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Review of probability theory

Can you predict where a leaf falling from a tree will land? Will there be clouds above Santa Cruz tomorrow
at noon? Being scientists, we know that there are physical laws and models we could integrate in time
which may provide an answer to such questions. For the falling leaf, we have the equations of fluid
mechanics coupled with the equations describing the leaf mechanics (fluid-structure interaction). For the
weather forecast in Santa Cruz, we have a quite complicated (usually data-driven) model for dynamics of
the atmosphere. However, even if we firmly believe that our equations truthfully represent physical reality,
i.e., that there is no model uncertainty, we still have some problem when making inferences on the two
systems mentioned above. In the case of the leaf falling from the tree, we do not know the exact shape of
the leaf, nor the distribution of mass within the leaf, nor whether there is a tiny wind gust pushing the leaf
in a direction we did not expect, or having it flipping in a way we did not anticipate. We can of course try
to control some of these uncertainties, e.g., by designing a sterilized experiment in which we are reasonably
sure that there is no wind gust and we know “exactly” the geometry, mechanics, and mass distribution of
the leaf. Would the result of such an experiment be useful to make inferences about the behavior of the
falling leaf in real world? Perhaps not.

Alternatively, we could study the system for which we have available equations and physical laws using
techniques that allow us to account for uncertainties in the initial condition, boundary conditions, forcing
terms, geometry,and physical parameters.

The most common approach to study uncertainty propagation, and perhaps the first one that was ever
developed, is random sampling. In this approach we basically study the response of the system, e.g., the
trajectory of the leaf and where it lands, corresponding to randomly sampled realizations of the uncertain
parameters and stochastic processes driving the system. Such parameters and processes can be modeled
as random variables, random functions or random fields. Computing the solution to such stochastic models
by sampling involves solving the ODE/PDE system many times, so that a sufficiently large ensemble
of solutions is available to compute statistics such as mean, standard deviations, and even probability
distribution functions. There are many different types of sampling methods that were developed for this
purpose. For instance, Monte Carlo methods and their variants (quasi-MC, multi-level MC, etc.), sparse
grids, probabilistic collocation methods, etc. Sampling method are often classified as non-intrusive. This
means that we do not need to modify the equations of our model to perform uncertainty analysis, but
simply sample them many times for different conditions.

Another approach to compute the statistics of a given model problem (set of equations describing a physical
system, neural network, etc) in the presence of uncertainties is to represent to output of the model relative to
a set of stochastic basis functions, e.g., multivariate polynomials of random variables with given probability
distributions. This approach is known as polynomial chaos (PC) [23], and has many different variants
(generalized PC, multi-element PC). The method allows us to compute the solution to a model problem with
a small number of random variables and often exhibits exponential convergence rate. Polynomial chaos and
related methods based on series expansions of the model problem are often classified as intrusive methods.
The adjective “intrusive” emphasizes the fact that the equations of motion to propagate uncertainty are
problem-dependent and require an ad-hoc derivation and corresponding coding.

A third class of methods relies on transforming the model problem from the state space to probability
space and solve for the probability density function of the solution. An example of such transformation
is the Liouville equation (linear hyperbolic PDE) for the probability density function of the solution of a
nonlinear dynamical system evolving from a random initial state. Another example is the Fokker-Plank
equation governing the PDF of the state of a nonlinear dynamical system driven by random (white) noise.
In the context of partial differential equations (infinite-dimensional dynamical systems), the PDF equations
corresponding to the solution of nonlinear PDEs evolving from random initial states are functional differ-
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ential equations [20, 18, 2]. Probability density function methods can also be used also to model and study
neural nets (neural nets are essentially discrete dynamical systems [21]). Moreover, all Bayesian inference
approaches, e.g., Gaussian regression, probabilistic graphical models, and data assimilation techniques,
heavily rely probability density function methods.

PDF methods are also very attractive for systems with unknown governing equations (if such equations
even exist!), or systems for which governing equations can be discovered only “locally” and in an ap-
proximate form. Examples of such systems are mathematical models of brain, large random networks
of interacting individuals, the mechanical behavior random heterogeneous materials, disease propagation,
stock market models. In all these cases it not straightforward to derive a computational model that accu-
rately describes the system in all its features, and can be used to accurately forecast quantities of interest.
Recent advances in data-driven modeling and artificial intelligence, open the possibility to discover model
and equations from data. Of course, dealing with model uncertainty on the top of uncertainty in operating
conditions, parameters, forcing terms, etc., opens a whole new dimension to the problem of modeling and
prediction.

It also raises deep philosophical questions regarding the appropriateness of the mathematics we are using
to build our models, and therefore the validity of our computations.

Probability space

There is a well-developed mathematical theory that allows us to describe randomness in the world we
live in, or at least the way we perceive it. Such theory is known as probability theory [15]. The proper
mathematical foundations of probability theory are quite abstract and technical, as they involve rather
advanced concepts of measure theory [9]. However, for our purposes it possible to avoid most technicalities
and have a version of probability theory that allows for computation, and can be digested by the most
(including myself). Let me describe hereafter the basic ingredients of such theory.

To formally describe the outcome of an “experiment” from a mathematical viewpoint it is convenient to
define the probability space (Ω,F , P ) which consists of the following items:

• Ω (sample space): the set of all possible outcomes of the experiment

• F (event space): set of events, en event being a set defined as union or intersection of elements in
the sample space.

• P (probability measure): this function assigns each event in F a probability, which is a number
between 0 and 1.

Example 1: Suppose the experiment is rolling a fair dice with 6 faces once. In this case we can define the
sample space as

Ω = {1, 2, 3, 4, 5, 6} (sample space). (1)

The definition of the event space depends on what we are interested in. In particular, we may be interested
in the following events:

F = {∅,Ω, {1, 3, 5}︸ ︷︷ ︸
odd

, {2, 4, 6}︸ ︷︷ ︸
even

}. (2)

These events can be phrased as: “rolling the dice produces no number” (event ∅); “rolling the dice returns
any number between 1 and 6” (event Ω); “rolling the dice gives an even number” (event {2, 4, 6}), “rolling
the dice returns an odd number” (event {1, 3, 5}). Clearly, we can assign probabilities to these events
as:

P (∅) = 0, P (Ω) = 1, P ({1, 3, 5}) =
1

2
, P ({2, 4, 6}) =

1

2
. (3)
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Note that in this case assigning probabilities is rather straightforward as we can imagine the process of
rolling a dice, and its outcome quite easily. In a similar way, we can assign, e.g., the probability of winning
various prizes in the Powerball or the Mega-Millions (assuming the lottery is fair). A rather different story
is when we are asked to assign probabilities to complex processes influenced by many variables, e.g., where
the leaf falling from a tree is going to land.

Example 2: Let (θ(ω), r(ω)) be the polar coordinated identifying where the leaf falling off a tree is going to
land. Suppose that r = 0 identifies the center of the tree. Clearly (θ(ω), r(ω)) is a vector with two random
components. In this case, the outcome of the experiment are realizations of two real random variables
(coordinates (θ(ω), r(ω)) of the leaf after it lands). We can define the following set of events (distance from
the tree):

F = {∅,Ω, {ω : r(ω) ≤ 1}︸ ︷︷ ︸
event 1

, {ω : 1 < r(ω) ≤ 2}︸ ︷︷ ︸
event 2

, {ω : r(ω) > 2}︸ ︷︷ ︸
event 3

}. (4)

At this point we need to assign probabilities1 to each event in (4), which can be done, e.g., by running a
very complicated fluid dynamics model (repeated simulations), or by observing many many leaves falling
off a tree.

Example 3: Consider an infinite (uncountable) collection of continuous functions X(t;ω) (stochastic pro-
cess) defined in the temporal interval [0, T ]. Let the sample space Ω be the collection of such functions
and consider the event space F

F = {∅,Ω, {ω : X(t;ω) < 1}︸ ︷︷ ︸
event 1

, {ω : X(t;ω) ≥ 1}︸ ︷︷ ︸
event 2

}. (5)

In other words, here we are interested in two events only, namely whether the stochastic process X(t, ω) is
(for all t ∈ [0, T ]) strictly smaller than one, or larger or equal to one. We can assign a probability to each
event in F , e.g., as

P (∅) = 0, P (Ω) = 1, P ({ω : X(t;ω) < 1}) = a, P ({ω : X(t;ω) ≥ 1}) = 1− a, (6)

where a ∈ [0, 1]. Again, the way a is computed depends on the statistical characterization of the process
X(t;ω). In other words, the calculation leading to P ({ω : X(t;ω) < 1}) may involve quite a lot of
operations. Alternatively, the probability of an event E ∈ F can be estimated using a frequency approach,
i.e., P (E) ' nE/n, where nE is the number E occurs over n trials.

σ-algebra. As we shall see hereafter, in order to perform set operations and corresponding operations on
probabilities we need to make sure that F has the structure of a σ-algebra on Ω. A σ-algebra on Ω is a
collection of subsets of Ω that is closed under complement, countable unions, and countable intersections.
In other words,

A,B ∈ F ⇒


A ∩B ∈ F
A ∪B ∈ F
Ac, Bc ∈ F (complement of A and B, i.e., Ac = Ω \A)

(7)

From this conditions it also follows that ∅,Ω ∈ F . Moreover, if {Ai}∞i=1 ∈ F then

∞⋃
i=1

Ai ∈ F ,
∞⋂
i=1

Ai ∈ F (countable union and intersection). (8)

1For a thorough discussion on the meaning of probability and how to assign probabilities see [15, Chapters 1-3].
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Examples of σ-algebras:

• Consider the sample space Ω = {a, b, c}. The power set of Ω, i.e., the combination of all possible
elements of Ω (including the empty set), is a σ-algebra.

2Ω = {∅, a, b, c, {a, b}, {a, c}, {b, c}, {a, b, c}︸ ︷︷ ︸
Ω

} (power set). (9)

The cardinality of the power set, i.e., the number of elements of the set 2Ω is equal to 2#Ω (where #
denotes the number of elements of a set). In the specific case of (9) we have #Ω = 3, and therefore
#2Ω = 23 = 8.

• If the sample space Ω is countably infinite (i.e., the elements of Ω can be put in a correspondence
with N) then the power set 2Ω is isomorphic to R, i.e., it is an uncountable set.

• If the sample space Ω is uncountably infinite, e.g., Ω = [0, 1] then any σ-algebra F on Ω can be
represented as a sub-algebra of the power set 2Ω (Stone’s representation theorem [9]). This is why
the σ-algebra F on an uncountably infinite sample space Ω is often written as a subset of the power
set 2Ω, i.e., F ⊆ 2Ω.

• The σ-algebra on Ω = R is the σ-algebra of the collection of all open subsets of R. Such σ-algebra
necessarily contains all open sets, all closes sets, and all (countable) unions and intersections of open
and closed sets. Such σ-algebra is a sub-algebra of the power set 2Ω.

Probability measure. The probability function

P : F → [0, 1] (10)

assigns to each event A in the σ-algebra F a number P (A) ∈ [0, 1]. In other words, P (A) measures the
likelihood that A occurs. The probability function P satisfies the properties of a measure (hence the name
probability measure2):

1. P (∅) = 0.

2. P (Ω) = 1.

3. For all countable collections of disjoint sets Ai ∈ F

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai). (11)

4. For all A,B ∈ F ,
P (A ∪B) = P (A) + P (B)− P (A ∩B). (12)

From these properties it follows that of the event B ∈ F is a subset of A ∈ F then A = B ∪ (Bc ∩ A),
which implies that (note that B and Bc ∩A are disjoint)

P (A) = P (B) + P (Bc ∩A) ≥ P (B). (13)

2In real analysis, the pair (Ω,F) is called measurable space [9]. The elements of F , i.e., the events, are called measurable
sets. The triple (Ω,F , P ) is called probability space, which is essentially a measurable space in which we define a probability
measure.
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Frequency interpretation of the probability measure: Suppose that in an experiment the event A shows up
nA times out of n trials. If we define the empirical distribution

µn(A) =
nA
n

(14)

then
P (A) = lim

n→∞
µn(A). (15)

Random variables

Let (Ω,F , P ) be a probability space. A real-valued random variable X(ω) is a measurable map from the
sample space Ω into R, i.e.,

X : Ω→ R. (16)

The distribution function of the random variable X(ω) is defined as

F (x) = P ({ω : X(ω) ≤ x}︸ ︷︷ ︸
event

) x ∈ R. (17)

The distribution function represents the measure of the set (event) {ω ∈ Ω : X(ω) ≤ x}, i.e., the probability
that X(ω) is smaller than a given real number x. By using the properties of the probability measure P it
is straightforward to conclude that:

1. F (−∞) = 0,

2. F (∞) = 1,

3. F (x) is non-decreasing, i.e., x1 < x2 ⇒ F (x1) ≤ F (x2),

4. P ({ω : X(ω) > x}) = 1− F (x),

5. F (x) is continuous from the right, i.e.,

lim
ε→0+

F (x+ ε) = F (x), (18)

6. F (x) is not continuous from the left (for discrete random variables),

7. P ({ω : a < X(ω) ≤ b}) = F (b)− F (a)

8. P ({ω : a ≤ X(ω) ≤ b}) = F (b)− lim
ε→0+

F (a+ ε).

The proof of 1.-8. can be found in [15, Chapter 4].

If F (x) is continuous in x then we say that the random variable X(ω) is continuous. If F (x) is a staircase
function then the random variable X(ω) is discrete. F (x) is discontinuous and not staircase, then we say
that X(omega) is mixed.

Frequency interpretation of the distribution function F (x): Suppose we perform an experiment n-times
and observe n realization of the random variable X(ω), say {X(ω1), . . . , X(ωn)}. Let us place all these
numbers on the x axis of a Cartesian plane, and form a staircase function, where each step at X(ωi) has
height 1/n. Then the staircase function Fn(x) converges to F (x) in the limit n→∞.

Page 5



AM 238 Prof. Daniele Venturi

Probability density function. The probability density function (PDF) p(x) of the random variable
X(ω) is (technically speaking) the Radon–Nikodym derivative3 (assuming it exists) of the probability
measure P . The existence of the Radon–Nikodym derivative allows us to write the cumulative distribution
function (17) as

F (x) =

∫ x

−∞
p(y)dy. (21)

Equivalently p(x) can be interpreted as the (weak) derivative of F (x), i.e.,

p(x) =
dF (x)

dx
. (22)

By taking the limit of Lebesgue-integrable Dirac delta sequences, we can make sense of Radon–Nikodym
PDFs converging to Dirac deltas. This is useful when dealing with the PDF of deterministic (non-random)
variables, or discrete random variables. For example,

p(x) = δ(x− a) (PDF of the random variable X(ω) = a for all ω ∈ Ω), (23)

and

p(x) =
N∑
i=1

piδ(x− xi) (PDF of a discrete random variable with range {x1, . . . , xn}). (24)

In particular, the PDF of a fair dice with 6 faces is

p(x) =
1

6

6∑
i=1

δ(x− i). (25)

By using the properties of the cumulative distribution function F (x) it is straightforward to derive the
following properties for the PDF

p(x) ≥ 0 (positivity),

∫ ∞
−∞

p(x)dx = 1 (normalization). (26)

Other properties are

P ({ω : x1 < X(ω) ≤ x2}) =

∫ x2

x1

p(x)dx, P ({ω : x < X(ω) ≤ x+ dx}) = p(x)dx (27)

Frequency interpretation of PDFs: Suppose we sample the random variable X(ω) n times and find that
n∆x samples fall between x and x + ∆x. By using equation (27), and the frequency interpretation of
probability we conclude that

p(x)∆x ' n∆x

n
⇒ p(x) ' 1

∆x

n∆x

n
. (28)

3A probability measure P on the measurable space (Ω,F) is said to be absolutely continuous with respect to another
measure ν if for all events E ∈ F such that P (E) = 0 we have ν(E) = 0. In other words, P is absolutely continuous with
respect to ν if all impossible events (measured relative to P ) are also impossible relative to ν. This is denoted as ν � P .
Consider, in particular, the Lebesgue measure dν = dx. The Radon-Nikodym theorem says that if P is absolutely continuous
with respect to the Lebesgue measure, then there exists a unique function p(x) such that

P (E) =

∫
E

p(x)dx. (19)

Setting the event E in (19) as
E = {w : X(ω) ≤ x} ∈ F (20)

yields equation (21).

Page 6



AM 238 Prof. Daniele Venturi

n = 103 n = 106

Figure 1: Estimation of the PDF of a Gaussian random variable (first row) and a uniform random variable
(second row) using the frequency approach, i.e., formula (28), and the kernel density estimate discussed in
[4] (red line) . We plot results for a different number of samples n.

Hence, by dividing the support of the random variable X(ω) into bins and counting the number of samples
within each bin allows us to estimate the PDF of X(ω) in a rather straightforward way. This is at the basis
of the Monte-Carlo estimation method for random variables. There are of course more effective methods
to estimate the PDF of one random variable from data (see, e.g., [4]). In figure 1 we estimate the PDF of a
Gaussian random variable using frequency approach, i.e., equation (28), and the kernel density estimation
method discussed in [4].

