y(ti+1) = y(ti) +

∫ ti+1

ti

f(y(s), s)ds. (14)

At this point we can approximate the integral at the right hand side if (14), e.g., by using the simple
rectangle rule (see Figure 3) ∫ ti+1

ti

f(y(s), s)ds ' ∆tf(y(ti), ti) (15)
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Figure 3: Approximations of the integral
∫ ti+1

ti
f(y(s), s)ds in (14) leading to well-known numerical schemes:

Euler forward (rectangle rule), Crank-Nicolson (trapezoidal rule)

This yields the Euler forward scheme

ui+1 = ui + ∆tf(ui, ti), (16)

where ui is an approximation of y(ti). The Euler forward scheme is an explicit one-step scheme. The
adjective “explicit” emphasizes the fact that ui+1 can be computed explicitly based on the knowledge of f
and ui using (16). On the other hand, if we approximate the integral at the right hand side of (12) with
the trapezoidal rule ∫ ti+1

ti

f(y(s), s)ds ' ∆t

2
[f(y(ti+1), ti+1) + f(y(ti), ti)] (17)

we obtain the Crank-Nicolson scheme

ui+1 = ui +
∆t

2
[f(ui, ti) + f(ui+1, ti)] . (18)

The Crank-Nicolson scheme is “implicit” because the approximate solution at time ti+1, i.e., ui+1, cannot
be computed explicitly based on ui, but requires the solution of a nonlinear equation. Such a solution can
be computed numerically by using any method to solve nonlinear equations. These methods are usually
iterative, e.g., the bisection method, or the Newton method if f is continuously differentiable. Iterative
methods for nonlinear equations can be formulated as fixed point iteration problems. In the specific case
of (18) we have

ui+1 = G(ui+1) where G(ui+1) = ui +
∆t

2
[f(ui, ti) + f(ui+1, ti)] . (19)

If ∆t is small then ui is close to ui+1. Moreover, if ∆t is sufficiently small we have that the Lipschitz
constant of G is smaller than 1, which implies that the fixed point iterations will convergence globally to
a unique solution ui+1 (see, e.g., [3, Ch. 6]).

Next, we formulate a well-known result for existence and uniqueness of the solution to the Cauchy problem
for one ODE.

Theorem 1 (Well-posedness of the initial value problem for one ODE). Let D ⊂ R be an open set,
y0 ∈ D. If f : D × [0, T ] → R is Lipschitz continuous in D and continuous in [0, T ] then there exists a
unique solution to the initial value problem (1) within the time interval [0, τ [, where τ is the instant at
which y(t) exists the domain D. The solution y(t) is continuously differentiable in [0, τ [.

Page 4



AM 213B Prof. Daniele Venturi

Clearly, if f(y, t) is Lipschitz continuous in y ∈ R and continuous in t then the solution to the initial value
problem (1) is global in the sense that it exists and is unique for all t ≥ 0. This can be seen by noting that
y(t) never exits the domain in which f(y, t) is Lipschitz continuous.

Hereafter we provide a simple example of an initial value problem that blows-up in a finite time, and an
initial value problem that is not well posed.

• Finite-time blow-up: Consider the initial value problem

dy

dt
= y2 y(0) = 1. (20)

We know that f(y) = y2 is non-Lipschitz at infinity. By using separation of variables it is straight-
forward to show that the solution to (20) is

y(t) =
1

1− t
. (21)

The function y(t) clearly blows up to infinity as t approaches one (from the left).

• Non-uniqueness of solutions: Consider the initial value problem

dy

dt
= y1/3 y(0) = 0. (22)

We have seen that f(y) = y1/3 is not Lipshitz in any compact domain D including the point y = 0.
In this case we are setting the initial condition exactly at the point in which the slope of f(y) is
infinity. By using separation of variables it can be shown that a solution to (22) is

y(t) =

(
2

3
t

)3/2

. (23)

However, as easily seen, the functions

y(t) =


0 for 0 ≤ t < c

±
(

2

3
(t− c)

)3/2

for t ≥ c
(24)

are also solutions to (22) for every c ≥ 0.

Theorem 2 (Dependency of the ODE solution on the initial condition y0). Let D ⊂ R be an open set,
y0 ∈ D. If f : D× [0, T ]→ R is Lipschitz continuous in D and continuous in [0, T ] then the solution to (1)
y(t; y0) (i.e., the flow generated by the ODE) is continuous in y0. Moreover, if f(y, t) is of class Ck in D
(continuously differentiable k-times in D) then y(t; y0) is of class Ck in D.

Remark: By applying Theorem 1 iteratively (in the sense that we restart the the system from a new
initial condition) we conclude that f can also be piece-wise continuous in time. This case is studied quite
extensively in control of ODEs where a piecewise constant function in time is used as a control to minimize
or maximize some performance metric. In this case the solution to (1) is continuous in time and piecewise
diffentiable in time. The non-differentiability is at the times where the right hand side is not continuous
(in t). And example of an ODE with piecewise constant control v(t) is

dy

dt
= g(y, t) + v(t)︸︷︷︸

control

, y(0) = y0. (25)
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Figure 4: Piecewise differentiability of the solution in case the control v(t) in equation (25) is piecewise
continuous in time.

The control v(t) can be computed, e.g., by solving the optimization problem

min
v(t)∈S

|y(T )− y∗|2 subject to (25), (26)

where S is some function space, e.g., the space of piecewise continuous functions in [0, T ]. Clearly, y(T )
depends on the whole time history of the function v(t). Such functional dependence is often denoted as
y(t, [v(t)]).

The initial value problem for systems of ODEs. Consider the following systems of nonlinear
ODEs 

dy

dt
= f(y, t)

y(0) = y0

(27)

where y(t) = [y1(t) · · · yn(t)]T is a vector of phase variables, f : D × [0, T ]→ Rn, and D is a subset of Rn.
In an extended notation the system of ODEs (27) is written as

dy1
dt

= f1(y1, . . . , yn, t)

dy2
dt

= f2(y1, . . . , yn, t)

...
dyn
dt

= fn(y1, . . . , yn, t)

y1(0) = y10

y2(0) = y20
...

yn(0) = yn0

(28)

Systems of ODE such as (1) or (28) arise, e.g., when modeling physical systems (e.g., pendulum equa-
tions, UAV models, etc.) or when performing a discretization of a partial differential equation to remove
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dependence on spatial variables. Let us provide a simple example of a particular type of such a discretiza-
tion.

Example: Consider the following initial-boundary value problem for the heat equation
∂y(t, x)

∂t
= α

∂2y(x, t)

∂x2
diffusion equation

y(0, x) = y0(x) initial condition

y(t, 0) = y(t, 2π) periodic boundary conditions

(29)

Since this problem is defined on a periodic domain, i.e., on the circle T, we can use a Fourier spectral
method to discretize it in space. To this end, consider the truncated Fourier series expansion2

yN (t, x) =
N∑

k=−N
ck(t)e

ikx, (32)

where ck(t) are time dependent functions with values in C. The series (32) automatically satisfies the
periodic boundary conditions of the problem. A substitution of (32) into (29) yields,

∂yN (t, x)

∂t
= α

∂2yN (x, t)

∂x2
+RN (x, t)︸ ︷︷ ︸

residual

(33)

i.e.,
N∑

k=−N

dck(t)

dt
eikx = −α

N∑
k=−N

k2ck(t)e
ikx +RN (x, t) (34)

At this point we impose that the residual PDE RN (x, t) is orthogonal o the span of the basis BN =
{eikx}Nk=−N in the sense of the standard inner product

(u, v)L2([0,2π] =

∫ 2π

0
u(x)v(x)dx, (35)

i.e., (
RN (x, t), e−ijx

)
L2([0,2π]

= 0 j = −N, ..., N. (36)

This is called Fourier-Galerkin method [2, p.43], and yields a linear systems of 2N+1 ODEs for the Fourier
coefficients ck

dck(t)

dt
= −αk2ck(t), ck(0) =

1

2π

∫ 2π

0
y0(x)e−ikxdx k = −N, ..., N. (37)

Note that this system can be solved analytically. The solution is as

ck(t) =
e−αk

2t

2π

∫ 2π

0
y0(x)e−ikxdx (38)

2The convergence rate of the Fourier series (32) to y(x, t) depends on the smoothness of y(x, t) in x ∈ [0, 2π]. Specifically,
it can be shown that if y(x, t) ∈ Hq([0, 2π]) (Sobolev space with degree q) for all t then [2, p. 35]

‖y(x, t)− yN (x, t)‖2L2([0,2π]) ≤ CN
−q

∥∥∥∥dqydxq

∥∥∥∥2

L2([0,2π])

. (30)

This type of convergence is called spectral converge. Moreover, if y(x, t) is analytic in x for all t then it can be shown that

‖y(x, t)− yN (x, t)‖2L2([0,2π]) ≤ Qe
−cN ‖y‖2L2([0,2π]) , (31)

i.e., convergence is exponential [2, p. 36].
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which allows yields the approximate solution

yN (x, t) =
1

2π

N∑
k=−N

eikx−αk
2t

∫ 2π

0
y0(x)e−ikxdx. (39)

As we will see, the IBVP (29) can be discretized in space by using many other techniques including finite-
difference methods, pseudo-spectral collocation methods, finite-elements methods, etc. The proper way to
formulate these methods often goes through the so-called weak (or variational) form of the PDE. AM 213B
focuses mostly on finite-difference approximation methods of PDEs. For example, a central finite-difference
approximation of the PDE (29) yields the ODE system

du(xk, t)

dt
=

α

∆x2
(u(xk+1, t)− 2u(xk, t) + u(xk−1, t)) u(xN+j , t) = u(xj , t) (40)

where

xk = k∆x k = 0, . . . , N, ∆x =
2π

(N + 1)
(uniform grid spacing). (41)

Clearly, this system can be written in the form (28) provided we define

yk(t) = u(xk, t) fk(y1, . . . , yn) =
α

∆x2
(yk+1 − 2yk + yk−1) (42)

As before, we can re-write the Cauchy problem as an integral equation

y(t) = y(0) +

∫ t

0
f(y(s), s)ds, (43)

which is very handy to derive numerical methods based on numerical quadrature of the one-dimensional
integral at the right hand side. For instance, consider a partition of the [0, T ] into an evenly spaced grid
points such that ti+1 = ti + ∆t, and write (43) within each time interval

y(ti+1) = y(ti) +

∫ ti+1

ti

f(y(s), s)ds. (44)

By approximating the integral at the right hand side of (44), e.g., using the midpoint rule yields∫ ti+1

ti

f(y(s), s)ds ' ∆tf

(
y

(
ti +

∆t

2

)
, ti +

∆t

2

)
(45)

At this point, we can approximate y(ti + ∆t/2) using the Euler forward method

y

(
ti +

∆t

2

)
' y(ti) +

∆t

2
f(y(ti), ti) (46)

to obtain the explicit midpoint method

ui+1 = ui + ∆tf

(
ui +

∆t

2
f(ui, ti), ti +

∆t

2

)
(47)

where ui is an approximation of f(ti). The explicit midpoint method is a one-step method that belongs
to the class of Runge-Kutta methods3. The integral formulation (43) is also at the basis of the Picard
iteration method which is used to prove the following theorem.

3As we will see, the explicit midpoint method (47) is a two-stage explicit Runge-Kutta method.

Page 8



AM 213B Prof. Daniele Venturi

Theorem 3 (Well-posedness of initial value problems for systems of ODEs). Let D ⊂ Rn be an open set,
y0 ∈ D. If f : D × [0, T ] → R is Lipschitz continuous in D and continuous in [0, T ] then there exists a
unique solution to the initial value problem (27) within the time interval [0, τ [, where τ is defined to be
the instant at which y(t) exits the domain D in which f is Lipschitz continuous. The solution y(t) is
continuously differentiable in [0, τ [.

How do we define Lipschitz continuity for a vector-valued function f(y, t) defined in subset of Rd? By a
simple generalization of the definition we gave for one-dimensional functions.

Definition 2. Let D be a subset of Rn, f : D × [0, T ]→ Rn. We say that f is Lipschitz continuous in D
if there exists a constant 0 ≤ L <∞ such that

‖f(y1, t)− f(y2, t)‖ ≤ L ‖y1 − y2‖ for all y1,y2 ∈ D, (48)

where ‖·‖ is any norm defined in Rn.

Remark: As is well known, all norms defined in a finite-dimensional vector space (such as Rn) are equivalent.
This means that if we pick two arbitrary norms in Rn, say ‖·‖a and ‖·‖b , then there exist two numbers c1
and c2 such that

c1 ‖y‖a ≤ ‖y‖b ≤ c2 ‖y‖a for all y ∈ Rn. (49)

The most common norms in Rn are

‖y‖∞ = max
k=1,..,n

|yk| , (50)

‖y‖1 =
n∑
k=1

|yk| , (51)

‖y‖2 =

(
n∑
k=1

|yk|2
)1/2

, (52)

... (53)

‖y‖p =

(
n∑
k=1

|yk|p
)1/p

p ∈ N \ {∞}. (54)

Based on these definitions it is easy to show, e.g., that

‖y‖∞ ≤ ‖y‖1 ≤ n ‖y‖∞ , (55)

‖y‖2 ≤ ‖y‖1 ≤
√
n ‖y‖2 , (56)

‖y‖∞ ≤ ‖y‖2 ≤
√
n ‖y‖∞ . (57)

Therefore if the f(y, t) is Lipschitz continuous in D with respect to the 1-norm, i.e.,

‖f(y1, t)− f(y2, t)‖1 ≤ L1 ‖y1 − y2‖1 for all y1,y2 ∈ D, for all t ≥ 0 (58)

then it is also Lipschitz continuous with respect to the uniform norm. In fact, by using (55) we have

‖f(y1, t)− f(y2, t)‖∞ ≤ L1n︸︷︷︸
L∞

‖y1 − y2‖∞ . (59)

Of course, f(y, t) is also Lipschitz continuous with respect to the 2-norm.
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Theorem 4. If f(y, t) is of class C1 in a compact convex domain D ⊂ Rn, then f(y, t) is Lipschitz
continuous in D.

Proof. Let D ⊆ Rn be a compact convex domain and let

M = max
y∈D

∣∣∣∣∂fj(y, t)∂yi

∣∣∣∣ . (60)

Clearly M exists and is finite because we assumed that D is compact and that f is of class C1 in D4.
Consider two points y1 and y2 in D, and the line that connects y1 to y2, i.e.,

z(s) = (1− s)y1 + sy2 s ∈ [0, 1]. (61)

Since D is convex, we have that the line z(s) lies entirely within D. Therefore we can use the mean value
theorem applied to the one-dimensional function fi(z(s), t) (s ∈ [0, 1]) to obtain

fi(y2, t)− fi(y1, t) = ∇fi(z(s∗), t) · (y2 − y1) for some s∗ ∈ [0, 1]. (62)

By taking the absolute value and using the Cauchy-Schwartz inequality we obtain

|fi(y2, t)− fi(y1, t)|2 =

∣∣∣∣∣∣
n∑
j=1

∂fi(z(s∗))

∂yj
(y2j − y1j)

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
n∑
j=1

∂fi(z(s∗), t)

∂yj

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

n∑
j=1

(y2j − y1j)

∣∣∣∣∣∣
2

≤nM2 ‖y2 − y1‖22 . (63)

This implies that
‖f(y2, t)− f(y1, t)‖2 ≤ nM︸︷︷︸

L2

‖y2 − y1‖2 . (64)

i.e., f(y, t) is Lipschitz continuous in the 2-norm, or any other norm that is equivalent to the 2-norm. In
particular, by using the inequalities (55)-(57) we have that f(y, t) is Lipschitz continuous relative to the
1-norm and the uniform norm (∞-norm).

Lemma 2. If f(y, t) is of class C1 in D ⊆ Rn and has bounded derivatives ∂fi/∂yj then f(y, t) is Lipschitz
continuous in D.

Linear systems of ODEs. Consider the following autonomous system of linear differential equa-
tions

dy(t)

dt
= Ay(t) y(0) = y0. (65)

We have seen in AM214 that this system admits a global solution, i.e., the solution exists and is unique
for all t ≥ 0. Such an analytic solution can be expressed in terms of generalized eigenvectors of A as

y(t) =etAy0

=P etJP−1y0, (66)

4A compact domain is by definition bounded and closed. The minimum and maximum of a continuous function in defined
on a compact domain is attained at some points within the domain or on its boundary. Note that this is not true if the
domain is not compact. For example, the function f(y) = 1/y is continuously differentiable on ]0, 1] (bounded domain by not
compact), but the function is unbounded on ]0, 1].

Page 10



AM 213B Prof. Daniele Venturi

where P is a matrix that has the generalized eigenvectors of A as columns, and J is the Jordan form of
A. While the formula (66) is nice and compact, its computation requires the knowledge of the eigenvalues
and and generalized eigenvectors of A which is something that is not easy to compute, especially in
high-dimensions5. Moreover, the matrix A can be time-dependent (i.e., A(t)), in which case the matrix
exponential etA has to be replaced by a Magnus series (see, e.g., [1]).

Matrix norms compatible with vector norms Let us define the following matrix norm

‖A‖ = sup
y 6=0Rn

‖Ay‖
‖y‖

= sup
‖y‖=1

‖Ay‖ . (67)

Clearly, ‖A‖ is matrix norm (prove it as exercise), which satisfies, by definition, the following inequal-
ity

‖A‖ ≥ ‖Ay‖
‖y‖

i.e. ‖Ay‖ ≤ ‖A‖ ‖y‖ . (68)

It is straightforward to show that

‖A‖∞ = max
i=1,..,n

 n∑
j=1

|Aij |

 , (69)

‖A‖1 = max
j=1,..,n

(
n∑
i=1

|Aij |

)
, (70)

‖A‖2 =
√
λmax (ATA) = σmax(A), (71)

where σmax(A) is the largest singular value of the matrix A. For example,

‖Ay‖∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑
j=1

Aijyj

∣∣∣∣∣∣ ≤ max
i=1,...,n

 n∑
j=1

|Aij | |yj |

 ≤ ‖y‖∞ max
i=1,...,n

 n∑
j=1

|Aij |

 (72)

which implies that

‖Ay‖∞
‖y‖∞

≤ max
i=1,...,n

 n∑
j=1

|Aij |

 for all y 6= 0Rn , (73)

i.e.,

sup
y 6=0Rn

‖Ay‖∞
‖y‖∞

= max
i=1,...,n

 n∑
j=1

|Aij |

 = ‖A‖∞ . (74)

With any compatible matrix norm available we immediately see that the function f(y) = Ay is Lipschitz
continuous in Rn. In fact, we have

‖Ay1 −Ay2‖ ≤ ‖A‖ ‖y1 − y2‖ for all y1, y2 ∈ Rn, (75)

where L = ‖A‖ is the Lipschitz constant. Equation (75) implies that the solution to (65) is global in time.
This can be also shown by noticing that A is the Jacobian matrix of f(y, t) and that all entries of such a
matrix are of course bounded in Rn (see Lemma 2).

5If the matrix A has a particular structure, e.g., if A is a tridiagonal differentiation matrix (Toeplitz matrix), then there
are formulas available for the eigenvalues and the eigenvectors of A.
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The following result on the regularity of the flow generated by the initial value problem (27) holds
true.

Theorem 5 (Dependency of the ODE solution on the initial condition y0). Let D ⊂ Rn be an open set,
y ∈ D. If f : D × [0, T ] → Rn is Lipschitz continuous in D and continuous in [0, T ] then the solution
y(t;y0) to the initial value problem (27), i.e., flow generated by the ODE system, is continuous in y0.
Moreover, if f(y, t) is of class Ck (continuously differentiable k-times in D) in D then y(t;y0) is of class
Ck in D relative to y0.
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Overview of numerical methods for ODEs

In this lecture we provide a brief overview of the most common numerical methods to approximate the
solution of an initial value problem for systems of ODEs of the form

dy

dt
= f(y, t)

y(0) = y0

(1)

where y(t) = [y1(t) · · · yn(t)]T is a (column) vector of phase variables, f : D × [0, T ] → Rn, D is a subset
of Rn, and T is the integration period. Most of the material presented in this lecture can be found, e.g.,
in [2, 3, 4]. We assume that the initial value problem (1) well-posed, i.e., that it has a unique solution1

(at least for some time tτ > 0). We have seen that this is equivalent to assume that f(y, t) is at least
Lipschitz continuous in D and that y0 ∈ D.

The initial value problem (1) can be equivalently written as

y(t) = y(0) +

∫ t

0
f(y(s), s)ds. (2)

i.e., as an integral equation for y(t).

Picard iteration method. The Picard iteration method is rarely used in practice to compute numerical
solutions to ODEs, but rather to prove existence and uniqueness of solutions to ODEs. Picard’s method
is essentially a fixed point iteration in which the solution y(t) is approximated within a fixed time interval
[0, t] by a sequence of functions

y[0](t)→ y[1](t)→ · · · → y[k](t)→ · · · (3)

generated by the fixed iteration rule

y[k+1](t) = y0 +

∫ t

0
f
(
y[k](s), s

)
ds. (4)

In (4) we can set y[0](t) = y0 which, in principle, allows us to compute y[1](t). With y[1](t) available we
can compute y[2](t), and so on and so forth. For the sequence of functions y[k](t) to converge from an
arbitrary y[0](t), we need to make sure that the Frechét derivative of the nonlinear operator at the right
hand side of (4) has a norm smaller than one, i.e., that the operator is a contraction. This translates to an
upper bound for t, which depends on the Lipschitz constant of f . The larger the Lipschitz constant, the
smaller t. In other words, Picard iterations converge only if t is smaller than some tmax that depends on
the Lipschitz constant of f . Clearly, once y(t) has been computed to the desired accuracy we can use y(t)
as initial condition for the next sequence of Picard iterations, e.g., the sequence that yields the solution
within the time interval [t, 2t]. The Picard iteration method is clearly not practical, as it involves the
evaluation of a time integral at each iteration. Moreover, the function y[k](t) that is being integrated is
defined by an integral with t as one of the endpoints of the integral (see equation (4)).

Next, consider a partition of time interval [0, T ] into an evenly-spaced set of grid points:

t0 = 0, tN = T, ti+1 = ti + ∆t i = 0, . . . , N − 1, (5)

1Of course, if the initial value problem (1) does not admit a unique solution then its numerical approximation might just
pick one of the possible solutions.
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Euler forward Euler backward Crank-Nicolson

Figure 1: Approximations of the integral
∫ ti+1

ti
f(y(s), s)ds in (6) leading to well-known numerical schemes.

Figure 2: Show how you integrate rectangle and trapezoidal rule to obtain the three methods (Euler
forward/backward and CN - 3 Figures).

where ∆t = T/N .

By using the semi-group property of (1) we can write (2) within each time interval [tk, tk+1] as

y(tk+1) = y(tk) +

∫ tk+1

tk

f (y(s), s) ds. (6)

This formulation is quite convenient for developing numerical methods based on numerical quadrature
formulas, i.e., numerical approximations of the one-dimensional temporal integral appearing at the right
hand side of (6).

Euler and Crank-Nicolson methods These are elementary methods obtained by approximating the
integral at the right hand side of (6) by using the rectangle rule or the trapezoidal rule (see Figure 1).
Specifically, consider the approximations∫ tk+1

tk

f (y(s), s) ds ' ∆tf (y(tk), tk) , (7)∫ tk+1

tk

f (y(s), s) ds ' ∆tf (y(tk+1), tk+1) , (8)∫ tk+1

tk

f (y(s), s) ds ' ∆t

2
(f [y(tk), tk) + f (y(tk+1), tk+1)] . (9)

These quadrature rules yield, respectively, the following numerical schemes

uk+1 = uk + ∆tf (uk, tk) Euler forward method (explicit), (10)

uk+1 = uk + ∆tf (uk+1, tk+1) Euler backward method (implicit), (11)

uk+1 = uk +
∆t

2
[f (uk, tk) + f (uk+1, tk+1)] Crank-Nicolson method (implicit). (12)

In these methods uk represents an approximation of the exact solution y(tk), and we set u0 = y0 (initial
condition). Both Euler and Crank-Nicolson methods are one-step methods. This means that the approxi-
mate solution at time tk+1, i.e., uk+1, can be computed by knowing only the solution (or its approximation)
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at time tk. The Euler forward method allows us to compute uk+1 explicitly, given uk and f(uk, tk). On
the other hand, the Euler backward and Crank-Nicolson methods are “implicit”. This is because the ap-
proximate solution at time tk+1, i.e., uk+1, cannot be computed explicitly based on uk, but it requires
solving a nonlinear equation. Specifically, in the case of the Euler backward method we need to solve the
nonlinear equation

uk+1 = G(uk+1) where G(uk+1) = uk + ∆tf(uk+1, tk+1). (13)

Nonlinear equations of this form are essentially fixed point problems which can be solved numerically using
iterative methods such as the Newton’s method (provided f is of class C1). Upon definition of

F (uk+1) = uk+1 −G(uk+1) (14)

we can equivalently write (13) as
F (uk+1) = 0. (15)

The Newton’s method for nonlinear systems: The solution to the system of nonlinear equations (15) can
be approximated by using the Newton’s method or any other method for root finding. As is well known,

the Newton’s method generates a sequence of vectors u
[j]
k+1 (j = 0, 1, . . .) converging to uk+1 under rather

mild assumptions (see [4, Ch. 7]). The Newton’s method can be formulated as2[
I − JG

(
u
[j]
k+1

)]
︸ ︷︷ ︸

matrix

(
u
[j+1]
k+1 − u

[j]
k+1

)
︸ ︷︷ ︸

vector

= G
(
u
[j]
k+1

)
− u

[j]
k+1︸ ︷︷ ︸

vector

j = 0, 1, . . . , (18)

where JG

(
u
[j]
k+1

)
is the Jacobian matrix of G defined in equation (13), evaluated at u

[j]
k+1. It is convenient

to set the initial guess u
[0]
k+1 for Newton’s iteration as u

[0]
k+1 = uk, i.e., the numerical solution at previous

time step. For ∆t sufficiently small this guarantees that u
[0]
k+1 is within the basin of attraction of uk+1. Note

also that for ∆t sufficiently small the matrix at the left hand side of (18) is a perturbation of the identity
(the norm of JG goes to zero linearly in ∆t), and therefore I−JG is always invertible for sufficiently small
∆t. Indeed I − JG is a diagonally dominant matrix for small ∆t. More rigorously, we have the following
convergence result (see [4, Theorem 7.1]).

Theorem 1 (Convergence of Newton’s method). Let F (x) in equation (14) be of class C1 in a convex
open set D ⊆ Rn that contains a zero of F , i.e., a point x∗ ∈ D such that F (x∗) = 0. If JF (x) is invertible
at x∗ (it always is for sufficiently small ∆t), and JF (x) is Lipschitz continuous in a neighborhood of x∗,
i.e.3,

‖JF (x)− JF (y)‖ ≤ L ‖x− y‖ (19)

then there exists a neighborhood of x∗ such that for any initial guess x[0] in such a neighborhood we have
that the sequence x[k] generated by

JF

(
x[k]
)(

x[k+1] − x[k]
)

= −F
(
x[k]
)

(20)

2Consider the Taylor series

F
(
u

[j+1]
k+1

)
= F

(
u

[j]
k+1

)
+ JF

(
u

[j]
k+1

)(
u

[j+1]
k+1 − u

[j]
k+1

)
+ · · · j = 0, 1, . . . . (16)

Setting F
(
u

[j+1]
k+1

)
= 0 yields

JF

(
u

[j]
k+1

)(
u

[j+1]
k+1 − u

[j]
k+1

)
= −F

(
u

[j]
k+1

)
j = 0, 1, . . . (17)

which, upon substitution of (14), coincides with the Newton method (18).
3In equation (19) the matrix norm ‖ · ‖ at the left hand side is induced by the vector norm at the right hand side.
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converges to x∗ with order 2. In other words, there exists m ∈ N such that∥∥∥x[k+1] − x∗
∥∥∥ ≤ C ∥∥∥x[k] − x∗

∥∥∥2 for all k ≥ m. (21)

If we replace uk+1 at the right hand side of (12) with one step of the Euler forward scheme (10) we obtain
the Heun method

uk+1 = uk +
∆t

2
[f (uk, tk) + f (uk + ∆tf(uk, tk), tk+1)] Heun method (explicit) (22)

The Heun method is a one-step explicit method that belongs to the class of two-stage explicit Runge-Kutta
methods.

Remark: The Euler methods (10)-(11) can be derived also by replacing dy/dt in (1) with the first-order
forward and backward finite-differentiation formulas

dy(tk)

dt
'y(tk+1)− y(tk)

∆t
= f(y(tk), tk), (23)

dy(tk+1)

dt
'y(tk+1)− y(tk)

∆t
= f(y(tk+1), tk+1). (24)

The midpoint method. By approximating the integral at the right hand side of (6) using the midpoint
rule yields ∫ ti+1

ti

f(y(s), s)ds ' ∆tf

(
y

(
ti +

∆t

2

)
, ti +

∆t

2

)
. (25)

At this point, we approximate y(ti + ∆t/2) using the Euler forward method to obtain

y

(
ti +

∆t

2

)
' y(ti) +

∆t

2
f(y(ti), ti) (26)

to obtain

ui+1 = ui + ∆tf

(
ui +

∆t

2
f(ui, ti), ti +

∆t

2

)
explicit mipoint method (27)

where ui is an approximation of y(ti). The explicit midpoint method is a one-step method that belongs
to the class of two-stage explicit Runge-Kutta methods.

Approximating y(ti + ∆t/2) by the average

y

(
ti +

∆t

2

)
' y(ti) + y(ti+1)

2
(28)

yields

ui+1 = ui + ∆tf

(
ui + ui+1

2
, ti +

∆t

2

)
implicit mipoint method (29)

The implicit midpoint method is a one-step symplectic integrator, i.e., the scheme preserves the Hamiltonian
when applied to Hamiltonian dynamical systems, e.g., pendulum or double-pendulum equations. There is
a vast literature on structure-preserving integration methods for ordinary differential equations (see, e.g.,
[1] and the references therein).

Exercise: Solve the pendulum equations with the implicit midpoint method and the Euler forward method.
Verify that the Hamiltonian is preserved in the case of the implicit midpoint method is used.
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Figure 3: Approximation of the integral
∫ ti+1

ti
f(y(s), s)ds in (6) leading to midpoint method. In this figure

we set fk = f(y(tk), tk).