Examples of one-dimensional PDFs:

• Gaussian (continuous):

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R. (29)

• Uniform (continuous):

p(x) =
1

b− a
, x ∈ [a, b]. (30)
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• Binomial (discrete):

p(x) =
n∑
i=0

(
n

i

)
pi(1− p)n−iδ(x− i), p ∈]0, 1[, x ≥ 0. (31)

• Poisson (discrete):

p(x) = e−λ
∞∑
k=0

λk

k!
δ(x− k), λ ∈]0,∞[, x ≥ 0. (32)

Functions of one random variable. In this section we discuss how to compute the probability density
function of a random variable Y (ω) defined as a deterministic nonlinear function of another random variable
X(ω). To this end, let (Ω,F , P ) be a probability space,

g : R→ R (33)

a deterministic function,
X,Y : Ω→ R (34)

random variables. Suppose we are given the PDF pX(x) of X(ω), and that

Y (ω) = g(X(ω)) (35)

for all ω ∈ Ω. What is PDF Y (ω)? Since X and Y are defined on the same probability space we have

FY (y) = P ({ω : Y (ω) ≤ y}) = P ({ω : g(X(ω)) ≤ y}) . (36)

Therefore, to determine the distribution function FY (y) we just need to measure the set

By = {ω : g(X(ω)) ≤ y} (37)

for each y in the set of g(R(X)) (where R(X) denotes the range of the random variable X). The set
By is shown in Figure 2 (in yellow) for a prototype function g(x) and a specific value of y. Clearly, the
distribution function FY (y) must be defined case-by-case. With reference to Figure 2 we have

FY (y) = FX(x1(y)) + 1− FX(x2(y)), (38)

where x1(y) and x2(y) are the branches of the inverse function g−1(y). The function (38) represents the
distribution function of Y in terms of cumulative distribution function of X, which we know.

With the cumulative distribution function of Y available, it is straightforward to compute the PDF of Y ,
by taking the (weak) derivative of FY (y). This is formalized in the following theorem

Theorem 1. Let X be a random variable with PDF pX(x), g ∈ C1(R) a continuously differentiable
function. Then the PDF of Y = g(X) is given by

pY (y) =
r∑
i=1

pX(xi(y))

|g′ (xi(y))|
, (39)

where xi(y) (i = 1, . . . , r) are the real roots of the equation g(x) = y, and g′ (xi(y)) is assumed to be
non-zero4.

4If g′ (xi(y)) = 0 then formula (39) does not apply, and we need to resort to a different method. For example we can
use the distribution function approach outlined in Figure 2, i.e., we could measure sets depending on y with the probability
measure P and connect such set to the distribution function of X.
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Figure 2: Sketch of the set By defined in equation (37) (yellow lines). The random variable X is compactly
supported in [a, b]. The distribution function of the random variable Y (ω) = g(X(ω)) evaluated at y is the
measure of the set By = A ∪B (union of the two yellow lines), i.e., FY (y) = FX(x1(y)) + 1− FX(x2(y)).

Proof. We prove the theorem using Fourier transforms5. Let

φY (a) =

∫ ∞
−∞

eiaypY (y)dy =

∫ ∞
−∞

eiag(x)pX(x)dx. (40)

Taking the inverse Fourier transform yields

pY (y) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eia(g(x)−y)pX(x)dxda. (41)

Next, recall that

δ (g(x)− y) =
1

2π

∫ ∞
−∞

eia(g(x)−y)da. (42)

Substituting (42) into (41) yields (see also [10])

pY (y) =

∫ ∞
−∞

δ (g(x)− y) pX(x)dx. (43)

At this point we use the well-known identity6

δ (g(x)− y) =

r∑
i=1

δ (x− xi(y))

|g′ (xi(y))|
, (44)

where xi(y) are the real roots of the y = g(x) for each y ∈ R. A substitution of (44) into (43) yields (39).
This completes the proof.

5The Fourier transform of a the probability density function pX(x) is known as characteristic function of the random
variable X(ω) (see Eq. (90)).

6The identity (44) if and only if g′(xi(y)) 6= 0.

Page 9



AM 238 Prof. Daniele Venturi

Examples of probability density mappings: Let X be a random variable with probability density function
pX(x). In the following examples we derive the PDF of Y = g(X) for a few prototype g(x).

• Consider the random variable Y (ω) = X(ω)2. The mapping y = g(x) = x2 between the random
variables X and Y can be inverted (with real roots) for all y ≥ 0. This yields

x1(y) =
√
y, x2(y) = −√y y ≥ 0. (45)

By using Theorem 1 we immediately obtain

pY (y) =
1

2
√
y

[pX(
√
y) + pX(−√y)] . (46)

For instance, if pX(x) is Gaussian , i.e.,

pX(x) =
1√
2π
e−x

2/2 (47)

then

pY (y) =
e−y/2√

2πy
(χ2-distribution). (48)

Similarly, if X is uniformly distributed in [−1, 1] then7

pY (y) =
1

2
√
y

for all 0 ≤ y ≤ 1. (49)

• Consider the random variable Y (ω) = etX(ω), where t ≥ 0 is a real parameter. The mapping
y = g(x) = etx can be inverted (with unique solution) for all y > 0 as

x =
log(y)

t
y > 0. (50)

The derivative of g(x) is g′(x) = tetx. Therefore

pY (y) =
1

ty
pX

(
log(y)

t

)
y > 0. (51)

Application to dynamical systems. Let us briefly discuss two applications of the PDF mapping
technique to simple one-dimensional dynamical systems.

• Consider the following Cauchy problem for one ODE evolving from a random initial state
dx

dt
= f(x)

x(0) = X(ω)
(52)

We know from AM 214 that if f is continuously differentiable in x then the system generates a
smooth flow map x(t) = x(t,X(ω)) (differentiable in X) that takes any initial state X(ω) (at t = 0)
and maps it to the corresponding solution at time t. Given the PDF of the initial condition pX(x)
we can compute the PDF of x(t) as

p(x, t) =

∫ ∞
−∞

δ (x− x(t, y)) pX(y)dy. (53)

7Recall that a uniform PDF in [−1, 1] is pX(x) = 1/2 for all x ∈ [−1, 1].
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A convenient way to actually compute such PDF is by sampling, i.e., compute sample paths of x(t)
corresponding to samples of X(ω). However, if the flow map is available analytically then we can
also compute (53) analytically. To this end, consider the system

dx

dt
= x2

x(0) = X(ω)
(54)

We known that the analytical solution (flow map) is

x(t,X) =
X(ω)

1− tX(ω)
. (55)

Suppose that X(ω) is uniformly distributed in [−1, 0] so that the flow map exists for all t ≥ 0 (no
blow-up). What is then the PDF of x(t,X) at each fixed time t? Clearly, we can invert

g(x) =
x

1− tx
= y (56)

uniquely for each t ≥ 0 (x ≤ 0) as

x(1 + ty) = y ⇒ x(y) =
y

1 + ty
. (57)

The first derivative of (56) with respect to x evaluated at the unique root x(y) = y/(1 + ty) is

g′(x) =
1

(1− tx(y))2
= (1 + ty)2. (58)

At this point we use Theorem 1 to conclude that the PDF of the solution to the ODE (54) at each
fixed time t is

p(x, t) =
1

(1 + tx)2
pX

(
x

1 + tx

)
. (59)

In particular, if pX is the PDF of a uniform random variable in [−1, 0] then the support of p(x, t) is
defined by the condition

−1 ≤ x

1 + tx
≤ 0 ⇒ − 1

(1 + t)
≤ x ≤ 0. (60)

Hence, as t goes to infinity the support of p(x, t) shrinks to 0 and p(x, t) converges to a Dirac delta
function at x = 0. Note that for each fixed t we have that the normalization condition of the PDF
p(x, t) is satisfied. In fact,∫ ∞

−∞
p(x, t)dx =

∫ 0

−1/(1+t)

1

(1 + tx)2
1︸︷︷︸

pX( x
1+tx)

dx = 1. (61)

• Next, consider the linear decay problem 
dx

dt
= ξ(ω)x

x(0) = 1
(62)

where ξ(ω) is a random variable with known probability density pξ(x). The analytical solution to
(62) is

x(t, ξ(ω)) = etξ(ω). (63)
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By using equation (51), we immediately conclude that the probability density of the solution to (62)
is

p(x, t) =
1

tx
pX

(
log(x)

t

)
x > 0. (64)

For instance, if pX is a uniform PDF in [−2, 0] then the support of p(x, t) is defined by

−2t ≤ log(x) ≤ 0 ⇒ e−2t ≤ x ≤ 1. (65)

At t = 0 the PDF of the solution is supported only at one point, i.e., x = 1. Indeed,

p(x, 0) = δ(x− 1) (deterministic initial condition). (66)

For t > 0 the PDF of the solution to (62) is8

p(x, t) =
1

2tx
for e−2t ≤ x ≤ 1. (68)

Data-driven identification of the PDF of the initial state. What is the probability density of the
initial state p(x, 0) that generates an envelope of trajectories that is as close as possible to a measured quan-
tity of interest h(x(t))? This is an inverse problem that can be solved by minimizing a performance metric,
i.e., a dissimilarity measure between the measurements at various times and the envelope of trajectories,
over the parameters representing the initial probability density function.

Liouville equation. The PDF of the solution to the Cauchy problem (52) satisfies the following linear
hyperbolic conservation law (see Appendix A of the present course note)

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) = 0, p(x, 0) = pX(x). (69)

This equation is known as Liouville equation. It is straightforward to show by using the method of
characteristics that (59) is the solution of Liouville equation (69) for f(x) = x2, i.e., for the dynamical
system (54). In Appendix A, we prove that the joint probability density function of the phase space
variables of any n-dimensional nonlinear dynamical system

dx

dt
= f(x), x(0) = X(ω) (70)

evolving from a random initial state satisfies X(ω) satisfies the Liouville equation

∂p(x, t)

∂t
+∇ · (f(x)p(x, t)) = 0. (71)

To solve (71) one could propagate characteristic curves from the support of random initial state p(x, 0), or
use more sophisticated methods, e.g., numerical tensor methods [7, 8] or physics-informed neural network
techniques [16].

Sampling from arbitrary one-dimensional PDFs. Let X(ω) be a uniform random variable in [0, 1].
We would like to find a mapping g(X) such that the (continuous) random variable Y (ω) = g(X) has a

8Note that the PDF (68) integrates to one. In fact∫ ∞
−∞

p(x, t)dx =

∫ 1

e−2t

1

tx

1

2︸︷︷︸
pX

(
log(x)

t

)
dx = 1. (67)
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desired probability density pY (y). With such mapping g available we can transform each sample of X(ω)
to a sample of the PDF pY , hence constructing a sampler for Y (ω). As we shall see hereafter, if we denote
by FY (y) the cumulative distribution of the continuous random variable Y (the random variable we are
interested in sampling) then the mapping g is simply the inverse of FY , i.e., Y (ω) = F−1

Y (X(ω)).

Lemma 1. Let X(ω) be a uniform random variable in [0, 1]. Consider a second random variable Y (ω)
with PDF pY and cumulative distribution function

FY (y) =

∫ y

−∞
pY (x)dx (72)

The random variable Y = F−1
Y (X) has cumulative distribution function FY (y).

Proof. Suppose that FY is invertible. Let us show that the random variable F−1
Y (X) has indeed cumulative

distribution function FY (y). By definition,

FY (y) = P ({ω : Y (ω) ≤ y})
= P

(
{ω : F−1

Y (X(ω)) ≤ y}
)

= P ({ω : X(ω) ≤ FY (y)}) (FY invertible and nondecreasing)

= FX(FY (y))

= FY (y). (73)

In fact, since X(ω) is uniform in [0, 1] we have FX(x) = x for all x ∈ [0, 1].

Expectation, moments and cumulants. Let (Ω,F , P ) be a probability space, X : Ω → R a random
variable with cumulative distribution function FX(x) and PDF pX(x). For any function g(X) we define
the expectation of g(X) as 9

E {g(X)} =

∫ ∞
−∞

g(x)dFX(x) =

∫ ∞
−∞

g(x)pX(x)dx. (75)

Clearly, if Y (ω) = g(X(ω)) is a random variable with PDF pY (y), we can equivalently express the expec-
tation as

E {g(X)} = E {Y } =

∫ ∞
−∞

ydFY (y) =

∫ ∞
−∞

ypY (y)dy. (76)

In particular, if we set g(X) = Xk then E
{
Xk
}

are called moments10 of the random variable X

E
{
Xk
}

=

∫ ∞
−∞

xkdFX(x) =

∫ ∞
−∞

xkpX(x)dx. (77)

9We do not need to assume the existence of the PDF to define the expectation operator. In fact, a more general expression
for (75) is

E {g(X(ω))} =

∫
Ω

g(X(ω))dP (ω). (74)

10There are random variables for which moments do not exist. An example is the Cauchy random variable. Random
variables with compactly supported range have all moments. For such compactly supported random variables it is always
possible to reconstruct the PDF pX from the knowledge of its moments or cumulants. In other words, the so-called moment
problem has a unique solution for compactly supported PDFs.
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The first few moments of a random variable X are

E {X} =

∫ ∞
−∞

xpX(x)dx (mean), (78)

E
{
X2
}

=

∫ ∞
−∞

x2pX(x)dx (second-order moment), (79)

E
{
X3
}

=

∫ ∞
−∞

x3pX(x)dx (third-order moment). (80)

The moments of random variable are the coefficients of the power series expansion of the so-called moment
generating function

M(a) = E
{
eaX(ω)

}
(81)

In fact,

M(a) = M(0) +
dM(0)

da︸ ︷︷ ︸
E{X}

a+
1

2

d2M(0)

da2︸ ︷︷ ︸
E{X2}

a2 + · · · . (82)

In general,

E
{
Xk
}

=
dkM(0)

dak
. (83)

A function related to the moment generating function is the cumulant generating function

Ψ(a) = log(M(a)). (84)

The coefficients of the power series expansion of Ψ(a) are called cumulants of the random variableX(ω)

Ψ(a) = Ψ(0) +
dΨ(0)

da︸ ︷︷ ︸
E{X}

a+
1

2

d2Ψ(0)

da2︸ ︷︷ ︸
E{X2}−E{X}2

a2 + · · · (85)

The cumulants of a random variable X are often denotes as
〈
Xk
〉
c
. For example, we have

〈X〉c =E {X} , (86)〈
X2
〉
c

=E
{
X2
}
− E {X}2 , (87)〈

X3
〉
c

=E
{
X3
}
− 3E {X}E

{
X2
}

+ 2E {X}3 , (88)

· · ·

The quantity 〈
X2
〉
c

= E
{
X2
}
− E {X}2 , (89)

is the variance of the random variable X. Finally, we define the the characteristic function of the random
variable X(ω) as

φ(a) = E
{
eiaX(ω)

}
(90)

where i is the imaginary unit. We have seen this function already, i.e., in the proof of Theorem 1. The
characteristic function is the Fourier transform of the probability density function p(x). It is straightforward
to show that

E
{
Xk
}

=
1

ik
dkφ(0)

dak
. (91)
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By expanding the complex exponential function in a power series, and using the definition of cumulants
we obtain the following cumulant expansion of φ(a) (see, e.g., [12])

φ(a) = exp

 ∞∑
j=1

〈
Xj
〉
c

(ia)j

j!

 . (92)

Example: The characteristic function of a Gaussian random variable with mean µ and variance σ2 is

φ(a) = eiµa−σ
2a2/2. (93)

This expression can be derived by the taking the Fourier transform of (29), or by using (92). In fact, for
Gaussian random variables we have that only the first two cumulants are non-zero, i.e.,

〈X〉c =E {X} = µ, (94)〈
X2
〉
c

=E
{
X2
}
− E {X}2 = σ2, (95)〈

Xk
〉
c

=0 for all k ≥ 3. (96)

Substituting these expressions into (92) yields (93).

Random vectors

Let (Ω,F , P ) be a probability space. A real-valued random vector X(ω) = (X1(ω), . . . , Xn(ω)) is a
measurable map from Ω into Rn, i.e.,

X : Ω→ Rn. (97)

Each component Xi(ω) of the random vector X(ω) is a real-valued random variable. The distribution
function of the random vector X(ω) is defined as

F (x1, . . . , xn) = P ({ω : X1(ω) ≤ x1} ∩ · · · ∩ {ω : Xn(ω) ≤ xn}︸ ︷︷ ︸
element of F (event) defined as intersection of events

). (98)

As before, if P is absolutely continuous with respect to the Lebesgue measure dx1 · · · dxn then there exists
a (Lebesgue integrable) probability density function11 p(x1, . . . , xn) such that

F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
p(y1, . . . , yn)dy1 · · · dyn. (99)

Equivalently, we can express p(x1, . . . , xn) as a (weak) derivative of F (x1, . . . , xn) as

p(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn
. (100)

The multivariate distribution function F and associated probability density function p satisfy similar
properties as the properties we have seen for one one random variable (see [15] for details).

Frequency interpretation of the joint PDF: Suppose we observe realizations of a random vector X(ω) with
only two components, i.e., X1(ω) and X2(ω). By using (98)-(99), we have

P ({ω : x1 ≤ X1(ω) ≤ x1 + ∆x1} ∩ {ω : x2 ≤ X2(ω) ≤ x2 + ∆x2}) ' p(x1, x2)∆x1∆x2. (101)

11As before, the probability density function p(x1, . . . , xn) is the Radon-Nikodym derivative of the probability measure P
relative to the Lebesgue measure dx1 · · · dxn.
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Let us partition the tensor product space R2 with an evenly-spaced grid of width ∆x1 (along x1) and ∆x2

(along x2). Suppose we observe n realizations of the random vector X(ω) = (X1(ω), X2(ω)), and suppose
that nA < n instances satisfy the condition

{x1 ≤ X1(ω) ≤ x1 + ∆x1} and {x2 ≤ X2(ω) ≤ x2 + ∆x2}. (102)

Then from (101) we obtain the PDF estimate

p(x1, x2) ' 1

∆x1∆x2

nA
n
. (103)

More efficient and accurate methods to estimate the PDF from data are based on kernels [4] (see Figure
4)

Marginal probability density and marginal distribution. Let X(ω) = (X1(ω), X2(ω)) be a random
vector with joint distribution function function F (x1, x2). The distribution of the random variable X1(ω)
can be obtained from F (x1, x2) simply by sending x2 to infinity, i.e.,

F (x1) = lim
x2→∞

F (x1, x2). (104)

In fact,

lim
x2→∞

F (x1, x2) = P ({ω : X1(ω) ≤ x1} ∩ {ω : X2(ω) ≤ ∞}) = P ({ω : X1(ω) ≤ x1}) = F (x1). (105)

We can write the last equation in terms of PDFs as

lim
x2→∞

∫ x1

−∞

∫ x2

−∞
p(y1, y2)dy1dy2 =

∫ x1

−∞
p(y1)dy1. (106)

Since x1 is arbitrary, it follows from (106) that

p(x1) =

∫ ∞
−∞

p(x1, x2)dx2 (marginalization rule). (107)

Moreover, we have F (∞,∞) = 1, i.e.,∫ ∞
−∞

∫ ∞
−∞

p(x1, x2)dx1dx2 = 1 (normalization condition). (108)

It is straightforward to extend these formulas to distribution functions and PDFs in more than two vari-
ables. For example, if X(ω) = (X1(ω), X2(ω), X3(ω), X4(ω)) is a four-dimensional random vector with
distribution function F (x1, . . . , x4) and PDF p(x1, . . . , x4), then we can obtain the joint distribution func-
tion and the joint PDF of X2 and X3, respectively, as

F (x2, x3) = F (∞, x2, x3,∞), p(x2, x3) =

∫ ∞
−∞

∫ ∞
−∞

p(x1, x2, x3, x4)dx1dx4. (109)

Example (Gaussian distribution): Consider the multivariate Gaussian PDF

p(x1, . . . , xn) =
1√

(2π)n det(Σ)
e−(x−µ)TΣ−1(x−µ)/2, (110)
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where

xT =
[
x1 . . . xn

]
, (111)

µT =
[
E {X1} . . . E {Xn}

]
(mean), (112)

Σij =E {XiXj} − E {Xi}E {Xj} (covariance matrix). (113)

It is straightforward to show that all marginal PDF and distribution functions are still Gaussians of the
form (110).

Independence. Let (Ω,F , P ) be a probability space. Two events A ∈ F and B ∈ F are said to be
independent if the probability of their intersection (that means the probability that both events A and B
happen) equals the product of their probabilities, i.e.,

A,B ∈ F independent ⇔ P (A ∩B) = P (A)P (B). (114)

Consider now a random vector X(ω) = (X1(ω), X2(ω)) with components X1(ω) and X2(ω). We say that
the random variables X1(ω) and X2(ω) are statistically independent if

P ({ω : X1(ω) ≤ x1}︸ ︷︷ ︸
event A

∩{ω : X2(ω) ≤ x2}︸ ︷︷ ︸
event B

) = P ({ω : X1(ω) ≤ x1})P ({ω : X2(ω) ≤ x2}), (115)

for all x1, x2 ∈ R. Equation (115) can be written in terms of the cumulative distribution function as

F (x1, x2) = F (x1)F (x2). (116)

This also implies that the joint PDF of X1 and X2 (if it exists) is simply the product of the PDF of X1

and the PDF of X2, i.e.,
p(x1, x2) = p(x1)p(x2). (117)

These formulas can be generalized to n independent random variables as

F (x1, . . . , xn) = F (x1) · · ·F (xn), p(x1, . . . , xn) = p(x1) · · · p(xn). (118)

Examples:

• Jointly uniform random vector. Let X be a n-dimensional random vector with zero-mean i.i.d.
(independent identically distributed) uniform components in [-1,1]. The joint PDF of X is

p(x1, . . . , xn) =


1

2n
(x1, . . . , xn) ∈ [−1, 1]n

0 otherwise
(119)

• Jointly normal random vector. Let X be a n-dimensional random vector with zero-mean i.i.d.
Gaussian components with variance equal to one. The joint PDF of X is

p(x1, . . . , xn) =
1

(2π)n/2
e−x

Tx/2 x ∈ Rn. (120)

Clearly, from equation (110) we see that Gaussian random variables are independent if and only if

E {XiXj} = E {Xi}E{Xj} for i 6= j. (121)

In general, if (121) is satisfied then we say that Xi and Xj are uncorrelated. Lack of correlation
is a much weaker statement than independence, yet sufficient to claim independence for Gaussian
random variables.
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Conditional distribution function and conditional PDF. Conditional probability is a measure of the
probability of an event A occurring, given that another event B has already occurred. Suppose that the
two aforementioned events belong to the σ-algebra F of a probability space (Ω,F , P ). Then the probability
of A under the condition B is defined as12

P (A|B) =
P (A ∩B)

P (B)
. (122)

Note that the conditional probability is non-zero if A and B are intersecting. Also note that if B is a
subset of A then P (A|B) = 1.

Clearly, if A and B are independent events then by equation (114) we have that P (A ∩ B) = P (A)P (B).
This implies that if A and B are independent then P (A|B) = P (A). In other words, B has no effect
whatsoever on the probability of A occurring. Moreover, P (A ∩B) ≤ P (B) and therefore we always have
that P (A|B) ≤ 1.

In the context of random vectors with multiple components, we may be interested in determining the
conditional probability of an event involving one component, given that another event involving another
component has already occurred. This yields the concept of conditional distribution function and condi-
tional probability density. Let us first clarify these concepts for a random vector with only two components
X(ω) = (X1(ω), X2(ω)). By using the definition of the cumulative distribution function (98) we obtain
(see [15, Ch. 7])

F (x1|x2) =
F (x1, x2)

F (x2)
⇔ F (x1, x2) = F (x1|x2)F (x2). (123)

The determination of the conditional density of X1(ω) assuming X2(ω) = x2, i.e., a specific value of X2(ω)
is of particular interest. This density cannot be derived directly from (122) because, in general, the event
X2(ω) = x2 has zero probability. However, one can make sense of such conditional probability by taking
a suitable limit. Specifically, consider

P ({X1(ω) ≤ x1} ∩ {x2 < X2(ω) ≤ x2 + ∆x2}) = F (x1, x2 + ∆x2)− F (x1, x2) (124)

and
P ({x2 < X2(ω) ≤ x2 + ∆x2}) = F (x2 + ∆x2)− F (x2). (125)

In (124) it is understood that F (x1, x2) is the joint distribution function of (X1, X2), while in (125) F (x2)
denotes the distribution function of X2 alone. Clearly, for small ∆x2

F (x1, x2 + ∆x2)− F (x1, x2) ' ∆x2

∫ x1

−∞
p(y1, x2)dy1, (126)

and
F (x2 + ∆x2)− F (x2) ' p(x2)∆x2. (127)

By differentiating (123) with respect to x1, and taking into account (126)-(127) yields the conditional
PDF

p(x1|X2 = x2) =

∆x2
∂

∂x1

∫ x1

−∞
p(y1, x2)dy1

∆x2p(x2)
, (128)

12An example of conditional probability could be the following:

• Event A: “Daniele’s team scores a goal”.

• Event B: “Daniele takes a shot at the goal”.

The conditional probability P (A|B), i.e., the probability that Daniele’s team scores a goal, conditional to Daniele taking a
shot equals the probability that Daniele takes a shot and scores a goal, divided by the probability that Daniele takes a shot.
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Figure 3: Point clouds representing the joint PDF of the phase variables x1(t) and x3(t) of the Kraichnan-
Orzag system at different times, i.e., p(x3, x1, t). Shown is the procedure to compute the conditional PDF
p(x3|x1, t) and the corresponding conditional mean E{X3|X1 = x1}.

i.e.,

p(x1|X2 = x2) =
p(x1, x2)

p(x2)
(conditional PDF). (129)

In summary, to compute the conditional PDF, p(x1|X2 = x2) we literally take a section of the joint
p(x1, x2) for some fixed value of x2 and then rescale the function we obtain by the number p(x2), i.e., the
one-dimensional PDF of p(x) of X2(ω) evaluated at x = x2. This procedure is illustrated in Figure 3 for a
PDF represented in terms of a point cloud.

Equation (129) can be written as

p(x1, x2) = p(x1|x2)p(x2) = p(x2|x1)p(x1) (130)

which yields the identities

p(x2) =

∫ ∞
−∞

p(x2|x1)p(x1)dx1, p(x1) =

∫ ∞
−∞

p(x1|x2)p(x2)dx2. (131)

The conditional probability density rule can be generalized to multiple random variables. For instance, if
p(x1, x2, x3, x4) denotes the joint PDF of four random variables then

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4). (132)

Moreover, conditional probability densities satisfy the marginalization rule. For instance

p(x1, x3|x4, x5) =

∫ ∞
−∞

p(x1, x2, x3|x4, x5)dx2. (133)

This property follows directly from the definition of conditional probability density (129).
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Expectation, joint moments, and joint cumulants. Let X(ω) = (X1(ω), . . . , Xn(ω)) be a random
vector defined on the probability space (Ω,F , P ). For any measurable function g(X1, . . . , Xn) we define
the expectation13 as

E {g(X1, . . . , Xn)} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)p(x1, . . . , xn)dx1 · · · dxn. (135)

In particular, if g(X1, . . . , Xn) = Xk1
1 · · ·Xkn

n then

E
{
Xk1

1 · · ·X
kn
n

}
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

xk1
1 · · ·x

kn
n p(x1, . . . , xn)dx1 · · · dxn (joint moments) (136)

The correlation matrix14 and the covariance matrix are defined as (see, e.g., (110))

E {XiXj} =

∫ ∞
−∞

∫ ∞
−∞

xixjp(xi, xj)dxidxj (correlation matrix), (138)

E {(Xi − µi)(Xj − µj)} = E {XiXj} − µiµj (covariance matrix). (139)

where µi = E {Xi} (mean of Xi).

Remark: We say that two random variables Xi(ω) and Xj(ω) are uncorrelated if

E {XiXj} = E {Xi}E {Xj} . (140)

Independent random variables are always uncorrelated. In fact, let p(xi, xj) be the joint PDF of Xi and
Xj . We know that if Xi and Xj are independent then p(xi, xj) can be factorized as

p(xi, xj) = p(xi)p(xj). (141)

A substitution of (141) into (138) immediately yields (140).

We define the moment generating function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) as

m(a1, . . . , an) = E
{
ea1X1+···+anXn} . (142)

13Note that the expectation E{·} is a linear operator from a space of functions, e.g., the space of real-valued functions that
are measurable with respect p(x1, . . . , xn). Also, we do not need to assume the existence of the PDF to define the expectation
operator. In fact, a more general expression for (135) is

E {g(X1, . . . , Xn)} =

∫
Ω

g(X1(ω), . . . , Xn(ω))dP (ω). (134)

14Note that (138) follows from (136) using the marginalization property of the PDF. For instance

E {X1X2} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

x1x2p(x1, . . . , xn)dx1 · · · dxn

=

∫ ∞
−∞

∫ ∞
−∞

x1x2

(∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x1, . . . , xn)dx3 · · · dxn
)
dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

x1x2p(x1, x2)dx1dx2. (137)

.
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It is straightforward to show that

∂m(0, . . . , 0)

∂ai
=E{Xi}, (143)

∂2m(0, . . . , 0)

∂aj∂ai
=E{XiXj} (144)

∂3m(0, . . . , 0)

∂aj∂ai∂ak
=E{XiXjXk},

· · · (145)

Hence, the partial derivatives of the moment generating function evaluated at zero represent the joint
moments of the components of random vector X. Clearly, if m(a1, . . . , an) admits a convergent power
series expansion at 0 then all joint moments exist.

The cumulant generating function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) is defined as

Ψ(a1, . . . , an) = log(m((a1, . . . , an))). (146)

It is straightfoward to show that

∂Ψ(0, . . . , 0)

∂ai
=E{Xi}, (147)

∂2Ψ(0, . . . , 0)

∂aj∂ai
=E{XiXj} − E{Xi}E{Xj}, (148)

∂3Ψ(0, . . . , 0)

∂aj∂ai∂ak
=E{XiXjXk} − E{Xi}E{XjXk} − E{Xj}E{XiXk} − E{Xk}E{XiXj}

+ 2E{Xi}E{Xj}E{Xk},
· · ·

The quantities at the right hand side are known as joint cumulants of the random variables (X1, . . . , Xn).
The cumulants are often denoted as 〈XiXj · · · 〉c (see, e.g., [12])

〈Xi · · · 〉c =E{Xi},
〈XiXj · · · 〉c =E{XiXj} − E{Xi}E{Xj}, (149)

· · ·.

The characteristic function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) is defined as

φ(a1, . . . , an) = E
{
ei(a1X1+···+anXn)

}
. (150)

Note that the characteristic function is the Fourier transform of the joint probability density function
p(x1, . . . , xn) and therefore it essentially carries the same information. The joint moments of X can be
computed as

E
{
Xk1

1 · · ·X
kn
n

}
=

1

ik1+···+kn
∂k1+···+knφ(0, . . . , 0)

∂k1a1 · · · ∂knan
. (151)

It is interesting to notice that the marginalization operation we have seen for the PDF, e.g.,

p(x1) =

∫ ∞
−∞

p(x1, x2, . . . , xn)dx2 · · · dxn (152)
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turns out to be simplified quite substantially in Fourier space. Indeed

φ(a1) = φ(a1, 0, . . . , 0) = E
{
eia1X1+i0X2···+i0Xn} . (153)

By using the well known series expansion of the complex exponential, it is possible to show that (see, e.g.,
[12])

φ(a1, a2, . . . , an) = exp

 ∞∑
ν1,...,νn=0

〈Xν1
1 · · ·X

νn
n 〉c

n∏
k=1

(iak)
νk

νk!

 (154)

where the series at the exponent excludes the case ν1 = · · · = νn = 0. For example,

φ(a1, a2) = φ(a1)φ(a2) exp

 ∞∑
j,k=1

〈
Xj

1X
k
2

〉
c

(ia1)j(ia2)k

j!k!

 , (155)

where we used (92). Clearly, if X1 and X2 are independent we have
〈
Xj

1X
k
2

〉
c

= 0 for all i and j and

therefore (155) reduces to
φ(a1, a2) = φ(a1)φ(a2). (156)

Clearly, this equation is the Fourier transform of the PDF p(x1, x2) = p(x1)p(x2), and shows that if X1

and X2 are independent both the joint PDF and the joint characteristic function can be factorized as a
product of one-dimensional functions.

Conditional expectation. Let X(ω) and Y (ω) be two random vectors defined on the probability space
(Ω,F , P ). The conditional mean of u(X(ω)) (u is an arbitrary measurable function) assuming Y (ω) = y
is defined as15

E{g(X)|Y = y} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)p(x|y)dx, (157)

where

p(x|y) =
p(x,y)

p(y)
(158)

is the conditional probability density of X(ω) given Y (ω) = y. Note that the E{g(X)|Y = y} is a
function of y. The conditional mean defined in equation (157) allows us to write the conditional moments
of a random variable or a random vector, given information on another random vector. For example, the
conditional mean and conditional correlation of X given Y (ω) = y are defined as

E{Xi|Y = y} =

∫ ∞
−∞

xip(xi|y)dxi, (159)

E{XiXj |Y = y} =

∫ ∞
−∞

∫ ∞
−∞

xixjp(xi, xj |y)dxidxj . (160)

The conditional mean of a system with two random variables is visualized in Figure 3.

By combining (158), (157) and (135) we see that

E{g(X)} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

E{g(X)|Y = y}p(y)dy. (161)

In this sense, E{g(X)|Y = y} can be interpreted as a random variable, i.e., a scalar function of the random
variable Y which, if averaged over p(y), yuelds exactly E{g(X)}.

15The conditional mean in equation (157) is often written as E{g(X)|Y }.
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Joint PDF of m functions of n random variables. Let X(ω) = (X1(ω), . . . , Xn(ω)) be a random
vector with joint probability density function p(x1, . . . , xn). Define

Y1 = g1(X1, . . . , Xn)
...