Adams-Bashforth methods. These are explicit multistep methods constructed by replacing the integral
at the right hand side of (6) with the integral of a polynomial interpolant of f(y(s), s) at {tk, tk−1, · · · tk−q}
which is then extrapolated into [tk, tk+1] to compute the integral. In other words, we introduce the following
approximation ∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Πqf(y(s), s)ds (30)

where Πqf(y(s), s) is a polynomial of degree q interpolating

{fk,fk−1, . . . ,fk−q} at {tk, tk−1, . . . , tk−q} (31)

where fk = f(y(tk), tk). It is very convenient to use Lagrangian interpolation to derive the polynomial
Πqf . Hereafter we derive the Adams-Bashforth (AB) methods for q = 0, 1, 2.

• One-step Adams-Bashforth method (AB1):

q = 0 ⇒ Π0f(y(s), s) = fk (32)

where fk = f(y(tk), tk). Hence,∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Π0f(y(s), s)ds = ∆tf(y(tk), tk). (33)

This yields
uk+1 = uk + ∆tf(uk, tk) AB1 method. (34)

Note that the AB1 method coincides with the Euler forward method.

• Two-step Adams-Bashforth method (AB2):

q = 1 ⇒ Π1f(y(s), s) = fklk(s) + fk−1lk−1(s) (35)

where lk(s) and lk−1(s) are Lagrange characteristic polynomials

lk(s) =
s− tk−1

tk − tk−1
, lk−1(s) =

s− tk
tk−1 − tk

. (36)
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Figure 4: Derivation of the three-step Adams-Bashforth scheme (AB3). We first construct the polynomial
Π2f that interpolates f(y(s), s) at tk−2, tk−1 and tk. Subsequently, we extrapolate Π2f to [tk, tk+1] so
that we can compute the integral in equation (30).

This yields

Π1f(y(s), s) = fk
s− tk−1

tk − tk−1
+ fk−1

s− tk
tk−1 − tk

. (37)

The (linear) polynomial Π1f(y(s), s) is constructed in [tk−1, tk] and it can be integrated exactly in
[tk, tk+1] using the trapezoidal rule. To this end, we notice that

Π1f(y(tk), tk) =fk, (38)

Π1f(y(tk+1), tk+1) =fk
tk+1 − tk−1

tk − tk−1
+ fk−1

tk+1 − tk
tk−1 − tk

=2fk − fk−1. (39)

which gives us ∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Π1f(y(s), s)ds =
∆t

2
(3fk − fk−1) . (40)

Substituting this back into (6) yields the scheme

uk+1 = uk +
∆t

2
[3f(uk, tk)− f(uk−1, tk−1)] AB2 method (41)

• Three-step Adams-Bashforth method (AB3): With reference to Figure (4)

q = 3 ⇒ Π2f(y(s), s) = fklk(s) + fk−1lk−1(s) + fk−2lk−2(s) (42)

where lk(s), lk−1(s) and lk−2(s) are Lagrange characteristic polynomials

lk(s) =
s− tk−1

tk − tk−1

s− tk−2

tk − tk−2
, (43)

lk−1(s) =
s− tk

tk−1 − tk
s− tk−2

tk−1 − tk−2
, (44)

lk−2(s) =
s− tk

tk−2 − tk
s− tk−1

tk−2 − tk−1
. (45)
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Figure 5: Derivation of the two-step Adams-Moulton scheme (AM2). We first construct the polynomial
Π2f that interpolates f(y(s), s) at tk−1, tk and tk+1. Subsequently, we use Π2f polynomial to approximate
the integral in equation (30).

By integrating Π2f(y(s), s) from tk to tk+1 we obtain∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Π2f(y(s), s)ds =
∆t

12
(23fk − 16fk−1 + 5fk−2) . (46)

Substituting this back into (6) yields the scheme

uk+1 = uk +
∆t

12
[23f(uk, tk)− 16f(uk−1, tk−1) + 5f(uk−2, tk−2)] AB3 method (47)

Higher-order Adams-Bashforth schemes can be obtained similarly. Note that in order to start-up a linear
multistep scheme we need to compute the solution at the intermediate steps using different methods. For
example, we could start-up the AB2 method with one step of the Heun method (to compute u1) and then
carry on the integration using the scheme (41)

Adams-Moulton methods. These are implicit multistep methods in which the time integral at the
right hand-side of (6) is approximated by replacing f(y(s), s) by a polynomial Πqf(y(s), s) of degree q
interpolating

{fk+1,fk, . . . ,fk−q+1} at {tk+1, tk−1, . . . , tk−q+1} (48)

The main difference with respect to the Adams-Bashforth method is that there is no extrapolation step,
i.e., the point (tk+1,fk+1) is included in the interpolation (see Figure 5). Let us derive the Adams-Moulton
schemes for q = 0, 1, 2.

• One-step Adams-Moulton method (AM0):

q = 0 ⇒ Π0f(y(s), s) = fk+1 (49)

where fk+1 = f(y(tk+1), tk+1). Hence,∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Π0f(y(s), s)ds = ∆tf(y(tk+1), tk+1). (50)

This yields
uk+1 = uk + ∆tf(uk+1, tk+1) AM0 method. (51)

Note that the AM0 method coincides with the Euler backward method.
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• One-step Adams-Moulton method (AM1):

q = 1 ⇒ Π1f(y(s), s) = fk+1lk+1(s) + fklk(s) (52)

where lk(s) and lk−1(s) are Lagrange characteristic polynomials

lk+1(s) =
s− tk

tk+1 − tk
, lk(s) =

s− tk+1

tk − tk+1
. (53)

This yields

Π1f(y(s), s) = fk+1
s− tk

tk+1 − tk
+ fk

s− tk+1

tk − tk+1
. (54)

The (linear) polynomial Π1f(y(s), s) is constructed in [tk, tk+1] and it can be integrated exactly in
the same interval. To this end, we notice that

Π1f(y(tk), tk) =fk, (55)

Π1f(y(tk+1), tk+1) =fk+1 (56)

which imply ∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Π1f(y(s), s)ds =
∆t

2
(fk+1 + fk) . (57)

Substituting this back into (6) yields the scheme

uk+1 = uk +
∆t

2
[f(uk+1, tk+1) + f(uk, tk)] AM1 method (58)

Hence, the AM1 scheme coincides with the Crank-Nicolson scheme.

• Two-step Adams-Moulton method (AM2):

q = 2 ⇒ Π2f(y(s), s) = fk+1lk+1(s) + fklk(s) + fk−1lk−1(s). (59)

where lk+1(s), lk(s) and lk−1(s) are Lagrange characteristic polynomials

lk+1(s) =
s− tk

tk+1 − tk
s− tk−1

tk+1 − tk−1
, (60)

lk(s) =
s− tk+1

tk − tk+1

s− tk−1

tk − tk−1
, (61)

lk−1(s) =
s− tk+1

tk−1 − tk+1

s− tk
tk−1 − tk

. (62)

By integrating Π2f(y(s), s) from tk to tk+1 we obtain∫ tk+1

tk

f(y(s), s)ds '
∫ tk+1

tk

Π2f(y(s), s)ds =
∆t

12
(5fk+1 + 8fk − fk−1) . (63)

Substituting this back into (6) yields the scheme

uk+1 = uk +
∆t

12
[5f(uk+1, tk+1) + 8f(uk, tk)− f(uk−1, tk−1)] AM2 method. (64)

Backward differentiation formulas (BDF) methods. These are linear implicit multistep meth-
ods that perform well for stiff problems. These methods are obtained by approximating dy(t)/dt in
(1) using a backward finite-difference formula. These formulas are obtained by interpolating y(s) at
{tk+1, tk, . . . , tk−q+1} with a polynomial of degree q, differentiating the polynomial and evaluating the
derivative at t = tk+1 (see Figure 6). Let us derive the first few BDF methods.
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Figure 6: Derivation of the three-step backward differentiation formula (BDF3) method. We first construct
the polynomial Π3f that interpolates y(t) at tk−2, tk−1, tk, and tk+1. Subsequently, approximate the
derivative of y(t) at tk+1 with the derivative of the polynomial Π3y(t) at tk+1.

• One-step BDF method (BDF1):

Π1y(s) = yk+1lk+1(s) + yklk(s) (65)

where the Lagrange characteristic polynomials are given by

lk+1(s) =
s− tk

tk+1 − tk
, lk(s) =

s− tk+1

tk − tk+1
(66)

We approximate the derivative of y(s) at tk+1 with the derivative of the polynomial Π1y(s) at tk+1,
i.e.,

dy(tk+1)

dt
' dΠ1y(tk+1)

dt
=

yk+1 − yk

∆t
. (67)

Substituting this approximation into the exact equation

dy(tk+1)

dt
= f(y(tk+1), tk+1) (68)

yields the scheme
uk+1 − uk = ∆tf(uk+1, tk+1). (69)

Note that BDF1 coincides with the Euler backward scheme.

• Two-step BDF method (BDF2):

Π2y(s) = yk+1lk+1(s) + yklk(s) + yk−1lk−1(s) (70)

where the Lagrange characteristic polynomials are given by

lk+1(s) =
s− tk

tk+1 − tk
s− tk−1

tk+1 − tk−1
, (71)

lk(s) =
s− tk+1

tk − tk+1

s− tk−1

tk − tk−1
, (72)

lk−1(s) =
s− tk+1

tk−1 − tk+1

s− tk
tk−1 − tk

. (73)
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We approximate the derivative of y(s) at tk+1 with the derivative of the polynomial Π1y(s) at tk+1,
i.e.,

dy(tk+1)

dt
' dΠ2y(tk+1)

dt
=

3yk+1 − 4yk + yk−1

2∆t
. (74)

Substituting this approximation into the exact equation

dy(tk+1)

dt
= f(y(tk+1), tk+1) (75)

yields the scheme
3

2
uk+1 − 2uk −

1

2
uk−1 = ∆tf(uk+1, tk+1). (76)

• Three-step BDF method (BDF3): By following a similar procedure as in BDF2 it is straightforward
to show that

11

6
uk+1 − 3uk +

3

2
uk−1 −

1

3
uk−2 = ∆tf(uk+1, tk+1). (77)

General form of a linear multistep method (LMM). The general form of a linear multistep method
is

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βj f(uk+j , tk+j)︸ ︷︷ ︸
fk+j

. (78)

Note that Adams-Bashforth, Adams-Moulton and BDF methods are all in the form (78). To avoid non-
uniqueness of coefficients due to rescaling we set αq = 1. Clearly, if βq = 0 and then the method is explicit.
On the other hand, if βq 6= 0 then the method is implicit. Let us provide a few examples.

Example: The AB3 method

uk+3 = uk+2 +
∆t

12
(23fk+2 − 16fk+1 + 5fk) (79)

can be written in the form (78) by setting

α3 = 1 α2 = −1, α1 = 0, α0 = 0,

β3 = 0, β2 =
23

12
, β1 = −16

12
, β0 =

5

12
.

Note that (α3, β3) = (1, 0) (the method is explicit) and

3∑
j=0

βj = 1. (80)

Example: The BDF2 method

uk+2 −
4

3
uk+1 +

1

3
uk =

2

3
∆tfk+2 (81)

can be written in the form (78) by setting

α2 = 1, α1 = −4

3
, α0 =

1

3
, β2 =

2

3
, β1 = 0, β0 = 0. (82)
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Note that (α2, β2) = (1, 1/3) (the method is implicit) and

2∑
j=0

αj = 0,
2∑

j=0

(βj − jαj) = 0. (83)

As we will see the conditions (80) and (83) guarantee that AB3 and BDF2 are consistent methods, i.e.,
that the truncation error of these methods goes to zero as we send ∆t to zero. Roughly speaking this
means that the numerical schemes (79) and (81) converge to the ODE (1) as ∆t → 0. This is necessary
but not sufficient for the numerical solution generated by the scheme to converge to the analytical solution.
The other element that is needed for convergence is zero-stability. The consistency conditions for a general
linear q-step method are

q∑
j=0

αj = 0,

q∑
j=0

(βj − jαj) = 0. (84)

Remark: All linear multistep methods rely on a polynomial interpolation process on an evenly-spaced tem-
poral grid. As is well-known, polynomial interpolation on evenly spaced grids is, in general, ill-conditioned
and can undergo a severe Gibbs phenomenon depending on the function. However, the process of interpo-
lating a function with a polynomial of degree q + 1 within a very small a time interval (equal to q∆t for a
q-step method) is not ill-conditioned. The reason can be traced back to the fact that we are interpolating
on a small time interval [t − q∆t, t] in which the function behaves more or less almost like a line. More
rigorously, if g(t) is any function of class Cq+1 in [t − q∆t, t] and Πqg(t) is a polynomial of degree q that
interpolates g(t) at {t, t−∆t, . . . , t− q∆t} then we have the error estimate

|g(t)−Πqg(t)| = 1

(q + 1)!

∣∣∣∣dq+1f(ξ)

dtq+1

∣∣∣∣ q∏
j=0

|(t− tj)| ≤
(q∆t)q+1

(q + 1)!

∣∣∣∣dq+1f(ξ)

dtq+1

∣∣∣∣ ξ ∈ [t− q∆t, t], (85)

which clearly goes to zero for sufficiently small ∆t.

Runge-Kutta methods. Runge-Kutta (RK) methods are one-step methods (implicit or explicit) that
aim at increasing accuracy by increasing the number of function evaluations within each time step. The
general form of a RK method with s stages is

uk+1 = uk + ∆t

s∑
i=1

biKi (86)

where

Ki = f

uk + ∆t
s∑

j=1

aijKj , tk + ci∆t

 . (87)

The coefficients of the RK method are usually collected in a table called Butcher array

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs
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The elements aij in the Butcher table can be positive or negative. Constency of RK methods, i.e., the fact
that (86) converge to (1) as ∆t→ 0 implies the following conditions

s∑
j=1

bi = 1. (88)

Moreover, we assume that

ci =

s∑
j=1

aij . (89)

Such a “row-sum condition” is not needed for a consistent method.

If aij = 0 for i ≥ j then each Ki can be computed recursively from the previous ones and the RK method
is explicit. Otherwise the RK method is implicit. Let us provide a few examples.

• Euler forward method: The Euler forward method can be seen as a one-step explicit RK method.
The Butcher array corresponding to such explicit RK1 method is

0 0

1

• Heun method: The Heun mehod (22) is a two-stage explicit Runge-Kutta method. The Butcher array
for the Heun method is:

0 0 0
1 1 0

1/2 1/2

This table corresponds to the following RK2 method

uk+1 = uk +
∆t

2
(K1 + K2) , (90)

where

K1 =f (uk, tk) , (91)

K2 =f (uk + ∆tf(uk, tk), tk + ∆t) . (92)

• Crank-Nicolson method: The Crank-Nicolson (CN) mehod (12) is a two-stage implicit Runge-Kutta
method. The Butcher array corresponding to such method is:

0 0 0
1 1/2 1/2

1/2 1/2

This table corresponds to the following RK2 method

uk+1 = uk +
∆t

2
(K1 + K2) , (93)

where

K1 =f (uk, tk) , (94)

K2 =f

(
uk +

∆t

2
(K1 + K2) , tk+1

)
. (95)
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From equation (93) we see that

∆t

2
(K1 + K2) = uk+1 − uk. (96)

Substituting this expression into (95) yields

K1 = f (uk, tk) , K2 = f (uk+1, tk+1) . (97)

• Kutta’s method: This method is an explicit 3-stage method corresponding to the Butcher array:

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6

The method can be written as

K1 =f(uk, tk), (98)

K2 =f

(
uk +

∆t

2
K1, tk +

∆t

2

)
, (99)

K3 =f (uk −∆tK1 + 2∆tK2, tk + ∆t) , (100)

uk+1 = uk +
∆t

6
(K1 + 4K2 + K3) . (101)

• Runge-Kutta method (RK4): The most famous RK method is perhaps the one proposed in the
original paper by Runge and Kutta. Such a method is an explicit 4-stage method corresponding to
the Butcher array:

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

The method can be written as

K1 =f(uk, tk), (102)

K2 =f

(
uk +

∆t

2
K1, tk +

∆t

2

)
, (103)

K3 =f

(
uk +

∆t

2
K2, tk +

∆t

2

)
, (104)

K4 =f (uk + ∆tK3, tk + ∆t) , (105)

uk+1 = uk +
∆t

6
(K1 + 2K2 + 2K3 + K4) . (106)
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0 0 0
c c 0

b1 b2

Derivation of explicit RK2 methods. Let us show how to derive an arbitrary explicit two-stage RK
method. To this end we first write the Butcher array:

where b1 + b2 = 1. The RK2 method corresponding to this table can be written explicitly as

uk+1 = uk + ∆t(b1K1 + b2K2) (107)

where

K1 =f(uk, tk) (108)

K2 =f(uk + c∆tK1, tk + c∆t). (109)

Expand K2 in a Taylor series in ∆t to obtain

K2 = K1 + c∆t

 n∑
j=1

∂f

∂yj
K1j +

∂f

∂t

+ · · · . (110)

A substitution of this expression into (107) yields

uk+1 = uk + ∆t(b1 + b2)f(uk, tk) + b2c(∆t)
2

 n∑
j=1

∂f(uk, tk)

∂yj
fj(uk, tk) +

∂f(uk, tk)

∂t

 . (111)

Next, we expand the solution to the ODE (1) in a Taylor series at time tk+1 = tk + ∆t), assuming that
y(tk) = uk. This yields

y(tk+1) = u(tk) +
dy(tk)

dt
∆t+

(∆t)2

2

d2y(tk)

dt2
+ · · · . (112)

By using (1) and the chain rule we obtain:

dy(tk)

dt
= f(yk, tk),

d2y(tk)

dt2
=

n∑
j=1

∂f(yk, tk)

∂yj
fj(yk, tk) +

∂f(yk, tk)

∂t
. (113)

Assuming that yk = uk and matching the terms multiplying the same powers of ∆t in (111) and (112) we
obtain4

b1 + b2 = 1 and cb2 =
1

2
. (114)

This is a system of 2 equations in 3 unknowns. Thus, there is an infinite number of explicit (and consistent)
RK2 methods. For example, setting

c = 1, b1 = b2 =
1

2
yields the Heun method (22). (115)

On the other hand, setting

c =
1

2
, b1 = 0 b2 = 1 yields the explicit midpoint method (27). (116)

4The condition b1 + b2 = 1 is a consistency condition which guarantees that the scheme (107) converges to the ODE (1) in
the limit ∆t→ 0.
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By using the Taylor series approach discussed in this section, it is possible to derive conditions on the
entries of the Butcher array for RK methods with an arbitrary number of stages. Essentially, we perform
a Taylor series of the RK method in ∆t and then match it with the Taylor series expansion of the solution
up to a given order. The corresponding equations for the coefficients, e.g., (114) are called “stage-order”
conditions. This is discussed, e.g., in [2, §5.9]. For example, it can be shown that for a three stage RK
method

0 0 0 0
c2 a21 0 0
c3 a31 a32 0

b1 b2 b3

we obtain the order conditions



b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b3a32c2 =
1

6

(117)

which yields to one two-parameter family of solutions and two one-parameter families of solutions [2,
p. 178]. As easily seen, the Taylor series approach rapidly become intractable as the number of stages
increases, and so does the corresponding set of order conditions. Fortunately, there is a more efficient way
to derive conditions such as (114) by using rooted trees (see [2, §5.6]).

Derivation of implicit RK methods. Implicit RK methods can be derived from the integral formulation
(6) of the Cauchy problem. In fact, if a Gauss quadrature formula with s nodes in [tk, tk+1] is employed
to approximate the integral at the right hand side of (6), we obtain∫ tk+1

tk

f(y(s), s)ds ' ∆t

s∑
j=1

bjf (y(tk + cj∆t), tk + cj∆t) . (118)

Here, we denoted by bj the quadrature weights and by tk + cj∆t the quadrature nodes. It can be proved
that for any RK formula (86)-(87), there exists a correspondence between the coefficients bj , cj of the
formula and the weights and nodes of a Gauss quadrature rule (see, [2, §5.11] for details). For instance, the
implicit midpoint method can be seen as a one step implicit RK method based on a 1 point Gauss-Legendre
quadrature rule. This corresponds to the Butcher array

1/2 1/2

1

and can attain order 2. In general, an implicit s-stage Gauss RK method can achieve order 2s. Similarly,
Gauss-Radau and Gauss-Lobatto RK methods can achieve order 2s− 1 and 2s− 2, respectively.
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Consistency of numerical methods for ODEs

In the previous lecture we provided an overview of several numerical methods to solve an initial value
problem for a system of ODEs. In particular, we discussed linear multistep methods (LMM), Runge-Kutta
methods (RK), and backward differentiation formulas (BFD) methods. All these methods can be written
in the general form (see [1, p. 24])

q∑
j=0

αjuk+j = ∆tΦf (uk+q, . . . ,uk, tk,∆t), (1)

where Φf is an iteration function that depends on f (right hand side of the ODE system), as well as
on the approximate solution uk at different times. In (1) we set αq = 1 to avoid non-uniqueness of the
scheme, e.g., when we multiply it by a nonzero constant. The iteration function Φf satisfies the following
conditions

Φ0(uk+q, . . . ,uk, tk,∆t) = 0, (2)

‖Φf (zk+q, . . . ,zk, tk,∆t)−Φf (uk+q, . . . ,uk, tk,∆t)‖ ≤M
q∑

j=0

‖uk+j − zk+j‖ . (3)

The second condition follows from the Lipshitz continuity of f . Let us show how to write a few well-known
schemes in the form (1).

• Crank-Nicolson:

The Crank-Nicolson scheme corresponds to q = 1 (one step), with α1 = 1, α0 = −1 and iteration
function given by

Φf (uk,uk+1, tk,∆t) =
1

2
[f(uk, tk) + f(uk+1, tk + ∆t)] . (4)

• Heun (RK2):

Here we have again q = 1 (one step), α1 = 1, α0 = −1 and iteration function given by

Φf (uk, tk,∆t) =
1

2
[f(uk, tk) + f(uk + ∆tf(uk, tk), tk + ∆t)] (5)

• Adams-Bashforth 2 (AB2):

Here we have q = 2 (two-steps), α2 = 1, α1 = −1, α0 = 0

Φf (uk+1,uk, tk,∆t) =
1

2
[3f(kn+1, tk + ∆t)− f(uk, tk)] (6)

Local truncation error and consistency. The local truncation error of a numerical scheme is the error
arising from the scheme when we perform one step forward from an exact initial condition, i.e., an initial
condition defined by the analytical solution of the ODE system

dy

dt
= f(y, t)

y(0) = y0

(7)
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Let y(t) be such analytical solution, and denote by yk = y(tk). The local truncation error τk+q of the
scheme (1) is defined as

q∑
j=0

αjyk+j = ∆tΦf (yk+q, . . . ,yk, tk,∆t) + ∆tτk+q, (8)

i.e.,

τk+q =
1

∆t

q∑
j=0

αjyk+j −Φf (yk+q, . . . ,yk, tk,∆t), (local truncation error) (9)

The global truncation error of a numerical scheme that undergoes multiple iterations, say N within a
certain time interval [0, T ], is defined as

‖τ‖ = max
k=1,...,N

‖τk+q‖ . (10)

Definition 1 (Consistency). Let τn+q be the local truncation error of the scheme (1). If

lim
∆t→0

‖τk+q‖ = 0 (11)

then we say that the numerical scheme (1) is consistent. If ‖τk+q‖ goes to zero as ∆tp then we say that
the numerical scheme is consistent with order p.

Stated in simple terms, a consistent numerical scheme converges to the ODE (7) as we send ∆t to zero (to
some order in ∆t). As we will see, this is not alone sufficient to guarantee that the discrete solution we
obtain by iterating the scheme, i.e., uk converges to the solution to (7), i.e.,

lim
∆t→
‖uk − yk‖ = 0 ∀k = 0, . . . , N. (12)

In order for uk to converge to yk = y(tk) as ∆t→ 0 a consistent scheme has to be also zero-stable.

Remark: In equation (11) and (12) ‖ · ‖ denotes any norm in Rn. Since all norms are equivalent in Rn

we have that consistency in one norm implies consistency in any other norm. Also, the consistency order
does not depend on the norm that is used. Let us consider a few examples in which we determine the local
truncation error and the consistency order by a direct calculation.

• Consistency of Euler-Forward: The Euler forward scheme

uk+1 = uk + ∆tf(uk, tk) (13)

is consistent with order one. To this end, suppose we have available the analytical solution y(t) to
(7), and denote by

yk+1 = y(tk+1). (14)

A substitution of this expression into (13) yields

yk+1 = yk + ∆tf(yk, tk) + ∆tτk+1, (15)

i.e.,

τk+1 =
yk+1 − yk

∆t
− f(yk, tk). (16)
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By expanding yk+1 = y(tk+1) in a Taylor series (in time) we obtain1

yk+1 = yk + ∆t
dy(tk)

dt
+

∆t2

2

d2y(ξk)

dt2︸ ︷︷ ︸
remainder

, ξk ∈ [tk, tk+1]n. (17)

In this equation, y(ξk) represents a vector with components yj(ξjk), i.e.

y(ξk) =


y1(ξ1k)
y2(ξ2k)

...
yn(ξnk)

 . (18)

Substituting the series (17) into the expression (16) and computing the norm yields

‖τk+1‖ =
∆t

2

∥∥∥∥d2y(ξk)

dt2

∥∥∥∥ . (19)

Hence, the Euler forward method is consistent with order one.

• Consistency of Crank-Nicolson: The Crank-Nicolson scheme

uk+1 = uk +
∆t

2
[f(uk, tk) + f(uk+1, tk+1)] (20)

is consistent with order two. To show this, let us substitute of the analytical solution of (7), denoted
as yk = y(tk), into (20) to obtain the local truncation error

τk+1 =
yk+1 − yk

∆t
+

1

2
[f(yk, tk) + f(yk+1, tk+1)] . (21)

Next, we expand f(yk+1, tk+1) in a Taylor series

f(yk+1, tk+1) = f(yk, tk) + ∆t
df(y(t), t)

dt

∣∣∣∣
t=tk

+
∆t2

2

d2f(y(t), t)

dt2

∣∣∣∣
t=tk

+ · · · . (22)

Similarly, we expand yk+1 is another Taylor series

yk+1 = yk + ∆t
dy(tk)

dt
+

∆t2

2

d2y(tk)

dt2
+

∆t3

6

d3y(tk)

dt3
+ · · · . (23)

A substution of (22)-(23) into (21) yields2 after simple algebraic simplifications

‖τk+1‖ ≤
2

3
∆t2

∥∥∥∥d3y(tk)

dt3

∥∥∥∥+ o(∆t2) (24)

for any vector norm ‖ · ‖. Equation (24) shows that the local truncation error ‖τk+1‖ goes to zero as
∆t2 and therefore the Crank-Nicolson method is consistent with order 2.

1Equation (17) represents simultaneously n different Taylor series, one for each yj(tk + ∆t), j = 1, . . . , n. This yields
a remainder for each series in which the second derivative d2yj/dt

2 is evaluated at some point ξjk within the time interval
[tk, tk+1]. If we use a vector notation, this yields a vector ξk representing a point in the hyper-cube [tk, tk+1]n.

2To derive (24) we recall that

d2y

dt2
=
df(y, t)

dt

d3y

dt3
=
d2f(y, t)

dt2

Page 3



AM 213B Prof. Daniele Venturi

General conditions for consistency. Next, we derive a set conditions guaranteeing that the local
truncation method of the general method (1) goes to zero as ∆t → 0. To this end, let us expand yk+j =
y(tk + j∆t) in equation (9) in a first-order Taylor series

yk+j = yk + j∆t
dy(tk)

dt
+ · · · . (25)

Substituting (25) into (9) yields

τk+q =
yk
∆t

q∑
j=0

αj +
dy(tk)

dt

q∑
j=0

jαj −Φf (yk+q, . . . ,yk, tk,∆t) + · · · . (26)

In the limit ∆t → 0 we have that yk+j → yk for all j = 0, . . . , q. Assuming that yk is arbitrary, the
previous equation yields the consistency conditions

1.

q∑
j=0

αj = 0 (27)

2.
Φf (yk, . . . ,yk, tk, 0)

q∑
j=0

jαj

= f(yk, tk) (28)

At this point it is convenient to define the first characteristic polynomial associated with the numerical
method (1)

ρ(z) =

q∑
j=0

αjz
j (first characteristic polynomial) (29)

By using ρ we can write the consistency conditions in a more compact form as

1. ρ(1) = 0 (30)

2.
Φf (yk, . . . ,yk, tk, 0)

ρ′(1)
= f(yk, tk) (31)

where ρ′(z) = dρ(z)/ds.

We emphasize that the consistency conditions (27)-(28) (or the equivalent ones (30)-(31)) do not provide
any information on the consistency order, but simply allow us to check whether a numerical scheme is
consistent or not. Let us provide a few examples.