Ym = gm(X1, . . . , Xn)

(162)

What is the joint probability density function of the random vector Y = (Y1, . . . , Ym)? Note that m can
be smaller, equal or larger than n. These cases need to be handled differently.

• If n = m and {g1, . . . , gm} are distinct functions we proceed as in Theorem 2 below.

• If m < n and {g1, . . . , gm} are distinct functions we can add m − n equations to complement the
system so that we have n independent equations in n variables:

Y1 = g1(X1, . . . , Xn)
...

Ym = gm(X1, . . . , Xn)

Ym+1 = Xm+1

...

Yn = Xn

(163)

Once the joint PDF of Y1, . . . , Yn is known (using Theorem 2 below) then we can marginalize it with
respect to (ym+1, . . . , yn) to obtain p(y1, . . . , ym) as

p(y1, . . . , ym) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(y1, . . . , ym, ym+1, . . . yn)dym+1 · · · dyn. (164)

• If we have more equations than variables (i.e. m > n) then the computation of the joint PDF of
(Y1, . . . , Ym) is not as straightforward as above. Consider for example the mapping Y1(ω) = X(ω) and
Y2(ω) = X2(ω). Here we have two functions of the same random variable. Note also that Y2 = Y 2

1 .
It can be shown that the joint PDF of Y1 = X and Y2 = X2 is

p(y1, y2) = pX(y1)δ(y2 − y2
1), (165)

where pX is the PDF of X and δ(·) is the Dirac delta function.

Theorem 2. Let xk(y) (k = 1, . . . , r) be the zeros of the nonlinear system of equations y = g(x) defined
in (162) (for n = m) or in (163) (for m < n). The joint PDF of Y1, . . . , Yn is given by

pY (y) =

r∑
i=1

pX(xi(y))

|J(xi(y))|
, (166)

where J is the Jacobian determinant16 associated with the mapping g(x) evaluated at xi(y) (assumed
non-zero).

16In (166) it is assumed that

J(xi(y)) = det

[
∂g(x)

∂x

]
x=xi(y)

6= 0. (167)
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n = 104 n = 106

Figure 4: Estimation of the joint PDF of the random variables Y1 = X1 and Y2 = 2 sin(2X1 +X2) where
X1 and X2 and independent Gaussians with zero mean and variance one. We show the results we obtain
with the frequency approach, i.e., formula (103) and the 2D kernel density estimation method discussed in
[4] (transparent surface plot). We plot results for a different number of samples n.

The proof of this theorem is provided in [15, Chapter 8].

Example: Consider the mapping
Y1 = X2

1 Y2 = X1 +X2. (168)

Suppose we know the joint PDF of X1 and X2. What’s the joint PDF of Y1 and Y2? The following mapping
from (X1, X2) to (Y1, Y2) can be inverted as{

y1 = x2
1

y2 = x1 + x2

⇒

{
x1 = ±√y1

x2 = y2 ∓
√
y1

. (169)

The Jacobian determinant of (169) is easily obtained as

J(x1, x2) = det

[
2x1 0
1 1

]
= 2x1. (170)

Hence, by applying Theorem 2, we obtain the following joint PDF of Y1 and Y2 is

pY (y1, y2) =
1

2
√
y

[pX(
√
y1, y2 −

√
y1) + pX(−√y1, y2 +

√
y1)] y1 ≥ 0. (171)

Example: Consider the mapping

Y1(ω) = X1 Y2(ω) = 2 sin (2X1(ω) +X2(ω)) , (172)

where X1 and X2 and independent Gaussians with zero mean and variance one. In Figure 4 we estimate
the joint PDF of Y1 and Y2 using the frequency approach approach, i.e., formula (103), and the 2D kernel
density estimation method discussed in [4].

Alternative methods to compute the joint PDF of functions of random vectors. There are
alternative equivalent methods to compute the joint PDF (Y1, . . . , Ym), given the joint PDF (Y1, . . . , Yn),
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e.g., methods based on the Dirac delta function [10] or methods based on the joint characteristic function.
With reference to the previous example we have the joint characteristic function

φY (a1, a2) =

∫ ∞
−∞

∫ ∞
−∞

eia1x2
1+ia2(x1+x2)p(x1, x2)dx1dx2. (173)

Clearly, if φY (a1, a2) can be computed then we can simply inverse Fourier transform it to obtain the joint
PDF of (Y1, Y2). By using Dirac delta functions we can represent directly the joint PDF of the random
variable

Y (ω) = g(X1(ω), . . . , Xn(ω)), (174)

as

p(y) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

δ(y − g(x1, . . . , xn))p(x1, . . . , xn)dx1 · · · dxn (175)

=
1

2π

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia(y−g(x1,...,xn))p(x1, . . . , xn)dx1 · · · dxnda. (176)

Example: Let Y1 = X and Y2 = X2 (two functions of one random variable). What is the joint PDF of Y1

and Y2? The mapping (162) yields a Jacobian determinant that is zero, and therefore the mapping it is
not invertible. This implies that theorem (2) cannot be applied. However, using the characteristic function
approach we obtain

φ(a1, a2) =

∫ ∞
−∞

eia1x+ia2x2
pX(x)dx. (177)

Taking the inverse Fourier transform yields,

p(y1, y2) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

eia1(x−y1)+ia2(x2−y2)pX(x)dxda1da2

=
1

2π

∫ ∞
−∞

δ(x− y1)eia1(x2−y2)pX(x)dxda2

=δ(y2
1 − y2)pX(y1). (178)

Remark: If (X1, . . . , Xn) are independent random variables and (g1, . . . , gn) are n functions from R into R,
then Y1 = g1(X1), . . ., Yn = gn(Xn) are independent random variables. It is straightforward to prove this
statement using the Dirac delta function representation (or the characteristic function) of PDF mapping
[10]. To this end, let

Yi(ω) = gi(Xi(ω)). (179)

We have

p(y1, . . . , yn) =

∫ ∞
−∞

n∏
j=1

δ(yj − gj(xj))p(x1, . . . , xn)dx1 · · · dxn

=
n∏
j=1

∫ ∞
−∞

δ(yj − gj(xj))p(xj)dxj

=p(y1) · · · p(yn). (180)
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Remark: The PDF of the sum of independent random variables is the convolution the PDF of each variable.
For example, let

Y = X1 +X2 +X3 (181)

be the sum of three independent random variables X1, X2 and X3, with PDFs p1(x1), p2(x2) and p3(x3)
respectively. By using (175) we obtain

p(y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ(y − x1 − x2 − x3)p(x1, x2, x3)dx1dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ(x1 − y + x2 + x3)p1(x1)p2(x2)p3(x3)dx1dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

p1(x2 + x3 − y)p2(x2)p3(x3)dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

p1(x1 − y)p2(x1 − x3)p3(x3)dx1dx3. (182)

In the last equality we considered the mapping x1 = x2 + x3 as a coordinate change from x1 to x2 with
parameter x3. Note that the process of computing the PDF of the sum of independent random variables
can be also seen as a hierarchical process in which we proceed with two variables at a time To this end,
we first compute the PDF of Z = X2 +X3 as

pZ(z) =

∫ ∞
−∞

p2(z − x3)p3(x3)dx3. (183)

Clearly, Z is independent of X1 and therefore the PDF of Y = Z +X1 is

pY (y) =

∫ ∞
−∞

p1(y − x1)pZ(x1)dx1. (184)

A substitution of (183) into (184) yields (182).

Lebesgue spaces of random variables. The expectation operator E{·} is a linear integral operator
over a probability measure. Such an operator can be used to define norms and eventually inner products
in spaces of random variables. For example,

E {|X|q} =

∫
Ω
|X(ω)|qdP (ω) q ∈ N (185)

is essentially a weighted q norm. The space of random variables satisfying E {|X|q} < ∞ is denoted as
Lq(Ω,F , P ), in analogy with the classical Lebesgue space for functions. The case q = 2 is of particu-
lar importance as it has the structure of a Hilbert space. Specifically, for any two random variables in
L2(Ω,F , P ) we have the inner product

E {XY } =

∫
Ω
X(ω)Y (ω)dP (ω) (186)

and the norm

E
{
X2
}

=

∫
Ω
X(ω)2dP (ω). (187)

The inner product (186) allows us to define orthogonal random variables. Specifically, X(ω) and Y (ω) are
orthogonal in L2(Ω,F , P ) if they are uncorrelated, i.e., E {XY } = 0. Also, X(ω) and Y (ω) are orthonormal
if they are orthogonal and have norm equal to one, i.e., E

{
X2
}

= E
{
Y 2
}

= 1.
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Application to dynamical systems

Consider the following linear dynamical system{
ẋ(t) + ξ(ω)x(t) = 0
x(0) = x0(ω)

(188)

where ξ(ω) and x0(ω) are independent random variables. Specifically ξ(ω) is uniformly distributed in [0, 1],
while x0(ω) is Gaussian random variable with mean zero and variance one. As is well-known, the analytical
solution of (188) is

x(t;ω) = x0(ω)e−tξ(ω). (189)

Let us compute the mean, the second-order moment and the auto-correlation function of the solution
x(t;ω), i.e., E{x(t;ω)}, E{x(t;ω)2}, and E{x(t;ω)x(t′ω)} versus time. We have

E {x(t;ω)} =
1√
2π

∫ ∞
−∞

x0e
−x2

0/2dx0

∫ 1

0
e−tξdξ = 0, (190)

E
{
x(t;ω)2

}
=

1√
2π

∫ ∞
−∞

x2
0e
−x2

0/2dx0

∫ 1

0
e−2tξdξ =

1

2t

(
1− e−2t

)
, (191)

E
{
x(t;ω)x(t′;ω)

}
=

1√
2π

∫ ∞
−∞

x2
0e
−x2

0/2dx0

∫ 1

0
e−(t+t′)ξdξ =

1

t+ t′

(
1− e−(t+t′)

)
. (192)

The one-time probability density function of x(t;ω) can be easily computed by using the Dirac delta
function approach [10]. Indeed,

p(x, t) =
1√
2π

∫ ∞
−∞

∫ 1

0
δ
(
x− x0e

−ξt
)
e−x

2
0/2dx0dξ

=
1√
2π

∫ ∞
−∞

∫ 1

0

δ
(
x0 − xeξt

)
e−ξt

e−x
2
0/2dx0dξ (193)

=
1√
2π

∫ 1

0
eξt−(xeξt)2/2dξ. (194)

Now consider the change of variables

u =
xeξt√

2
⇒ dξ =

√
2

ξt
e−ξtdu. (195)

A substitution of (195) into (194) yields

p(x, t) =
1

ξt
√
π

∫ xet/
√

2

x/
√

2
e−u

2
du (196)

=
1

ξt
√
π

[
erf

(
xet√

2

)
− erf

(
x√
2

)]
. (197)

Liouville equation approach: We can transform the linear system (188) involving one random variable at
the right hand side to an equivalent 2D linear system evolving from a random initial state (an no random
variables at the right hand side). To this end, we notice that

ẋ(t) + yx(t) = 0
ẏ(t) = 0
x(0) = x0(ω)
y(0) = ξ(ω)

(198)
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is completely equivalent to (188). In this setting, we can derive a linear transport equation for the joint
PDF of x(t;ω) and y(t;ω), i.e., x(t;ω) and ξ(ω). Such PDF equation takes the form

∂p(x, y, t)

∂t
+

∂

∂x
(xyp(x, y, t)) +

∂

∂y
(xyp(x, y, t)) = 0

p(x, y, 0) = px0(x)pξ(y)
(199)

It can be verified by a direct substitution that the solution the initial value problem (199) is

p(x, y, t) =
1√
2π
eyt−(xeyt)2/2. y ∈ [0, 1], x ∈ R. (200)

Note that the joint PDF (200) was already obtained in equation (194), right before marginalizing with
respect to ξ.

Data-driven identification of random dynamical systems. A system with random parameters
and/or random initial states generates an envelope of trajectories that depends on the joint PDF of the
random variables driving the system. It is possible to identify such joint PDF from data, e.g., by minimizing
a performance metric, i.e., a dissimilarity measure (e.g., a Wasserstein norm) between the measurements
of a quantity of interest at various times and the envelope of trajectories, over the degrees of freedom
representing the joint probability density function. of the random variables. In this way, we are essentially
trying to reduce model uncertainty by shrinking a continuous trajectory tube generated by a random
dynamical system of the form 

dx(t)

dt
= f(x(t);ω)

x(0) = x0(ω)

(201)

around measurements of some phase space function h(x(t)). Note that f(x(t);ω) is a random vector field
and x0(ω) is a random initial state. We will shall see hereafter that f(x(t);ω) can be represented in a
Karhunen-Loève expansion

fi(x(t);ω) =
∞∑
k=1

ξki (ω)θki (x) i = 1, . . . , n (202)

where ξki (ω) are uncorrelated random variables and θki (x) are orthonormal basis functions. Other represen-
tations of fi(x(t); ξ(ω)) can be built, e.g., using tensor expansions in weighted L2 spaces, e.g., functional
tensor train [7, 3, 14]. The minimization procedure discussed above essentially identifies the degrees of
freedom of the joint probability density function of x0(ω) and ξ(ω), i.e., p(x0, ξ), either in the form
of a sampler, e.g., using Wasserstein generative neural networks [1], or the actual multivariate function
p(x0, ξ).

Random processes and random fields

Let Ω,F , P ) be a probability space. A real valued stochastic process in the time interval [0, T ] is a
mapping

X : Ω× [0, T ]→ R. (203)

The process can be continuous in time (e.g., Brownian motion) discontinuous in time (e.g., telegra-
pher’s random process), or time-discrete, e.g., represented by a sequence of random variables X(tj ;ω)
j = 1, . . . , n.

Page 28



AM 238 Prof. Daniele Venturi

Remark: The notion of continuity we know for real valued functions can be generalized substantially when
dealing with stochastic processes. We have, for example,

• Continuity in probability:

lim
s→t

P ({ω : |X(t;ω)−X(s;ω)| > ε}) = 0 for all ε > 0. (204)

• Mean-square continuity:
lim
s→t

E{|X(t;ω)−X(s;ω)|2} = 0. (205)

• Continuity in distribution:

lim
s→t

F (x, s) = F (x, t) (F (x, t) distribution function of X(t;ω). (206)

Continuity in mean-square ⇒ continuity in probability ⇒ continuity in distribution.

Continuity in probability follows from mean-square continuity17 thanks to the Markov’s inequality

P ({ω : |X(t;ω)−X(s;ω)| > ε}) ≤ 1

ε2
E{|X(t;ω)−X(s;ω)|2} ∀t, s ∈ [0, T ]. (208)

Other properties of X(t;ω) very much depend on the way we characterize the process, i.e., the set of rules
and specifications that allow us to fully characterize the process. Clearly, X(t;ω) is a random variable for
each fixed t. This means that X(t;ω) admits a distribution function

F (x, t) = P ({ω : X(t;ω) ≤ x}) , (209)

and eventually a probability density function

p(x, t) =
dF (x, t)

dx
. (210)

With F (x, t) or p(x, t) available we can compute the statistical moments at time t, e.g.,

E
{
X(t;ω)k

}
=

∫ ∞
−∞

xkp(x, t)dx, k ∈ N. (211)

The PDF p(x, t), however, provides very limited statistical information about the process X(t;ω). In fact,
it does not allow us to compute any joint statistics at different times, for example the autocorrelation
function

E{X(t;ω)X(s;ω)} =

∫ ∞
−∞

x1x2p(x1, x2, t1, t2)dx1dx2, (212)

where p(x1, x2, t1, t2) is the joint probability density function of the random variables X(t1;ω) and X(t2;ω)
(t1 and t2 here can vary in [0, T ]). A straightforward generalization of this line of thinking leads us to
construct the joint PDF of {X(t1;ω), . . . , X(tn;ω)} for an increasing number of distinct time instants

17Mean square continuity also implies that the mean process E{X(t;ω)} is continuous in t. In fact, using the inequality
|E{X}|2 ≤ E{X2} we obtain

|E{X(t;ω)−X(s;ω)}| ≤
√

E{|X(t;ω)−X(s;ω)|2}. (207)

Similarly, if the process is mean-square continuous then the auto-correlation function E{X(t;ω)X(s;ω)} continuous in both s
and t.
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ti ∈ [0, T ]. Similarly, we can construct the joint characteristic function of the random process X(t;ω) at
distinct time instants (t1, . . . , tn) as

φ(a1, . . . , an; t1, . . . , tn) = E
{
eia1X(t1;ω)+···+ianX(tn;ω)

}
. (213)

This expression can be obtained (at least formally) from the so-called Hopf characteristic functional [20, 11]
associated with the stochastic process X(t;ω), i.e.,

Φ([θ(t)]) = E
{

exp

(∫ T

0
X(τ ;ω)θ(τ)dτ

)}
, (214)

where θ(t) is a deterministic test function which we are free to choose. For example, if we pick

θ(t) =
n∑
i=1

aiδ(t− ti), (215)

and substitute it into (214) then we obtain (213). The Hopf functional18 (214) provides full statistical
information about the stochastic process X(t;ω), including all joint statistical moments, all multi-time
PDFs, etc. For instance, the functional derivatives of Φ evaluated at θ = 0 coincide with the statistical
moments (see, e.g. [18])

δqΦ([θ])

δθ(t)q

∣∣∣∣
θ=0

=
1

iq
E{X(t;ω)q}, δq+pΦ([θ])

δθ(t)qδθ(s)p

∣∣∣∣
θ=0

=
1

iq+p
E{X(t;ω)qX(s;ω)p}. (216)

In [11] the Hopf functional is determined for various types of stochastic processes.

Remark: To fully characterize a stochastic process it is not necessary to identify or provide the Hopf
functional. A stochastic process can be defined in many different ways, some of which are not even explicit.
However, if the Hopf characteristic functional is available, then the process is fully specified, perhaps in
the most compact possible way (see [13] for applications of Hopf functional methods to turbulence).

Gaussian processes. The Hopf characteristic functional for a Gaussian process is (see, e.g., [11])

Φ([θ(t)]) = E
{

exp

(
i

∫ T

0
µ(τ)θ(τ)−

∫ T

0

∫ T

0
C(τ, s)θ(τ)θ(s)dτds

)}
, (217)

where

µ(t) = E{X(t;ω)} (mean), (218)

C(t, s) = E{X(t;ω)X(s;ω)} − µ(t)µ(s) (covariance function). (219)

Higher order moments can be computed using functional differentiation (e.g., (216)), or by noticing that
the joint characteristic function the random process X(t;ω) at an arbitrary number of distinct time instants
is

φ(a1, . . . , an; t1, . . . , tn) = exp

i n∑
k=1

akµ(tk)−
n∑

k,j=1

C(tk, tj)akaj

 . (220)

18Recall that a functional is a mapping from a certain space of functions (or distributions) into the real line or the complex
plane. The Hopf functional is a complex-valued nonlinear functional into C.
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Figure 5: Samples of zero-mean Gaussian process with covariance function (222) and σ = 1. We show
samples corresponding to different values of the Hurst parameter h.

Sampling Gaussian processes: To sample a Gaussian process with mean µ(t) and covariance function C(s, t)
it is sufficient to construct a temporal grid in [0, T ] and then sample a Gaussian random vector with mean
µi = µ(ti), and covariance matrix with entries C(tk, tj). To this end, it is sufficient to recall that if X(ω)
is a zero-mean Gaussian random vector (column vector) with independent entries of variance one, and
C = RRT is the Cholesky decomposition of the covariance matrix19 C, then Y = RX is a zero-mean
Gaussian random vector with covariance C. In fact,

E{Y (ω)Y T (ω)} = E{RX(ω)XT (ω)RT } = RE{X(ω)XT (ω)}︸ ︷︷ ︸
(identity matrix)

RT = C. (221)

In figure 5 we plot a few samples of a Gaussian random process with zero mean and covariance func-
tion

C(s, t) =
σ

2

(
|s|2h + |t|2h − |s− t|2h

)
, (222)

where 0 < h < 1 is the so-called Hurst parameter. A Gaussian process with covariance function (222) is
called fractional Brownian motion.

Gaussian random fields: The procedure we used to sample of Gaussian stochastic process with covariance
C(s, t) (e.g., (222)) can be extended to Gaussian random fields [17], i.e., random functions defined of a
domain V ⊆ Rd. For example, we could sample a zero-mean Gaussian random field X(x;ω) defined on
the square domain V = [0, 1]× [0, 1] with covariance function

C(x,y) =
σ

2

(
‖x‖2h2 + ‖y‖2h2 − ‖x− y‖

2h
2

)
, (223)

to this end we first construct the covariance matrix C(xi,xj) and then use the procedure we used before,
i.e.: i) sample a zero-mean i.i.d. Gaussian random variable with variance one at each spatial location xi,
and ii) multiply the sample of the random vector constructed in this way by the matrix R obtained by the
Cholesky decomposition of the autocovariance function (223). In Figure 6 we provide a few samples of a
zero mean Gaussian random field with covariance (223).

19The entries of the covariance matrix C are C(ti, tj), where C(t, s) is the covariance function of the random process.
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h = 0.7 h = 0.4

Figure 6: Samples of zero-mean Gaussian random field with covariance function (223) and σ = 1. We show
samples corresponding to different values of the Hurst parameter h.

Discrete Markov processes. Consider a discrete set of distinct temporal time instant, say {t1, . . . , tn}
and a time-discrete random process which is essentially a collection of random variables

Xi(ω) = X(ti;ω), (224)

or a collection of random vectors
Xi(ω) = X(ti;ω). (225)

The random process (224) can be defined in many different ways, for example as a recurrence rela-
tion20

Xi+1(ω) = h(Xi(ω)) + ξi(ω), (226)

where ξi(ω) are random variables and X0(ω) is random as well. Similarly, we can define a vector valued
discrete process as

Xi+1(ω) = h(Xi(ω)) + ξi(ω), (227)

Note that the structure of (227) is the same as a recurrent neural network perturbed by noise [21].

Disregarding how we generate the sequence of random variables X0, . . . , Xn, in (226), we can characterize
the statistics of the process Xi in terms of the joint PDF (assuming it exists) p(xn, . . . , x0). By using the
definition of conditional probability density we have

p(xn, . . . , x1, x0) = p(xn|xn−1, . . . , x1, x0)p(xn−1, . . . , x0). (228)

If the system is memoryless (or Markovian), we have that the conditional PDF of Xn given the entire
history of Xi equals p(xn|xn−1), i.e.,

p(xn|xn−1, . . . , x1, x0) = p(xn|xn−1). (229)

In other words, the PDF of Xn(ω) conditional to any set of variables {Xj(ω)} with j < n equals to
p(xn|xn−1), i.e., it depends only on the value of Xn−1(ω). By applying (229) recursively we obtain

p(xn, xn−1, . . . , x1, x0) = p(xn|xn−1)p(xn−1|xn−2) · · · p(x1|x0)p(x0). (230)

20The discrete process (226) is also called autoregressive process.
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Hence, the process is fully specified by the transition density p(xk+1|xk). Denoting by pξk the PDF of
ξk in (226), and assuming that {ξ1, . . . , ξn−1} are statistically independent we have that the transition
probability defined by the Markov chain (226) is

p(xk+1|xk) = pξk(xx+1 − F (xk)). (231)

Remark: More general auto-regressive random vector processes of the form (227) are the discussed in the
book [5]. For example, vector auto-regressive moving-average (VARMA) processes, integrated VARMA
(VARIMA) processes, etc.

Markov Chain Monte Carlo (MCMC). Markov Chain Monte Carlo (MCMC) refers to a class of
methods that allow us to sample high-dimensional probability density functions [6]. In MCMC we construct
a discrete Markov process that has a stationary PDF that coincides with the distribution of interest, i.e.,
the PDF we’d like to sample from. Hence, simulations of the Markov chain21 provide samples of the
high-dimensional PDF we are interested in, once a transient, i.e., the so-called burn-in phase of the chain,
is completed. There are several MCMC algorithms to sample from high-dimensional PDFs. Perhaps the
simplest ones are the Gibbs sampling and the Metropolis-Hastings algorithms. Let us briefly describe the
Gibbs sampling method. To this end, suppose you are given a three-dimensional PDF p(x1, x2, x3) and
that the conditional PDFs p(x1|x2, x3), p(x2|x1, x3) and p(x3|x1, x2) are all available22. To sample from
p(x1, x2, x3) we proceed as follows:

1. Initialize x2 = x
(i)
2 and x3 = x

(i)
3 . Here x

(i)
2 and x

(i)
3 are two real numbers. The superscript “i” is an

integer number that labels the discrete Markov process

Xi(ω) =
[
x

(i)
1 (ω) x

(i)
2 (ω) x

(i)
3 (ω)

]
i ∈ N. (232)

2. Sample a new x
(i+1)
1 from the one-dimensional conditional PDF p

(
x1|x(i)

2 , x
(i)
3

)
.

3. With the sample x
(i+1)
1 available, sample a new x

(i+1)
2 from the one-dimensional conditional PDF

p
(
x2|x(i+1)

1 , x
(i)
3

)
.

4. With the sample x
(i+1)
2 available, sample a new x

(i+1)
3 from the one-dimensional conditional PDF

p
(
x3|x(i+1)

1 , x
(i+1)
2

)
.

5. Update x
(i)
j ← x

(i+1)
j for j = 1, 2, 3 and go back to point 2.

This algorithm allows us to compute Xi+1 from Xi by sampling known one-dimensional conditional tran-
sition densities. To sample from such arbitrary one-dimensional transition densities we can use different
methods. If the inverse cumulative distribution of each conditional PDF is known, then we have seen
that it is sufficient to sample a uniform PDF and then map such sample using the inverse cumulative dis-
tribution function. Alternatively, we can determine the mapping between uniform random variables and
conditionally distributed random variables using polynomial chaos expansions. The mapping Xi → Xi+1

defines a random walk in R3. The stationary distribution of such random walk coincides with p(x1, x2, x3).

21Simulations of a Markov chain are usually performed with the Monte Carlo method, hence the name Markov Chain Monte
Carlo.

22Recall that to compute the conditional PDF p(x1|x2, x3) we literally set x2 and x3 in p(x1, x2, x3) equal to some number,
say x2 = x∗2 and x3 = x∗3 and then normalize the one-dimensional function p(x1, x

∗
2, x
∗
3) so that the integral with respect to x1

equals one.
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In other words, after the burn-in phase is completed, i.e., for sufficiently large i, we have that Xi(ω) are
samples of the joint PDF p(x1, x2, x3).

Karhunen-Loève expansion. Let X(t;ω) be a zero-mean square-integrable stochastic process defined on
the probability space (Ω,F , P ). “Square-integrable” means that X(t;ω) has finite second order moment,
i.e.,

E
{∫ T

0
X(t;ω)2dt

}
<∞. (233)

By using the properties of L2(Ω,F , P ) spaces (probability spaces of square integrable random variables),
it can be shown that X(t;ω) admits a series expansion

X(t;ω) =
∞∑
k=1

√
λkξk(ω)ψk(t), (234)

where {ξ1(ω), ξ2(ω), . . .} is a set of uncorrelated, i.e., orthonormal, random variables satisfying

E {ξi(ω)ξj(ω)} = δij , (235)

and {ψ1(t), ψ2(t), . . .} are orthonormal (in L2([0, T ])) temporal modes∫ T

0
ψi(t)ψj(t)dt = δij . (236)

By using the orthogonality properties (235)-(236), we obtain the so-called dispersion relations23

ξk(ω) =
1√
λk

∫ T

0
X(t;ω)ψk(t)dt, (238)

ψk(t) =
1√
λk

E{ξk(ω)X(t;ω)}. (239)

A substitution of (238) into (239) yields the eigenvalue problem

(240)∫ T

0
C(t, s)ψk(s)ds = λ2

kψk(t). (241)

where
C(t, s) = E {X(t;ω)X(s;ω)} (242)

is the autocorrelation function of the process. In other words, the KL temporal modes are are eigenfunctions
of the the auto-correlation function of the process. Since C(t, s) is a Mercer’s kernel (continuous symmetric
non-negative definite kernel) we have that {ψk(t)} is a complete orthonormal basis of L2([0, T ]).

Example: Let us compute the KL expansion of a stochastic process with exponential auto-correlation
function

C(t, s) =
σ2

2τ
e−|t−s|/τ , (243)

23It is straightforward to show that (239) follows form the variational principle

min
ψk

E([ψ1, ψ2, . . .]) = min
ψk

∫ T

0

E

{∣∣∣∣∣X(t;ω)−
∞∑
k=1

√
λkξk(ω)ψk(t)

∣∣∣∣∣
2}

dt. (237)
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where τ denotes the correlation time. Note that (243) is an element of a Dirac delta sequence. This implies
that

lim
τ→0

σ2

2τ
e−|t−s|/τ = σ2δ(t− s). (244)

The eigenvalue problem (243) with C(t, s) defined in(243) admits the analytical solution24 (see [?])

ψk(t) =
τzk cos(zkt) + sin(zkt)√

1

2

(
τ2z2

k + 1
)
T +

(
τ2z2

k − 1
) sin(2zkT )

4zk
+
τ

2
(1− cos(2zkT ))

, (248)

where zk are solution of the transcendental equation(
z2
k −

1

τ

)
tan(zkT )− 2zk

τ
= 0, (249)

and

λk =
σ2(

z2
kτ

2 + 1
) (250)

are the KL eigenvalues. The KL eigenvalues become smaller and smaller as zk increases. The eigenvalue
decay is more pronounced for larger correlation lengths τ , while for very small correlation lengths the
eigenvalue decay rate is very small, eventually zero for zero correlation length.

For practical purposes, the KL series expansion (234) is usually truncated to a finite number of terms. As
we just discussed, the number of terms is inversely proportional to τ : the smaller τ the larger the number
of terms. The number of terms M in the KL series expansion (234) is usually chosen by thresholding the
relative “energy” of the process as

M∑
k=1

λk

∞∑
k=1

λk

' 0.95. (251)

This implies that the modes we retain in the series capture about 95% of the process “energy”. In Figure
7 we plot samples of the exponentially correlated Gaussian random process

X(t;ω) = sin(t) +
σ

2τ

M∑
k=1

√
λkξk(ω)ψk(t) t ∈ [0, 20], (252)

for τ = 1 and τ = 0.1.
24To compute the analytical solution of the KL eigenvalue problem (241) with exponential covariance (243) let us first

rewrite it as ∫ T

0

e−c|t−s|ψk(s)ds = λ̂kψk(t), c =
1

τ
, λ̂k =

2τ

σ2
λk. (245)

Differentiating with respect to t the equivalent expression∫ t

0

e−c(t−s)ψk(s)ds+

∫ T

t

ec(t−s)ψk(s)ds = λ̂kψk(t) (246)

yields the second-order boundary value problem

d2ψk
dt2

=
c2λ̂k − 2c

λ̂k
ψk(t)

dψk(t)

dt
= cψ(0)

dψk(T )

dt
= cψ(T )

(247)

The solution of the BVP (247) is (248)-(250).
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Figure 7: Samples of the exponentially correlated Gaussian random process (252) for different correlation
times τ . The KL The mean of the process is shown in red. The truncation threshold for the number of
terms M is set at 95% of the energy of the process (see Eq. (251)).

Remark: In the case where (241) cannot be solved analytically, we can resort to numerical method for
Fredholm eigenvalue problems, e.g., Finite-difference methods, spectral methods, or Galerkin methods (see
e.g., [19]). Of course it is also possible to define KL expansions of random fields by simply generalizing the
bi-orthogonal series (234) as

X(x;ω) =

∞∑
k=1

√
λkξk(ω)ψk(x). (253)

The computation of the KL expansion follows exactly the same steps as before, i.e., ψk(x) are solutions to
the eigenvalue problem ∫

V
C(x,y)ψk(y)dy = λkψk(x), (254)

where V is some spatial domain.

Remark: To sample realizations of the random process (234) we need to sample the random variables
{ξ1, . . . , xiM}. Such random variables are (by construction) orthonormal (see (235)), i.e., they are uncor-
related and have variance equal to one. Clearly, if {ξ1, . . . , xiM} are jointly Gaussian then we know that
the condition (235) is necessary and sufficient for independence. Hence, in the Gaussian case, sampling
the joint PDF of {ξ1, . . . , xiM} reduces to sampling the PDF of an independent set of one-dimensional
Gaussian random variables with zero mean and variance one. More generally, if we have available the joint
PDF p(ξ1, . . . , xiM ), e.g., by computing (238), then we can sample it using Markov Chain Monte Carlo
(MCMC) methods, e.g., the Metropolis-Hastings algorithm or Gibbs sampling.

Wiener process. The Wiener process is a zero-mean continuous-time random process satisfying the
following conditions:

• The increment X(t+ τ ;ω)−X(t;ω) is a Gaussian random variable with zero mean and variance τ .
In other words, the conditional probability density of X(t+τ ;ω) given X(t;ω), is Gaussian with zero
mean and variance τ .

• The random variables (increments)

X(t1;ω)−X(t0;ω) and X(t3;ω)−X(t2;ω) (255)
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are statistically independent for t0 < t1 ≤ t2 < t3. In other words, the Wiener process is an
independent increment process.

• The process X(t;ω) is continuous with probability one, i.e.,

P
(
{ω : lim

s→t
|X(s;ω)−X(t;ω)|}

)
= 1 for all t ≥ 0. (256)

This means that almost all (except sets of measure zero) sample paths are continuous in the classical
sense, but the process X(t;ω) is nowhere differentiable. Continuity with probability one implies
continuity in probability, and therefore mean square continuity and continuity in distribution.