• One-step methods: Consider a general one-step method3 in the form

uk+1 = uk + ∆tΦf (uk+1,uk, tk,∆t). (32)

The first characteristic polynomial associated with (32) is

ρ(z) = z − 1 (33)

In fact, the scheme (32) can be written in the form (1) if we set q = 1, α1 = 1 and α0 = −1. By
evaluating ρ(z) and ρ′(z) at z = 1 we obtain

ρ(1) = 0, ρ′(1) = 1 (34)

3Recall that all Runge-Kutta methods (implicit and explicit) are in the form (32).
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Hence, (30) is always satisfied. The second condition, i.e. (31), can be written as

Φf (yk,yk, tk, 0) = f(yk, tk) for all yk ∈ Rn. (35)

This condition is clearly satisfied, e.g., by the Crank-Nicolson method (see the iteration function (4)),
and by the implicit midpoint method. We recall that the iteration function for the latter is

Φf (uk+1,uk, tk,∆t) = f

(
uk+1 + uk

2
, tk + ∆t

)
⇒ Φf (yk,yk, tk, 0) = f(yk, tk). (36)

Regarding Runge-Kutta methods, we recall that their iteration function can be written as

Φf (uk,uk+1, tk,∆t) =

s∑
i=1

biKi Ki = f

uk + ∆t

s∑
j=1

aijKj , tk + ci∆t

 (37)

Hence, condition (35) implies that Runge-Kutta methods are consistent if and only if

s∑
i=1

bi = 1. (38)

• Adams methods: The general form of a q-step Adams method is

uk+q = uk+q−1 + ∆t

q∑
j=0

βjf(uk+j , tk+j). (39)

If βq = 0 then the method is explicit (Adams-Bashforth). Otherwise it is implicit (Adams-Moulton).
The first characteristic polynomial and the iteration function of a q-step Adams method are, respec-
tively

ρ(z) = zq − zq−1, Φf (uk+q, . . . ,uk, tk,∆t) =

q∑
j=0

βjf(uk+j , tk + j∆t). (40)

Clearly,
ρ(1) = 0 and ρ′(z) = qzq−1 − (q − 1)zq−2 ⇒ ρ′(1) = 1. (41)

Hence, the first consistency condition (30) is always satisfied. The second condition (31) can be
written as

Φf (yk, . . . ,yk, tk, 0) = f(uk, tk)

q∑
j=0

βj = f(yk, tk), (42)

and it is satisfied for all yk ∈ Rn if and only if

q∑
j=0

βj = 1. (43)

• BDF methods: The general form of a q-step BDF method is

q∑
j=0

αjuk+j = c∆tf(uk+q, tk+q). (44)

where the constant c takes care of the fact that we set αq = 1. Equivalently, we can say that we set
c = βq. For BDF methods we have

ρ(z) =

q∑
j=0

αjz
j , Φf (uk+q, tk,∆t) = cf(uk+q, tk + q∆t). (45)
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Therefore the consistency conditions (30)-(31) reduce to

ρ(1) = 0, ρ′(1) = c. (46)

For example, the BDF2 method can be written in the form (44) as

uk+2 −
4

3
uk+1 +

1

3
uk =

2

3
∆tf(uk+2, tk+2), (47)

which yields

ρ(z) = z2 − 4

3
z +

1

3
ρ′(z) = 2z − 4

3
. (48)

Clearly, ρ(1) = 0 and ρ′(1) = 2/3, which implies that BDF2 is consistent.

• LMM methods: We have seen that the general form of a linear q-step method is

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjf(uk+j , tk+j). (49)

In this case the consistency conditions (30)-(31) can be written, respectively, as

q∑
j=0

αj = 0,

q∑
j=0

(jαj − βj) = 0. (50)

Order of consistency of linear multistep methods. We have seen in previous section that there is a
simple criterion to check whether a numerical scheme of the form (1) is consistent or not. The criterion is
summarized by the conditions (27)-(28), or the equivalent ones (30)-(31) involving the first characteristic
polynomial of the scheme. The consistency conditions (27)-(28), however, do not provide any indication
on the order of consistency. In this section we derive a theory that allows us to determine the order of
consistency for general linear multistep methods of the form

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjf(uk+j , tk+j). (51)

As we know, this class of methods includes Adams-Bashforth methods, Adams-Moulton methods and BDF
methods. We define the following polynomials associated with (51)

ρ(z) =

q∑
j=0

αjz
j (First characteristic polynomial), (52)

σ(z) =

q∑
j=0

βjz
j (Second characteristic polynomial). (53)

The local truncation error of the linear multistep scheme (51) is

τk+q =
1

∆t

q∑
j=0

αjyk+j −
q∑

j=0

βjf(yk+j , tk+j), (54)

where yk = y(tk) denotes the analytical solution to (7) evaluated at tk. On the other hand, by evaluating
the ODE (7) at tk+j we obtain

f(yk+j , tk+j) =
dy(tk+j)

dt
. (55)
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Substituting (55) into (54) yields

τk+q =
1

∆t

q∑
j=0

(
αjyk+j −∆tβj

dyk+j

dt

)
︸ ︷︷ ︸

Ly(tk)

, (56)

where we defined the linear difference operator L as

Ly(s) =

q∑
j=0

(
αjy(s+ j∆t)−∆tβj

dy(s+ j∆t)

dt

)
. (57)

Assuming that y(t) is differentiable with respect to t as many times as we need, we compute the Taylor
series

y(tk + j∆t) =y(tk) + j∆t
dy(tk)

dt
+

(j∆t)2

2

d2y(tk)

dt2
+ · · · (58)

dy(tk + j∆t)

dt
=
dy(tk)

dt
+ j∆t

d2y(tk)

dt2
+

(j∆t)2

2

d3y(tk)

dt3
+ · · · (59)

A substitution of (58)-(59) into (57) yields the following Taylor series

Ly(tk) =

q∑
j=0

αj

(
y(tk) + j∆t

dy(tk)

dt
+ · · ·

)
−∆tβj

(
dy(tk)

dt
+ j∆t

d2y(tk)

dt2
+ · · ·

)

=C0y(tk) + C1∆t
dy(tk)

dt
+ C2∆t2

d2y(tk)

dt2
+ · · · , (60)

where

C0 =

q∑
j=0

αj = ρ(1) (61)

C1 =

q∑
j=0

(jαj − βj) = ρ′(1)− σ(1) (62)

...

Cs =
1

s!

q∑
j=0

(
jsαj − sjs−1βj

)
s = 2, 3, . . . (63)

Dividing Ly(tk) by ∆t (see (56)) finally yields the following series expansion of the truncation error

τk+q =
C0

∆t
y(tk) + C1

dy(tk)

dt
+ C2∆t

d2y(tk)

dt2
+ C3∆t2

d3y(tk)

dt3
· · · . (64)

We have seen that a necessary condition for consistency is that ρ(1) = 0 (see Eq. (30)), and therefore
C0 = 0. For consistency we also need to have C1 = 0 (otherwise the truncation error (64) does not go to
zero as ∆t→ 0). Clearly, if for a certain scheme the coefficients C1, . . . , Cp are all zero and Cp+1 6= 0 then
we see that the linear multistep method is consistent with order p. In fact, in this case we have (to leading
order in ∆t)

‖τk+q‖ ≤ Cp+1∆tp
∥∥∥∥dp+1y(tk)

dtp+1

∥∥∥∥+O(∆tp+1). (65)
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• Order of consistency of AB3: The AB3 scheme can be written as

uk+3 = uk+2 +
∆t

12
(23fk+2 − 16fk+1 + 5fk) . (66)

The characteristic polynomials (52)-(53) associated with (66) are

ρ(z) = z3 − z2 σ(z) =
23

12
z2 − 4

3
z +

5

12
. (67)

By using (61)-(64) we obtain

C0 =ρ(1) = 0 (68)

C1 =ρ′(1)− σ(1) = 1− 23

12
+

16

12
− 5

12
= 0, (69)

C2 =
1

2

[
32 − 22 − 2

(
−16

12
+ 2

23

12

)]
= 0, (70)

C3 =
1

3

[
33 − 23 − 3

(
−16

12
+ 22 23

12

)]
= 0, (71)

C4 =
1

4

[
34 − 24 − 4

(
−16

12
+ 23 23

12

)]
=

9

4
. (72)

Therefore AB3 is consistent with order 3.

• Order of consistency of BDF2: The BDF2 scheme can be written as

uk+2 −
4

3
uk+1 +

1

3
uk =

2

3
∆tfk+2. (73)

The characteristic polynomials (52)-(53) associated with (66) are

ρ(z) = z2 − 4

3
z +

1

3
σ(z) =

2

3
z2. (74)

By using (61)-(64) we obtain

C0 =ρ(1) = 0 (75)

C1 =ρ′(1)− σ(1) =
2

3
− 2

3
= 0, (76)

C2 =
1

2

[
22 − 12 4

3
− 4

2

3
)

]
= 0, (77)

C3 =
1

3

[
23 − 13 4

3
− 12

2

3
)

]
= −4

9
. (78)

Therefore BDF2 is consistent with order 2.

What is the maximum order of consistency attainable by a q-step linear method? The scheme (51) is fully
determined by the by the 2q + 1 coefficients (recall that we set αq = 1)

{αq−1, . . . , α0, βq, . . . , β0}. (79)

If the method is consistent with order p then we p+ 1 conditions (see Eq. (64))

C0 = 0, C1 = 0, · · · , Cp = 0. (80)

By setting 2q + 1 = p+ 1 we see that
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Theorem 1. The maximum order attainable by q-step linear method of the form (51) is

p = 2q (implicit LMM methods), p = 2q − 1 (explicit LMM methods) (81)

In particular, for Adams-Bashforth and Adams-Moulton methods we have the following result.

Theorem 2. The maximum order of consistency attainable by a q-step Adams-Bashforth method is p = q.
Similarly, the maximum order of consistency attainable by a q-step Adams-Moulton method is p = q + 1

In fact, the condition αq = −αq−1 automatically guarantees that ρ(1) = C0 = 0. Therefore a q-step
Adams-Bashforth has q free parameters {β0, β1, . . . , βq−1}, which can be chosen to satisfy the conditions
C1 = 0, C2 = 0 up to Cp = 0 (p equations). This implies that a q-step Adams-Bashforth method has
maximal consistency order p = q.

As we will see in the next course note, Adams-Bashforth and Adams-Moulton methods are all zero-stable,
and therefore p = q and p = q+1 is actually the order of convergence of these methods. On the other hand,
for general LMM methods, it is possible to prove that LMM methods with consistency order exceeding
p = q + 1 (q odd) or p = q + 2 (q even) are all zero unstable. This result is known as first Dahlquist
barrier.

Order of consistency of RK methods. The order of an RK method (like the order of any other method)
can be determined by using a Taylor series analysis of truncation error (see the examples at the beginning
of this note). On the other hand, if we are interested in developing an explicit or implicit RK method
with a maximal consistency order, we can just expand the RK method in a Taylor series and then try to
match as many powers of ∆t as possible relative to a power series expansion of the exact solution. We have
already seen one of such calculations when we derived the one-parameter family of explicit two-stage RK
methods. Obtaining similar results for RK methods with a larger number of stages is quite cumbersome4,
and also yields surprising results. In general, it can be shown that:

Theorem 3. An s-stage explicit RK method cannot have order greater than s.

This theorem establishes an upper bound for the maximum order attainable by explicit RK methods.
However, determining the maximum attainable order for a fixed number of stages is not a trivial problem.
Order conditions similar to those derived for LMM methods, i.e., (61)-(63) can be derived for RK methods
using Butcher’s theory. for For instance, it can be shown that for the three-stage explicit RK method

0 0 0 0
c2 a21 0 0
c3 a31 a32 0

b1 b2 b3

4The Taylor series analysis can be simplified substantially by using by using Butcher’s theory (see [1, §5.6]), which relies
on graph techniques.
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to be of order 3 the following order conditions need to be satisfied

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b3a32c2 =
1

6

(82)

The solution to this algebraic nonlinear system yields a one two-parameter family of solutions and two
one-parameter families of solutions (see [1, p. 178]). A similar calculation performed on a five-stage explicit
RK method yields a system of order conditions that has no solution (see [1, p. 181]). In other words:

Theorem 4. There exist no five-stage explicit RK method of order 5.

The following table summarizes the maximum order attainable by an explicit RK method with s stages:

order of consistency 1 2 3 4 5 6 7 8

minimum number of stages 1 2 3 4 6 7 9 11

Regarding implicit RK methods, the highest attainable order is 2s (Gauss-RK methods). Similarly, Gauss-
Radau and Gauss-Lobatto RK methods can attain consistency order 2s− 1 and 2s− 2, respectively.

References

[1] J. D. Lambert. Numerical methods for ordinary differential systems: the initial value problem. Wiley,
1991.
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Stability and convergence of numerical methods for ODEs

Consider the initial value problem for a system of ODEs
dy

dt
= f(y, t)

y(0) = y0

(1)

and the perturbed problem 
dz

dt
= f(z, t) + δ(t)

z(0) = y0 + δ0

(2)

where δ(t) is an integrable function and δ0 ∈ Rn. Note that we replaced y(t) with z(t) in (2) to emphasize
the fact that the solutions to (1) and (2) are (in general) different.

Definition 1 (Stability of the Cauchy problem (see [1, 3])). The Cauchy problem (1) is said to be stable
within the time interval [0, T ] if for any perturbations δ0 and δ(t) such that1

‖δ0‖ ≤ ε, and ‖δ(t)‖ ≤ ε for all t ∈ [0, T ] (3)

we have that
‖z(t)− y(t)‖ ≤ Cε, for all t ∈ [0, T ], (4)

where C is a finite constant that does not depend on ε.

Based on this definition, the Cauchy problem (1) is “stable” if the difference between the solutions of (1)
and (2) is bounded in [0, T ] after we introduce a small perturbation δ0 in the initial condition y0 and a
perturbation δ(t) in f(y, t). The definition of stability also implies that the difference between the solutions
of (1) and (2) goes to zero as ε→ 0. In fact, from (4) it follows that

lim
ε→0
‖z(t)− y(t)‖ ≤ C lim

ε→0
ε = 0. (5)

The constant C appearing in (4) may not be small. This is consistent with the fact that a small perturba-
tions in the Cauchy problem (1) can introduce large perturbations in its solution.

Hereafter we show that any well-posed initial value problem (1) is stable, i.e., robust to perturbations in
the limit of small perturbations.

Theorem 1. Let D ⊆ Rn be an open set, y0 ∈ D. If f(y, t) is Lipschitz continuous in D and δ(t) is
integrable then the initial value problem (1) is stable.

Proof. We need to show that for any δ0 and δ(t) the difference between the solutions of (1) and (2) is
bounded in some time interval [0, T ] and that the difference goes to zero as we send ε to zero. First of all,
we notice that if D is open and ε is small enough then the initial condition (y0 + δ0) is in D. If f(y, t) is
Lipschitz continuous

‖f(z, t)− f(y, t)‖ ≤ L ‖z − y‖ ∀z,y ∈ D, (6)

1Note that in (3) we are bounding δ0 and δ(t) with the same constant ε. Such a constant coincides with the radius of the
largest ball centered at zero in Rn that includes both δ0 and δ(t) (for all t ∈ [0, T ]).
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and δ(t) is integrable, then we have existence and uniqueness of the solution to both problems (1) and (2).
Such problems can be equivalently written as

y(t) =y0 +

∫ t

0
f(y(s), s)ds (7)

z(t) =y0 + δ0 +

∫ t

0
f(z(s), s)ds+

∫ t

0
δ(s)ds (8)

for all t ∈ [0, T ], where T is is the smallest “exit time”, i.e., the time in which either y(t) or z(t) get out
of D. Subtracting (7) from (8) and taking the norm yields

‖z(t)− y(t)‖ =

∥∥∥∥δ0 +

∫ t

0
[f(z(s), s)− f(y(s), s)] ds+

∫ t

0
δ(s)ds

∥∥∥∥
≤‖δ0‖+

∫ t

0
‖f(z(s), s)− f(y(s), s)‖ ds+

∫ t

0
‖δ(s)‖ ds

≤(1 + t)ε+ L

∫ t

0
‖z(s)− y(s)‖ ds (9)

where we used the triangle inequality, the inequalities (3), and the definition of Lipschitz continuity (6).
At this point we use Grönwall’s inequality2 to conclude that

‖z(t)− y(t)‖ ≤(1 + t)etLε

≤ (1 + T )eTL︸ ︷︷ ︸
C

ε. (13)

This proves that the Cauchy problem (1) is stable. Note that the constant C appearing in (13) does not
depend on ε and it can be very big, depending on the Lipschitz constant L and the integration time T
(integration time).

Remark: If we replace the initial value problem (1) by a numerical scheme we introduce errors that can
accumulate in time. Such errors can be considered as perturbations in the ODE (1). Just think about
representing the discrete numerical solution uk in terms of some local interpolant z(t) (differentiable in
time) and substituting it into (1). This yields an ODE in the form (2). If the initial value problem (1) is not
stable, i.e., robust to small perturbations, then there is no hope for any numerical method to approximate
the solution.

Stability and zero-stability of numerical methods for ODEs. The concept of stability we discussed
in previous section for continuous-time dynamical systems can be extended to discrete-time dynamical

2The Grönwall’s inequality (see [3, Lemma 11.1]) can be stated as follows. Let u(t), g(t) and p(t) such that

u(t) ≤ g(t) +

∫ t

0

p(s)u(s)ds. (10)

If g(t) is non-decreasing and p(s) is strictly positive then

u(t) ≤ g(t) exp

[∫ t

0

p(s)u(s)ds

]
. (11)

In the case of equation (9) we have

u(t) = ‖z(t)− y(t)‖ , g(t) = (1 + t)ε, p(s) = L. (12)
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systems, i.e., to numerical schemes aiming at computing the approximate solution of the initial value
problem (1). we have seen that such schemes can be written in the general form3


q∑
j=0

αjuk+j = ∆tΦf (uk+q, . . . ,uk, tk,∆t),

given {u0, . . . ,uq−1}

(14)

where Φf is some iteration function. By taking a perturbation of the initial condition u0 and a “time-
dependent” perturbation of Φf in (14) we obtain

q∑
j=0

αjzk+j = ∆t [Φf (zk+q, . . . ,zk, tk,∆t) + δk+q] ,

given {z0 = u0 + δ0, . . . ,zq−1 = uq−1 + δq−1}

(15)

where {δ0, . . . , δk+q, . . .} is a sequence of vectors in Rn bounded by some constant ε, i.e.,

‖δj‖ ≤ ε for all j = 0, 1, . . .. (16)

The perturbations δj can arise, e.g., because of round-off or truncation errors when performing float-
ing point operations using double precision arithmetic. Clearly, the orbits generated by (14) and (15),
i.e.,

{u0, . . . ,uN} and {z0, . . . ,zN} (17)

are (in general) different. For any given iteration function Φf and any given ∆t we can provide a definition
of stability for the numerical scheme (14) that closely resembles Definition 1 for continuous time dynamical
systems. To this end, let T be the period of integration, and N be the number of time steps, i.e.,

∆t∗ =
T

N
(18)

Of particular interest when performing convergence analysis, is the behavior of the scheme for small ∆t,
i.e., for all ∆t smaller than ∆t∗.

Definition 2 (Zero-stability). We say that the numerical scheme (14) is zero-stable if there exists a ∆t∗ > 0
such that for all ∆t ≤ ∆t∗ and for any perturbations δj (j = 0, . . . , N) such that

‖δk‖ ≤ ε, for all j = 0, . . . , N (19)

we have that
‖zk − uk‖ ≤ Cε, for all j = 0, . . . , N , (20)

where uk and zk are defined by (14) and (15), and C is a finite constant that does not depend on ε4.

The definition “zero-stability” follows from the fact that we require ‖zk − uk‖ ≤ Cε for all ∆t ≤ ∆t∗, and
in particular for ∆t→ 0. Hence the “zero” part in “zero-stability” refers to the stability of the scheme in
the limit ∆t→ 0.

• Zero stability is a property of the numerical scheme, not of the ODE system (1). We have seen, in
fact, that a well-posed Cauchy problem is always stable.

3In (14) we set αq = 1 to remove the non-uniqueness of αj and βj due to possible rescaling by a constant.
4The constant C in (20) may depend also on T , ∆t or other constants, but it cannot depend on k or ε.
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• Numerical methods that are not zero-stable have no hope to reliably approximate the solution of (1).
In fact, even if the method is consistent, i.e., if the truncation error goes to zero as ∆t→ 0, we have
that perturbations due to finite-arithmetic may rapidly propagate in schemes that are not zero-stable,
and therefore generate instabilities. In other words, consistent schemes that are not zero-stable may
not converge as ∆t→ 0. For example, the numerical scheme in equation (32) hereafter is consistent
but not zero stable. Another example of a consistent scheme that is not zero stable is discussed in
[2, p. 32].

The root condition and zero-stability. The numerical method (14) is said to satisfy the root condition
if all roots of the first characteristic polynomial

ρ(z) =

q∑
j=0

αjz
j (21)

are within the unit circle, and those of modulus one (i.e., the ones on the unit circle) are simple. The follow-
ing fundamental theorem relates zero stability of the numerical method (14) to the root condition.

Theorem 2. The numerical method (14) is zero-stable if and only if it satisfies the root condition.

A detailed proof of this theorem is provided at the end of this note5. Recall that a necessary condition
for consistency is that ρ(1) = 0, i.e., z = 1 is a root of (21). Such a root must be simple in order for the
method to satisfy the root condition. Let us now study zero-stability of all schemes we have considered so
far.

• One-step methods: The most general form of a one-step method is

uk+1 = uk + ∆tΦf (uk+1,uk, tk,∆t). (22)

The characteristic polynomial for this class of methods is

ρ(z) = z − 1 (23)

Clearly, ρ(z) has a simple root at z = 1 and therefore (22) satisfies the root condition. This implies
that all one-step methods are zero-stable. Recall that all Runge-Kutta methods are one-step methods.

• Adams-Bashforth and Adams-Moulton methods: A q-step Adams method can be written in
the general form

uk+q = uk+q−1 + ∆t

q∑
j=0

βjf (uk+j , tk+j) . (24)

For Adams-Bashforth methods (explicit) we have βq = 0; for Adams-Moulton (implicit) βq 6= 0. The
characteristic polynomial associated with (24) is

ρ(z) = zq − zq−1 = zq−1(z − 1). (25)

This polynomial has as a simple root at z = 1 and a root with algebraic multiplicity q − 1 at z = 0.
Therefore it satisfies the root condition. By Theorem (2) we have that all Adams-Bashforth and all
Adams-Moulton methods are zero-stable.

5For whatever reason, none of the books I came across in my career provides concise and direct proof of Theorem 2 in the
general case we are considering here, i.e., for vector-valued ODEs and numerical methods of the form (14). Hence, I decided
to provide my own version of the proof.
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One-step methods Adams methods BDF3

Figure 1: Roots of the characteristic polynomial (21). If all roots are within the unit circle and those
modulus one (i.e., the ones on the unit circle) are simple (i.e., they have algebraic multiplicity one) then
the method is zero-stable. All methods sketched in this figure are zero-stable.

• BDF methods: We know that a q-step BDF method can be written in the form

q∑
j=0

αjuk+j = c∆tf(uk+q, tk+q). (26)

The characteristic polynomial associated with (26) is

ρ(z) = zq + αq−1z
q−1 + · · ·α0. (27)

It can be shown that a q-step BDF method satisfies the root condition and therefore it is zero-stable
if and only if q ≤ 6.

• 2-step midpoint method: The 2-step midpoint method

uk+2 = uk + 2∆tf(uk+1, tk+1) (28)

satisfies the root condition and therefore it is zero-stable. In fact, the characteristic polynomial
associated with (28) is

ρ(z) = z2 − 1. (29)

The roots z = ±1 are both simple and sitting at the boundary of the unit circle in the complex plane.
As we will see, a scheme that satisfies the root condition with simple eigenvalues at boundary of the
unit circle is theoretically zero-stable, but in practical applications it can generate instabilities.

• 2-step LMM method: The following two-step explicit linear multi-step method6

uk+2 − 4uk+1 + 3uk = −2∆tf(uk, tk) (32)

is consistent but not zero-stable. The characteristic polynomial is

ρ(z) = z2 − 4z + 3. (33)

6The method (32) is not a BDF method, and is obtained by approximating dy(tk)/dt with a second-order forward finite
difference formula:

dy(tk)

dt
' −3y(tk) + 4y(tk + 1)− y(tk+2)

2∆t
. (30)

and setting the equality
−3uk + 4uk+1 − uk+2

2∆t
= f(uk, tk). (31)
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Consistency can be checked immediately, since (see course note number 3)

ρ(1) = 0
Φ(uk, tk, 0)

ρ′(z)
= f(uk, tk). (34)

The polynomial (33) has roots z = 1 and z = 3. Therefore the method (32) is not zero-stable.

• General LMM methods: We have seen in the course note 3 that the maximal order of consistency
of a linear q-step method of the form

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjf(uk+j , tk+1), (35)

is 2q (implicit methods) or 2q − 1 (explicit methods). At this point we notice that such maximal
order LMM methods are, in general, zero-unstable, i.e., they do not satisfy the root-condition (see
[2, §3.4]). It fact the following theorem holds true.

Theorem 3 (First Dahlquist barrier - 1956). There is no zero-stable linear q-step method with
consistency order exceeding q + 1 (q odd) or q + 2 (q even).

Zero-stable linear q-step implicit methods with order q + 2 are called optimal. These methods have
all roots with algebraic multiplicity one sitting on the boundary of the unit circle. This can yields
stability issues.

Convergence. Let T = N∆t be period of integration. We say that the scheme (14) is convergent if the
error (in any norm)

max
k∈0,...,N

‖uk − yk‖ (36)

goes to zero as ∆t→ 0. Here yk = y(tk) represents the analytical solution of the ODE system (1) evaluated
at t = tk, while uk is the numerical solution produced by the scheme (14). If the error decreases as ∆tp

then we say that the scheme converges with order p.

If a numerical scheme is convergent then the order of convergence is the same as the order of consistency
(see the proof of theorem 4 at the end of this note). Indeed the error (36) can be bounded by the norm
of the global truncation error, which goes to zero to some order in ∆t (if the scheme is consistent) The
following fundamental theorem provides necessary and sufficient conditions for convergence of numerical
method for a system of ODEs.

Theorem 4 (Convergence). The numerical method (14) is convergent if and only if is consistent and
zero-stable. In other words,

convergence ⇔ consistency + zero stability. (37)

Moreover, the convergence order coincides with the consistency order.

The proof of this theorem follows exactly the same steps as the proof of theorem 2, and it is briefly
discussed at the end of this note. This theorem has several corollaries. For instance, we have just seen
that all one-step methods are zero-stable and therefore we have that:

Corollary 1. A one-step method is convergent if and only if it is consistent.

This means that in order to prove convergence of a one-step method it is necessary and sufficient to prove
consistency. Hence, in the case of RK methods a necessary and sufficient condition for convergence is

s∑
i=1

bi = 1. (38)

Page 6



AM 213B Prof. Daniele Venturi

Corollary 2. Adams methods are convergent if and only if they are consistent.

In fact, we have seen that Adams methods are always zero-stable and therefore consistency implies con-
vergence. Recall that Adams-Bashforth and Adams-Moulton methods are consistent if and only if

q∑
j=0

βj = 1. (39)

Hence, if (39) is satisfied then Adams-Bashforth (βq = 0) or Adams-Moulton (βq 6= 0) methods are
convergent.

Example: The numerical scheme (32) is not convergent. In fact, it is consistent, but not zero-stable.

Estimating the convergence order of a numerical method. To estimate the convergence order of
the scheme (14) numerically it is sufficient to compute the error ‖y(tk)−uk‖ (in any norm) relative to an
analytical solution y(t) for various (sufficiently small) ∆t, and then plot

max
k=1,...,N

‖y(tk)− uk‖

versus ∆t in a logarithmic scale. The slope of the line obtained in this way represents the order of the
method. In fact, suppose that for sufficiently small ∆t we have

max
k=1,...,N

‖y(tk)− uk‖ ' C∆tp. (40)

Taking the logarithm yields

log

(
max

k=1,...,N
‖y(tk)− uk‖

)
' log(C) + p log(∆t) (41)

which represents a line with slope p in a log-log plot. To compute the error, we need of course the
analytical solution to the initial value problem (1), which is not always available. However, it is very easy
to manufacture an ODE with a time-dependent right hand side that has any desired solution y(t). To
this end, choose any continuously differentiable vector y(t) and any Lipschitz continuous function f(y).
Compute the time forcing term

h(t) =
dy(t)

dt
− f(y(t)). (42)

Then the chosen y(t) is the analytical solution to the initial value problem
dy

dt
= f(y) + h(t)

y(0) = y0

(43)

In this way, for each given ∆t we can solve (43) using the numerical method (14) and compute the error
‖uk − y(tk)‖.
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Proof of Theorem 2. Let us consider the m-th component of the perturbed scheme (14)

q∑
j=0

αjz
m
k+j = ∆t

[
Φm
f (zk+q, . . . ,zk, tk,∆t) + δmq+k

]
. (44)

and the unperturbed one
q∑
j=0

αju
m
k+j = ∆tΦm

f (uk+q, . . . ,uk, tk,∆t). (45)

Subtracting (44) from (44) yields

q∑
j=0

αje
m
k+j = ∆t

[
Φm
f (zk+q, . . . ,zk, tk,∆t)− Φm

f (uk+q, . . . ,uk, tk,∆t) + δmq+k
]
, (46)

where
emk+j = zmk+j − umk+j . (47)

Upon definition of

emk =


emk
emk+1

...
emk+q−1

 , bmk =


0
0
...

Φm
f (zk+q, . . . ,zk, tk,∆t)− Φm

f (uk+q, . . . ,uk, tk,∆t)

 , dmk =


0
0
...

δmq+k

 (48)

we see that we can write (46) in a compact form as as7

emk+1 = Aemk + ∆t (bmk + dmk ) , (49)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αq−1

 . (50)

By using the discrete variation of constant formula (in which we treat ∆t (bmk + dmk ) as a “forcing term”)
we write the formal solution of (49) as

emk+1 = Ak+1em0 + ∆t

k∑
p=0

Ak−p (bmp + dmp
)
, (51)

As we shall see hereafter, the zero-stability of the numerical scheme is essentially determined by the
properties of the matrix A, in particular by the behavior of the matrix powers Ak as k is increased. If
the norm of the matrix powers can be bounded by a constant that is independent of k then zero-stability
follows rather straightforwardly. The properties of the matrix powers Ak are fully determined by the roots
of the first characteristic polynomial (21).

7Recall that αq = 1.
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Lemma 1. Let ‖ · ‖ be any matrix norm compatible with a vector norm. Then
∥∥Ak

∥∥ can be bounded by
a quantity M that does not depend on k, i.e.,∥∥∥Ak

∥∥∥ ≤M for all k ∈ N (52)

if and only if the root condition is satisfied.