An very clear description of the Wiener process is provided by Wiener himself in [22, Lecture 1]. The
simplest algorithm to sample a Wiener process leverages the fact that the process has Gaussian distributed
independent increments. Let {tk}k=1,...,n be n distinct time instants

0 = t0 < t1 < . . . < tn. (257)

Then

X(tk;ω) =

k∑
j=1

√
∆tjξj(ω) ∆tj = tj − tj−1, (258)

where {ξj(ω)} are independent random variables with mean zero and variance 1. A closer look at (258),
reveals

X(t1;ω) =
√

∆t1ξ1(ω), (259)

X(t2;ω) =X(t1;ω) +
√

∆t2ξ2(ω) =
√

∆t1ξ1(ω) +
√

∆t2ξ2(ω) (260)

· · ·

Since X(tk;ω) is a superimposition of essentially an infinite number of independent random vairable, it is
rather straightforward to show that the one time PDF of X(t;ω) is

p(x, t) =
1√
2πt

e−x
2/(2t), (261)

i.e., Gaussian. This equation also follows from the conditional PDF identity

p(x, t) =

∫ ∞
∞

p(x, t|y, s)p(y, s)dy t > s, (262)

where p(x, t|y, s) is the transition density25, and p(y, s) is the PDF of X(s;ω). If we set s = 0 then
p(y, 0) = δ(y) and, of course, this yields (261). The auto-correlation function of the Wiener process
is

C(t, s) = min(t, s) (264)

With the autocorrelation function available we can compute a KL expansion of the Wiener process following
the procedure outlined in the previous section. If we consider the time interval [0, 1] this yields the
eigenvalue problem ∫ 1

0
C(t, s)ψk(s) = λkψk(t), (265)

25From the recurrence relation
X(tk+1;ω) = X(tk;ω) +

√
∆tk+1ξk+1(ω) (263)

with ξk+1(ω) Gaussian with zero mean and variance one we see that the conditional PDF p(x, t|y, s) is Gaussian with zero
mean and variance t− s.
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Figure 8: Wiener processes obtained by sampling the Karhunen-Loève expansion (268) with 105 terms on
a temporal grid with 2000 points in [0, 1], and by iterating (258) on the same temporal grid.

the solution of which is

ψk(t) =
√

2 sin

([
k − 1

2

]
πt

)
k = 1, 2, . . . (266)

and

λk =
4

π2 (2k − 1)2 . (267)

Substituting (266) and (267) into (234) yields

X(t;ω) =

∞∑
k=1

2
√

2

π (2k − 1)
ξk(ω) sin

([
k − 1

2

]
πt

)
, (268)

where ξk(ω) are independent Gaussian random variables with zero mean and variance one (they satisfy
(235)). The series expansion in (268) can be eventually truncated to a finite number of terms, depending
on the threshold set on the eigenvalues (267) (which decay as 1/k). In Figure 8 we plot a few samples of
the Wiener process we obtain by sampling (268) with 105 terms on a temporal grid with 2000 points in
[0, 1], and the Wiener process we obtain by iterating (258) on the same temporal grid. Note that if X(t;ω)
is a Wiener process in t ∈ [0, 1] then

√
TX

(
t

T
;ω

)
t ∈ [0, T ] (269)

is a Wiener process in [0, T ]. This expression is obtained by simply changing the variables in the integral
equation (265). The expression (269) shows that features of a Wiener process do not change while zooming
in or out. In other words, the Wiener process is self-similar.

Appendix A: Derivation of the Liouville equation

Consider the nonlinear dynamical system 
dx(t)

dt
= f(x(t))

x(0) = x0(ω)

(270)
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where x0(ω) is a random vector with known joint probability density function p0(x). We know that if f(x)
is continuously differentiable in x then (270) admits a smooth flow x(t,x0(ω)), which is at least continuously
differentiable in x0 . The flow is also continuously differentiable in t, i.e., x(t,x0(ω)) is a diffeomorphism in
t. We are interested in determining an evolution equation for p(x, t), i.e., the probability density function of
x(t,x0) at time t. To this end, consider the characteristic function representation of the PDF p(x, t)

φ(a, t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x(t;x0)p(x0)dx0 =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·xp(x, t)dx (271)

Differentiating with respect to t yields

∂φ(a, t)

∂t
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · ∂x(t,x0)

∂t
eia·x(t;x0)p(x0)dx0

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · f (x(t,x0)) eia·x(t;x0)p(x0)dx0

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · f (x) eia·xp(x, t)dx

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂x

(
eia·x

)
· f (x) p(x, t)dx

=−
∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x∇ · (f (x) p(x, t)) dx. (integrating by parts) (272)

By using (271) and (272) we obtain∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x
[
∂p(x, t)

∂t
+∇ · (f (x) p(x, t))

]
dx = 0, for all a ∈ Rn, (273)

which implies that the function between square bracket must be equal to zero for all x and all t, i.e.,

∂p(x, t)

∂t
+∇ · (f (x) p(x, t)) = 0 (Liouville equation). (274)
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PDF equations for random dynamical systems

Consider the following n-dimensional dynamical system
dx

dt
= f(x)

x(0;ω) = x0(ω)

(1)

where x0(ω) is a random initial state with joint PDF p0(x). We are interested in studying the statistical
properties of the solution to (1) using probability density function (PDF) methods. As we shall see
hereafter, systems of the form (1) include systems in which we have random variables at appearing the
right hand side of the ODE, i.e., systems with random parameters.

Systems with random parameters. It is straightforward to show that a non-autonomous system of
the form 

dx

dt
= G(x, ξ(ω), t)

x(0;ω) = x0(ω)

(2)

can be transformed into an autonomous system evolving form a random initial state. To this end, we define
the phase variables of z(t) = t and y(t) = ξ(ω) rewrite (2) as

dx

dt
= G(x,y, z)

dy

dt
= 0

dz

dt
= 1

x(0;ω) = x0(ω), y(0;ω) = ξ(ω), z(0, ω) = 0.

(3)

Remarkably, system of the form (2) include also dynamical systems driven by finite-dimensional random
processes, i.e., random processes that can be represented in terms of series expansions involving a finite
number of random variables.

Example: An simple example of a system of the form (2) is

dx

dt
= f(x) + η(t;ω) (4)

i.e., a scalar ODE driven by colored random noise η(t;ω) [12, 21, 17]. Let us represent η(t;ω) as a truncated
Karhunen-Loève series expansion (see [21] for an application to cancer modeling)

η(t;ω) '
M∑
k=1

√
λkξk(ω)ψk(t) (5)

involving a finite number of uncorrelated random variables {ξ1, . . . , ξM}. We shall call M the dimensionality
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of the noise process1 The adjective “colored” refers to the fact that the Fourier power spectral density of
the random noise η(t;ω) is in general not flat as in the case of white noise2. The power spectral density is
the inverse Fourier transform of the temporal auto-correlation function of the noise, i.e.,

E
{
f(t;ω)f(t′;ω)

}
=

M∑
k=1

λkψk(t)ψk(t
′). (7)

Remark: A random dynamical systems is a systems driven by a finite number of random variables. An
example is the system (4)-(5), in which the the random input process is finite-dimensional (M finite).
On the other hand, a “stochastic dynamical system” is usually driven by infinite-dimensional random
processes, i.e., processes that can be represented in terms of an infinite (countable or uncountable) number
of random variables. An example is the ODE (4) if we choose η(t;ω) to be, e.g., Gaussian white noise
process (derivative of a Wiener process). In this case, it is more appropriate to write the ODE as

dx = f(x)dt+ dζ(t), (8)

where dζ(t) denotes the increment of a Wiener process.

Liouville equation. Let x(t;x0) be the flow generated by (1). The PDF of x(t;x0), i.e., the solution of
(1) at time t, satisfies the Liouville equation

∂p(x, t)

∂t
+∇ · (f(x)p(x, t)) = 0, p(x, 0) = p0(x), (9)

where p0(x) is the PDF of the random initial state x0(ω). To derive equation (9), consider the characteristic
function representation of p(x, t)

φ(a, t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·xp(x, t)dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x(t;x0)p(x0)dx0. (10)

Differentiating (10) with respect to t yields

∂φ(a, t)

∂t
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · ∂x(t,x0)

∂t
eia·x(t;x0)p(x0)dx0

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · f (x(t,x0)) e
ia·x(t;x0)p(x0)dx0

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · f (x) eia·xp(x, t)dx

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂x

(
eia·x

)
· f (x) p(x, t)dx

=−
∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x∇ · (f (x) p(x, t)) dx. (11)

1To sample realizations of the random process (5) we need to sample the random variables {ξ1, . . . , xiM}. Such random
variables are (by construction) orthonormal, i.e., they are uncorrelated and have variance one:

E{ξi(ω)ξj(ω)} = δij . (6)

If {ξ1, . . . , xiM} are jointly Gaussian then we know that (6) is necessary and sufficient for independence. Hence, in this case
sampling the joint PDF {ξ1, . . . , xiM} reduces to sampling the PDF of an independent set of one-dimensional Gaussian PDFs
with zero mean and variance one. More generally, the joint PDF of {ξ1, . . . , xiM} can be sampled using Markov Chain Monte
Carlo methods, e.g., the Metropolis-Hastings algorithm or the Gibbs sampling algorithm.

2A flat power spectral density implies that all frequencies contribute equally to the signal. The adjective “white” follows
from an analogy the power spectrum of visible colors, in which the color white has all visible frequencies contributing equally.
Stochastic ODEs driven by Gaussian white noise, and corresponding models are discussed extensively in the course AM216. If
the power spectral density of a random signal decays with the frequency ν as 1/να (α ∈ [1, 2]) then the noise is called “pink”.
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t = 0 t = 16 t = 76

Figure 1: Point clouds corresponding to a jointly Gaussian initial PDF advected by the flow map generated
by the Duffing equation. The x-axis corresponds to x while the y-axis represents ẋ. We plot the joint PDF
of x(t) and ẋ(t) at different times.

In the last step we used integration by parts and the fact that the PDF p(x, t) decays to zero at infinity
sufficiently fast. By combining (10) and (11) we obtain∫ ∞

−∞
· · ·
∫ ∞
−∞

eia·x
[
∂p(x, t)

∂t
+∇ · (f (x) p(x, t))

]
dx = 0, for all a ∈ Rn, (12)

which implies that the function between square bracket must be equal to zero for all x and all t. This
proves the Liouville equation (9).

Note that from a mathematical viewpoint, the Liouville equation (9) is a linear hyperbolic conservation
law in as many variables as the dimension of the system (1). Therefore, computing its solution can be
challenging due to high-dimensionality (PDE in n independent variables), normalization and positivity
constraints of the solution (the solution is a PDF), as well as potential multiple scales (The PDF is a
hyperbolic conservation law). Related to the last point, in Figure 1 we show what happens to a jointly
Gaussian initial state when samples from such PDF are evolved forward in time by the flow map generated
by the 2D Duffing oscillator [1]

d2x

dt2
= −x− 1

50

dx

dt
− 5x3 + 8 cos

(
t

2

)
. (13)

By using the method of characteristics, it is straightforward to obtain the following formal solution to the
Liouville equation (9)

p(x, t) = p0 (x0(x, t)) exp

(
−
∫ t

0
∇ · f (x(τ,x0)) dτ

)
, (14)

where x0(x, t) denotes the inverse flow map generated by (1). Equation (14) follows from the well-known
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characteristic system3 

dx(t,x0)

dt
= f (x(t,x0))

x(0,x0) = x0

dp(x(t,x0), t)

dt
= −p(x(t,x0), t)∇ · f (x(t,x0))

p(x(0,x0), 0) = p0(x0)

(16)

Example: The Liouville equation corresponding to the system (4)-(5) is

∂p(x,y, t)

∂t
+

∂

∂x
(f(x)p(x,y, t)) +

∂p(x,y, t)

∂x

M∑
k=1

√
λkykψk(t) = 0. (17)

If x0(ω) and ξ are statistically independent then the initial PDF can be factored as p(x0,y, 0) = px0(x0)pξ(y).
It is important to emphasize that the joint PDF equation involves both the state variable x(t, ω) and the
variables yk representing the variables ξk in the noise process (5).

Example: The Liouville equation corresponding to the three-dimensional dynamical system

ẋ1 = x1x3. ẋ2 = −x2x3, ẋ3 = −x21 + x22. (18)

is

∂p(x, t)

∂t
= − ∂

∂x1
(x1x3p(x, t)) +

∂

∂x2
(x2x3p(x, t)) +

∂

∂x3

(
(x21 − x22)p(x, t)

)
. (19)

Reduced-order PDF equations for dynamical systems. The Liouville equation (9) describes the
exact dynamics of the joint PDF of state variables x(t). In most cases, however, we are only interested in
a smaller subset of such variables, e.g., in the scalar quantity of interest

z(t, ω) = u(x(t,x0(ω))) (phase space function). (20)

We have seen that the probability density function of such phase space function can be written as

p(z, t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

δ (z − u(x)) p(x, t)dx =

∫ ∞
−∞
· · ·
∫ ∞
−∞

δ (z − u(x(t,x0))) p(x0)dx0, (21)

where δ(·) is the Dirac’s delta function (see [8, 20, 14]) and z is the phase space variable representing
u(x(t)). Multiplying the Liouville equation (9) by δ (z − u(x)) and integrating over all phase variables
yields

∂p(z, t)

∂t
+

1

2π

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia(z−u(x))∇ · (f(x)p(x, t)) dxda = 0, (22)

3Note that (9) can be written as

∂p(x, t)

∂t
+ f(x) · ∇p(x, t) = −p(x, t)∇ · f(x) p(x, 0) = p0(x). (15)

Applying the method of characteristics to (15) yields the ODE system (16). In practice, the PDF p(x, t) is computed using
(16) along each characteristic curve. Clearly, this is computationally challenging in high-dimensions.
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Figure 2: Regularization of PDFs by integration/marginalization. The PDF of x1(t) at one specific location
is obtained by summing up the probability mass within the strips highlighted in red. The figures at the
top represent the joint PDF of x1 and x2, i.e., x and ẋ in the Duffing equation (13) at different times (see
also Figure 1).

where we used the Fourier representation of the Dirac delta function δ (z − u(x)). In general, equation (22)
is unclosed in the sense that there are terms at the right hand side that cannot be represented or computed
based on p(z, t) alone. If we set u(x(t)) = xk(t), i.e., the quantity of interest is the k-th component of the
dynamical system (1), then (22) reduces to

∂p(xk, t)

∂t
+

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂xk
(fk(x)p(x, t)) dx1 . . . dxk−1dxk+1 . . . dxN = 0. (23)

The specific form of this equation depends on the vector field f(x).

Remark: Low-dimensional marginals of high-dimensional PDF are usually smoother functions than the
original PDF. This is illustrated in Figure 2 with reference to the Duffing equation (13). Hence, deriving and
solving low-dimensional PDF equations for quantities of interest, has advantages relative to full Liouville
equation. In particular: 1) the PDF equation for the quantity of interest is low dimensional, 2) we expect
the solution to a reduced-order PDF equations to relatively smooth because of the “regularization by
integration” effect.

BBGKY hierarchy. By integrating the Liouville equation (9) with respect to different phase variables
it is possible to derive a hierarchy of PDEs known as Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy involving PDFs with an increasing number of phase variables. The first set of PDEs is (23), and
it clearly depends on PDFs with a larger number of variables, unless fk(x) depends only on xk (in which
case the system (1) is uncoupled). Hereafter we provide specific examples of BBGKY hierarchies.
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Example: Consider the Kraichnan-Orszag three-mode problem [13, 24]

ẋ1 = x1x3. ẋ2 = −x2x3, ẋ3 = −x21 + x22. (24)

The associated Liouville equation is

∂p(x, t)

∂t
= − ∂

∂x1
(x1x3p(x, t)) +

∂

∂x2
(x2x3p(x, t)) +

∂

∂x3

(
(x21 − x22)p(x, t)

)
. (25)

Suppose we are interested in the PDF of the first component of the system, i.e., set u(x(t)) = x1(t) in
equation (20). By integrating (25) with respect to x2 and x3, and assuming that p(x, t) decays fast enough
at infinity, we obtain

∂p(x1, t)

∂t
= − ∂

∂x1

∫ ∞
−∞

x1x3p(x1, x3, t)dx3. (26)

From this equation we see that the evolution of p(x1, t) depends on an integral involving p(x1, x3, t). Hence,
to compute p(x1, t) we need to know what p(x1, x3, t) is. The evolution equation for p(x1, x3, t) can be
obtained by integrating (25) with respect to x2, i.e.,

∂p(x1, x3, t)

∂t
= − ∂

∂x1
(x1x3p(x1, x3, t)) + x21

∂

∂x3
(x3p(x1, x3, t))−

∂

∂x3

∫ ∞
−∞

x22p(x1, x2, x3, t)dx2. (27)

The PDE system (26)-(27) represents the first two levels of a BBGKY hierarchy. Note that the hierarchy
be closed only at the level of the Liouville equation (25). Indeed, the integral at the right hand side of (27)
involves p(x1, x2, x3, t), which is unknown unless we solve (25).

At this point we notice that we can represent the term involving p(x1, x3, t) in (26) in a different way.
Specifically, we can write the joint PDF of x1(t) and x3(t) at time t as

p(x1, x3, t) = p(x1, t)p(x3|x1, t), (28)

where p(x3|x1, t) is the conditional probability density of x3(t) given x1(t). A substitution of (28) into (26)
yields

∂p(x1, t)

∂t
= − ∂

∂x1
(x1p(x1, t)E[x3(t)|x1(t)]) , (29)

where

E[x3(t)|x1(t)] =

∫ ∞
−∞

x3p(x3|x1, t)dx3 (conditional expectation of x3(t) given x1(t)). (30)

As we shall see hereafter, E[x3(t)|x1(t)] can be estimated from sample trajectories of (24).