Proof. The matrix A in (50) is the transpose of the companion matrix associated with the characteristic
polynomial (21). This means that the eigenvalues of A coincide with the roots of the polynomial (21).
Moreover, companion matrices are non-derogatory, which means that there exists only one eigenvector
corresponding to each eigenvalue λ. Such eigenvector is explicitly obtained as

h =


1
λ
λ2

...
λq−1

 . (53)

The non-derogatory property of A implies that if there exists any eigenvalue with algebraic multiplicity
rj > 1, then the corresponding eigenspace has dimension rj − 1. This means that the matrix A is
diagonalizable (i.e., similar to a diagonal matrix), if and only of all the eigenvalues are simple. If there
exist any eigenvalue with multiplicity larger than one then the matrix A is similar to a (block-diagonal)
Jordan matrix J

A = PJP−1 (54)

where P is the matrix that has the generalized eigenvectors of A columnwise and

J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jl

 , Ji = λiIri +Bri . (55)

In this equation, Ji denotes the Jordan block corresponding to the eigenvalue λi (which has algebraic
multiplicity ri), Iri is a ri × ri identity matrix and Bri is a ri × ri matrix with ones above the main
diagonal. For instance, if λi has algebraic multiplicity ri = 3 then the geometric multiplicity is 2 and we
have

Ji =

λi 1 0
0 λi 1
0 0 λi

 , I3 =

1 0 0
0 1 0
0 0 1

 , B3 =

0 1 0
0 0 1
0 0 0

 . (56)

The matrix power Ak can be written as
Ak = PJkP−1, (57)

where

Jk =


Jk1 0 · · · 0
0 Jk2 · · · 0
...

...
. . .

...
0 0 · · · Jkl

 , Jki = (λiIri +Bri)
k (58)

Let us compute Jki for ri = 1 (simple eigenvalue)

Jki = λki . (59)
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On the other hand, for ri = 2, (eigenvalue with algebraic multiplicity 2 and geometric multiplicity 2) we
have have

Ji =λiI2 +B2, (60)

J2
i =(λiI2 +B2)2 = λ2

i I2 + 2λiB2, (61)

...

Jki =(λiI2 +B2)k = λki I2 + kλk−1
i B2, (62)

where we used the fact that Bk
2 = 0 for all k ≥ 2. Similarly, for ri = 3 it can be shown that Bk

3 = 0 for all
k ≥ 3, which yields

Jki = λki I3 + kλk−1
i B3 + kλk−2

i B2
3 k ≥ 3. (63)

By taking the norm of (57) we obtain∥∥∥Ak
∥∥∥ ≤ K ∥∥∥Jk∥∥∥ , K = ‖P ‖

∥∥P−1
∥∥ . (64)

At this point we recall that for any matrix norm compatible with a vector norm and for any block-diagonal
matrix such as J or Jk we have ∥∥∥Jk∥∥∥ = max

{∥∥∥Jk1 ∥∥∥ , . . . ,∥∥∥Jkl ∥∥∥} . (65)

If the eigenvalues of A sitting at the boundary of the unit circle are simple then, by equation (59) we have∥∥∥Jki ∥∥∥ = 1. (66)

On the other hand, if |λi| < 1 (eigenvalue within the unit circle or arbitrary multiplicity) then by equation
(62) or (63) we have that ∥∥∥Jki ∥∥∥→ 0 for k →∞. (67)

Since
∥∥Jki ∥∥ if finite for all k, there exists a finite M such that

∥∥Jki ∥∥ ≤M for all k.

Finally, if there exists a non-simple eigenvalue λi (eigenvalue with algebraic multiplicity larger than one)
at the boundary of the unit circle then we can no longer guarantee that

∥∥Jki ∥∥ is bounded independently of
k. In fact, suppose that the algebraic multiplicity of the eigenvalue λi at the boundary of the unit circle
(i.e., |λi| = 1) is ri = 2. Then by using (62) we see that∥∥∥Jki ∥∥∥

1
= |λi|k + k |λi|k−1 = 1 + k for all k ≥ 2. (68)

In summary, if the root condition is satisfied, i.e., if all the eigenvalues of A are within the unit circle with
the exception of a finite number of simple eigenvalues sitting at the boundary of the unit circle then∥∥∥Ak

∥∥∥ ≤ K ∥∥∥Jk∥∥∥ ≤M for all k ∈ N, (69)

where M > 0 is independent of k. This completes the proof of Lemma 1.

We now have all elements to show that if a scheme satisfies the root condition then it is zero-stable. To
this end, let us take the infinity norm of (51), and use (52) (or (69)) to obtain

∣∣emk+q

∣∣ ≤ ∥∥emk+1

∥∥
∞ ≤M

‖em0 ‖∞ + ∆t
k∑
p=0

∥∥bmp ∥∥∞ + ∆t

k∑
p=0

∥∥dmp ∥∥∞
 . (70)
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By using definition (48) and (47) we see that

n∑
m=1

∥∥bmp ∥∥∞ =
n∑

m=1

∣∣Φm
f (zp+q, . . . ,zp, tp,∆t)− Φm

f (up+q, . . . ,up, tp,∆t)
∣∣

= ‖Φf (zp+q, . . . ,zp, tp,∆t)−Φf (up+q, . . . ,up, tp,∆t)‖1

≤L
q∑
s=0

‖zp+s − up+s‖1

=L

q∑
s=0

n∑
m=1

∣∣zmp+s − ump+s∣∣
=L

q∑
s=0

n∑
m=1

∣∣emp+s∣∣ , (71)

where we assumed that Φf is Lischitz continuous. Next, define

gk+q =
n∑

m=1

∣∣emk+q

∣∣ . (72)

Note that gk+q is the 1-norm of the vector zk+q−uk+q (see Eq. (47)). Substituting (71) into the inequality
(70) (summed-up in m) yields

gk+q ≤M

 n∑
m=1

‖em0 ‖∞ + L∆t

k+q∑
s=0

gs + ∆t

k∑
p=0

n∑
m=1

∥∥dmp ∥∥∞


≤Mnε(1 + k∆t) +ML∆t

k+q∑
s=0

gs. (73)

Now we can use the discrete Grönwall lemma (see, e.g., [3, Lemma 11.2]) to conclude that

gk+q ≤ε
(
nM(1 + (k + 1)∆t)eML(k+q+1)∆t

)
≤ ε nM(1 + T )eMLT︸ ︷︷ ︸

C

, (74)

where T ≥ (q + k + 1)∆t is some integration period. Recalling that gk+p is the 1-norm of the vector
zk+q − uk+q (see Eq. (72)) we see that (74) can be written as

‖zk+q − uk+q‖1 ≤ Cε, (75)

for all k such that (q + k + 1)∆t ≤ T . Alternatively, if we set a maximum number of time steps steps
N ≥ k and an integration period T then (75) holds for all k ≤ N and for all ∆t ≤ T/(N + q) = ∆t∗.
This is were the definition of zero-stability kicks in, i.e., conditions (74) and (75) are satisfied for all
∆t ≤ T/(N +q) = ∆t∗. Based on definition (19) we conclude that the root condition implies zero-stability.
The converse statement, i.e., zero-stability implies root condition, is straightforward. Indeed, if the scheme
is zero stable then (20) is satisfied for all ε. This implies that (see Euation 51)∥∥∥∥∥∥Ak+1em0 + ∆t

k∑
p=0

Ak−p (bmp + dmp
)∥∥∥∥∥∥
∞

≤ Cε (76)

Recalling that C must be independent of k, this condition can be satisfied for all ε if and only if
∥∥Ak

∥∥ ≤
M .
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Proof of theorem 4. Let yk = y(tk) be the solution of the ODE (1) evaluated at t = tk. A substitution
of such solution into the scheme (14) yields the truncation error τk+q, hereafter written in a componentwise
form (m = 1, ..., n)

q∑
j=0

αjy
m
k+j = ∆t

(
Φm
f (yk+q, . . . ,yk, tk,∆t) + τmq+k

)
. (77)

Similarly, the numerical solution uk satisfies

q∑
j=0

αju
m
k+j = ∆tΦm

f (uk+q, . . . ,uk, tk,∆t). (78)

Subtracting (78) from (77) yields

q∑
j=0

αje
m
k+j = ∆t

[
Φm
f (yk+q, . . . ,yk, tk,∆t)− Φm

f (uk+q, . . . ,uk, tk,∆t) + τmq+k
]
, (79)

where
emk+j = ymk+j − umk+j . (80)

By following exactly same steps that took as from equation (46) to (75) in the proof of theorem 2 we obtain
the error bound

‖y(tk)− uk‖1 ≤MTeMLT ‖τ (∆t)‖1 , (81)

where the global truncation error ‖τ‖ is a function of ∆t. To obtain (81) we replaced (q + k)∆t with T ,
which implies that (81) holds for all ∆t ≤ T/(N + q) (this is where zero stability comes in) where N any
fixed number larger or equal than (k + q).

Moreover, for ∆t small enough, we have seen that ‖τ‖1 goes to zero as some power of ∆t (otherwise the
method is not consistent). Equation (81) says that the convergence order of the method is the same as the
order of consistency.

To obtain the bound (81) we assumed that the initial condition has no error, and that the numerical
computation of Φf and all arithmetic operations in the schemes are exact. Clearly this is not the case in
practice. It is possible to repeat the proof above, by assuming that all these numerical inaccuracies are
bounded, e.g., as a function of the machine precision ε, and develop a more detailed bound that depends
on ε.
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Absolute stability of numerical methods for ODEs

We have seen in previous lecture notes that if a method is zero-stable then1

‖y(tk)− uk‖1 ≤MTeMLT ‖τ (∆t)‖1 for all k = 0, 1, . . . , N (1)

where τ (∆t) is the global truncation error of the scheme2. Equation (1) bounds the error between the
analytical solution of the initial value problem

dy

dt
= f(y, t)

y(0) = y0

(4)

evaluated at tk and the numerical solution of (4) computed with the scheme
q∑
j=0

αjuk+j = ∆tΦf (uk+q, . . . ,uk, tk,∆t),

given {u0, . . . ,uq−1}

(5)

If we send ∆t to zero we have that ‖τ (∆t)‖ in (1) goes to zero (by consistency) and therefore we can make
the error between the analytical solution y(tk) and the numerical solution uk as small as we like (modulus
errors due to finite machine precision).

However, for finite ∆t it is possible that the errors due to truncation and finite machine precision propagate
form one iteration to then next, and eventually build up in a way that drives the numerical solution away
from the exact solution. Such “unstable” dynamics is still going to have an error that is bounded by the
right hand side of (1) within the integration period T (if the numerical method is zero-stable).

Prototype problem for absolute stability analysis. To study the way local errors accumulate in
time and eventually yield instabilities it is convenient to consider a prototype ODE system that has a
well-defined time-asymptotic state. Of course, the simplest system we can think of is a linear system3 of
the form 

dy

dt
= By

y(0) = y0

(6)

where B is a matrix with eigenvalues {λ1, . . . , λn} having strictly negative real part, i.e.,

Re(λi) < 0 for all i = 1, . . . , n. (7)

1Recall that all norms in a finite-dimensional vector space are equivalent. Hence we can replace the 1-norm in (1) with any
other (equivalent) norm.

2Note that the bound at the right hand side of (1) has an amplification factor

C = MTeMLT (2)

that can be very big. For instance, if T = 10 (integration period), L = 2 (Lipschitz constant of f in (4)), and M = 1 (norm
of the matrix A defined in the course note 4, Lemma 1) then we obtain

C = 10e20 ' 4.851× 109. (3)

3A numerical method which cannot handle satisfactorily the linear system (6) shall not be considered a good method.
Moreover, there is ample computational evidence that methods with ample absolute stability regions (see, e.g., Figure 1)
outperform those with small regions.
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Hereafter, we also assume that the matrixB is diagonalizable. This simplifies the mathematical derivations
and it does not change the conclusions of the analysis, meaning that the same results can obtained for non-
diagonalizable matrices using a more involved analysis. As is well known, if the matrix B is diagonalizable
then there exists an invertible matrix P such that

B = PΛP−1, (8)

where

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 (diagonal matrix of eigenvalues), (9)

and

P =


v11

...
vn1

 · · ·
v1n

...
vnn


 (matrix of eigenvectors). (10)

With the representation (8) available, we can write the analytical solution to (6) as

y(t) = P etΛP−1y0, (11)

where

etΛ =

e
tλ1 · · · 0
...

. . .
...

0 · · · etλn

 . (12)

The assumption Re(λi) < 0 implies that
lim
t→∞
‖y(t)‖ = 0. (13)

Note that the matrix P allows us to fully decouple the system of ODEs (6). In fact, a substitution of (8)
into (6) yields 

dq

dt
= Λq

q(0) = q0

(14)

where
q(t) = P−1y(t), q0 = P−1y0.

The matrix Λ is diagonal, and therefore the system of ODEs (14) is fully decoupled (meaning that we can
solve each ODE independently of the others). Note also that, in general, the matrix of eigenvectors P is
complex, i.e., q(t) can be a complex vector.

Remark: If We drop the assumption that B is diagonalizable, then we have that B is similar to a block-
diagonal Jordan matrix J . Everything we have said so far still holds, with the only difference that matrix
Λ is replaced by a block-diagonal matrix J . In this case the system (14) is not fully decoupled.

Next, we study under which conditions the numerical solution {uk} produced by the scheme (5) applied
the linear ODE (6) decays to zero as tk goes to infinity.

Definition 1 (Absolute stability). The numerical method (5) is said to be absolutely stable if when applied
to the linear system (6) generates a numerical solution {uk} that decays to zero as tk goes to infinity, i.e.,

lim
k→∞

‖uk‖ = 0 (15)
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As we shall see hereafter, for any given matrix B, the absolute stability condition may be satisfied for
some ∆t but not for others.

Absolute stability analysis of elementary one-step methods. Let us provide a few simple examples
of absolute stability analysis for well-known one-step methods.

• Euler forward: Let us approximate the numerical solution of (6) using the Euler forward scheme

uk+1 = uk + ∆tBuk. (16)

By using the similarity transformation P we can decouple this scheme exactly as we did for the
system (6). To this end, note that

uk+1 = uk + ∆tPΛP−1uk ⇔ P−1uk+1︸ ︷︷ ︸
wk+1

= P−1uk︸ ︷︷ ︸
wk

+∆tΛP−1uk︸ ︷︷ ︸
wk

(17)

which, upon definition of4

wk = P−1uk (18)

can be written component by component as

wjk+1 = wjk + ∆tλjw
j
k = (1 + ∆tλj)w

j
k = (1 + ∆tλj)

k+1wj0 j = 1, . . . , n. (19)

By taking the modulus we obtain ∣∣∣wjk+1

∣∣∣ = |1 + ∆tλj |k+1
∣∣∣wj0∣∣∣ . (20)

Hence, a necessary and sufficient condition for absolute stability of the Euler forward method is

|1 + ∆tλj | < 1. (21)

This condition defines a region of the complex plane, called the region of absolute stability in which
the Euler forward scheme is absolutely stable (see Figure 1). The region of absolute stability imposes
conditions on ∆t for a given set of eigenvalues {λ1, . . . , λn}. Such conditions are sketched in Figure
1 and derived analytically hereafter. To this end, note that

|1 + ∆tλj |2 = [Re (1 + ∆tλj)]
2 + [Im (1 + ∆tλj)]

2

= [1 + ∆tRe(λj)]
2 + ∆t2 Im(λj)

2

=1 + ∆t2
[
Re(λj)

2 + Im(λj)
2
]

+ 2∆tRe(λj)

=1 + ∆t2 |λj |2 + 2∆tRe(λj). (22)

Clearly,
|1 + ∆tλj |2 ≤ 1 ⇔ ∆t |λj |2 + 2 Re(λj) < 0, (23)

i.e.,

0 < ∆t < max
j=1,...,n

(
−2 Re(λj)

|λj |2

)
. (24)

Hence the Euler forward method is conditionally absolutely stable, the condition being ∆t smaller
than the maximum of −2 Re(λj)/ |λj |2.

4Note that the vector wk defined in equation (18) has, in general, complex entries. In fact the matrix of eigenvectors P is
complex if the eigenvalues are complex.
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Figure 1: Region of absolute stability of the Euler forward method (shaded unit circle excluding the
boundary). The largest ∆t that guarantees absolute stability of the Euler Forward method is the one
that re-scales the eigenvalues of the matrix B and brings them all within the unit circle (excluding the
boundary). In the figure we sketch the re-scaling of one eigenvalue λ by a factor ∆t that brings it exactly
at the boundary of the circle.

• Euler backward: Let us approximate the numerical solution of (6) using the Euler backward scheme

uk+1 = uk + ∆tBuk+1. (25)

By using the similarity transformation defined by P we decouple this scheme exactly as we did for
the ODE system (6) and for the Euler forward method. To this end, substitute (18) into (25) to
obtain

wk+1 −∆tΛwk+1 = wk. (26)

By writing (26) component by component we obtain

(1−∆tλj)w
j
k+1 = wjk ⇒ wjk+1 =

1

(1−∆tλj)
k+1

wj0. (27)

Therefore, the Euler backward method is absolutely stable if and only if for all j = 1, . . . , n we have

1

|1−∆tλj |
< 1 i.e. |1−∆tλj | > 1. (28)

The inequality |1− z| > 1 with z ∈ C defines the region outside a unit circle centered at 1 (see Figure
2). In terms of restrictions on ∆t, a substitution of (22) into (28) yields

∆t
(

∆t |λj |2 − 2 Re(λj)
)

︸ ︷︷ ︸
>0

> 0 ⇔ ∆t > 0 (29)

Since this condition is satisfied by any ∆t > 0 we say that Euler Backward is unconditionally abso-
lutely stable.

• Crank-Nicolson: Let us approximate the numerical solution of (6) using the Crank-Nicolson scheme

uk+1 = uk +
∆t

2
[Buk+1 +Buk] . (30)

As before, we decouple this scheme by using the similarity transformation defined by P . This yields,

wk+1 −
∆t

2
Λwk+1 = wk +

∆t

2
Λwk, (31)
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Figure 2: Region of absolute stability of the Euler backward method (shaded area outside the unit circle
centered at z = 1 excluding the boundary of the circle). The Euler backward method is unconditionally
absolutely stable (A-stable) since any eigenvalue with negative real part is in the region of absolute stability.

which can be written component by component as

(
1− ∆tλj

2

)
wjk+1 =

(
1 +

∆tλj
2

)
wjk ⇒ wjk+1 =

∣∣∣∣∣1 +
∆tλj

2

1− ∆tλj
2

∣∣∣∣∣
k+1

wj0. (32)

Hence, the Crank-Nicolson method is absolutely stable if and only if∣∣∣∣1 +
∆tλj

2

∣∣∣∣ < ∣∣∣∣1− ∆tλj
2

∣∣∣∣ ⇔ Re(λj∆t) < 0. (33)

The last condition follows from the following simple calculation. Set z = ∆tλj/2. Then we have5

|1 + z|2 < |1− z|2 ⇔ 1 + 2 Re(z) + |z|2 < 1− 2 Re(z) + |z|2 ⇔ Re(z) < 0. (34)

Since Re(λj) < 0 we conclude from (33) that the Crank-Nicolson method is absolutely stable for all
∆t > 0. In other words it is unconditionally absolutely stable. The region of absolute stability of the
Crank-Nicolson method is sketched in Figure 3

• Heun: Let us approximate the numerical solution of (6) using the Heun method

uk+1 = uk +
∆t

2
[B (uk + ∆tBuk) +Buk] = uk + ∆tBuk +

∆t2

2
B2uk. (35)

As before, we decouple the scheme by using the similarity transformation defined by P to obtain

wk+1 = wk + ∆tΛwk +
∆t2

2
Λ2wk. (36)

This can be written component by component as

wjk+1 =

(
1 + ∆tλj +

∆t2λ2
j

2

)k+1

wj0, (37)

5Recall that for any z ∈ C we have:

|1 + z|2 =(1 + z)(1 + z∗) = 1 + (z + z∗) + zz∗ = 1 + 2 Re(z) + |z|2 ,

|1− z|2 =(1− z)(1− z∗) = 1− (z + z∗) + zz∗ = 1− 2 Re(z) + |z|2 .
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Figure 3: Region of absolute stability of the Crank-Nicolson method (shaded area representing half of
the complex plane). The Crank-Nicolson method is unconditionally absolutely stable (A-stable) since any
eigenvalue with negative real part is in the region of absolute stability.

Figure 4: Region of absolute stability of the Heun method (shaded area). The largest ∆t that guarantees
absolute stability of the Heun method is the one that re-scales the eigenvalues of the matrix B and brings
them all within the shaded area sketched in the Figure (excluding the boundary). In the figure we sketch
the re-scaling of one eigenvalue λ by a factor ∆t that brings it exactly at the boundary of the area. Note
that the region of absolute stability of the Heun method is larger than the one of Euler forward, and
therefore allows for slightly larger ∆t (if the eigenvalues of the matrix B are complex).

which yields the absolute stability condition∣∣∣∣∣1 + ∆tλj +
∆t2λ2

j

2

∣∣∣∣∣ < 1 for all j = 1, . . . , n. (38)

The region of absolute stability of the Heun method is sketched in Figure 4. The boundary of stability
region is the one level set of the real-valued function

b(z) =

∣∣∣∣1 + z +
z2

2

∣∣∣∣ z ∈ C. (39)

Similarly to the Euler forward method, the Heun method is conditionally absolutely stable.

At this point we provide a more rigorous definition of unconditional absolute stability. To this end, let

C− = {z ∈ C : Re(z) < 0}. (40)

Definition 2 (A-stability). Let R be the region of absolute stability of the numerical method (5). We say
that the method is A-stable if

R ∩ C− = C− (41)

In other words, if the R includes C− then the method is A-stable (or unconditionally absolutely stable).
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Clearly, Euler backward and Crank-Nicolson methods are both A-stable, while Euler forward and Heun
methods are all conditionally stable. More generally, one can prove that

Theorem 1. There is no explicit A-stable numerical method.

This theorem states that all explicit methods are conditionally absolutely stable. On the other hand,
implicit methods can be A-stable (e.g., Crank-Nicolson) or conditionally stable (e.g., BDF methods with
three or more steps, or Adams-Moulton methods with two or more steps). As we shall see hereafter, there
is in fact no A-stable implicit linear multistep method of order greater than 2.

Absolute stability analysis of linear multistep methods. Consider a general linear q-step method
applied to the linear ODE system (6)

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjBuk+j . (42)

We decouple the system by using the similarity transformation P defined in (8). To this end, define

wk = P−1uk, (43)

and substitute it into (42) to obtain

q∑
j=0

αjwk+j = ∆t

q∑
j=0

βjΛwk+j , (44)

where Λ is the diagonal matrix (9). It is convenient to write (44) component by component as

q∑
j=0

(αj −∆tλmβj)︸ ︷︷ ︸
cj

wmk+j = 0 m = 1, . . . , n. (45)

At this point we follow the same mathematical technique we used in the proof of Theorem 2 in the course
note 4 (i.e., root condition implies zero-stability). To this end, we define6

zmk =


wmk
wmk+1

...
wmk+q−1

 , C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−c0/cq −c1/cq −c2/cq · · · −cq−1/cq

 . (46)

and write (45) as a recurrence (for a complex vector)

zmk+1 = Czmk . (47)

The matrix C is the companion matrix of the characteristic polynomial

π(z) = ρ(z)− λj∆tσ(z) (stability polynomial), (48)

where

ρ(z) =

q∑
j=0

αjz
j (first characteristic polynomial), (49)

σ(z) =

q∑
j=0

βjz
j (second characteristic polynomial). (50)

6Note that the vectors zmk and the matrix A have (in general) complex entries.
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The recurrence (47) can be easily solved to obtain

zmk+1 = Ck+1zm0 . (51)

Clearly, a necessary and sufficient condition for ‖zmk ‖ → 0 as k →∞ is that the matrix C is a contraction.
This happens if and only if the eigenvalues of C, i.e., the roots of the polynomial (48), are within the unit
disk (excluding the boundary). We can summarize these results as follows.

Theorem 2. The linear multistep method (42) is absolutely stable if and only if the roots of the stability
polynomial (48) are within the unit disk (excluding the boundary of the disk).

Note that for ∆t→ 0 the polynomial (48) tends to the first characteristic polynomial (49). Hence, in the
limit of small ∆t the condition for absolute stability tends to be the same as the root condition. This
means that there exists a simple root of π(z), say z∗, that approaches 1 for ∆t → 0. This is necessary
for the consistency of the method. However, it should be kept in mind that zero-stability and absolute
stability are different concepts. Indeed there exist convergent methods that are not absolutely stable. Let
us provide an example

• Leapfrog method: Let us study absolute stability of the Leapfrog method

uk+2 = uk + 2∆tf(uk+1, tk). (52)

The first and second characteristic polynomials associated with the scheme are

ρ(z) = z2 − 1, σ(z) = 2z. (53)

This gives us the following stability polynomial (see (48))

π(z) = z2 − 2λj∆tz − 1. (54)

This is a polynomial with (in general) complex coefficients. To find the boundary of the region of
absolute stability we look for all roots of π(z) with modulus one, that is set7

z = eiϑ, (55)

substitute it into (54) and set the equation to zero

e2iϑ − 2λj∆te
iϑ − 1 = 0 ⇔ λj∆t =

e2iϑ − 1

2eiϑ
=
eiϑ − e−iϑ

2
= i sin(ϑ) (56)

As shown in Figure 5 the region of absolute stability in this case collapses to the interval [−i, i] on
the imaginary axis. Hence, the leapfrog method is always absolutely unstable. This means that there
is no hope for the method (52) to simulate accurately a linear system that has an attractor at the
origin. The method is convergent through. Therefore as ∆t → 0 the global error becomes smaller
and smaller (see Eq. (1)).

The technique we used to compute the boundary of the absolute stability region of the leapfrog method
can be generalized to arbitrary linear multistep methods. To this end, we just need to look for all roots of
modulus one of the stability polynomial (48), that is plot the set of complex numbers

λj∆t =
ρ
(
eiϑ
)

σ (eiϑ)
=

q∑
j=0

αje
ijϑ

q∑
j=0

βje
ijϑ

, ϑ ∈ [0, 2π]. (57)
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Figure 5: Region of absolute stability of the leapfrog method (52). Note that region of stability in the
case collapses to the interval [−i, i] on the imaginary axis. Hence, the leapfrog method is always absolutely
unstable. In other words, there is no hope for the method (52) to simulate accurately a linear dynamical
system that has an attractor at the origin.

Figure 6: Boundary of the absolute stability region for various linear multistep methods. For Adams-
Bashforth (AM) and Adams-Moulton (AM) methods, the region of absolute stability is the area inside the
closed curve, while for BDF method is the area outside the curve. Note that the region of absolute stability
of AM methods is larger than that of AB methods.

In Figure 6 we provide a few plots of the boundary of the absolute stability region for a Adams-Bashforth,
Adams-Moulton and BDF methods.

Remark: It is important to emphasize that the curves plotted in Figure 6 represent the set of values λ∆t
for which the stability polynomial (48) has at least one root with modulus one. As is well known, the
roots of a polynomial are continuous functions of the coefficients of the polynomial. In the case of (48)
we have one parameter, i.e., λ∆t, which multiplies all coefficients of σ(z), hence affecting simultaneously
multiple coefficients. To figure out which region of the complex plane is absolutely stable, e.g., the inner
or the outer part of the curve defined in (57), it is sufficient to compute the roots of (48) for λ∆t inside
or outside the region defined by the curve. If such roots are within the unit disk, then the method is
absolutely stable.

7Recall that the set of complex numbers with modulus one sits on the unit circle in the complex plane and can be represented
in therm of the complex exponential function eiθ = cos(θ) + i sin(θ).
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Remark: Zero-unstable linear multistep methods are necessarily absolutely unstable. To show this, we
notice that in the limit ∆t→ 0 we have

π(z) = ρ(z)− λ∆tσ(z)→ ρ(z). (58)

If the method is zero-unstable then ρ(z) has roots outside the unit disk. By continuity of polynomial
roots as a function of ∆tλ, we have that for all ∆tλ in a small neighborhood of 0 the polynomial (48) has
roots outside the unit disk. If a method is consistent then the curve (57) passes through the origin (since
ρ(1) = 0). Recalling that such curve represent the set of points λ∆t for which at least one root of (48) has
modulus one, we conclude by the continuity of the roots if π(z) as a function of λ∆t at λ∆t = 0 that both
inner and outer regions of the curve are absolutely unstable. This proves the following lemma:

Lemma 1. A zero-unstable consistent linear multistep method is absolutely unstable.

At this point we recall that no explict scheme can be A-stable. This implies, in particular, that there is
no A-stable explicit linear multistep method. What can we say about implicit LMM methods?

Theorem 3 (Second Dahlquist barrier – 1963). There is no A-stable LMM method with order greater
than 2.

Recall that AM2 and BDF3 are both methods of order 3. It is seen in Figure 6 that these methods are in
fact not A-stable.

Absolute stability analysis of Runge-Kutta methods. The absolute stability analysis we performed
for one-step and LMM methods clearly shows that in order to compute the region of absolute stability of
a numerical method it is sufficient to consider only one complex ODE of the form

dq

dt
= λq

q(0) = q0

(59)

This ODE can be any in the decoupled system (14) corresponding to an arbitrary eigenvalue λ. Let us
discretize (59) with the s-stage RK method

wk+1 = wk + ∆t

s∑
i=1

biKi, (60)

where

Ki = λwk + λ∆t

s∑
j=1

aijKj i = 1, . . . , s. (61)

At this point it is convenient to define

K =


K1

K2
...
Ks

 , A =


a11 a12 · · · a1s

a21 a22 · · · a2s
...

...
. . .

...
as1 as2 · · · ass

 , b =


b1
b2
...
bs

 , h =


1
1
...
1

 , (62)

and write (61) in a matrix-vector form as

(I − λ∆tA)K = λwkh ⇔ K = (I − λ∆tA)−1hλwk. (63)
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Figure 7: Boundary of the absolute stability region for various explicit RK methods. The region of stability
is the interior of each closed curve.

Next, substitute expression we derived for K into (60) to obtain

wk+1 = wk + ∆tbTK =
[
1 + λ∆tbT (I − λ∆tA)−1 h

]
wk. (64)

At this point we define the stability function

S(z) = 1 + zbT (I − zA)−1 h, (65)

and iterate (64) to obtain
wk+1 = S(λ∆t)k+1w0. (66)

Hence a necessary and sufficient condition for absolute stability of RK methods is that

|S(λ∆t)| < 1. (67)

As shown in [1, p. 200], by using the Cramer’s rule we can write the stability function (65) as

S(z) =
det
(
I − zA+ zhbT

)
det(I − zA)

. (68)

Note that, in general S(z) is a rational function, i.e., the ratio between two polynomials in z. In the
particular case of explicit RK methods we have that the matrix A is strictly lower triangular. This yields
det(I − zA) = 1, which results in

S(z) = det
(
I − zA+ zhbT

)
(stability function for explicit RK methods). (69)

In Figure 7 we plot the boundary of the absolute stability region for the explicit RK methods corresponding
to the following Butcher arrays8:

8The boundary of the stability regions are computed as zero-level set of |S(z)| − 1.
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0 0 0
1 1 0

1/2 1/2

Heun’s method (RK2)

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6

Kutta’s method (RK3)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Runge-Kutta’s method (RK4)
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Boundary value problems for ODEs

A boundary value problem (BVP) for an ODE is a problem in which we set conditions on the solution
to the ODE corresponding to different values in the independent variable. Such conditions can be on the
solution, on the derivatives of the solution, or more general conditions. Perhaps the simplest boundary
value problem for an ODE is1 

d2u(x)

dx2
= f(x) x ∈ [0, 1]

u(0) = α

u(1) = β

(2)

in which we set conditions on the value of the solution at x = 0 and x = 1. Such conditions are called
Dirichlet boundary conditions. The general solution to (2) can be written as

u(x) = c1 + c2x+

∫ x

0
F (s)ds where F (s) =

∫ s

0
f(y)dy. (3)

By using integration by parts∫ x

0
F (s)ds = [sF (s)ds]s=x

s=0 −
∫ x

0
sf(s)ds =

∫ x

0
(x− s)f(s)ds. (4)

Substituting this expression into (3) yields

u(x) = c1 + c2x+

∫ x

0
(x− s)f(s)ds. (5)

At this point we enforce the boundary conditions to obtain

α = c1 β = c1 + c2 +

∫ 1

0
(1− s)f(s)ds, (6)

which gives the following unique solution to (2)

u(x) = α+ x

(
β − α−

∫ 1

0
(1− s)f(s)ds

)
+

∫ x

0
(x− s)f(s)ds. (7)

Lemma 1. For every f ∈ C0([0, 1]) there exists a unique solution u ∈ C2([0, 1]) to the boundary value
problem (2). Moreover, if f ∈ Ck([0, 1]) then u ∈ Ck+2([0, 1]).

Green function and maximum principle. The solution (7) corresponding to zero Dirichlet conditions
can be conveniently written in terms of an integral involving a Green function. Setting α = β = 0 in (7)

1From a physical viewpoint, the BVP (2) defines a steady state heat conduction problem in a one-dimensional slab with
uniform conductivity, heat generation, and fixed temperature conditions at the boundary. In fact (2) can be derived from the
Fourier equation [1]

∂u

∂t
=

λ

ρcp
∇2u+

1

λ
f(x). (1)
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Figure 1: Green function G(s, x) defined in equations (8)-(9).

yields

u(x) =− x
∫ 1

0
(1− s)f(s)ds+

∫ x

0
(x− s)f(s)ds

=

∫ x

0
[(x− s)− x(1− s)] f(s)ds− x

∫ 1

x
(1− s)f(s)ds

=

∫ x

0
s(x− 1)f(s)ds+

∫ 1

x
x(s− 1)f(s)ds

=

∫ 1

0
G(x, s)f(s)ds, (8)

where we defined

G(x, s) =

s(1− x) 0 ≤ s ≤ x

x(1− s) x ≤ s ≤ 1
(Green function). (9)

The Green function G(x, s) is the kernel of the integral operator (8), and it represents the “response” of
the system corresponding to any forcing function f(x). The Green function satisfies (in a distributional
sense, and for all s ∈ [0, 1]) the boundary value problem

d2G(x, s)

dx2
= δ(x− s)

G(0, s) = 0

G(1, s) = 0

(10)

With the Green function available, it is straightforward to obtain the following bound for (8)

‖u‖∞ ≤
1

8
‖f‖∞ (maximum principle), (11)

where ‖·‖∞ here denotes the uniform norm of a function, i.e.,

‖u‖∞ = sup
x∈[0,1]

|u(x)| , ‖f‖∞ = sup
x∈[0,1]

|f(x)| . (12)
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Figure 2: Evaluation of the integral appearing in (13).

The inequality (11), states that the solution of the boundary value problem (2) with homogeneous Dirichlet
conditions (α = β = 0) is always smaller that 1/8 of the maximum value of f(x) in the domain [0, 1]. To
prove (11) we observe that

|u(x)| ≤
∫ 1

0
|G(x, s)| |f(s)| ds ≤ ‖f‖∞

∫ 1

0
|G(x, s)| ds. (13)

The Green function G(x, s) is always negative, and for each fixed it is the union of two triangular functions
joining at the point (x, x(1, x)) (see Figure 2). Therefore,∫ 1

0
|G(x, s)| ds = x

x(1− x)

2
+ (1− x)

x(1− x)

2
=
x(1− x)

2
. (14)

Substituting this result into (13) yiels

|u(x)| ≤ ‖f‖∞
x(1− x)

2
. (15)

Finally, by taking the maximum over all x ∈ [0, 1] we obtain2

max
x∈[0,1]

|u(x)| ≤ ‖f‖∞ max
x∈[0,1]

x(1− x)

2
=

1

8
‖f‖∞ (17)

which coincides with (11).

Ill-posed linear boundary value problems. If we replace the Dirichlet boundary conditions in (2)
with two Neumann boundary conditions (i.e., we set the value of the derivative of u(x) at x = 0 and x = 1
instead of the value of the function) then the problem can have either no solution or an infinite number of

2The maximum of the function x(x− 1)/2 is 1/8 and it is attained at x = 1/2 (see Figure 2), i.e., we have

max
x∈[0,1]

∫ 1

0

|G(x, s)| ds = max
x∈[0,1]

x(1− x)

2
=

1

8
. (16)

.
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solutions. To show this, let us consider the BVP

d2u(x)

dx2
= f(x) x ∈ [0, 1]

du(0)

dx
= α

du(1)

dx
= β

(18)

By integrating the ODE once, we obtain

du(x)

dx
= c1 +

∫ x

0
f(s)ds (19)

which shows that the derivative of u depends only on one arbitrary constant of integration. Clearly, we do
not have enough degrees of freedom to satisfy (in general) both boundary conditions in (18). By enforcing
du(0)/dx = α we obtain c1 = α, i.e.,

du(x)

dx
= α+

∫ x

0
f(s)ds. (20)

If we now try to enforce du(1)/dx = β in (20) we obtain the equation

β − α =

∫ 1

0
f(s)ds. (21)

If f(x) satisfies (21) then the problem (18) has an infinite number of solutions. In fact, by integrating (20)
we see that there exits a one-parameter family of solutions (with parameter c2) of the form

u(x) = c2 + αx+

∫ x

0

(∫ y

0
f(s)ds

)
dy. (22)

Clearly, the solution (22) satisfies (18) for all c2 ∈ R, provided (21) holds. On the other hand, if f(x) does
not satisfy (21) then the boundary value problem (18) has no solution.

Exercise: By using a physical argument based on the interpretation of (18) as a model of heat conduction
in a one-dimensional slab with heat generation, justify the infinite multiplicity of solutions or the lack of
a solution.

Example: It is straightforward to show that the linear BVP

d2y

dt2
+ y = 0, y(0) = 0, y(π) = 0. (23)

has no solution. In fact, the flow generated by the corresponding first-order system is a center. There are
in principle infinite trajectories that start from y = 0 and end at y = 0. None of them though makes the
trip exactly in π time units.

Ill-posed nonlinear boundary value problems. Next, consider a nonlinear boundary value problem
of the form 

d2y

dt2
= f

(
dy

dt
, y, t

)
t ∈ [0, T ]

y(0) = α

y(T ) = β

(24)

Page 4



AM 213B Prof. Daniele Venturi

Figure 3: Phase portrait of the pendulum equation θ̈ = − sin(θ) and sketch of two solutions (ϑ1 and ϑ2)
of the BVP (25). The third solution technically does not satisfy θ(T ) = 0 but rather θ(T ) = −2π which is
physically equivalent, but mathematically different.

It is easy to show by a simple physical example that this problem can have an infinite number of solutions
(all of which make sense). To this end, consider the pendulum equations

d2θ

dt2
= − sin(θ)

θ(0) =
π

2

θ(T ) = 0

(25)

where T is the time that it takes to the pendulum to reach the vertical position after swinging from right
to left only once from a zero velocity initial condition. It is clear that there are multiple solutions to this
problem. In Figure 3 we sketch two of such initial velocities, and corresponding trajectories.

Exercise: What’s the motion of the pendulum corresponding to the paths (θi, θ̇i) sketched in Figure 3 for
i = 1, 2, 3? Interpret the infinite (countable) number of solutions of (25) physically. How many solutions
are there within the initial velocity interval θ̇(0) ∈ [−v, v], for a given v?

Existence and uniqueness of solutions. There is no general theory for existence and uniqueness of the
solution to nonlinear two-point boundary value problems with arbitrary boundary conditions. However, a
lot can be said in specific cases. For example, it is straightforward to show that the two-point boundary
value problems for the linear system of ODEs

d2y

dt2
= Ay, (26)

with diagonalizable A and Dirichlet boundary conditions y(0) = α and y(1) = β has a unique solution.
In fact, upon definition of z = dy/dt we can write (26) as

d

dt

[
z
y

]
=

[
0 A
I 0

]
︸ ︷︷ ︸

C

[
z
y

]
. (27)

Let P and Λ be the matrix of eigenvectors and the diagonal matrix of eigenvalues of A, i.e.,

A = PΛP−1, (28)
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and consider the transformation induced by the invertible block matrix

H =

[
P 0
0 P

]
. (29)

Clearly, [
P 0
0 P

]
︸ ︷︷ ︸

H

[
0 Λ
I 0

]
︸ ︷︷ ︸

C

[
P−1 0

0 P−1

]
︸ ︷︷ ︸

H−1

=

[
0 A
I 0

]
(30)

By applying H−1 to the system (27) we obtain

d

dt

[
z̃
ỹ

]
=

[
0 Λ
I 0

]
︸ ︷︷ ︸

C

[
z̃
ỹ

]
, where

[
z̃
ỹ

]
=

[
P−1 0

0 P−1

] [
z
y

]
(31)

The solution to this ODE (treated as initial value problem with unknown z̃(0)) is[
z̃(t)
ỹ(t)

]
= etC

[
z̃(0)
ỹ(0)

]
. (32)

Setting the boundary conditions y(0) = α and y(1) = β yields[
z̃(1)
P−1β

]
= eC

[
z̃(0)
P−1α

]
. (33)

The exponential matrix eC has the following structure

eC =

[
D1 D2

D3 D1

]
, (34)

where D1, D2 and D3 are diagonal matrices. Moreover, D1 and D3 are invertible. Substituting (34) into
(33) gives [

z̃(1)
P−1β

]
=

[
D1 D2

D3 D1

] [
z̃(0)
P−1α

]
. (35)

This equation allows us to determine z̃(0) uniquely for any given α and β In fact, the second equation in
(35) can be written as

D3z̃(0) = P−1β −D1P
−1α ⇔ z̃(0) = D−13 P−1 (β −D1α) . (36)

Hence, we proved that for every given α and β there exists a unique initial state[
ỹ(0)
z̃(0)

]
=

[
P−1α

D−13 P−1 (β −D1α)

]
. (37)

By leveraging the existence and uniqueness of solutions to the initial value problem (32) we conclude that
the two-point boundary value problem for the ODE (26) with Dirichlet boundary conditions has a unique
solution.

Remark: If we drop the assumption of diagonalizability of A and replace the diagonal matrix Λ with its
block diagonal Jordan form J , then the ODE (26) with Dirichlet boundary conditions still has a unique
solution. In fact, in this case the matrix exponential eC is still a block matrix in the form (34), but with
upper triangular D1, D2 and D3. Moreover, D1 and D3 are invertible. Hence (36) still holds.
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General form of two-point boundary value problems. A two-point boundary value problem for a
system of n-dimensional nonlinear ODEs can be written in the general form

dy

dt
= f (y, t) t ∈ [0, T ]

g(y(0),y(T )) = 0

(38)

where g ∈ Rn is nonlinear function. All two-point boundary value problem we studied so far can be
written in this form, provided we define appropriate phase variables y, the right hand side f(y, t), and the
boundary function g.

References
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Numerical methods to solve boundary value problems for ODEs

In this note we provide a brief overview of the most common numerical methods to approximate the
solution of a boundary value problem for an ODE or a system of ODEs. In particular,

• Shooting method;

• Methods based on finite-differences or collocation;

• Methods based on weighted residuals (Galerkin and least squares).

When applying these methods to a boundary value problem, we will always assume that the problem has
at least one solution1.

Shooting method. The shooting method is a method for solving a boundary value problem by reducing
it an to initial value problem which is then solved multiple times until the boundary condition is met. To
describe the method let us first consider the following two-point boundary value problem for a second-order
nonlinear ODE with Dirichlet boundary conditions

d2y

dt2
= f

(
dy

dt
, y, t

)
t ∈ [0, T ]

y(0) = α

y(T ) = β

(1)

We have seen in previous lecture that this problem can have an infinite number of solutions (e.g., the
pendulum problem). The shooting method replaces the boundary condition y(T ) = β in (1) with the
initial condition dy(0)/dt = v, for an unknown “slope” v, and attempts to find v by using an iterative
root-finding algorithm or an optimization method so that the quantity

E(v) = y(T ; v)− β (2)

(or E(v)2 in the case of optimization) is equal to zero2. In equation (2) y(T ; v) represents the solution
(flow) to the initial value problem 

dy

dt
= z

dz

dt
= f (z, y, t)

y(0) = α

z(0) = v

(4)

at time T . The notation y(T ; v) we used in (2) emphasizes that the solution of (4) depends on v. Recall,
in fact, that if the right hand side of the system (4), i.e., (z, f(y, z, t)) is of class Ck then the solution
(y(t;α, v), z(t;α, v)) is of class Ck in the initial condition (α, v). This implies the following lemma.

Lemma 1. If the initial value problem (4) is well-posed then the error function (2) is at least continuous
in v. Moreover, if f is of class Ck then the error function (2) is of class Ck (differentiable k times with
continuous derivative).

In Figure 1 we provide a sketch of the shooting method.

1Recall that a boundary value problem can have a unique solution, an infinite number of solution or no solution at all.
2Note that the shooting method is essentially a control problem of the form

min
v∈R
|y(T ; v)− β| subject to (4). (3)
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Figure 1: Sketch of the shooting method to solve the two-point boundary value problem (1). Basically, we
look for the slope v of the solution at initial time (“shoot” with elevation v), so that we “hit” the target
y(T ) = β at time t = T .

With the error function (2) available, we can construct an iterative procedure that generates a sequence of
slopes {v0, v1, v2, . . .} with the property

lim
k→∞

E (vk) = 0 (rootfinding methods). (5)

To generate a sequence {vk} satisfying (5) we can use any rootfinding method for scalar equations, such
as the bisection method, the secant method or the Newton’s method. Note that the function E(v) is not
explicitly known, but it is certainly continuous (or smoother depending on the regularity of f), and it can
be sampled at any point v we like. To this end, we just need to integrate (4) forward in time up to t = T
for the initial condition z(0) = v and then evaluate (2). Let us briefly describe three rootfinding methods
we can use to generate a sequence {v0, v1, v2, . . .} with the property (5). These methods are sketched in
Figure 2

• Bisection method: Given any two initial guesses v0 and v1 we solve the initial value problem (4)
to obtain

E(v0) = y(T ; v0)− β, and E(v1) = y(T ; v1)− β. (6)

If the sign of the product E(v0)E(v1) is strictly positive, then we cannot claim that there exists a
zero v∗ of the function E(v) in the interval [v0, v1] (although there maybe actually one). On the other
hand, if the sign of the product E(v0)E(v1) is strictly negative then there exists a point v∗ within the
interval [v0, v1] such that E(v∗) = 0. To find v∗ we split the interval [v0, v1] in half (hence the name
“bisection method”), and evaluate E(v) at v2 = (v1 + v0)/2. At this point we proceed as before, i.e.,
if E(v0)E(v2) > 0 then we forget about the interval [v0, v2] and split [v2, v1] in half, evaluate E(v)
at (v2 + v1)/2 and so on so forth. On the other hand, if E(v0)E(v2) < 0 then we forget about the
interval [v2, v1] and split [v0, v2] in half, evaluate E(v) at (v2 + v0)/2, etc. The bisection procedure
until either the function value E(vk) or the difference between two subsequent iterates |vk+1− vk| or
both is smaller than a prescribed tolerance. For more details on the bisection method see [2, §6.2.1].
Convergence of the bisection method is, on average, linear with the interation number.

• Secant method: Similarly to the bisection method, we start with two initial guesses v0 and v1

(hopefully close enough to the zero v∗ we are interested in), and evaluate E(v0) and E(v1). Then we
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construct the line passing through (v0, E(v0)) and (v1, E(v1)) and extrapolate such a line onto the x
axis (see Figure 2). By doing this iteratively, we obtain the sequence (see [2, p. 254]

vk+1 = vk −
vk − vk−1

E(vk)− E(vk−1)
E(vk) k = 1, 2, . . . (7)

The convergence order of the secant method is (
√

5 + 1)/2.

• Newton method: To determine a zero of (2) with the Newton method, we need an initial guess v0,
the corresponding E(v0) and also E′(v0), i.e., the first derivative of the error function (2) evaluated
at v0. This allows us to initialize the iterative formula [2, p. 255]

vk+1 = vk −
E(vk)

E′(vk)
(8)

The first derivative of E(v) is usually not available, but it can be estimated numerically based on
samples of v that are sufficiently close, e.g., by using a finite-difference formula. A better (more
accurate) approach relies on deriving an evolution equation for dy(t; v)/dv, solve such such equation,
and evaluate the solution at final time to obtain

E′(v) =
dy(T ; v)

dt
. (9)

The evolution equation for dy(t; v)/dv can be determined by differentiating (4) with respect to v.
This yields the linear initial value problem

d2η

dt2
=
∂f

∂y′
dη

dt
+
∂f

∂y
η

η(0; v) = 0

dη(0; v)

dt
= 1

(10)

where

η(t; v) =
dy(t; v)

dv
. (11)

Note, in fact, that if differentiate the ODE in (1) with respect to v we obtain

d2y

dt2
= f

(
dy

dt
, y, t

)
⇒ d2

dt2

(
dy

dv

)
=
∂f

∂y′
d

dt

(
dy

dv

)
+
∂f

∂y

dy

dv
. (12)

The system (10) depends on the solution of (4), i.e., and it can be solved only if the solution to (4)
is available3. In summary, to solve (1) with the Newton method we proceed as follows:

1. Choose v0.

2. Solve the initial value problem

3If the ODE is linear then (10) can be solved independently of (4).
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bisection method secant method Newton’s method

Figure 2: Sketch of the most common rootfinding methods applied to equation (2).



d2y

dt2
= f

(
dy

dt
, y, t

)
y(0; v) = α

dy(0; v)

dt
= v

d2η

dt2
=
∂f

∂y′
dη

dt
+
∂f

∂y
η

η(0; v) = 0

dη(0; v)

dt
= 1

(13)

3. Evaluate y(T ; v0) and η(T ; v) = dy(T ; v)/dv.

4. Update the initial guess v0 as

v1 = v0 −
y(T ; v0)− β
η(T ; v0)

. (14)

5. Go to point 2. and repeat the calculation with the updated initial condition dy/dt(0; v) = v1.

Example (pendulum equations): Consider the two-point boundary value problem for the pendulum
equation 

d2θ

dt2
= − sin(θ)

θ(0) = α

θ(T ) = β

(15)

The system of equations (13) corresponding to the pendulum BVP (15) is
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

d2θ

dt2
= − sin(θ)

θ(0) = α

dθ(0)

dt
= vk

d2η

dt2
= cos(θ)η

η(0; v) = 0

dη(0; v)

dt
= 1

(16)

By solving this system and updating vk according to

vk+1 = vk −
y(T ; vk)− β
η(T ; vk)

, (17)

for a properly chosen v0, we eventually converge to one of the solutions of (15).

Remark (Optimization methods): A different class of techniques that can be used in the shooting method
relies on optimization. In the optimization setting, we seek for a minimizer of the function

C (v) = (y(T ; v)− β)2 , (18)

at or nearby C(v) = 0. For example, we can use a descent method [2, p. 305] to minimize (18), e.g. the
classical gradient descent scheme

vv+1 = vk − γkC ′(vk), (19)

where

γk =

∣∣∣∣ vk − vk−1

C ′(vk)− C ′(vk−1)

∣∣∣∣ , C ′(vk) = 2E(vk)E′(vk). (20)

The function C ′(vk) is not known analytically, but needs to be evaluated as in the Newtown’s method. In
particular, each step of gradient descent requires the evaluation of both E(vk) and E′(vk).

It can be shown that the shooting method can be very sensitive to the coice of initial condition v0. Indeed
the set of initial conditions for which the method converges is often concentrated in a small neighborhood
of the exact solution.

Shooting method for higher-order ODEs and system of ODEs. A two-point boundary value
problem for a system of n-dimensional ODEs can be written in the abstract form

dy

dt
= f (y, t) t ∈ [0, T ]

g(y(0),y(T )) = 0

(21)

where g ∈ Rn is, in general, a nonlinear function. Every two point boundary value problem we considered
so far can be written in this form, upon definition of appropriate phase variables and boundary function g.
To show this, let us provide an example of a boundary value problem involving a fourth-order ODE.
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Figure 3: Sketch of the fully clamped Euler-Bernoulli beam modeled by the two-point boundary value
problem (21).

Example (Euler-Bernoulli beam equations): An example of a boundary value problem in the form (21)
is the equation describing the displacement of a fully clamped Euler-Bernoulli beam subject to a load
q(x) 

EI
d4y

dx4
= q(x)

y(0) = 0

y(L) = 0

dy(0)

dx
= 0

dy(L)

dx
= 0

(22)

Here, E is the modulus of elasticity4 of the beam, and I is the flexural moment of inertia. For a square
section of thickness h and width b (see Figure 3) we have

I =
bh3

12
. (23)

Upon definition of

z0(x) = y(x), z1(x) =
dz0(x)

dx
z2(x) =

dz1(x)

dx
, z3(x) =

dz2(x)

dx
(24)

we can rewrite (22) as

dz3

dx
=
q(x)

EI
,

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z0(L) = 0

z1(0) = 0

z1(L) = 0

(25)

4For stainless steel we have E ' 200 GPa.
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i.e., as a system of four first-order ODEs with four simple boundary condition conditions involving z0 and
z1 at x = 0 and x = L. To solve (25) with the shooting method, e.g., by using Newton’s iterations, we
proceed as follows. We first replace the boundary value problem with the initial value problem

dz3

dx
=
q(x)

EI
,

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z1(0) = 0

z2(0) = v1

z3(0) = v2

(26)

depending on two unknown parameters v1 and v2. To determine these parameters, we define the vector-
valued error function

E(v) =

[
z0(T ;v)− 0
z1(T ;v)− 0

]
, v =

[
v1

v2

]
. (27)

Clearly, the dependence of z0(T ;v) and z1(T ;v) on v is affine (flow map generated by a linear system
driven by q(x)). This allows us to avoid Newton’s iterations and solve the linear system

E(v) = 0 (28)

for v. Note that z0(T ;v) and z1(T ;v) involve integrals of q(x), and therefore the solution to (28) is not
the trivial vector v = 0.

More generally, if the system is nonlinear, then we can use Newton’s iterations to compute the solution to
the problem. To this end, suppose we are given a boundary value problem for a fourth-order system of the
form 

dz3

dx
= f(z2, z1, z0),

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z0(L) = 0

z1(0) = 0

z1(L) = 0

(29)

We rewrite this system as an initial value problem with unknown v1 and v2

dz3

dx
= f(z2, z1, z0),

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z1(0) = 0

z2(0) = v1

z3(0) = v2

(30)

Given an initial guess v0 =
[
v01 v02

]T
we construct the sequence of iterates {v1,v2, . . .} satisfying

vk+1 = vk − J−1(vk)E(vk), (31)
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where J(vk) is the Jacobian of the error function (27)

J(v) =


∂E1(v)

∂v1

∂E1(v)

∂v2

∂E2(v)

∂v1

∂E2(v)

∂v2

 (32)

evaluated at vk. As before, it is possible to derive evolution equations for the components of the Jaco-
bian.

Example (Euler-Bernoulli beam equations in the framework of Newton’s iterations): The Jacobian of the
error function (27) for the Euler-Bernoulli beam model (26) has the form

J(v) =


∂z0(L;v)

∂v1

∂z0(L;v)

∂v2

∂z1(L;v)

∂v1

∂z1(L;v)

∂v2

 . (33)

As shown hereafter, J(v) does not depend on v. This means that with just one Newton’s iteration we can
compute the correct initial condition for the system, and therefore solve the problem with the shooting
method. The evolution equations for the components of the Jacobian (33) are obtained by differentiating
the system (26) with respect to v1 and v2. This yields

d

dx

∂z3

∂vi
= 0 and

d

dx

∂zj
∂vi

=
∂zj+1

∂vi
j = 0, 1, 2 i = 1, 2, (34)

with initial conditions
∂z3

∂v1
= 0,

∂z3

∂v2
= 1,

∂z2

∂v1
= 1,

∂z2

∂v2
= 0, (35)

and
∂z1

∂v1
= 0,

∂z1

∂v2
= 0,

∂z0

∂v1
= 0,

∂z0

∂v2
= 0. (36)

Clearly, the solution to the system (34)-(36) does not depend on v and therefore the Jacobian (33) does
not depend on v. This is just another way to say that we can solve the shooting problem for the linear
Euler-Bernoulli beam by just one Newton iteration as

v1 = v0 − J−1E(v0), (37)

where v0 is any initial guess, E(v0) is defined in (27) and J is the Jacobian (33).

Finite difference methods for BVP. To solve a two-point boundary value problem with finite difference
methods we simply discretize its solution on a grid and replace the derivatives appearing in the ODE and
the boundary conditions with appropriate finite-difference formulas. To illustrate this process let us first
consider the simple prototype problem

d2y(x)

dx2
= f(x) x ∈ [0, 1]

y(0) = α

y(1) = β

(38)

Page 8



AM 213B Prof. Daniele Venturi

Let {x0, . . . , xN+1} be N + 2 evenly-spaced grid points in the interval [0, 1], i.e.,

xj = j∆x, ∆x =
1

N + 1
, j = 0, . . . , N + 1. (39)

We approximate the second derivative d2y/dx2 in (38), e.g., by using the second-order finite difference
formula

d2y(xj)

dx2
' yj−1 − 2yj + yj+1

∆x2
, uj = u(xj). (40)

A substitution of (40) into (38) yields the system of equations5
uj−1 − 2uj + uj+1

∆x2
= fj j = 1, . . . , N

u0 = α

uN+1 = β

(41)

where we defined fj = f(xj). The system (41) can be written compactly as

D2
FDu = f , (42)

where

D2
FD =

1

∆x2



−2 1 0 0 · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 1 −2 1
0 · · · · · · · · · 0 1 −2


, u =



u1

u2

u3
...
...

uN−1

uN


, f =



f1 − α/∆x2

f2

f3
...
...

fN−1

fN − β/∆x2


. (43)

The differentiation matrix D2
FD corresponding to the second-order finite difference approximation is tridi-

agonal, diagonally dominant and negative definite. In fact, the eigenvalues of D2
FD are

λk =
2

∆x2
(cos(kπ∆x)− 1) . (44)

Clearly, λk < 0 for all k = 1, . . . , N . This implies that matrix D2
FD is invertible6 and therefore the system

(42) has a unique solution.

Remark: To prove that (44) are indeed the eigenvalues of D2
FD, consider the eigenvalue problem

D2
FDu = λu, (45)

i.e.,
uj−1 − 2uj + uj+1

∆x2
= λuj ⇒ uj+1 = (2 + ∆x2λ)uj − uj−1 with u0 = uN+1 = 0 (46)

Setting 2Q = (2 + ∆x2λ) and rescaling all equations so that u1 = 1 yields
u0 = 0

u1 = 1

uj+1 = 2Quj − uj−1

(47)

5In equation (41) uj represents the numerical approximation of yj = y(xj).
6Recall that the determinant of a matrix is the product of the eigenvalues.
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Equation (47) is the three-term recurrence relation satisfied by the Chebyshev polynomials of the second
kind Uj(Q) in the variable Q. Setting uj+1 = Uj(Q) and using the boundary condition uN+1 = 0 we have
that UN (Q) = 0. Hence, Q must be a root of the N -th degree Chebyshev polynomial of the second kind.
Such roots are

Qk = cos

(
kπ

N + 1

)
= cos (kπ∆x) , k = 1 . . . , N (48)

Recalling that 2Qk = (2 + ∆x2λk) yields

λk =
2

∆x2
(cos (kπ∆x)− 1) . (49)

• Convergence Analysis: We now perform the convergence analysis of the finite difference approx-
imation (42). To this end, we need to show that the error between the analytical solution of (38)
and the numerical solution goes to zero as we send ∆x to zero, i.e., as we consider more and more
evenly-spaced grid points in the interval [0, 1]. Let yj = y(xj) and uj be, respectively, the analytical
solution and the finite-differences solution of (38). We define the error

e = y − u, (50)

where

y =


y1

y2
...
yN

 , u =


u1

u2
...
uN

 . (51)

By applying D2
FD to e we obtain

D2
FDe = τ , (52)

where

τj =
yj−1 − 2yj + 2yj+1

∆x2
− fj j = 1, . . . , N (53)

is the local truncation error (LTE) associated with the finite-difference approximation under consid-
eration7. At this point we recall that the matrix D2

FD is symmetric and invertible. This allows us to
express the error e in equation (52) explicitly in terms of the truncation error τ as

e =
(
D2

FD

)−1
τ . (55)

By taking the 2-norm of this expression we obtain

‖e‖2 ≤
∥∥∥(D2

FD

)−1
∥∥∥

2
‖τ‖2 , (56)

where the matrix 2-norm
∥∥∥(D2

FD

)−1
∥∥∥

2
induced by the vector 2-norm coincides with the largest sin-

gular value of the matrix
(
D2

FD

)−1
. Recall that the inverse of a symmetric matrix is symmetric.