Note that the reduced-order PDF equation (29) is a scalar conservation law where the (compressible)
advection velocity field is equal to x1E[x3(t)|x1(t)]. It is important to emphasize that the “innocent-
looking” PDE (26) is actually a PDE involving derivatives of p(x1, t) up to order infinity in the phase
variable x1. In fact, by using Kubo’s cumulant expansion [9] of the joint characteristic function of x3(t)
and x1(t) (i.e. Eq. (156) in lecture notes 1)

φ(a1, a3, t) = φ(a1, t)φ(a3, t) exp

 ∞∑
j,k=1

〈
xj1(t)x

k
3(t)

〉
c

(ia1)
j(ia3)

k

j!k!

 , (31)

and the correspondence

p(x1, x3, t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−i(a1x1+a3x3)φ(a1, a3, t)da1da3 (32)

Page 6



AM 238 Prof. Daniele Venturi

odd cumulants even cumulants

0 2 4 6 8 10
10

-6

10
-4

10
-2

10
0

0 2 4 6 8 10
10

-4

10
-3

10
-2

10
-1

10
0

Figure 3: Kraichnan-Orszag three mode problem. Absolute values of the first 8 rescaled cumulants
〈x1(t)x3(t)k〉c/k!. The initial condition xi(0) (i = 1, 2, 3) in (24) is set to be i.i.d. Gaussian with mean
and variance 1. We estimated the cumulants numerically by using Monte Carlo (50000 sample paths) and
ensemble averages. It is seen that the odd cumulants decay slowly with k, suggesting that the cumulant
expansion (33) cannot be truncated at low order. This implies that any reasonably accurate approximation
of the reduced-order equation (35) involves high-order derivatives of p(x1, t) with respect to x1.

we can prove that∫ ∞
−∞

x3p(x3, x1, t)dx3 = E[x3(t)]p(x1, t) +
∞∑
k=1

(−1)k+1 〈x1(t)x3(t)k〉c
k!

∂kp(x1, t)

∂xk1
, (33)

where 〈x1(t)x3(t)k〉c are cumulant averages4. A substitution of (33) into (26) yields the infinite-order
PDE

∂p(x1, t)

∂t
= −E[x3(t)]

∂ (x1p(x1, t))

∂x1
+
∞∑
k=1

(−1)k+1 〈x1(t)x3(t)k〉c
k!

∂k+1 (x1p(x1, t))

∂xk+1
1

. (35)

As shown in Figure 3, the rescaled cumulants 〈x1(t)x3(t)k〉c/k! decay slowly with k, suggesting that the
cumulant expansion (33) cannot be truncated at low-order. This implies that any reasonably accurate
approximation of the reduced-order PDF equation (35) involves high-order derivatives of p(x1, t) with
respect to x1. The data-driven cumulant expansion approach we just described relies on computing sample
paths of (24), estimating the cumulant averages 〈x1(t)x3(t)k〉c using ensemble averaging, and then solving
the PDE (35). Clearly this is not practical since such PDE potentially involves high-order derivatives of
p(x1, t) with respect to x1. Another approach relies on estimating the conditional expectation (30) directly
from data and then solving the hyperbolic conservation law (29), which is a first-order linear PDE.

Example: Consider the following N -dimensional nonlinear dynamical system

dxi
dt

= − sin(xi+1)xi −Axi + F, i = 1, ..., N, (36)

where xN+1(t) = x1(t) (periodic boundary conditions). Depending on the value of F , A and on the number
of phase variables N , this system can exhibit different behaviors. In Figure 4 we plot a 2D section of the

4The cumulant averages appearing in equation (33) are defined as

〈x1(t)x3(t)k〉c = E[x1(t)x3(t)k]− E [x1(t)]E[x3(t)k]. (34)
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Figure 4: 2D sections of the point clouds generated by the dynamical system (36) at t = 14. The random
initial condition samples are taken from a Gaussian distribution.

point cloud we obtain at t = 14 by sampling the initial condition from a Gaussian random vector. Here
we set F = 10, A = 0.2 and N = 1000. The Liouville transport equation associated with (36) is

∂p(x, t)

∂t
= −

N∑
i=1

∂

∂xi
[(F − sin(xi+1)xi −Axi) p(x, t)] . (37)

This PDF is very hard to solve numerically because of the very high number of phase variables. The
evolution equation for the PDF of each phase variable xi(t) can be obtained by integrating (37) with
respect to all other variables. This yields the unclosed equation

∂p(xi, t)

∂t
= − ∂

∂xi

∫ ∞
−∞

[(F − sin(xi+1)xi −Axi) p(xi, xi+1, t)] dxi+1. (38)

We can write (38) equivalently as

∂p(xi, t)

∂t
= −F ∂p(xi, t)

∂xi
+A

∂(xip(xi, t))

∂xi
− ∂

∂xi
xi

∫ ∞
−∞

sin(xi+1)p(xi, xi+1, t)dxi+1. (39)

Note that all equations for p(xi, t) have the same structure, independently of the index i. This means that
if the random initial state x0 has i.i.d. components, then the evolution of each p(xi, t) does not depend on
i, i.e., it is the same for all i = 1, ..., N . A similar conclusion holds for the joint distributions p(xi, xi+1, t),
which satisfy the equations

∂p(xi, xi+1, t)

∂t
=− ∂

∂xi
[(F − sin(xi+1)xi −Axi) p(xi, xi+1, t)]−

∂

∂xi+1

∫ ∞
−∞

[(F − sin(xi+2)xi+1 −Axi+1) p(xi, xi+1, xi+2, t)] dxi+2. (40)

The PDE system (39)-(40) represents the first two levels of the BBGKY hierarchy corresponding to
(36).

Let us set i = 1 in equation (39) and express the integral in terms of the conditional expectation of
sin(x2(t)) given x1(t). This yields

∂p(x1, t)

∂t
=

∂

∂x1
(x1p(x1, t)E [sin(x2(t))|x1(t)]) +

∂

∂x1
[(Ax1 − F )p(x1, t)] , (41)

where

E [sin(x2(t))|x1(t)] =

∫ ∞
−∞

sin(x2)p(x2|x1, t)dx2. (42)
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Example: Consider the Liouville equation (17) corresponding to (4)-(5). Is it possible to derive an evolution
equation for p(x, t), i.e., integrate the variables y representing (ξ1, . . . , ξM ) in the KL expansion of the noise
(5)? By applying the marginalization rule

p(x, t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x,y, t)dy (43)

to the Liouville equation (17) we obtain

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) +

M∑
k=1

√
λkψk(t)

∂

∂x

∫ ∞
−∞

ykp(x, yk, t)dyk = 0. (44)

Note that the PDF p(x, t) depends on M joint PDFs p(x, yk, t). Therefore (44) is an unclosed PDF
equation. We can of course derive an evolution equation for each p(x, yk, t) as

∂p(x, yk, t)

∂t
+

∂

∂x
(f(x)p(x, yk, t)) +

∂p(x, yk, t)

∂x

√
λkykψk(t) +

M∑
j=1
j 6=k

√
λjψj(t)

∂

∂x

∫ ∞
−∞

yjp(x, yj , yk, t)dyj = 0.

(45)
These are additional M unclosed PDEs involving p(x, yj , yk, t). At this point we could derive the evolution
equation for the joint PDF p(x, yj , yk, t), and go on and on. The BBGKY hierarchy is formally closed only
at the level of the Liouville equation, unless the system has a special structure, or a closure approximation
is introduced. For instance, if p(x, yj , yk, t) can be factored in terms of lower-order PDFs as

p(x, yj , yk, t) ' p(x, yk, t)p(yj) (46)

then (44)-(45) is a closed system of PDEs.

A substitution of
p(x, yk, t) = p(yk|x, t)p(x, t), (47)

where p(yk|x, t) is the conditional PDF of yk given x(t;ω), into (44) yields the low dimensional PDE

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) +

M∑
k=1

ψk(t)
∂

∂x
(p(x, t)E{ξk(ω)|x(t;ω) = x}) . (48)

Here,

E{ξk(ω)|x(t;ω) = x} =

∫ ∞
−∞

ykp(yk|x, t)dyk (49)

is the conditional expectation of ξk(ω) given x(t;ω) = x. We shall see hereafter that such conditional
expectation can be estimated from sample trajectories of (4)-(5).

Data-driven closure approximation of BBGKY hierarchies. Computing conditional expectations
from data or sample trajectories is a key step in determining accurate closure approximations of reduced-
order PDF equations. A major challenge to fitting a conditional expectation is ensuring accuracy and
stability. More importantly, the estimator must be flexible and effective for a wide range of numerical
applications. Let us briefly recall what conditional expectations are and, more importantly, how to compute
them based on sample paths of (1). To this end, consider the random processes x1(t) and x3(t) defined by
the dynamical system (24) evolving from a random initial state. The conditional expectation of x3(t) given
x1(t) is defined mathematically in equation (30). The geometric meaning of such conditional expectation
is illustrated in Figure 5. We first compute sample trajectories of (24) – see Figure 5(a) – by sampling the
initial condition and evolving it forward in time. We then project the solution samples we obtain at time t
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Figure 5: Kraichnan-Orszag three mode problem. (a) Sample trajectories of (24) corresponding to random
samples projected on the plane (x1, x3). For each value of x1, the conditional PDF p(x3|x1, t) can be
estimated based on samples sitting on or lying nearby the vertical dashed line. The conditional expectation
E[x3(t)|x1(t)] is the mean of such conditional PDF.

on the plane (x1, x3), to obtain the scatter plot in Figure 5(b). For each value of x1, the conditional PDF
p(x3|x1, t) can be estimated based on all samples sitting on or lying nearby the vertical dashed line. The
conditional expectation E[x3(t)|x1(t)] is the mean of such conditional PDF.

In this section, we present two different approaches to estimate conditional expectations from data based on
moving averages and smoothing splines. The moving average estimate is obtained by first sorting the data
into bins and then computing the average within each bin. With such averages available, we can construct
a smooth interpolant using the average value within each bin. Important factors affecting the bin average
are the bin size (the number of samples in each bin) and the interpolation method used in the final step.
Another approach to estimate conditional expectations uses smoothing splines. This approach seeks to
minimize a penalized sum of squares. A smoothing parameter determines the balance between smoothness
and goodness-of-fit in the least-squares sense [3]. The choice of smoothing parameter is critical to the
accuracy of the results. Specifying the smoothing parameter a priori generally yields poor estimates [15].
Instead, cross-validation and maximum likelihood estimators can guide the choice the optimal smoothing
value for the data set [23]. Such methods can be computationally intensive, and is not recommended when
the spline estimate is performed at each time step. Other techniques to estimate conditional expectations
can be built upon deep-neural nets.

In Figure 6 we compare the performance of the moving average and smoothing splines approaches in
approximating the conditional expectation of two jointly Gaussian random variables. Specifically, we
consider the joint distribution

p(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

σ21

(x2 − µ2)
σ22

− 2ρ(x1 − µ1)(x2 − µ2)
σ1σ2)

])
(50)

with parameters ρ = 3/4, µ1 = 0, µ2 = 2, σ1 = 1 σ2 = 2. As is well known [14], the conditional expectation
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Figure 6: Numerical estimation of the conditional expectation (52) for different number of samples of (50).
Shown are results obtained with moving averages (first row) and cubic smoothing splines (second row).
It is seen that both methods converge to the correct conditional expectation in the active region as we
increase the number of samples.

of x2 given x1 can be expressed as5

E[x2|x1] = µ2 + ρ
σ2
σ1

(x1 − µ1) = 2 +
3

2
x1. (52)

Such expectation is plotted in Figure 6 (dashed line), together with the plots of the estimates we obtain
with the moving average and the smoothing spline approaches for different numbers of samples. It is seen
that both methods converge to the correct conditional expectation as we increase the number of samples.
Both estimators are parametric, i.e., they require setting suitable parameters to compute the expectation,
e.g., the width of the moving average window in the moving average approach, or the smoothing parameter
in the cubic spline.

If the joint PDF of x1 and x2 is not compactly supported, then the conditional expectation is defined on
the whole real line. It is computationally challenging to estimate (52) in regions where the PDF is very
small. At the same time, if we are not interested in rare events (i.e., tails of probability densities), then
resolving the dynamics in such regions of small probability is not really needed. This means that if we
have available a sufficient number of sample trajectories, then we can identify the regions of the phase
space where dynamics is happening with high probability, and approximate the conditional expectation
only within such regions. Outside the active regions, we can set the expectation equal to zero. However,
keep in mind that if the joint PDF of x1 and x2 is compactly supported, e.g. uniform on the square [0, 1]2,
then conditional expectation is undefined outside the support of the joint PDF.

5Given two random variables with joint PDF p(x1, x2), the conditional expectation of x2 given x1 is defined as

E[x2|x1] =

∫ ∞
−∞

x2p(x2|x1)dx2 =
1

p(x1)

∫ ∞
−∞

x2p(x1, x2)dx2, (51)

where p(x1) is the marginal of p(x1, x2) with respect to x2.
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Figure 7: Data-driven estimates of the conditional expectations (30) and (42) defining the reduced-order
PDF models (29) and (41).

In Figure 7, we summarize the results we obtain by applying the smoothing spline conditional expectation
estimator to the dynamical systems (24) and (36). In figure 8 and figure 9 we provide numerical simulation
result for (29) and (41), respectively.

PDF equations for nonlinear PDEs evolving from random initial conditions

The procedure we used to derive reduced-order PDF equations for dynamical systems can be extended to
PDEs evolving from random initial states, or PDEs with random forcing (see, e.g., [10, 7]). To describe
the method, consider the prototype problem of a one dimensional heat equation evolving from a random
initial state

∂u(x, t;ω)

∂t
= κ2

∂2u(x, t;ω)

∂x2
, u(x, 0;ω) = u0(x;ω). (53)

We have seen in Chapter 1 that the Hopf functional6

Φ([θ], t) = E
{

exp

[
i

∫ ∞
−∞

u(x, t;ω)θ(x)dx

]}
(54)

provides full statistical information on u(x, t;ω) at each time t. This includes, e.g., multi-point statistical
moments such as

E {u(xi, t;ω)u(xj , t;ω)} and E {u(xi, t;ω)u(xj , t;ω)u(xk, t;ω)} , (55)

or multi-point probability density functions. It is possible to derive an evolution equation for the Hopf
functional corresponding to the solution of (53). To this end, let us differentiate (54) with respect to time

6In (54) we assumed that the spatial domain for the heat equation (53) is R. If the spatial domain is a compact subset R,
say [0, 2π], then the domain on which the integral in (54) is evaluated changes accordingly.
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Figure 8: Kraichnan-Orszag three-mode problem. (a) Accurate kernel density estimate of p1(x1, t) based
on 30000 sample trajectories. (b) Numerical solution of (29) obtained by estimating E[x3(t)|x1(t)] with
5000 sample trajectories.

to obtain

∂Φ([θ], t)

∂t
=E

{
exp

[
i

∫ ∞
−∞

u(x, t;ω)θ(x)dx

]
i

∫ ∞
−∞

∂u(x, t;ω)

∂t
θ(x)dx

}
=iκ2

∫ ∞
−∞

E
{

exp

[
i

∫ ∞
−∞

u(x, t;ω)θ(x)dx

]
∂2u(x, t;ω)

∂x2

}
θ(x)dx

=iκ2
∫ ∞
−∞

∂2

∂x2

(
E
{

exp

[
i

∫ 2π

0
u(x, t;ω)θ(x)dx

]
u(x, t;ω)

})
θ(x)dx

=iκ2
∫ ∞
−∞

∂2

∂x2

(
δΦ([θ], t)

δθ(x)

)
θ(x)dx, (56)

where δΦ([θ], t)/δθ(x) denotes the first-order functional derivative of the nonlinear functional (54) (see
[19] or [5, p. 309]). Technically speaking, equation (56) is a functional-differential equation (FDE) as it
involves derivatives with respect to functions and derivatives with respect to independent variables x and
t. The solution to (56) is a time-dependent nonlinear functional, i.e., a nonlinear operator from a space of
functions into C. The functional differential equation (56) is essentially an infinite-dimensional PDE, i.e.,
a PDE in an infinite number of independent variables which may be approximated by a PDE in a finite
(though very large) number of variables using the functional methods described in [19].

The Hopf equation (56) plays the same role for the heat equation (53) as the Fourier transform of the
Liouville equation (9) does for finite-dimensional dynamical systems (1).