This implies that the square root of the singular values of
(
D2

FD

)−1
matrix coincide with the absolute

7By using Taylor series we obtain

τj =
yj−1 − 2yj + yj+1

∆x2
− fj

=
d2y(xj)

dx2
− fj +

∆x2

12

d4y(xj)

dx4
+ · · ·

=
∆x2

12

d4y(xj)

dx4
+ · · · . (54)

Therefore the local truncation error goes to zero as ∆x2.
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values of the eigenvalues8 of
(
D2

FD

)−1
. Moreover the eigenvalues of the inverse matrix are the inverses

of the eigenvalues of the matrix. This proves the following equality∥∥∥(D2
FD

)−1
∥∥∥

2
= max

k=1,...,N

∣∣∣∣ 1

λk

∣∣∣∣ =
1

min
k=1,...,N

|λk|
, (58)

where λk are the eigenvalues of D2
FD. By using equation (44) we see that

min
k=1,...,N

|λk| = |λ1| =
2

∆x2
|cos(π∆x)− 1| . (59)

Moreover, for sufficiently small ∆x we can expand (59) in a Taylor series to obtain

|λ1| =
2

∆x2

∣∣∣∣1− π2∆x2

2
+
π4∆x4

24
· · · − 1

∣∣∣∣ = π2

∣∣∣∣1− π2

12
∆x2 + · · ·

∣∣∣∣ . (60)

Therefore, in the limit ∆x→ 0 we have

‖e‖2 ≤
1

π2
‖τ‖2 =

∆x2

12π2

√√√√ N∑
k=1

[
d4y(xk)

dx4

]2

=
∆x3/2

12π2

√√√√ N∑
k=1

∆x

[
d2f(xk)

dx2

]2

, (61)

where we used equation (54) for the 2-norm of the local truncation error. Note that the quantity
under the square root at the right hand side of (61) converges to the integral of the square of the
second derivative of f(x) in the limit N →∞, i.e.,

lim
N→∞

N∑
k=1

∆x

[
d2f(xk)

dx2

]2

=

∫ 1

0

[
d2f(x)

dx2

]2

dx. (62)

Assuming that such an integral is finite, i.e., that the second derivative of f is square integrable in
[0, 1], we conclude that the second-order finite difference approximation (41) of the boundary value
problem (38) is convergent with order 3/2 in ∆x. Similarly, in the uniform norm we obtain

‖e‖∞ ≤ ‖e‖2 ≤
1

π2
‖τ‖2 ≤

√
N ‖τ‖∞ '

√
N

12π2(N + 1)2

∥∥∥∥d2f(x)

dx2

∥∥∥∥
∞
. (63)

Clearly, in the limit N →∞ we have that ‖e‖∞ goes to zero as 1/N3/2.

Remark (Neumann boundary conditions): Consider the boundary value problem

d2y(x)

dx2
= f(x) x ∈ [0, 1]

dy(0)

dx
= α

y(1) = β

(64)

How do we impose the Neumann boundary condition dy(0)/dx = α in a finite difference setting? The
simplest way is to use forward finite differences, e.g.,

dy(0)

dx
' −3y0 + 4y1 − y2

2∆x
= α. (65)

8Recall that for any symmetric matrix

‖A‖2 = max
j

√
λj(ATA) = max

j

√
λj(A2) = max |λj(A)| . (57)
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In this way, we can write the fully discrete finite difference system as

1

∆x2



−3∆x/2 2∆x −∆x/2 0 · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 1 −2 1
0 · · · · · · · · · 0 1 −2





u0

u1

u2
...
...

uN−1

uN


=



α
f1

f2
...
...

fN−1

fN − β/∆x2


. (66)

Remark (nonlinear BVP): Consider the nonlinear boundary value problem

d2y(x)

dx2
= f

(
dy

dx
, y, x

)
x ∈ [0, 1]

y(0) = α

y(1) = β

(67)

A second-order finite difference approximation of (67) is
uj−1 − 2uj + uj+1

∆x2
= f

(
uj+1 − uj−1

2∆x
, uj , xj

)
j = 1, . . . , N

u0 = α

uN+1 = β

(68)

This is a system of N nonlinear equations in N unknowns {u1, . . . uN} which can be solved, e.g., with the
Newton’s method.

We conclude this section by emphasizing that we could have used also higher-order finite difference formulas
to solve the problem (67) or (38). For instance, we could have used a fourth-order formula based on a stencil
with 5 points, with forward and backward representation at the left and the right boundary, respectively,
to accommodate Dirichlet or Neumann boundary conditions.

Method of weighted residuals for BVP. The method of weighted residuals for BVP is based on the
so-called weak (or variational) formulation of the problem. To describe the method, consider the following
prototype boundary value problem

− d

dx

(
a(x)

dy(x)

dx

)
+ b(x)(x) = f(x) x ∈ [0, 1]

y(0) = 0

y(1) = 0

(69)

where a(x) is a strictly positive function, i.e., a(x) > 0 for all x ∈ [0, 1]. Multiply the differential equation
in (69) by a test function v(x) and integrate over [0, 1] to obtain

−
∫ 1

0

d

dx

(
a(x)

dy(x)

dx

)
v(x)dx+

∫ 1

0
b(x)y(x)v(x)dx =

∫ 1

0
f(x)v(x)dx. (70)
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By integrating the first term by parts and assuming that v(x) satisfies the boundary condition in (69) we
obtain ∫ 1

0
a(x)

dy(x)

dx

dv(x)

dx
dx+

∫ 1

0
b(x)y(x)v(x)dx =

∫ 1

0
f(x)v(x)dx. (71)

Clearly, if y(x) is of class C2([0, 1]) and it satisfies (69) (strong solution) then y(x) is also a solution to the
following weak formulation of the BVP:

Find y ∈ H1
0 ([0, 1]) such that (71) is satisfied for all v ∈ H1

0 ([0, 1]). HereH1
0 ([0, 1]) denotes the Sobolev space

square integrable functions vanishing at x = 0 and x = 1, with square integrable first-order derivatives,
i.e.,

H1
0 ([0, 1]) = {v ∈ L2([0, 1]) such that

dv

dx
∈ L2([0, 1]) and v(0) = v(1) = 0}. (72)

Note that the weak formulation (71) involves only the first derivative of y(x). Therefore a weak solution to
the BVP (69), i.e., a solution to (71), may not actually satisfy (69). This means that the weak formulation
of a BVP might have a solution even when the strong formulation does not.

With the weak formulation (71) available, we look for a finite-dimensional approximation of y(x). To this
end, suppose that y(x) can be accurately represented in a finite-dimensional subspace of VN ⊂ H1

0 ([0, 1]),
i.e.,

yN (x) =

N∑
k=1

akϕk(x), ϕk ∈ H1
0 ([0, 1]). (73)

A substitution of (73) into (71) yields a residual RN (x)∫ 1

0
a(x)

dyN (x)

dx

dv(x)

dx
dx+

∫ 1

0
b(x)yN (x)v(x)dx =

∫ 1

0
f(x)v(x)dx+

∫ 1

0
RN (x)v(x)dx. (74)

Depending on the way we handle the residual we can have different classes of methods:

• Galerkin method: We set the residual orthogonal to the span of {ϕ1, . . . , ϕN}, i.e.,∫ 1

0
RN (x)ϕj(x)dx = 0 j = 1, . . . , N. (75)

This yields a system of N equations in the N unknowns {a1, . . . , aN} (see equation (73)).

• Collocation method: We set the residual RN (x) equal to zero at a set of collocation nodes
{x1, . . . , xN}, i.e.,

RN (xj) = 0 j = 1, . . . , N. (76)

In this way, the differential equation is satisfied exactly at the collocation nodes.

• Least-squares method: We minimize the L2 norm of the residual RN (x) over the parameters
{a1, . . . , aN} in equation (73))

min
a1,...,aN

∫ 1

0
R2

N (x)dx (77)

As an example, let us apply all these methods to the simple BVP (38). To this end, we look for a
representation of the solution in the form

yN (x) = (1− x)α+ xβ +

N∑
k=1

akϕk(x) (78)

where
ϕk(x) = x(1− x)Tk(2x− 1) x ∈ [0, 1] (79)
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and Tk(x) are, e.g., Chebyshev polynomials of the first kind or Legendre polynomials. The linear functions
(1− x) and x are called boundary modes in finite-element analysis, while ϕk(x) are called interior modes9.
A substitution of (78) into (38) yields

d2yN (x)

dx2
= f(x) +RN (x). (81)

Clearly, the boundary conditions are automatically satisfied by (78)-(79).

Galerkin method. In the Galerkin method we impose that the residual RN (x) is orthogonal (in the
L2 sense) to the span of {ϕ1, . . . , ϕN}. To impose such orthogonality, we first multiply (81) by ϕj(x) and
integrate over [0, 1] to obtain∫ 1

0

d2yN (x)

dx2
ϕj(x)dx =

∫ 1

0
f(x)ϕj(x)dx+

∫ 1

0
RN (x)ϕj(x)dx j = 1, . . . , N. (82)

Setting ∫ 1

0
RN (x)ϕj(x)dx = 0 j = 1, . . . , N (83)

yields the system of equations

−
∫ 1

0

dyN (x)

dx

dϕj(x)

dx
dx =

∫ 1

0
f(x)ϕj(x)dx j = 1, . . . , N. (84)

where we integrated by parts the first term in (82). Substituting (78) and

dyN (x)

dx
= β − α+

b∑
k=1

ak
dϕk(x)

dx
(85)

into (84) yields

−(β − α)

∫ 1

0

dϕj(x)

dx
dx−

N∑
k=1

ak

∫ 1

0

dϕj(x)

dx

dϕk(x)

dx
dx︸ ︷︷ ︸

stiffness matrix Sjk

=

∫ 1

0
f(x)ϕj(x)dx j = 1, . . . , N. (86)

i.e.,
N∑
k=1

Sjkak = −
∫ 1

0
f(x)ϕj(x)dx− (β − α)

∫ 1

0

dϕj(x)

dx
dx j = 1, . . . , N. (87)

Upon definition of

a =

a1
...
aN

 , h =



∫ 1

0
f(x)ϕ1(x)dx

...∫ 1

0
f(x)ϕN (x)dx

 , b = (β − α)



∫ 1

0

dϕ1(x)

dx
dx

...∫ 1

0

dϕN (x)

dx
dx

 , (88)

9In the spectral method the basis fuctions ϕk(x) are chosen to be Lagrange characteristic polynomials at Gauss-Lobatto
nodes in [0, 1]. This yields the following expansion of the solution

yN (x) = ϕ0(x)α+ ϕN+1(x)β +

N∑
k=1

akϕk(x), (80)

where ϕ0(x) and ϕN+1(x) are the boundary modes and ϕk(x) are the interior modes. The integrals in (82) can be computed
using Gauss-Lobatto quadrature.
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we can write the system (87) in a matrix-vector form as

Sa = −(h+ b) (89)

Inverting the (positive definite) stiffness matrix S yields the solution a = −S−1(f + b) which can be then
substituted back into (78).

Collocation method. In the collocation method we impose that the residual RN (x) is equal to zero
at N distinct (interior) nodes {x1, . . . , xN}. A substitution of (73) into (69) yields (81). By imposing
RN (xi) = 0 in (81) we obtain

N−1∑
k=2

ak
d2ϕk(xj)

dx2
= f(xj)− α

d2ϕ0(xj)

dx2
− βd

2ϕN+1(xj)

dx2︸ ︷︷ ︸
gj

j = 2, . . . , N − 1 (90)

Upon definition of the differentiation matrix D2
jk = d2ϕk(xj)/dx

2 we can write the linear system (90)
as

D2
Colla = g, (91)

which resembles very much the system (42). Indeed the finite-difference methods is a particular type of
collocation method. Convergence analysis of spectral collocation methods for BVP follows the analysis
we have done for second order finite differences. In particular, the eigenvalues of second-order spectral
collocation matrices are discussed in [4].

Least squares method. Finally, we set up the BVP (38) as a least-squares problem. To this end, we
consider the residual

RN (x) =
N∑
k=1

ak
d2ϕk(x)

dx2
− f(x) (92)

and its L2 norm

‖RN (x)‖2L2([0,1] =

∫ 1

0

(
N∑
k=1

ak
d2ϕk(x)

dx2
− f(x)

)2

dx. (93)

By expanding integrand we see that minimization of (93) is essentially a quadratic programming problem
with two linear constraints (boundary conditions) which can be solved, for example, using high-performance
solvers such as OSQP [3] (https://osqp.org/).

Some results on polynomial approximation theory. Collocation, Galerkin and Least Squares meth-
ods are based on functional series expansions of the form

yN =

N∑
k=0

akϕk(x). (94)

For simplicity we consider x ∈ [−1, 1] (any bounded interval can be rescaled to [−1, 1]). The functions
ϕk(x) here are orthogonal polynomials relative to a weight function w(x), i.e.,∫ 1

−1
ϕk(x)ϕj(x)w(x)dx = δkj ‖ϕk‖2L2

w([−1,1]) . (95)

or Lagrange polynomials associated to a properly chosen set of notes, e.g., zeros of orthogonal polynomials.
Polynomial approximation theory theory is thoroughly discussed in [1, Chapter 6]. Hereafter we briefly
summarize some of the main results.
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Theorem 1. Let {ϕk(x)} in (94) be a set polynomials orthogonal in [−1, 1] relative to the weight function
w(x). Then for any y(x) ∈ Hp

w([−1, 1]) p ≥ 0, there exists a constant C, independent of N , such that

‖y(x)− yN (x)‖L2
w([−1,1]) ≤ CN

−p ‖y(x)‖Hp
w([−1,1]) (96)

Theorem 1 demonstrates that the error between the function y(x) and the approximation (94) decays
spectrally with the number of basis functions. If the function y(x) is infinitely smooth, then the error decays
exponentially fast with the number of basis functions. Similar results can be obtained the approximation
of the derivatives of y(x) (see [1, Theorem 6.2 and Theorem 6.3]).

The next theorem summarizes the approximation properties of spectral collocation representations, i.e.,
series expansions of the form (94) where ak = y(xk) and ϕk(x) are Lagrangian characteristic polynomials
associated with a set of Gauss or Gauss-Lobatto nodes10 {x0, . . . , xN} in [−1, 1].

Theorem 2. Let ϕk(x) in (94) be Lagrange characteristic polynomials associated with a set of Gauss
or Gauss-Lobatto nodes in [−1, 1]. Suppose that such Gauss or Gauss Lobatto nodes are defined by a
polynomial orthogonal in [−1, 1] relative to the weight function w(x). Then for any y(x) ∈ Hp

w([−1, 1])
p ≥ 1, there exists a constant C, independent of N , such that (96) holds.

Theorem 2 demonstrates that contrary to finite difference methods, the error of spectral collocation methods
does not decay as a fixed power of 1/N but rather as a power that depends on the smoothness of the function
we are approximating. For infinitely differentiable function functions, the error decreases exponentially fast
with N . Hence, spectral collocation methods are, in a certain sense, methods of infinite order when applied
to smooth problems.

Gauss-Chebyshev-Lobatto spectral collocation method for BVP. Let briefly review the main
ingredients of the Gauss-Lobatto Chebyshev expansion, and its usage for boundary value problems. For
more details we refer to [1]. We first recall that the Chebyshev polynomials of the first kind are defined
as

Tk(x) = cos(k arccos(x)) x ∈ [−1, 1] (trigonometric representation). (97)

It can be shown that Tk(x) (like any other orthogonal polynomial) satisfies a three-term recurrence rela-
tion

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

(98)

which gives
T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x T4(x) = 8x4 − 8x2 + 1, . . . . (99)

The Gauss-Chebyshev-Lobatto nodes are zeros of the polynomial

QN+1(x) = (1− x2)
dTN (x)

dx
, (100)

i.e., x0 = −1, xN = 1 and all maxima and minima of TN (x). By differentiating (97) with respect to x we
obtain

dTN (x)

dx
=

sin(N arccos(x))√
1− x2

. (101)

Hence QN+1(x) = 0 implies that

xj = cos

(
kπ

N

)
j = 0, . . . , N (Gauss-Chebyshev-Lobatto points). (102)

10Recall that Gauss nodes in [−1, 1] are the zeros of an orthogonal polynomial PN+1(x) of degree N + 1 defined in [−1, 1].
Orthogonality is relative to some weight function w(x). If w(x) = 1 then Pk(x) are Lagrange polynomials. On the other hand,
Gauss-Lobatto nodes are zeros of the polynomial (1− x2)dPN (x)/dx.
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These points are obtained by dividing half unit circle in evenly spaced parts and projecting them onto
the x-axis. It can be shown that the Lagrange characteristic polynomials associated with the Gauss-
Chebyshev-Lobatto nodes are

ϕj(x) =
(−1)N+j+1(1− x2)

djN2(x− xj)
dTN (x)

dx
=

(−1)N+j+1
√

(1− x2)

djN2(x− xj)
sin(N arccos(x)), (103)

where xj is given in (102) and

d0 = dN = 2 d1 = d2 = · · · = dN−1 = 1. (104)

A substitution of (103) into (94) yields the series expansion11

yN (x) =

N∑
k=0

y(xk)ϕk(x). (105)

At this point we can differentiate (105) with respect to x and evaluate the derivative at x = xj . This yields
the expressions

dyN (xj)

dx
=

N∑
k=0

y(xk)
dϕk(xj)

dx︸ ︷︷ ︸
D1

jk

,
d2yN (xj)

dx2
=

N∑
k=0

y(xk)
d2ϕk(xj)

dx2︸ ︷︷ ︸
D2

jk

, (106)

where D1 and D2 are, respectively, first- and second-order Gauss-Chebyshev-Lobatto differentiation ma-
trices. A direct calculation shows that

D1
ij =



−2N2 + 1

6
i = j = 0

di
dj

(−1)i+j

xi − xj
i 6= j

− xi
2(1− x2

i )
i = j

2N2 + 1

6
i = j = N

(first-order differentiation matrix) (107)

where di are defined in (104), and

D2
ij =



(−1)i+j

di

x2
i + xixj − 2(

1− x2
i

)
(xi − xj)2 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N, j 6= i

−(N2 − 1)(1− x2
i ) + 3

3
(
1− x2

i

)2 1 ≤ i = j ≤ N − 1

2(−1)j

3dj

[
(2N2 + 1)(1− xj)− 6

(1− xj)2

]
i = 0, 1 ≤ j ≤ N

2(−1)N+j

3dj

[
(2N2 + 1)(1 + xj)− 6

(1 + xj)
2

]
i = N, 0 ≤ j ≤ N − 1

(N4 − 1)

15
i = j = 0, N

(108)

11Note that the series expansion (105), is the Lagrange interpolant of y(x) through the Gauss-Chebyshev-Lobatto points
(102).
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The matrix D2 can be also approximated by a product of two matrices D1, i.e.,

D2 'D1D1, (109)

although D2 is obviously more accurate than D1D1.

Example: Chebyshev-Gauss-Lobatto nodes are defined in [−1, 1]. If we are given a VBP on the interval
[a, b] then we can transform it to [−1, 1] by using the following elementary coordinate transformation

x =
b− a

2
z +

b+ a

2
z ∈ [−1, 1]. (110)

This yields the following transformation for the derivatives

y(x) = y

(
b− a

2
z +

b+ a

2

)
⇒ dy

dx
=
dy

dz

dz

dx
=
dy

dz

2

b− a
, (111)

and
d2y

dx2
=
d2y

dz2

(
2

b− a

)2

. (112)

The last equation implies that the differentiation matrix for a function defined in [a, b] is simply a re-
scaled version of the differentiation matrix in [−1, 1], the rescaling factor being some power of 2/(b − a).
Substituting (105) into (69) (mapped from x ∈ [0, 1] to z ∈ [−1, 1] using the simple transformation
z = 2x− 1) and setting the residual equal to zero at the nodes (102) yields the system of equations

2

N∑
k=0

D2
jkuk = f

(
zj + 1

2

)
j = 1, . . . , N − 1

u0 = α

uN = β

(113)

where zj are the Chebyshev-Gauss-Lobatto nodes (102). This system allows us to compute the numerical
solution to the BVP (69) using the Chebyshev-Gauss-Lobatto spectral method.
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Numerical methods for the heat equation

Consider the following initial-boundary value problem (IBVP) for the one-dimensional heat equation

∂U

∂t
= α

∂2U

∂x2
+ q(x) t ≥ 0 x ∈ [0, L]

U(x, 0) = U0(x)

U(0, t) = g0(t)

U(L, t) = gL(t)

(1)

where q(x) is the internal heat generation and α the thermal diffusivity.

The IBVP (1) describes the propagation of temperature in a one-dimensional slab of width L initially
at temperature U0(x) with Dirichlet boundary conditions U(0, t) = g0(t) and U(L, t) = gL(t). You have
learned in AM 212A that it is possible to compute the analytical solution of the problem (1) using many
different techniques. For example, if we set q(x) = 0, and g0(t) = gL(t) = 0 then it is easy to show
that

U(x, t) =
2

L

∞∑
k=1

e−αk
2π2t/L2

sin

(
kπ

L
x

)∫ L

0
U0(x) sin

(
kπ

L
x

)
dx, (2)

where sin(kπx/L) are eigenfunctions of the eigenvalue problem (see [1, p. 48])

d2X(x)

dx2
+ βX(x) = 0, X(0) = 0, X(L) = 0, (3)

with eigenvalues βk = k2π2/L2.

• Energy decay: It is straightforward to show that in the case of no heat generation and zero Dirichlet
boundary conditions the L2([0, L]) norm of the solution to (1) i.e.,

‖U‖2L2([0,L]) =

∫ L

0
U(x, t)2dx (4)

decays monotonically to zero as time increases. This can be seen directly from the analytical solution
(2). Alternatively, we can derive an evolution equation for (4) and solve it. To this end, let us
multiply the heat equation by U(x, t) and integrate it over the spatial domain [0, L]. This yields∫ L

0
U(x, t)

∂U(x, t)

∂t
dx = α

∫ L

0
U(x, t)

∂2U(x, t)

∂x2
dx. (5)

By integrating by parts and recalling (4) we obtain

d

dt
‖U‖2L2([0,L]) = −2α

∫ L

0

(
∂U

∂x

)2

dx︸ ︷︷ ︸∥∥∥∥∂U∂x
∥∥∥∥2
L2([0,L])

+2α

[
U
∂U

∂x

]x=L
x=0︸ ︷︷ ︸

=0

. (6)

At this point we use the Poincaré inequality1∥∥∥∥∂U∂x
∥∥∥∥2
L2([0,L])

≥ C ‖U‖2L2([0,L]) ⇔ −
∥∥∥∥∂U∂x

∥∥∥∥2
L2([0,L])

≤ −C ‖U‖2L2([0,L]) (7)

1The Poincaré inequality holds for all differentiable functions u with zero boundary conditions.
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to obtain

d

dt
‖U‖2L2([0,L]) + 2α ‖U‖2L2([0,L]) ≤ 0 ⇒ ‖U‖2L2([0,L]) ≤ ‖U0‖2L2([0,L]) e

−2αCt. (8)

Hence the “energy” of the solution, i.e., the L2 norm (4) decays to zero as t→∞.

Finite-difference methods. To solve the IBVP (1) with finite differences, let us consider the following
an evenly-spaced grid in [0, L], i.e.,

xj = j∆x ∆x =
L

N + 1
j = 0, . . . , N + 1. (9)

On this grid, we approximate the second derivative in (1) by using, e.g., the second-order finite difference
formula

∂2U(x, t)

∂x2

∣∣∣∣
x=xj

' U(xj−1, t)− 2U(xj , t) + U(xj+1, t)

∆x2
j = 1, . . . , N. (10)

A substitution of (10) into (1) yields the so-called semi-discrete form2



duj
dt

= α
uj−1(t)− 2uj(t) + uj+1(t)

∆x2
+ q(xj) j = 1, . . . , N

uj(0) = U0(xj) j = 1, . . . , N

u0(t) = g0(t)

UN+1(t) = gL(t)

(11)

where uj(t) represents an approximation of the exact solution U(xj , t), i.e., the exact solution evaluated
at the grid point xj . The system (11) can be written in a matrix-vector form as


du

dt
= αD2

FDu + h(t)

u(0) = U0

(12)

where3

D2
FD =

1

∆x2



−2 1 0 0 · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 1 −2 1
0 · · · · · · · · · 0 1 −2


, u =



u1
u2
u3
...
...

uN−1
uN


, h(t) =



q(x1) + αg0(t)/∆x
2

q(x2)
q(x3)

...

...
q(xN−1)

q(xN ) + αgL(t)/∆x2


.

(13)

2The system (11) is called “semi-discrete” form of the IBVP (1) because we discretized only the dependence of the solution
on the spatial variable x. If, in addition, we discretize (10) time using a time-stepping scheme then we obtain the so-called
“fully discrete form” of the IBVP (1). The semi-discrete form (10) is also known as method of lines (MOL). The reason for
such a definition is that the finite-difference solution of the heat equation is computed by solving a finite-dimensional system
of ODEs, each one of which represents the dynamics of U(x, t) at a particular grid point xj . This corresponds to a “line”
emanating from U(xj , 0).

3Recall that the differentiation matrix D2
FD corresponding to the second-order finite difference discretization is tridiagonal

and negative definite.
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Figure 1: Finite-difference stencil corresponding to the forward-in-time centered-in-space discretization
(17). We sketch the coupling of the system as we march forward in time by a few time steps.

In this way, we reduced the IBVP (1) to an initial value problem for a linear ODE, i.e., equation (12).
Such an initial value problem can be solved using any time-stepping method we studied for initial value
problems. For example, if we use the Euler forward scheme we obtain the fully discrete form

uk+1 = uk + α∆tD2
FDu

k + ∆th(tk), (14)

where
uk = u(tk). (15)

On the other hand, if we use the two-step Adams-Bashforth method we obtain

uk+2 = uk+1 +
α∆t

2

[
3
(
D2

FDu
k+1 + hk+1

)
−
(
D2

FDu
k + hk

)]
. (16)

Remark: Clearly, one could use higher-order finite-difference formulas to approximate the second-order
derivative ∂2U(x, t)/∂x2. This yields other differentiation matrices, and requires some care when handling
boundary conditions.

Local truncation error. The local truncation error (LTE) of a finite difference scheme is the residual
arising when we ideally insert the exact solution to the problem into the fully discrete form. For illustration
purposes let us compute the local truncation error of the so-called “centered in space forward in time”
finite-difference scheme (see Figure 1)

uk+1
j − ukj

∆t
= α

ukj−1 − 2ukj + ukj+1

∆x2
+ q(xj), (17)

where ujk is an approximation of U(xj , tk).

By plugging in the exact solution U(x, t) into (17) we obtain the LTE

τ(xj , tk+1) =
U(xj , tk+1)− U(xj , tk)

∆t
− αU(xj−1, tk)− 2U(xj , tk) + U(xj+1, tk)

∆x2
− q(xj). (18)

Let us now define Ukj = U(xj , tk) and expand

Uk+1
j = U(xj , tk + ∆t) and Ukj±1 = U(xj ±∆x, tk) (19)
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in Taylor series in ∆x and ∆t. This yields

Uk+1
j − Ukj

∆t
=

1

∆t

(
∆t

∂Ukj
∂t

+
∆t2

2

∂2Ukj
∂t2

+ · · ·

)
=
∂Ukj
∂t

+
∆t

2

∂2Ukj
∂t2

+ · · · . (20)

Similarly,

Ukj−1 − 2Ukj + Ukj+1

∆x2
=

1

∆x2

(
−∆x

∂Ukj
∂x

+
∆x2

2

∂2Ukj
∂x2

− ∆x3

6

∂3Ukj
∂x3

+
∆x4

24

∂4Ukj
∂x4

+ · · ·

∆x
∂Ukj
∂x

+
∆x2

2

∂2Ukj
∂x2

+
∆x3

6

∂3Ukj
∂x3

+
∆x4

24

∂4Ukj
∂x4

+ · · ·

)

=
∂2Ukj
∂x2

+
∆x2

12

∂4Ukj
∂x4

+ · · · . (21)

Substituting (20)-(21) into (18), and using the PDE (1) yields4

τ(xj , tk+1) =
∂Ukj
∂t
− α

∂2Ukj
∂x2︸ ︷︷ ︸

q(xj)

−q(xj) +
∆t

2

∂2Ukj
∂t2

− α∆x2

12

∂4Ukj
∂x4

+ · · ·

=

(
α

∆t

2
− ∆x2

12

)
α
∂4Ukj
∂x4

+ · · · (23)

where we replaced ∂2Ukj /∂t
2 with α2∂4Ukj /∂x

4 using the equation

∂U

∂t
= α

∂2U

∂x2
+ q(x) ⇒ ∂U2

∂t2
= α

∂2

∂x2

(
∂U

∂t

)
= α2∂

4U

∂x4
. (24)

The local truncation error goes to zero linearly in ∆t and quadratically in ∆x. Therefore the centered in
space forward in time scheme (17) is consistent with order one in ∆t and order two in ∆x.

By following exactly the same steps it is possible to derive an expression for the local truncation error of
finite-difference schemes involving different spatial and temporal discretizations. For example, we could
have used a stencil with 5 points in space and the BDF3 method in time.

Absolute stability analysis of finite-difference methods. Consider the IBVP (1) with q(x) = 0 and
zero Dirichlet boundary conditions. The second-order finite-differences discretization of such problem is
given by the system (12) with h(t) = 0, i.e.,

du

dt
= αD2

FDu

u(0) = U0

(25)

Recall that the matrix D2
FD is negative definite with simple (real) eigenvalues

λk =
2

∆x2
(cos(kπ∆x)− 1) k = 1, . . . , N (26)

4In (23) we replaced ∂2Uk
j /∂t

2 with α2∂4Uk
j /∂x

4. Such equality follows from the identity

∂U

∂t
= α

∂2U

∂x2
+ q(x) ⇒ ∂2U

∂t2
= α

∂2

∂x2
∂U

∂t
= α2 ∂

4U

∂x4
. (22)
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Figure 2: Absolute stability analysis of second-order finite-differences to solve the heat equation (1) with
q(x) = 0 and zero Dirichlet boundary conditions. Shown are the smallest and largest eigenvalues of the
differentiation matrix defined in (13) and the region of absolute stability of the Euler forward method. The
fully discrete form of the heat equation (31) is absolutely stable if and only if ∆t < 2∆x2/(απ2L2).

Since λk < 0 we have that the linear dynamical system (25) has a globally attracting stable node at the
origin u = 0. For small ∆x (i.e., large number of spatial points) we obtain

λk '
2

∆x2

(
1− 1

2
k2π2∆x2 + · · · − 1

)
k = 1, . . . , N (27)

Therefore, the smallest and largest eigenvalues of the matrix D2
FD for sufficiently small ∆x are5

λmin =λL ' −
π2L2

∆x2

(
N

N + 1

)2

' −π
2L2

∆x2
, (29)

λmax =λ1 = −π2. (30)

These equations show that as we increase the number of points in [0, L] the system (25) becomes stiffer
and stiffer, since there λmin → −∞ and λmax ' −π2.

• Euler forward time integration: If we integrate the system (25) in time with the Euler Forward
scheme we obtain the fully discrete scheme

uk+1 = uk + α∆tD2
FDu

k, (31)

where we denoted by uk = u(tk). Clearly, the absolute stability condition for Euler forward is
satisfied if (see Figure 2)

λminα∆t ≥ −2 i.e. ∆t ≤ 2∆x2

απ2L2
=

2

απ2(N + 1)2
(32)

This result holds for a large number of points, i.e., for small ∆x. For a small number of points we can
still compute the smallest eigenvalue with (26) and use exactly the same reasoning. The condition

∆t ≤ 2

απ2(N + 1)2
(33)

5Recall that

∆x =
L

N + 1
. (28)
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clearly imposes severe restrictions on the maximum time step we can use in scheme (31). For instance,
if N = 2000 and α = 1 we have

∆t ≤ 5.061× 10−8. (34)

• Three-step Adams-Bashforth time integration (AB3): If we integrate the system (25) in time
with the three-step Adams-Bashforth method we obtain the fully discrete scheme

uk+3 = uk+2 +
α∆t

12
D2

FD

(
23uk+2 − 16uk+1 + 5uk

)
. (35)

As we know, the region of absolute stability of AB3 intersects the real axis at −6/11. If the number
of spatial points is large enough, then we obtain the absolute stability requirement

∆t ≤ 6∆x2

11απ2L2
=

6

11απ2(N + 1)2
, (36)

which is even more restrictive than the condition (33) we obtained for the Euler-forward time inte-
grator.

• Crank-Nicolson time integration: If we discretize the system (25) in time using the Crank-
Nicolson method or any other A-stable time stepping scheme then we do not have any time step
restrictions. As is well-known the Crank-Nicolson method

uk+1 = uk +
α∆t

2
D2

FD

(
uk+1 + uk

)
. (37)

can be conveniently written as(
I − α∆t

2
D2

FD

)
uk+1 =

(
I +

α∆t

2
D2

FD

)
uk. (38)

The matrix

K = I − α∆t

2
D2

FD (39)

is symmetric and positive-definite6. Therefore we can perform a Cholesky decomposition K = RTR,
where R upper-triangular, in a pre-processing stage and write the system (38) as

RTRuk+1 =

(
I +

α∆t

2
D2

FD

)
uk. (40)

This system can be decomposed as a hierarchy of two triangular systems
RTqk+1 =

(
I +

α∆t

2
D2

FD

)
uk (lower triangular system)

Ruk+1 = qk+1 (upper triangular system)

(41)

which can be solved by using forward/backward substitution at a cost of O(N2) operations.

Absolute stability analysis can be generalized to higher-order finite difference schemes and other time
integrators, e.g., RK or BDF methods.

6For second-order finite differences the matrix K is actually tridiagonal. This means that it can be inverted at a linear
cost in N using Thomas’ algorithm [3, p. 93].
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Finite-difference methods for nonlinear PDEs. Consider the following initial-boundary value prob-
lem for a fourth-order nonlinear PDE (Kuramoto-Sivashinsky equation)

∂U

∂t
+ u

∂U

∂x
+
∂2U

∂x2
+
∂4U

∂x4
= 0 t ≥ 0 x ∈ [−L,L]

U(x, 0) = U0(x)

Periodic B.C.

(42)

The Kuramoto-Sivashinsky equation models the diffusive instabilities in a laminar flame front. Its solution
can exhibit chaotic space-time dynamics. We discretize the IBVP with a second-order (in space) finite-
difference method. To this end, we first approximate the derivatives ∂U/∂x, ∂2U/∂x2 and ∂4U/∂x4 with
fourth-order centered finite formulas on the grid

xj = j∆x− L ∆x =
2L

N
j = 0, . . . , N. (43)

Upon definition of Uj(t) = U(xj , t) such derivatives can be expressed as

∂U(xj , t)

∂x
'Uj+1(t)− Uj−1(t)

2∆x
, (44)

∂2U(xj , t)

∂x2
'Uj−1(t)− 2Uj(t) + Uj+1(t)

∆x2
, (45)

∂4U(xj , t)

∂x4
'Uj−2(t)− 4Uj−1(t) + 6Uj(t)− 4Uj+1(t) + Uj+2(t)

∆x4
. (46)

A substitution of (44)-(46) into (42) yields the semi-discrete form

duj
dt

=− uj
uj+1 − uj−1

2∆x︸ ︷︷ ︸
nonlinear term

−uj−1 − 2uj + uj+1

∆x2
− uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2

∆x4
, (47)

for j = 0, . . . , N − 1. Here uj(t) denotes the finite-difference approximation of the solution to (42). The
system (47) is supplemented with the periodic conditions

uj+N (t) = uj(t) for all j (48)

and with the initial condition

uj(0) = U0(xj) for all j = 0, . . . , N − 1. (49)

Note that the second-order discretization (47) involves stencils with different number of points, i.e., three
points for the first- and the second-order derivatives, and five points for the fourth-order derivative. The
system (47) can be discretized in time with any time-stepping, e.g., with the AB2 method.

Remark: The stability of the fully discrete scheme may depend on the PDE being discretized and on the
type of spatial and temporal discretization, in particular for hyperbolic IBVP problems.

Finite difference methods in two-dimensional spatial domains. Consider the following initial-
boundary value problem for the two-dimensional heat equation

∂U

∂t
= α

(
∂2U

∂x2
+
∂2U

∂y2

)
+ q(x, y) t ≥ 0 (x, y) ∈ Ω

U(x, y, 0) = U0(x, y) (x, y) ∈ Ω

Periodic B.C.

(50)
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(a) (b)

Figure 3: (a) Sketch of the spatial domain for the IBVP (50). The boundary of the domain Ω is the union
between Γ1, Γ2, Γ3 and Γ4. The solution is assumed to be periodic in x and y. (b) Two-dimensional grid
and stencil (green cross) used to approximate the Laplacian ∇2U = Uxx + Uyy.
.

where Ω is a spatial domain defined as the Cartesian product of two intervals [0, L1] and [0, L2], i.e.,

Ω = [0, L1]× [0, L2]. (51)

Periodic boundary conditions are set as

U(0, y) = U(L1, y),
∂U(0, y)

∂x
=
∂U(L1, y)

∂x
, (52)

U(x, 0) = U(x, L2),
∂U(x, 0)

∂y
=
∂U(x, L2)

∂x
. (53)

We discretize Ω in terms of the dimensional grid (see Figure 3(b))

(xi, yj) =


xi = i∆x ∆x =

L1

N
i = 0, . . . , N,

yj = j∆y ∆y =
L2

M
j = 0, . . . ,M.

(54)

By using second-order (in space) centered finite differences, we approximate the partial derivatives ∂2U/∂x2

and ∂2U/∂y2 at (xi, yj) as

∂2U(xi, yj , t)

∂x2
'Ui−1,j − 2Ui,j + Ui+1,j

∆x2
(55)

∂2U(xi, yj , t)

∂x2
'Ui,j−1 − 2Ui,j + Ui,j+1

∆y2
, (56)

where we denoted by Ui,j(t) = U(xi, yj , t). A substitution of (55)-(56) into (50) yields

dui,j(t)

dt
=
ui−1,j − 2ui,j + ui+1,j

∆x2
+
ui,j−1 − 2ui,j + ui,j+1

∆y2
+ q(xi, yj), (57)

with boundary conditions
ui+N,j(t) = ui,j(t), ui,j+M (t) = ui,j(t), (58)
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and initial condition
ui,j(0) = U0(xi, yj). (59)

The system (57) can written in terms of differentiation matrices applied to the solution matrix ui,j(t).
Alternatively, we can reshape the solution matrix into a column vector and construct appropriate dif-
ferentiation matrices. The third option is to just write a function that takes in the matrix ui,j(t) and
returns the right hand side of the system (57) at each time. This is usually the best option for practical
implementation, especially for nonlinear system, or systems with space-dependent coefficients.

Galerkin method for the heat equation. Let us consider the IBVP problem

∂U

∂t
= α

∂2U

∂x2
+ q(x) t ≥ 0 x ∈ [0, L]

U(x, 0) = U0(x)

U(0, t) = g0

U(L, t) = gL

(60)

To solve this problem using the Galerkin method, let us first consider the function space

V = {v ∈ L2 such that
∂v

∂x
∈ L2, v(0, t) = g0 and v(L, t) = gL}. (61)

where L2 is the space of square integrable functions in x ∈ [0, L]. The function space V can be approximated
by the finite-dimensional space

VN = span{ϕ0, . . . , ϕN+1} (62)

where ϕk(x) can be, e.g., Lagrange characteristic polynomials associated with a set of Gauss-Lobatto nodes
in [0, L], e.g., Gauss-Lobatto-Legendre nodes. Alternatively, ϕ0 and ϕN+1 can be linear boundary modes,
i.e.,

ϕ0(x) = 1− x

L
ϕN+1(x) =

x

L
(63)

while ϕk can be eigenfunctions of a Sturm-Liouville problem with zero boundary conditions, i.e.,

ϕk(x) = sin

(
kπ

L
x

)
, k = 1, 2, . . . , N, (64)

or shifted Chebyshev polynomials

ϕk(x) = x(L− x)Tk−1

(
2

L
x− 1

)
, k = 1, 2, . . . , N. (65)

In any case, a representation of the solution U(x, t) in VN takes the form

UN (x, t) = g0ϕ0(x) + gLϕN+1(x)︸ ︷︷ ︸
boundary modes

+
N∑
k=1

ak(t)ϕk(x). (66)

Substituting (66) into (1) and projecting the resulting equation onto ϕj(x) (j = 1, . . . , N) yields

N∑
k=1

dak(t)

dt

∫ L

0
ϕj(x)ϕk(x)dx = αg0

∫ L

0

d2ϕ0(x)

dx2
ϕj(x)dx+ αgL

∫ L

0

d2ϕN+1(x)

dx2
ϕj(x)dx+

α

N∑
k=1

ak(t)

∫ L

0

d2ϕk(x)

dx2
ϕj(x)dx+

∫ L

0
q(x)ϕj(x)dx+

∫ L

0
RN (x)ϕj(x)dx. (67)
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By integrating by parts the terms at the right hand side involving second derivatives and imposing that
the residual RN (x) is orthogonal to the span of {ϕ1, . . . , ϕN} (Galerkin method) we obtain

N∑
k=1

Mjk
dak(t)

dt
= −αg0S0j − αgLSN+1j − α

N∑
k=1

Sjkak(t) +

∫ L

0
q(x)ϕj(x)dx j = 1, . . . , N (68)

where we defined

Mjk =

∫ L

0
ϕj(x)ϕk(x)dx (mass matrix), (69)

Sjk =

∫ L

0

dϕj(x)

dx

dϕk(x)

dx
dx (stiffness matrix). (70)

The system (68) can be written as

M
da(t)

dt
= −αSa + q, (71)

where

q =



∫ L

0
q(x)ϕ1(x)dx− α (g0S01 + gLS01)

...∫ L

0
q(x)ϕN (x)dx− α (g0S0N + gLSN+1,N )

 . (72)

If we use the interior modes (64) (basis functions) then the mass matrix and the stiffness matrix are both
diagonal matrices. In particular,

Mij =
L

2
δij and Sij =

π2j2

2L
δij . (73)

This implies that the initial condition for the ODE (71) is

ak(0) =
1

‖ϕk‖2L2

∫ L

0
U0(x)ϕk(x)dx =

2

L

∫ L

0
U0(x)ϕk(x)dx (74)

To study absolute stability of the Galerkin method, let us set q = 0 in (71). In this way the solution
certainly decays to zero. By using the matrices (73), we rewrite the system (71) as

dak(t)

dt
= −απ

2k2

L2
ak(t). (75)

If we use the Euler forward time integration scheme is we obtain the absolute stability condition

∆t ≤ − 2

λN
=

2L2

απ2N2
. (76)

This implies that as we add more and more modes the Galerkin system becomes stiffer and stiffer, which
result is a smaller and smaller ∆t if we use an explicit method.

Collocation method for the heat equation. In the Gauss-Legendre-Lobatto collocation method [2,
p.132] we seek solutions to (60) in the form

UN (x, t) =
N∑
k=0

UN (xj , t)lj(x), (77)
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where lj(x) are the Lagrange characteristic polynomials corresponding to the Legendre-Gauss-Lobatto
quadrature points. A substitution of (77) into (60) yields

∂UN
∂t

= α
∂2UN
∂x2

+ q(x) +RN (x, t). (78)

By requiring that the residual RN (x, t) vanish at the interior points yields the N − 1 equations

dUN (xj , t)

dt
= α

N∑
k=0

D2
jkUN (xk, t) + q(xj) j = 1, . . . , N − 1. (79)

Here, D2
ij is the second-order differentiation matrix corresponding to the Gauss-Legendre-Lobatto quadra-

ture points (see [2, §5.4.1]). We close the system by using the boundary conditions

UN (0, t) = g0, UN (L, t) = gL. (80)

Of course, we can replace the Gauss-Legendre-Lobatto expansion with the Gauss-Chebyshev-Lobatto ex-
pansion described at the end of Chapter 7 of the course notes (see also [2, §5.4.2]). This yields easily
computable collocation points and differentiation matrices.
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Convergence analysis of finite difference methods for PDEs

Consider the following initial/boundary value problem for a system of linear PDEs
∂U(x, t)

∂t
= L(x, t)U(x, t) + f(x, t) t ≥ 0 x ∈ Ω

SU(x, t) = 0 x ∈ ∂Ω

U(x, 0) = U0(x)

(1)

Here U(x, t) denotes a vector field defined in a compact domain Ω ⊆ Rd, ∂Ω is the boundary of Ω, L is
a linear operator that can depend on x = (x1, . . . , xd) and t, and S is a (linear/affine) boundary operator
enforcing Dirichlet, Neumann, Robin or mixed boundary conditions. We assume that the IBVP (1) is
well-posed, i.e., that it admits a unique solution. Let us provide a few simple examples of PDEs that can
be written in the form (1)

• Liouville equation: Consider a dynamical system
dy

dt
= F (y, t)

y(0) = y0

(2)

evolving from a random initial state y0 with probability density function p0(y). The PDE governing
the evolution equation of the joint probability density function of y(t) is

∂p(y, t)

∂t
+∇ · [F (y, t)p(y, t)] = 0. (3)

Clearly, this PDE can written in the form ∂p/∂t = L(x, t)p, where

L(x, t)p = −∇ · F (x, t)− F (x, t) · ∇p (4)

is a first-order differential operator that depends on the phase variables y as well as on time.

• Wave equation: Consider the wave equation

∂2ψ(x, t)

∂t2
= c2∇2ψ(x, t) (5)

and the equivalent system of two first-order PDEs as
∂ψ(x, t)

∂t
= η(x, t),

∂η(x, t)

∂t
= c2∇2ψ(x, t).

(6)

Clearly, the system (6) can be written in the form (1) as

∂

∂t

[
ψ(x, t)
η(x, t)

]
︸ ︷︷ ︸

U(x,t)

=

[
0 1

c2∇2 0

]
︸ ︷︷ ︸

L(x,t)

[
ψ(x, t)
η(x, t)

]
︸ ︷︷ ︸

U(x,t)

(7)

Note that the linear operator L(x, t) in this case does not depend on x and t.
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Lax-Richtmyer stability theory. In this section we provide necessary and sufficient conditions for
convergence of finite-difference schemes to approximate the solution of the IBVP (1). In the interest of
simplicity we consider the case where the linear operator L(x, t) in (1) is time-independent, although all
consideration in the present discussion apply as well when L is time-dependent. The fully discrete finite-
difference form of the IBVP (1) with time-independent linear operator L can always be written in the
form

uk+1 = Buk + bk, (8)

where uk is the vector representing the approximation of the solution U(x, t) at all grid points1 and time
tk, or (more generally) a vector representing solution at all grid points and multiple time instants (see the
AB2 method described below).

The matrix B usually depends on ∆t, ∆x1, ∆x2, etc., and also on the spatial discretization of the functions
and operators appearing in L(x), while bk takes cares of external forcing terms and/or the boundary
conditions. The vector bk may also depend of ∆t, ∆x1, ∆x2, etc.

Example: Consider the one-dimensional heat-equation

∂U

∂t
= α

∂2U

∂x2
, (9)

with Dirichlet boundary conditions. Discretize the second derivative ∂2U/∂x2 by, e.g., second-order cen-
tered finite differences. This yields the semi-discrete form

du(t)

dt
= αD2

FDu. (10)

We have seen that we can discretize (10) in time using many different schemes,e.g.,

uk+1 =uk + α∆tD2
FDu

k (Euler forward), (11)

(
I − α∆t

2
D2

FD

)
uk+1 =

(
I +

α∆t

2
D2

FD

)
uk (Crank-Nicolson). (12)

These schemes can be written in the form (8) provided we define

B = I + α∆tD2
FD (Euler forward), (13)

B =

(
I − α∆t

2
D2

FD

)−1(
I +

α∆t

2
D2

FD

)
(Crank-Nicolson). (14)

Similarly, if we discretize (9) in time with the two-step Adams-Bashforth method we obtain

uk+2 = uk+1 + α∆tD2
FD

(
3

2
uk+1 − 1

2
uk
)
. (15)

We can always write a two-step method as a one-step method in a higher-dimensional space. To this end,
define

vk+1 = uk (16)

1The numerical solution uk in (8) can be arranged as a vector, a matrix, or a multi-dimensional array. Correspondingly,
B can be a matrix, a tensor or a more general linear operator in the space in which uk is defined.
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and rewrite (15) as 
uk+2 = uk+1 + α∆tD2

FD

(
3

2
uk+1 − 1

2
vk+1

)
vk+2 = uk+1

(17)

i.e.,
zk+2 = Bzk+1 (18)

where

zk+2 =

[
uk+2

vk+2

]
, B =

[
I +

3

2
α∆tD2

FD −1

2
α∆tD2

FD

I 0

]
. (19)

Note that (18) is in the form (8). However, in this case the vector of unknowns zk is not just the solution
uk at time tk but rather a concatenation of the solution at time tk and tk−1.

Definition 1 (Lax-Richtmyer stability). The finite difference scheme (8) is stable if there exists a constant
CT independent of k, ∆t, ∆x1, ∆x2 etc such that∥∥∥Bk

∥∥∥ ≤ CT for all k such that k∆t ≤ T. (20)

Here, ‖·‖ denotes any matrix norm induced by a vector norm. In other words, we require that the matrix
powers B are uniformly bounded2 by a constant CT for all k ≤ T/∆t, where the integration period T is
fixed and is chosen arbitrarily ∆t.

When studying convergence of (8) we are interested, in particular, in the behavior of
∥∥Bk

∥∥ when ∆t and
∆xi are sent to zero.

Theorem 1 (Lax-Richtmyer equivalence theorem [1]). Given a properly posed initial-boundary value prob-
lem (1) and a consistent3 finite-difference approximation (8), stability is a necessary and sufficient condition
for convergence.

Proof. For simplicity we consider the case where time integration is defined by a one-step scheme although
all consideration in the present proof apply as well for multistep schemes. A substitution of the exact
solution U(x, t) of the IBVP (1) into the fully discrete scheme (8) yields the local truncation error (LTE)
τ k, defined by the equation

Uk+1 = BUk + bk + ∆tτ k. (22)

Here, we denoted by

Uk =


U(x1, tk)
U(x2, tk)

...
U(xN , tk)

 (23)

where N denotes the total number of spatial grid points. For example, in 3D we have

xi = (xl(i), ym(i), zn(i)). (24)

2Uniformly bounded means that the bound∥∥∥B (∆t,∆x1,∆x2, · · · )k
∥∥∥ ≤ CT (21)

holds for every ∆t, ∆x1, ∆x2, etc., and every k ≤ T∆t (fixed T , and any chosen ∆t).
3Recall that a finite-difference approximation is said to be consistent if the local truncation error goes to zero as we send

∆t and ∆xi (i = 1, . . . , d) to zero.
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i.e, we have N = n3 points, where n is the number of points in each variable z, y or z. Note that for
multi-step time integration methods we just need to replace Uk by Zk = [Uk, Uk−1, Uk−2, . . .]T , i.e.,
a vector collecting the solution vector at times tk, tk−1, etc. (see, e.g., Eqs. (17)-(19)). Subtracting (8)
from (22) yields

ek+1 = Bek + ∆tτ k, (25)

where
ek = Uk − uk (error) (26)

The recursion (25) can be iterated back to the error e0. To this end,

ek =Bek−1 + ∆tτ k−1

=B
(
Bek−2 + ∆tτ k−2

)
+ ∆tτ k−1

=B2ek−2 + ∆tBτ k−2 + ∆tτ k−1

...

=Bke0 + ∆t

k∑
j=1

Bk−jτ j−1. (27)

At this point we take any vector norm of ek (and corresponding induced matrix norm), and use the stability
assumption (20) to obtain

∥∥∥ek∥∥∥ =

∥∥∥∥∥∥Bke0 + ∆t
k∑
j=1

Bk−jτ j−1

∥∥∥∥∥∥
≤
∥∥∥Bk

∥∥∥∥∥e0
∥∥+ ∆t

k∑
j=1

∥∥∥Bk−j
∥∥∥∥∥τ j−1

∥∥
≤CT

∥∥e0
∥∥+ k∆tCT max

j=1,...,k

∥∥τ j−1
∥∥

≤CT
∥∥e0
∥∥+ TCT max

j=1,...,k

∥∥τ j−1
∥∥ , (28)

where T is period of integration, and CT is the the uniform bound in (20). The upper bound in (28) goes
to zero if the method is consistent, i.e., if

max
j=1,...,k

∥∥τ j−1
∥∥→ 0 for ∆t,∆xi → 0, (29)

and if the error at initial time
∥∥e0
∥∥ is either zero or goes to zero as we send ∆t and ∆x1, ∆x2, etc., to

zero. This proves that consistency plus Lax-Richtmyer stability implies convergence.

At this point a few remarks are in order.

• Sufficient condition for stability: Recall that for any matrix norm and any k ∈ N∥∥∥Bk
∥∥∥ ≤ ‖B‖k . (30)

Therefore, to prove stability it is sufficient to show that for sufficiently small ∆t

‖B‖ ≤ 1 + β∆t for some β ∈ R. (31)
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In fact4, ∥∥∥Bk
∥∥∥ ≤ ‖B‖k ≤ (1 + β∆t)k ≤ ek∆tβ ≤ eTβ. (33)

• Necessary and sufficient conditions for stability: The spectral radius of a matrix is a lower
bound for any matrix sub-multiplicative matrix norm. This implies that

ρ(B) ≤ ‖B‖ ⇒ ρ(B)k ≤
∥∥∥Bk

∥∥∥ ≤ CT ⇔ ρ(B)k ≤ CT . (34)

From this equation it follows that
ρ(B) ≤ 1 + β∆t (35)

is necessary for stability. If the matrix B is normal (i.e. BBT = BTB) then the 2-norm coincides
with the spectral radius, i.e.

ρ(B) = ‖B‖2 (36)

and (35) is necessary and sufficient for stability.

Stability analysis of forward-in-time centered-in-space scheme for the heat equation: It is
important to remark that the stability condition may depend on the way we send ∆t and ∆xi to zero. To
show this, consider the one-dimensional heat equation (9) with zero Dirichlet boundary conditions, and the
matrix B corresponding to the centered-in-space forward-in-time finite-difference discretization (13). The
matrix B is symmetric, and therefore the 2-norm coincides with the spectral radius. This yields5,

‖B‖2 = max
i=1,...,N

|α∆tλi + 1| . (37)

At this point we recall that, for large N (number of spatial grid points), we have

min
i=1,...,N

λi = λN =
2

∆x2
(cos(Nπ∆x)− 1) ' − 4

∆x2
. (38)

Hence,

‖B‖2 '
∣∣∣∣4α∆t

∆x2
− 1

∣∣∣∣ (39)

Recalling equation (31), we conclude that a necessary and sufficient condition for stability is∣∣∣∣4α∆t

∆x2
− 1

∣∣∣∣ ≤ 1 + β∆t. (40)

This equation defines a stability region in the (∆t,∆x)-plane for each β (see Figure 20). Such a stability
region can be computed analytically, although the computation is a bit cumbersome (except for the case
β = 0). In fact, define

η =
∆t

∆x2
. (41)

The inequality (40) can be split into the following two inequalities{
4αη − βη∆x2 ≤ 2 ⇔ η

(
4α− β∆x2

)
≤ 2 for ∆x2 ≤ 4α∆t,

−4αη − βη∆x2 ≤ 0 ⇔ 4α+ β∆x2 ≥ 0 for ∆x2 ≥ 4α∆t.
(42)

4The inequalities (33) follow from the basic inequality

log(1 + x) ≤ x ⇔ log(1 + x)k = k log(1 + x) ≤ kx ⇔ (1 + x)k ≤ ekx (32)

5The eigenvalues of the matrix B = I + α∆tD2
FD are 1 + α∆tλi, where λi are the eigenvalues of D2

FD.
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Figure 1: Lax-Richtmyer stability regions for the forward-in-time (Euler) centered-in-space (second-order)
discretization of the heat equation (9) with α = 2 and zero Dirichlet boundary conditions. The regions of
stability are computed numerically using (40). Note the vertical asymptote for β = 40 at ∆x = 2

√
α/β =

0.4472 (see Eq. (43))

The first one can be written as
∆t

∆x2
≤ 2

4α− β∆x2
. (43)

For β > 0 this yields the additional condition ∆x ≤ 2
√
α/β (see Figure 20). On the other hand, for β = 0

everything simplifies substantially. In particular, the second inequality in (42) yields the trivial condition
α ≥ 0, while the first inequality yields

∆t

∆x2
≤ 1

2α
. (44)

The condition (44) also shows that ∆t and ∆x cannot be sent to zero at arbitrary rates. Indeed, we must
have ∆t ∼ κ∆x2 for (44) (or (43)) to hold in the limits ∆t,∆x→ 0.

Lax-Richtmyer stability analysis applies to both implicit and explicit temporal integration schemes. How-
ever, for implicit schemes the matrix B involves the inverse of some other matrix (see, e.g., equation (14)).
This makes the stability analysis of implicit schemes not straightforward nor practical using the matrix B.
We will see hereafter that this issue can be mitigated (at least for linear PDEs) by using discrete Fourier
series.

Convergence analysis for nonlinear PDEs. The fully discrete finite-difference formulation of a one-
dimensional nonlinear PDE can be written as

q∑
k=0

αqu
k+q
j = ∆tΦj

(
uk+q, . . . ,uk,∆t,∆x

)
. (45)

For instance, the second-order central finite-difference discretization of the Kuramoto-Sivashinsky equation
with Euler forward time stepping can be written as

uk+1
j − ukj =∆t

(
−ukj

ukj+1 − ukj−1

2∆x
−
ukj−1 − 2ukj + ukj+1

∆x2
−
ukj−2 − 3ukj−1 + 6ukj − 3ukj+1 + ukj+2

∆x4

)
, (46)

To study convergence of this scheme for ∆t and ∆x going to zero, we can use methods similar to the those
we used in the convergence analysis of numerical schemes for ODEs, in particular the convergence proof
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in the course note 4. To use such a proof in the context of finite-difference approximations of PDEs, we
need to make sure that the Lipshitz constant of Φ in (45) can be bounded by some constant when we send
∆t and ∆x to zero at an appropriate rate. Under this assumption, it is rather straightforward to show
that method is convergent (provided the method it is consistent). To this end, just follow the proof in the
appendix of the course note 4.

Von-Neumann stability theory. Stability analysis of finite-difference schemes can be simplified sub-
stantially if the PDE is defined in a periodic domain. The key idea is to use discrete Fourier series applied
to the finite-difference discretization of the PDE and determine under which conditions on ∆t, ∆x1, ∆x2,
etc., the scheme is stable. One reason for the Fourier series analysis is that it allows us to determine
stability conditions for both implicit and explicit schemes is a rather straightforward way. To illustrate the
method, let us consider the prototype IBVP

∂U(x, t)

∂t
= α

∂2U

∂x2
t ≥ 0 x ∈ [0, L]

U(x, 0) = U0(x)

Periodic B.C.

(47)

We have seen that (47) can be discretized with second-order finite-differences in space and Euler-forward
time integration as

uk+1
j = ukj +

α∆t

∆x2

(
ukj−1 − 2ukj + ukj+1

)
j = 0, . . . , N − 1, (48)

where ukj is the approximation of U(xj , tk), and

xj = j
L

N
j = 0, . . . , N. (49)

The scheme (48) is supplemented with periodic boundary conditions

ukj = ukj+N for all j ∈ Z. (50)

and the initial condition
u0
j = U0(xj) j = 0, . . . , N − 1. (51)

Let us now expand the numerical solution ukj in a discrete Fourier series6

6As is well known, the solution to (47) can be expanded in a Fourier series as

U(x, t) =
∞∑

k=−∞

Ck(t)e2πikx/L (52)

Evaluating U(x, t) on the grid (49) yields the discrete Fourier series

U(xj , t) =

∞∑
k=−∞

Ck(t)e2πikxj/L =

∞∑
k=−∞

Ck(t)e2πikj/N j = 0, . . . , N − 1. (53)

Moreover,

U(xj , t) =

∞∑
k=−∞

Ck(t)e2ikjπ/N =

N−1∑
k=0

∞∑
p=−∞

Ck+pN (t)e2πi(k+pN)j/N =

N−1∑
k=0

e2πikj/N
∞∑

p=−∞

Ck+pN (t)︸ ︷︷ ︸
ck(t)/N

. (54)

This can be written as

U(xj , t) =
1

N

N−1∑
k=0

ck(t)e2πikj/N =
∆x

L

N−1∑
k=0

ck(t)eikjξ, ξ =
2π∆x

L
. (55)
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ukj =
1

N

N−1∑
p=0

ckpe
ipjξ, where ξ =

2π∆x

L
, (56)

and substitute it into (48) to obtain

N−1∑
p=0

ck+1
p eipjξ =

N−1∑
p=0

ckpe
ipjξ

[
1 +

α∆t

∆x2

(
e−ipξ − 2 + eipξ

)]

=
N−1∑
p=0

ckpe
ipjξ

[
1 +

α∆t

∆x2
(2 cos (pξ)− 2)

]
, (57)

i.e.,

ck+1
p = ckp

[
1 +

2α∆t

∆x2

(
cos

(
2πp

∆x

L

)
− 1

)]
︸ ︷︷ ︸

amplification factor Gp(∆t,∆x)

. (58)

Upon definition of

ck =


ck0
ck0
...

ckN−1

 , G(∆t,∆x) =


G0(∆t,∆x) 0 · · · 0

0 G1(∆t,∆x) · · · 0
...

. . .
...

0 · · · · · · GN−1(∆t,∆x)

 (59)

we can write (58) as
ck+1 = G(∆t,∆x)ck. (60)

The matrix G(∆t,∆x) in (60) plays the same role in Fourier space as the matrix B in (8) does in physical
space. In other words, for the scheme (48) to be stable we must have∥∥∥Gk

∥∥∥ ≤ HT for all k such that k∆t ≤ T . (61)

where HT is a constant that does not depend on ∆x or on ∆t. In (61) ‖·‖ denotes any matrix norm induced
by a vector norm.

Remark: Clearly, if we compute the inverse Fourier transform of (60) we obtain

uk+1 = FGF−1uk, (62)

where F is the Fourier transform matrix such that

uk = Fck, F =
1

N


1 1 1 · · · 1

1 eiξ e2iξ · · · ei(N−1)ξ

1 e2iξ e4iξ · · · e2i(N−1)ξ

...
...

...
...

1 e(N−1)iξ e2(N−1)ξ · · · ei(N−1)2ξ.

 (63)

A comparison between (62) and (8) shows that

B = FGF−1. (64)
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This equation justifies why stability can be equivalently studied in Fourier space by studying the norm of
Gk. In fact, ∥∥∥Bk

∥∥∥ =
∥∥∥FGkF−1

∥∥∥ . (65)

The Fourier transform matrix F plays no role in the stability properties of the scheme.

Necessary and sufficient conditions for Von-Neumann stability. Let us recall that the spectral
radius of a matrix G, i.e.,

ρ(G) = max
i
|λi| (66)

where λi are the eigenvalues of G, is a lower bound for any (sub-multiplicative) matrix norm7 of G,
i.e.,

ρ(G) ≤ ‖G‖ for every sub-multiplicative matrix norm ‖·‖. (69)

Moreover, the spectral radius of the matrix power Gk is equal to ρ(G)k (recall that the eigenvalues of Gk

are λki ). By using the stability condition (61) we obtain

ρ(G)k ≤
∥∥∥Gk

∥∥∥ ≤ HT (70)

i.e.,
ρ(G)k ≤ HT . (71)

As before, this implies that for sufficiently small ∆t the spectral radius of G must satisfy (see Eq.
(31))

ρ(G) ≤ 1 + γ∆t (72)

This is a necessary condition, not a sufficient condition. In fact, it is possible that ρ(G)k ≤ HT even though∥∥Gk
∥∥ grows unboundedly as we send ∆t, ∆x1, ∆x2, etc., to zero. In other words,

ρ(G)k ≤ HT does not imply
∥∥∥Gk

∥∥∥ ≤ HT . (73)

However, if the matrix G is normal, i.e., if GG∗ = GG∗ (where ∗ denotes the conjugate transpose) then
it is easy to show that Von-Neumann stability condition (72) is sufficient.

Lemma 1. The Von-Neumann stability condition (72) is sufficient if the amplification matrix G is normal.

Proof. The spectral radius of normal matrices is equal to the matrix 2-norm

ρ(G) =
√
ρ(GG∗) = ‖G‖2 . (74)

This allows us to write (70) as

ρ(G)k =
∥∥∥Gk

∥∥∥
2
≤ HT . (75)

Hence, for normal matrices G we have that (72) implies∥∥∥Gk
∥∥∥

2
≤ HT (76)

7A sub-multiplicative matrix norm is a norm satisfying

‖AB‖ ≤ ‖A‖ ‖B‖ (67)

for all matrices A and B. All matrix norms induces by vector norms are sub-multiplicative. To prove (69) it is sufficient to
consider one eigenvalue λi of G and the corresponding eigenvector v. Construct the matrix V = [v · · · v], and note that

‖GV ‖ = |λi| ‖V ‖ ≤ ‖G‖ ‖V ‖ ⇒ ‖G‖ ≥ max
i
|λi| = ρ(G). (68)

the matrix
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i.e., that the scheme is stable. Recall that stability in one norm imples stability in any other norm.

Fast computation of the amplification factors. The Fourier series of the solution of linear PDEs with
constant coefficients can be always decoupled into a system of equations involving one Fourier mode at a
time. Hence, to determine the amplification factors of the Fourier coefficients it is sufficient to consider
only one wave number. In practice, we can simply substitute

ukj = ckpe
ijpξ where ξ =

2π∆x

L
(77)

into the numerical scheme and compute the amplification factors for the p-th mode. Let us show how to
perform this calculation for second-order centered finite-difference discretization of the heat equation with
Crank-Nicolson time-integration.

• Von-Neumann stability analysis of the heat equation (Euler-forward time integration).
We have seen that the Fourier transform of finite-difference scheme (48) yields the diagonal matrix
of amplification factors defined in (59). The diagonal entries of G are the eigenvalues of G. Hence,
the spectral radius of G is

ρ(G) = max
p=0,...,N−1

∣∣∣∣1 +
2α∆t

∆x2

(
cos

(
2πp

∆x

L

)
− 1

)∣∣∣∣ ' ∣∣∣∣4α∆t

∆x2
− 1

∣∣∣∣ (for large N). (78)

By using the Von-Neumann condition (72) we conclude that the scheme (48) is stable if and only if∣∣∣∣4α∆t

∆x2
− 1

∣∣∣∣ ≤ 1 + γ∆t. (79)

This is exactly the same condition we obtained in (40) (see the discussion thereafter).

• Von-Neumann stability analysis of the heat equation (Crank-Nicolson time integration).
Consider the fully discrete finite-difference scheme

uk+1
j − α∆t

2∆x2

(
uk+1
j−1 − 2uk+1

j + uk+1
j+1

)
= ukj +

α∆t

2∆x2

(
ukj−1 − 2ukj + ukj+1

)
. (80)

Substitute (79) into (80) to obtain

ck+1
p

[
1− α∆t

∆x2
(cos(pξ)− 1)

]
= ckp

[
1 +

α∆t

∆x2
(cos(pξ)− 1)

]
, (81)

i.e.,

ck+1
p =

1 +
α∆t

∆x2
(cos(pξ)− 1)

1− α∆t

∆x2
(cos(pξ)− 1)

ckp. (82)

Again, the amplification matrix G is diagonal with spectral radius

ρ(G) = max
p=0,...,N−1

∣∣∣∣∣∣∣
1 +

α∆t

∆x2
(cos(pξ)− 1)

1− α∆t

∆x2
(cos(pξ)− 1)

∣∣∣∣∣∣∣ . (83)

At this point we notice that cos(pξ)− 1 ≤ 0 for any p. This implies that∣∣∣∣1 +
α∆t

∆x2
(cos(pξ)− 1)

∣∣∣∣ ≤ ∣∣∣∣1− α∆t

∆x2
(cos(pξ)− 1)

∣∣∣∣ (84)
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and
ρ(G) ≤ 1. (85)

Recalling that the Von-Neumann stability condition (72) we conclude that the second-order centered
finite-difference scheme with Crank-Nicolson time integration is unconditionally stable. Moreover,
the scheme is consistent, and therefore convergent.

Clearly, by following the same steps that lead us to (31) we see that (61) yields the following sufficient
condition for stability

‖G‖ ≤ 1 + δ∆t as ∆t→ 0, (86)

where ‖G‖ denotes any matrix norm compatible with a vector norm.
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Finite-difference methods for the advection equation

In this course note we study stability and convergence of various finite-difference schemes for simple hy-
perbolic PDEs (conservation laws) of the form

∂U(x, t)

∂t
+
∂ (F (U(x, t)))

∂x
= 0, (1)

where F is a continuously differentiable nonlinear function. The material in this note is discussed in [3, Ch.
10]. More generally numerical methods nonlinear conservation laws, or systems of nonlinear conservation
laws1 are discussed in, e.g., in [1, 2]. Let us begin with the simple prototype linear initial/boundary value
problem2 

∂U(x, t)

∂t
+ a

∂U(x, t)

∂x
= 0 x ∈ [0, L]

U(x, 0) = U0(x)

Periodic B.C.

(2)

As is well-known, this PDE can be solved with the method of characteristics, by essentially transforming it
into an ODE along the flow generated by the dynamical system (see Appendix at the end of this note)

dx(t)

dt
= a x(0) = x0. (3)

In the case of (2) the ODE is dz/dt = 0, with initial condition z(0) = U0(x0). This yields the analytical
solution3

U(x, t) = U0(x− at). (4)

This is traveling wave moving with velocity a. If a is positive the wave moves to the right, while preserving
entirely its structure. Once the wave reaches the periodic boundary, it comes back from the other side.

Finite-difference discretization. We discretize the IBVP (2) with second-order centered finite-differences.
To this end, consider the following grid

xj = j∆x, ∆x =
L

N
, j = 0, . . . , N (5)

and approximate the first derivative ∂U/∂x as

∂U(xj , t)

∂x
' U(xj+1, t)− U(xj−1, t)

2∆x
. (6)

A substitution of (6) into (2) yields the semi-discrete form

duj(t)

dt
= −auj+1(t)− uj−1(t)

2∆x
j = 0, . . . , N − 1 (7)

with periodic boundary conditions

uN (t) = u0(t) u−1(t) = uN−1(t). (8)

1A conservation law is an expression in mathematical terms of the balance within a physical system. It is a statement that
the production of a physical quantity such as mass, energy or charge in a closed volume is exactly equal to the flux of that
quantity across the boundary of that volume. Such conservation laws often take the form of partial differential equations with
appropriate boundary conditions or equivalent integral forms.

2The IBVP is ill-posed if a > 0 and we set the boundary Dirichlet boundary condition U(L, t) = g(t) where g is a continuous
time-dependent function.

3To compute the solution of (2) we can of course also use other techniques such as Fourier series and Laplace transforms.
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The system (7)-(8) can be written in a matrix-vector form as


du

dt
= −aD1

FDu

u(0) = U0

(9)

where

D1
FD =

1

2∆x



0 1 0 0 · · · · · · −1
−1 0 1 0 · · · · · · 0
0 −1 0 1 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... −1 0 1
1 · · · · · · · · · 0 1 0


, u =



u0

u2

u3
...
...

uN−2

uN−1


, (10)

The matrix D1
FD is clearly skew-symmetric and therefore it has purely imaginary eigenvalues. It can be

shown that the eigenvalues of D1
FD are

λk =
i

∆x
sin

(
2π

L
k∆x

)
k = 1, . . . , N. (11)

Recall also that skew-symmetric matrices are normal. This implies that the spectral radius of the matrix
D1

FD coincides with its 2-norm, i.e., we have∥∥D1
FD

∥∥
2

= ρ
(
D1

FD

)
. (12)

Euler-forward time integration. Let us discretize the ODE system (7) in using the Euler-forward
method. This yields the fully discrete scheme

uk+1 = uk − a∆tD1
FDu

k, (13)

where uk denotes the approximation of the solution of (7) at time tk. It is straightforward to show that
the local truncation error (LTE) of (13) goes to zero linearly in ∆t and quadratically in ∆x. To this end,
let us first write (13) component-by-component as

uk+1
j = ukj − a∆t

ukj+1 − ukj−1

2∆x
. (14)

A substitution of the exact solution U(x, t) of (2) into (13) gives the LTE

τkj =
Uk+1
j − Ukj

∆t
+ a

Ukj+1 − Ukj−1

2∆x
, (15)

where we denoted by Ukj the exact solution evaluated at xj and tk, i.e., Ukj = U(xj , tk). Using Taylor series
expansions yields

τkj =
∆t

2

d2Uhj
dt2

+
a∆x2

12

d3Uhj
dx3

+ higher order terms. (16)

Hence, the method is consistent with order one in time and order two in space. Regarding stability, let us
write the scheme (13) as

uk+1 = Buk (17)
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where
B = I − a∆tD1

FD (18)

and D1
FD is defined in (10). Recall that for normal matrices B, a necessary and sufficient condition for

Lax-Richtmyer stability4 is
ρ(B) ≤ 1 + β∆t. (20)

The spectral radius of the matrix B is easily obtained by shifting and rescaling the eigenvalues of D1
FD,

i.e.,

ρ(B) = max
p=1,...,N

∣∣∣∣1− ia∆t

∆x
sin

(
2π

L
p∆x

)∣∣∣∣
= max
p=1,...,N

√
1 +

a2∆t2

∆x2
sin

(
2π

L
p∆x

)2

(21)

≤
√

1 +
a2∆t2

∆x2
. (22)

Taking the k-th power yields

∥∥∥Bk
∥∥∥ = ρ(B)k ≤

(
1 +

a2∆t2

∆x2

)k/2
≤ exp

(
a2 k∆t2

2∆x2

)
≤ exp

(
a2 T∆t

2∆x2

)
. (23)

If we choose ∆t and ∆x such that
∆t

∆x2
≤ b (24)

for arbitrary (finite) b, then we see that the scheme (13) is Lax-Richtmyer stable. In fact, substituting (24)
into (23) yields ∥∥∥Bk

∥∥∥
2
≤ exp

(
a2Tb

2

)
for all k such that k∆t ≤ T . (25)

By using the Lax equivalence theorem we conclude that the method is convergent, since it is consistent
and stable (under the condition (24))

The stability analysis that lead us to (23) is based on the knowledge of the spectral radius of the matrix
B which, in turn, is based on the knowledge of the eigenvalues of D1

FD. A more direct method to obtain a
stability inequality is based on Von-Neumann analysis. To this end, we study the dynamics of an arbitrary
Fourier mode5

ûkp = ckpe
ijpξ where ξ =

2π∆x

L
. (26)

Substituting (26) into (14) yields

ckp =ckp

[
1− a∆t

2∆x

(
eipξ − e−ipξ

)]
=ckp

[
1− ia∆t

∆x
sin (ξp)

]
︸ ︷︷ ︸

Gp(∆t,∆x)

. (27)

4The 2-norm of a normal matrix B coincides with the spectral radius ρ(B), i.e.,

ρ(B) = ‖B‖2 . (19)

5Since the PDE (2) is linear with constant coefficients it is sufficient to consider one Fourier mode to perform stability
analysis.
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The amplification matrix G is diagonal

G(∆t,∆x) =


G0(∆t,∆x) 0 · · · 0

0 G1(∆t,∆x) · · · 0
...

. . .
...

0 · · · · · · GN−1(∆t,∆x)

 (28)

Since G is normal, we have that the following Von-Neumann condition

‖G‖2 = ρ(G) ≤ 1 + γ∆t (29)

is necessary and sufficient for stability. The spectral radius of G is the same as the spectral radius of the
matrix B, i.e.,

ρ(G) = max
p=0,...,N−1

|Gp(∆t,∆x)|

= max
p=0,...,N−1

∣∣∣∣1− ia∆t

∆x
sin

(
2π

L
p∆x

)∣∣∣∣
= max
p=0,...,N−1

√
1 +

a2∆t2

∆x2
sin

(
2π

L
p∆x

)2

. (30)

As before (see Eq. (23)),

ρ(G)k ≤
(

1 +
a2∆t2

∆x2

)k/2
≤ eTba2/2 (31)

provided we select ∆t ≤ b∆x2, for any finite b > 0. Under this condition we have that the scheme (14) is
Lax-Richtmyer stable, and therefore convergent.

• Remark: Although the scheme (14) is provably convergent (it is consistent and Lax-Richtmyer
stable) it is easy to see that the method is in practice “unstable” for every finite ∆t and ∆x. In fact,
by taking the modulus of (27) we obtain∣∣∣ck+1

p

∣∣∣ =
∣∣∣ckp∣∣∣ ∣∣∣∣1− ia∆t

∆x
sin

(
2π

L
p∆x

)∣∣∣∣
=
∣∣∣ckp∣∣∣

√
1 +

a2∆t2

∆x2
sin

(
2π

L
p∆x

)2

≥
∣∣∣ckp∣∣∣ . (32)

This shows that the amplitude of each discrete Fourier mode is always amplified as time integration
proceeds, no matter how we pick ∆t and ∆x.

On the other hand, the analytical solution of (2) in Fourier space suggests that

cp(t) = e−iatcp(0) ⇒ |cp(t)| =
∣∣∣e−2πiapt/L

∣∣∣ |cp(0)| ⇒ |cp(t)| = |cp(0)| , (33)

i.e., the amplitude of each Fourier mode must be preserved. That’s why the scheme (14) is often
designated as “unstable”. The situation here has similarities to the one we have seen when studying
convergence of the leapfrog method applied to ODEs. In fact, such method is zero stable and
consistent, and therefore convergent. However, the method is unconditionally absolutely unstable.
Note, that here the solution doesn’t really go to zero though.
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Leapfrog time integration. Let us discretize (7) in time with the leapfrog method

uk+2
j = ukj − a

∆t

∆x

(
uk+1
j+1 − u

k+1
j−1

)
. (34)

We know that (34) is consistent with order two in both ∆x and ∆t. Let us perform a Von-Neumann
stability analysis. To this end, we first substitute (26) into (34) to obtain

ck+2
p = ckp − a

∆t

∆x

(
eipξ − e−ipξ

)
ck+1
p . (35)

At this point, we write the two-step method (35) as a one step method[
ck+2
p

dk+2
p

]
=

[
−2ai∆t sin(pξ)/∆x 1

1 0

]
︸ ︷︷ ︸

Gp

[
ck+1
p

dk+1
p

]
. (36)

In this case, the amplification matrix G is block-diagonal and symmetric, hence normal. The eigenvalues
of G are easily obtained by computing the eigenvalues of each block. The characteristic polynomial
corresponding to Gp is

λ2 +
2ia∆t sin(ξp)

∆x
λ− 1 = 0. (37)

The eigenvalues are

λ1,2(p) = − ia∆t sin(ξp)

∆x
±
√

1− a2∆t2 sin(ξp)2

∆x2
. (38)

At this point we notice that for all ∆t and ∆x such that∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1 (39)

we have that quantity within the square root in (38) is real. In this assumption, the modulus of the
eigenvalues can be computed as

|λ1,2(p)|2 =
a2∆t2 sin(ξp)2

∆x2
+ 1− a2∆t2 sin(ξp)2

∆x2
= 1. (40)

This implies that the spectral radius of all Gp is equal to one, and therefore∥∥∥Gk
∥∥∥

2
= ρ(G)k = 1. (41)

This proves that the leapfrog method is Lax-Richtmyer stable (provided (39) is satisfied), and therefore
convergent. The condition (39) is called Courant-Friedrichs-Levy (CFL) condition, and it is described in
more detail hereafter.

Remark: The calculation of the spectral radius of G is more involved when |a∆t/∆x| ≥ 1. In fact, in this
case we have that the square root in (38) is imaginary.

Lax-Friedrichs method. The Lax-Friedrichs scheme is obtained by replacing ukj in the Euler-Forward
method (14) with the average over neighboring nodes, i.e.,

uk+1
j =

ukj−1 + ukj+1

2
− a∆t

ukj+1 − ukj−1

2∆x
. (42)

Page 5



AM 213B Prof. Daniele Venturi

The reason for the modification can be explained as follows. By adding and subtracting ukj from the right
hand side of (42) we can write the scheme as

uk+1
j = ukj − a∆t

ukj+1 − ukj−1

2∆x
+

∆x2

2

(
ukj−1 − 2ukj + ukj+1

∆x2

)
. (43)

In this form, we recognize that the scheme introduces a numerical diffusion term with amplitude propor-
tional to the square of the grid spacing. The diffusion term is meant to counterbalance the numerical
amplification of Fourier modes induced by the Euler-Forward scheme, see Eq. (32). It is straightforward
to show that the Lax-Friedrichs method is consistent with order one in ∆t and order two in ∆x. Let us
now perform a Von-Neumann stability analysis of the scheme (43) (assuming we are considering periodic
boundary conditions in [0, L]). To this end, we substitute (26) into (43) to obtain

ck+1
p =ckp

[
1− a∆t

2∆x

(
eipξ − e−ipξ

)
+

1

2

(
eipξ + e−ipξ − 2

)]
=ckp

[
1− ia∆t

∆x
sin(pξ) + cos(pξ)− 1

]
=ckp

[
cos(pξ)− ia∆t

∆x
sin(pξ)

]
. (44)

Again, we have a diagonal amplification matrix G with diagonal entries

Gp(∆t,∆x) = cos(pξ)− ia∆t

∆x
sin(pξ). (45)

Since G is diagonal, the Von-Neumann condition

ρ(G) ≤ 1 + γ∆t (46)

is necessary and sufficient for stability. We have

ρ(G) = max
p=0,...,N−1

|Gp(∆t,∆x)|

= max
p=0,...,N−1

√
cos(pξ)2 +

a2∆t2

∆x2
sin(pξ)2. (47)

Clearly, if ∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1 (48)

then ρ(G) ≤ 1, and the Lax-Friedrichs method is stable. The condition (48) is known as Courant-Friedrichs-
Levy (CFL) condition, and the number

ν = |a| ∆t

∆x
(49)

is known as Courant number. The CFL condition is a general statement that the domain of dependence of
the numerical scheme must contain the domain of dependence of the physical problem (see Figure 1). For
the particular case of a the linear PDEs we are studying in this section, the physical domain of dependence
a point (the root of the characteristic curve), while the domain of dependence of the numerical scheme is
an interval.

• Analysis of the Lax-Friedrichs scheme with the method of modified equations: To analyze
the scheme (42) it is possible to use another method based on the so-called “modified equation”.
Such equation represents the PDE that governs a smooth function v(x, t) that satisfies the numerical
scheme (42) exactly, i.e.,

v(xj , tk+1) =
v(xj+1, tk) + v(xj−1, tk)

2
− a∆t

v(xj+1, tk)− v(xj−1, tk)

2∆x
. (50)
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Figure 1: Illustration of the CFL condition, highlighting that the domain of dependence of the numerical
scheme must contain that of the physical problem.

By using Taylor series we obtain

∂v

∂t
+ a

∂v

∂x
=

∆t

2

(
∆x2

∆t2
∂2v

∂x2
− ∂v2

∂t2

)
+O(∆t2). (51)

This equation can be written as

∂v

∂t
+ a

∂v

∂x
=

∆t

2

(
∆x2

∆t2
− a2

)
∂2v

∂x2
+O(∆t2)

=
a2∆t

2ν2

(
1− ν2

) ∂2v

∂x2
+O(∆t2). (52)

Hence, if the Courant number (49) satisfies ν ≤ 1 then we see that the numerical solution satisfies an
advection-diffusion equation, which is known to have smooth solutions. On the other hand, if ν > 1
the modified equation has negative diffusion

Remark: Note that if

a
∆t

∆x
= 1 (53)

then the amplitude of the Fourier modes ckp in (44) is preserved in time, i.e., we have∣∣∣ck+1
p

∣∣∣ =
∣∣∣ckp∣∣∣ for all p = 0, . . . , N − 1. (54)

It is easy to see that with condition (53) the Lax-Friedrichs scheme (43) is actually exact for the linear
advection equation (2). In fact, if we substitute (53) into (43) we obtain

uk+1
j = ukj , (55)

which is what the exact solution does along the characteristics curves evaluated on the grid. In other
words, (53) sets up the (space-time) grid in a way that a characteristic passing through one point xj lands
at another grid point (either xj+1 or xj−1 after ∆t time units).
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Lax-Wendroff method. Consider the formal solution of the semi-discrete scheme (9)

u(tk + ∆t) = e−a∆tD1
FDu(tk) (56)

and expand it to second-order in ∆t. This yields

u(tk + ∆t) '
(
U − a∆tD1

FD +
1

2
a2∆t2D1

FDD
1
FD

)
u(tk). (57)

Replacing D1
FDD

1
FD with the second-order differentiation matrix based on a stencil with three points, yields

the Lax-Wendroff method

uk+1
j = ukj −

a∆t

2∆x

(
ukj+1 − ukj−1

)
+
a2∆t2

2∆x2

(
ukj−1 − 2ukj + ukj+1

)
. (58)

It is straightforward to show that the method is consistent with order two in both ∆t and ∆x. Regarding
stability, a substitution of (26) into (58) yields the following equation for the amplification factors of the
discrete Fourier modes

ck+1
p = ckp

[
1− ia∆t

∆x
sin (pξ) +

a2∆t2

∆x2
(cos(pξ)− 1)

]
︸ ︷︷ ︸

Gp(∆t,∆x)

. (59)

As before the amplification matrix G is diagonal, with diagonal entries Gp. By using the trigonometric
identities

cos(pξ)− 1 = −2 sin2

(
pξ

2

)
, sin (pξ) = 2 sin

(
pξ

2

)
sin

(
pξ

2

)
(60)

we can rewrite Gp in (59) as

Gp(∆t,∆x) = 1− 2i
a∆t

∆x
sin

(
pξ

2

)
cos

(
pξ

2

)
− 2

a2∆t2

∆x2
sin2

(
pξ

2

)
. (61)

Taking the modulus yields

|Gp(∆t,∆x)|2 =

[
1− 2

a2∆t2

∆x2
sin2

(
pξ

2

)]2

+ 4
a2∆t2

∆x2
sin2

(
pξ

2

)
cos2

(
pξ

2

)
=1 + 4

a4∆t4

∆x4
sin4

(
pξ

2

)
− 4

a2∆t2

∆x2
sin2

(
pξ

2

)
+ 4

a2∆t2

∆x2
sin2

(
pξ

2

)
cos2

(
pξ

2

)
=1 + 4

a4∆t4

∆x4
sin4

(
pξ

2

)
− 4

a2∆t2

∆x2
sin4

(
pξ

2

)
=1− 4

a2∆t2

∆x2

(
1− a2∆t2

∆x2

)
sin4

(
pξ

2

)
. (62)

With this expression, we can easily bound the spectral radius of the amplification matrix G as

ρ(G)2 = max
p
|Gp(∆t,∆x)|2

≤1− 4
a2∆t2

∆x2

(
1− a2∆t2

∆x2

)
. (63)

In Figure 2 we plot the function

f(α) = 1− 4α2(1− α2) versus |α| = |a| ∆t

∆x
. (64)
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Figure 2: Graph of the function (64) characterizing the square of spectral radius of the amplification matrix
G for the Lax-Wendroff method. It is seen that for |α| ≤ 1 the method is stable.

It is seen that f(β) ≤ 1 for all |β| ≤ 1. This allows us to conclude that the Lax-Wendroff method is stable
(and therefore convergent) if ∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1. (65)

From equation (62) we also see that if |a∆t/∆x| = 1 then the amplitude of each discrete Fourier mode is
preserved. As before, the condition |a∆t/∆x| = 1 implies that we are working with a space-time grid that
is defined by the discrete characteristic curves of (2).

Appendix. The method of characteristics. Consider the semi-linear scalar first-order PDE
∂U(x, t)

∂t
+ a(x, t) · ∇U(x, t) = f(x, t, U(x, t)) x ∈ R t ≥ 0

U(x, 0) = U0(x)

(66)

This equation can be transformed into an ODE on the flow generated by the nonlinear dynamical sys-
tem

X(t,x0)

dt
= a(X(t,x0), t) X(0,x0) = x0. (67)

The ODE is6

dz

dt
= f(X(t,x0), t, z(t)) z(0) = U0(x0) (70)

The meaning of X(t,x0) and z(t) is summarized in Figure 3.

If we are interested in the solution of (66) at a particular point in space, say x∗ (e.g., a point on a grid)
and a particular time say t∗ then we proceed as follows:

6Equation (70) is easily derived by defining

z(t) = U(X(t,x0), t) (solution along the flow) (68)

and noting that

dz(t)

dt
=
dU(X(t,x0), t)

dt
=
∂U(X(t,x0), t)

∂t
+ a(x, t) · ∇U(X(t,x0), t) = f(X(t,x0), t, z(t)). (69)
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Figure 3: Sketch of the method of characteristics.

Figure 4: Sketch of the process used to compute the solution of the PDE (66) at a particular point x∗ and
particular time t∗. Essentially, we integrate the characteristic system (67) backward in time from t = t∗

and position x∗ to t = 0. This gives us the point x∗
0. Next we integrate (70) forward in time with initial

condition z(0) = U(x∗
0) along the same characteristic curve.

1. Integrate (67) backward in time from t = t∗ to t = 0 with initial condition x∗. That gives us the
point x∗

0 shown in Figure (4)

2. with x∗
0 available, we integrate (70) forward in time from t = 0 to t = t∗.

We can use this method to compute the solution of (66) at time t = t∗ at all spatial grid points of a given
grid. To do so, we simply need to solve (67) backward and (70) forward at each grid point.

More generally, the method of characteristics can be applied to solve first-order nonlinear PDEs of the
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form7

∂U(x, t)

∂t
+ a(x, t, U(x, t)) · ∇U(x, t) = f(x, t, U(x, t)). (72)

In this case the characteristic system is
X(t)

dt
= a(X(t), t, z(t)), X(0,x0) = x0,

z(t)

dt
= f(X(t), t, z(t)), z(0) = U0(x0).

(73)

Note that, in this case,computing the solution at a specific point in space and time is not as easy as before
since (73) is coupled. In other words, when we integrate (73) backward in time we need to guess z(t).
Long story short, to compute the solution of (71) at a specific point in space and time, we could use the
shooting method applied to (73), the control variable being z(t) at x∗.
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7A particular case of (72) is the scalar conservation law (1). In fact, we see that (1) can be written as

∂U

∂t
+
∂F (U)

∂U︸ ︷︷ ︸
a(U)

∂U

∂x
= 0. (71)
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