Example: Another well-known example of a FDE involves the characteristic functional of the solution to
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Figure 9: Nonlinear dynamical system (36). (a) Accurate kernel density estimate [2] of p(x1, t) based on
20000 sample trajectories. (b) Data-driven solution of the transport equation (41). We estimated the
conditional expectation E [sin(x2(t))|x1(t)] based on 5000 sample trajectories of (36) (see Figure 7).

the Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u ∇ · u = 0. (57)

Such a FDE can be written as [6, 11, 19]

∂Φ([θ], t)

∂t
=

3∑
k=1

∫
V
θk(x)

i 3∑
j=1

∂

∂xj

δ2Φ([θ], t)

δθk(x)δθj(x)
+ ν∇2 δΦ([θ], t)

δθk(x)

 dx, (58)

where

Φ([θ], t) = E
{

exp

[
i

∫
V
u(x, t;ω) · θ(x)dx

]}
. (59)

Here, u(x, t;ω) represents a stochastic solution to the Navier-Stokes equation (57) corresponding to a
random initial state, and E{·} is the expectation over the probability measure of such random initial state.
Equation (58) was deemed by Monin and Yaglom ([11, Ch. 10]) to be “the most compact formulation of the
general turbulence problem”, which is the problem of determining the statistical properties of the velocity
field generated by the Navier-Stokes equations given statistical information on the initial state7.

Remark: Clearly, if we discretize the PDE (53) or (57) in the spatial domain, e.g., with finite-differences,
then we obtain a system of ODEs which can be handled with the mathematical tools we discussed in the

7In equations (58)-(59), V ⊆ R3 is a periodic box, θ(x) = (θ1(x), θ2(x), θ3(x)) is a vector-valued (divergence-free) function,
and δ/δθj(x) denotes the first-order functional derivative.
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previous section. In particular, it is possible to derive a Liouville equation for such finite-dimensional ODE
system and correspondingly a BBGKY hierarchy for the solution evaluated e.g., at the spatial grid points.
An interesting question is how to compute statistical properties at spatial locations that do not coincide
with the grid points. For example, is it possible to “interpolate” the joint characteristic function of the
solution u(x, t;ω) at n spatial nodes {xk} and obtain an approximation of the joint characteristic at a
different set of m nodes? To answer this question, consider the 2-point characteristic function

φ2(a1, a2, t) = E
{
eia1u(x1,t;ω)+ia2u(x2,t;ω)

}
. (60)

Let x∗ be a point in between x1 and x2. Assuming that u(x, t;ω) is a smooth solution to a PDE, we can
construct an interpolant for u(x∗, t, ω), e.g., a linear interpolant as

u(x∗, t;ω) = u(x1, t;ω)`1(x
∗) + u(x2, t;ω)`2(x

∗) (61)

where `1(x) = (x− x2)/(x1 − x2) and `2(x) = (x− x1)/(x2 − x1) are Lagrange characteristic polynomials.
This representation allows us to represent the three-point joint characteristic function of u(x, t;ω) at x1,
x2 and x∗ as

φ3(a1, a2, a3, t) =E
{
eia1u(x1,t;ω)+ia2u(x2,t;ω)+ia3u(x

∗,t;ω)
}

=E
{
eia1u(x1,t;ω)+ia2u(x2,t;ω)+ia3(u(x1,t;ω)`1(x

∗)+u(x2,t;ω)`2(x∗))
}

=E
{
ei(a1+a3`1(x

∗))u(x1,t;ω)+i(a2+a3`2(x∗))u(x2,t;ω)
}

=φ2(a1 + a3`1(x
∗), a2 + a3`2(x

∗), t). (62)

This expression provides an approximation of the three-point characteristic function in terms of the two
point characteristic function. Of course the method can be generalized to n point characteristic functions.
If the spatial discretization is sufficiently fine, and the interpolants are accurate, we can represent the 2n,
3n, etc., characteristic functions in terms of one core characteristic function e.g., involving the solution at
n spatial points.

Lundgren-Monin-Novikov (LMN) hierarchy. We are interested in deriving the PDF equation gov-
erning the PDF of u(x, t). To this end, consider the characteristic function

φ(a, x, t) = E
{
eiau(x,t;ω)

}
, (63)

and differentiate it with respect to time to obtain

∂φ(a, x, t)

∂t
=iaE

{
∂u(x, t;ω)

∂t
eiau(x,t;ω)

}
=iaκ2E

{
∂2u(x, t;ω)

∂x2
eiau(x,t;ω)

}
=iaκ2 lim

y→x
E
{
∂2u(y, t;ω)

∂y2
eiau(x,t;ω)

}
=iaκ2 lim

y→x

∂2

∂y2
E
{
u(y, t;ω)eiau(x,t;ω)

}
. (64)

Recalling that the two-point characteristic function is defined as

φ(a, b, x, y, t) = E
{
eiau(x,t;ω)+ibu(y,t;ω)

}
(65)
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we see that we can write the term at the right hand side of (64) as

iE
{
u(y, t;ω)eiau(x,t;ω)

}
= lim

b→0

∂

∂b
φ(a, b, x, y, t). (66)

Substituting into (66) into (64) yields

∂φ(a, x, t)

∂t
= κ2 lim

b→0
lim
y→x

∂2

∂y2
a
∂φ(a, b, x, y, t)

∂b
. (67)

Next, we transform this equation for the characteristic function to an equation for the PDF. To this end,
we first recall that

φ(a, x, t) =

∫ ∞
−∞

eiaup(u, x, t)du, φ(a, b, x, y, t) =

∫ ∞
−∞

∫ ∞
−∞

eiau+ibvp(u, v, x, y, t)dudv. (68)

This allows us to write the right hand side of (67) as

a
∂φ(a, b, x, y, t)

∂b
=ia

∫ ∞
−∞

∫ ∞
−∞

eiau+ibvvp(u, v, x, y, t)dudv. (69)

Taking the limit

lim
b→0

a
∂φ(a, b, x, y, t)

∂b
=ia

∫ ∞
−∞

∫ ∞
−∞

veiaup(u, v, x, y, t)dudv

=

∫ ∞
−∞

∫ ∞
−∞

v
∂
(
eiau

)
∂u

p(u, v, x, y, t)dudv

=−
∫ ∞
−∞

eiau
∫ ∞
−∞

v
∂p(u, v, x, y, t)

∂u
dudv. (70)

Hence,
∂p(u, x, t)

∂t
= −κ2 lim

y→x

∂2

∂y2

∫ ∞
−∞

v
∂p(u, v, x, y, t)

∂u
dv. (71)

In other words, the dynamics of the one-point PDF p(u, x, t) (PDF of the solution at location x and time t)
depends on the joint PDF of u(x, t;ω) and u(y, t, ω) through some quite unusual limit. Equation (71) is the
first equation PDF of an infinite hierarchy known as Lundgren-Monin-Novikov (LMN) hierarchy [10, 4, 22],
first developed by Thomas Lundgren to study the statistical properties of turbulence. The second equation
of the LMN hierarchy is an equation for the time derivative of the two point PDF p(u, v, x, y, t). It was
shown in [7] that the Hopf functional equation is completely equivalent to the LMN hierarchy.

Remark: Why do we get a closure problem for the one-point one-time PDF equation of the solution to
the heat equation? The reason is rather simple, and can be understood by recalling that the analytical
solution of (53) in an infinite domain is

u(x, t;ω) =

∫ ∞
−∞

G
(
x, t|x′, t′

)
u(x′, t′)dx′ t ≥ t′, (72)

where

G
(
x, t|x′, t′

)
=

1

[4πκ2(t− t′)]1/2
exp

(
− (x− x′)2

4κ2(t− t′)

)
(73)

is the heat kernel, i.e., the Green function of the diffusion equation on the real line. For an infinitesimal
time increment ∆t we have that the random variable u(x, t + ∆t;ω) (for fixed x) depends on all random

Page 16



AM 238 Prof. Daniele Venturi

variables at the previous time step u(x′, t;ω) (arbitrary x′ ∈ R). To see this more clearly, consider the
following quadrature approximation of the integral in (72) (e.g., Hermite quadrature)

u(xp, t+ ∆t;ω) =

M∑
j=1

wj

[4πκ2∆t]1/2
exp

(
−(xp − xj)2

4κ2∆t

)
u(xj , t;ω), (74)

where xj are Gauss-Hermite nodes, and wj are quadrature weights. Clearly, (74) represents a mapping
from M random variables {u(x1, t;ω), . . . , u(xM , t;ω)} into one random variable u(xp, t+∆t;ω). We know
that the PDF of u(xp, t + ∆t;ω) can be computed if and only if the joint PDF of the random vector
{u(x1, t;ω), . . . , u(xM , t;ω)} is available. In other words, the fact that the solution (72) is non-local in
space implies that the statistical properties at some fixed spatial point x and time t+ ∆t are determined
by the joint statistics at all points x′ at a previous time instant. Hence, a closed equation for the one-point
PDF cannot exist.

By using similar methods, it is possible to derive LMN PDF hierarchies corresponding to rather general
nonlinear PDEs, e.g., the Navier-Stokes equation (57), evolving from random initial states (see [10]).

Data-driven closure approximation of LMN hierarchies. The integral at the right hand side of
(71) can be written in terms of a conditional expectation of u(y, t;ω) given u(x, t;ω). A substitution of
the identity

p(u, v, x, y, t) = p(v, y, t|u, x, t)p(u, x, t) (75)

into (71) yields

∂p(u, x, t)

∂t
=− κ2 lim

y→x

∂2

∂y2

∫ ∞
−∞

vp(v, y, t|u, x, t)∂p(u, x, t)
∂u

dv

=− κ2∂p(u, x, t)
∂u

lim
y→x

∂2

∂y2
E {u(y, t;ω)|u(x, t;ω)} . (76)

As before, if we estimate the conditional expectation E {u(y, t;ω)|u(x, t;ω)} from sample paths of (53) then
we can solve (76) as we did in the case of data-driven closures for BBGKY hierarchies. The development
of efficient methods for data-driven estimation of conditional expectations such as E {u(y, t;ω)|u(x, t;ω)}
nearby x = y is (to my knowledge) an open problem.

Example: Consider the Kuramoto-Sivashinsky equation

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+ ν

∂4u

∂x4
= 0 (77)

By using the methods we just outlined it can be shown that the first equation of the LMN hierarchy
is

∂p(u, x, t)

∂t
+

∫ u

−∞

∂p(u′, x, t)

∂x
du′ + u

∂p(u, x, t)

∂x
=

− lim
y→x

[
∂2

∂y2
E {u(y, t;ω)|u(x, t;ω)}+ ν

∂4

∂y4
E {u(y, t;ω)|u(x, t;ω)}

]
. (78)

Hence, once again, the PDF equation can be closed by estimating E {u(y, t;ω)|u(x, t;ω)} from data.
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Appendix A: Fokker-Planck equation and generalized Fokker-Planck equations

Consider the following stochastic ODE

dX = G(X, t)dt+M(X, t)dζ(t;ω), X(0;ω) = X0(ω). (79)

where ζ(t) is a vector-valuedm-dimensional random process with known statistical properties, andM(X, t)
is a n×mmatrix of functions. We have seen at the beginning of this Chapter that if ζ(t) is finite-dimensional
(i.e., it can be represented in terms of a finite-number of random variables) then it is possible to derive
an exact transport equation (i.e., (9)) for the joint PDF of X(t;ω) and all random variables representing
ζ(t;ω). By integrating out the phase variables corresponding to the noise, i.e., by marginalizing the
Liouville equation with respect to the phase variables representing the noise, it is straightforward to obtain
an evolution equation for the PDF of X(t;ω) alone. Such an equation represents the first equation of a
BBGKY hierarchy and it is usually not closed, meaning that it involves quantities that cannot be computed
just based on the PDF of X(t;ω). However, there are cases in which the integration of the noise can be
carried out exactly, and a closed equation for the PDF of X(t;ω) can be derived. Perhaps the most famous
example is the case where xi(t) is a Wiener process. In this case it was shown in [16] that p(x, t) satisfies
the Fokker-Plank equation

∂p(x, t)

∂t
= −

n∑
k=1

∂

∂xk
(Gk(x, t)p(x)) +

1

2

n∑
i,k=1

∂2

∂xi∂xk

 m∑
j=1

Mij(x, t)Mkj(x, t)p(x, t)

 . (80)

Let us denote by K (x, t) the Kolmogorov operator defining the right hand side of (80), i.e.,

K (x, t)p(x, t) = −
n∑
k=1

∂

∂xk
(Gk(x, t)p(x)) +

1

2

n∑
i,k=1

∂2

∂xi∂xk

 m∑
j=1

Mij(x, t)Mkj(x, t)p(x, t)

 . (81)

It is shown in [16, p. 86] that K represents the first-order term in the short-time expansion of the transition
density

pt+dt|t(x, t+ dt|y, t) =
[
I + K (x, t)dt+O(dt2)

]
δ(x− y), (82)

where δ(·) is the multivariate Dirac delta function. The transition density (82) allows us to compute the
PDF p(x, t) of the random vector X(t;ω) appearing in (79) given the PDF p(x, s) of X(s;ω) at any time
s ≤ t

p(x, t) =

∫
pt|s(x, t|y, s)p(y, s)dy. (83)

We emphasize that the PDE governing the PDF of the solution to (4) depends substantially on the
statistical properties of the noise ζ(t). For instance, if we replace the Wiener process ζ(t;ω) in (4) with a
Lévy random walk then the PDF equation for X(t;ω) comes with a fractional Laplace operator [18], i.e.,
it is a fractional PDE.

Similarly, for weakly colored random noise, i.e., noise with short temporal correlation, it is possible to
leverage the quasi-Markovian nature of the system, and integrate out the noise, e.g., using functional
integration [12, 21].
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Deep learning with stochastic neural networks

It has been recently shown that new insights on deep learning can be obtained by regarding the process
of training a deep neural network as a discretization of an optimal control problem involving nonlinear
differential equations [5, 4, 8]. One attractive feature of this formulation is that it allows to use tools from
dynamical system theory to study deep learning from a rigorous mathematical perspective [12, 9, 14]. For
instance, it has been recently shown that by idealizing deep residual networks (ResNet) as continuous-time
dynamical systems it is possible to derive sufficient conditions for universal approximation in Lp, which can
be understood as an approximation theory built on flow maps generated by dynamical systems [13].

In this note we present a formulation deep neural networks obtained by applying simple probabilistic tools
to discrete dynamical systems. Specifically, we consider two types of neural network models:

• Neural networks perturbed by additive random noise;

• Neural networks with random weights and biases.

Modeling neural networks as discrete stochastic dynamical systems. Let us begin by modeling
the input-output map of a neural network as a discrete dynamical system (see Figure 1)

X1 = F0(X0,w0) + ξ0 Xn+1 = F (Xn,wn) + ξn, (1)

Here the index n labels a specific layer in the network, X0 ∈ Rd is the input, Xn ∈ RN (n = 1, . . . , L
represents output of the n-th layer, and {ξ0, . . . , ξL−1} is set of statistically independent random vectors,
or more generally a vector-valued Markov process. We allow the initial state X0 to be random as well,
which can be directly connected to a data set in a training algorithm. A neural networks of the form (1)
is called recurrent, to emphasize the fact that the mapping

F (Xn,wn) = ϕ(WnXn + bn) wn = {Wn, bn}, (2)

between one layer and the next has the same functional form. In (2) ϕ : RN 7→ RN is the activation
function of the network, Wn is a N ×N weight matrix and bn ∈ RN is a bias vector.

In a supervised learning setting, the degrees of freedom

w = {w0, . . . ,wL−1}, (3)

are determined by optimizing a suitable performance metric depending on the network output. For instance,
if we are interested in using the network depicted in Figure 1 to approximate a multivariate function
g(x) ∈ L2([0, 1]d) then we can identify the degrees of freedom (3) by minimizing, e.g., the non-convex
functional

{α,w} = argmin
α,w

‖g(x)−α · E [XL|X0 = x]‖2L2([0,1]d) , (4)

where α are the output weights, and E [XL|X0 = x] conditional expectation of XL given X0 = x. In this
setting, it is clear that the process of training a neural network is basically an optimal control problem
(the controls being the weights and biases) of a discrete stochastic differential equation.

A different stochastic neural network model can be defined by randomizing weights and biases [6, 21]. In
this setting we have

Xn+1 = ϕ(Wn(ω)Xn + bn(ω)), (5)

where Wn(ω) are random weight matrices and bn(ω) are random bias vectors. We shall assume that Wn

and bn corresponding to different layers are statistically independent.

Page 1



AM 238 Prof. Daniele Venturi

Figure 1: Sketch of the stochastic neural network model (1). Note that the transfer function F is the same
in every layer (except the first one). This implies that the random vectors {X1, . . . ,XL} all have the same
dimension.

By adding random noise to the output of each neural network layer, or by randomizing weights and biases,
we are essentially adding an infinite number of degrees of freedom to our system. This allows us to
rethink the process of training the neural network from a probabilistic perspective. For instance, random
noise allows us to approximately encode secret messages in fully trained deterministic neural networks by
selecting an appropriate transition probability for the noise process.

Composition and transfer operators

Let us now derive the composition and transfer operators associated with the neural network models (1) and
(5), which map, respectively, the conditional expectation E {u(XL)|Xn = x} and pn(x) (the probability
density of Xn) forward and backward across the network. To this end, we assume that {ξ0, . . . , ξL−1} in
(1) are independent random vectors. Similarly, we assume that the random matrices {W0, . . . ,WL−1} and
the random vectors {b0, . . . , bL−1} in (5) are statistically independent. These assumptions imply that the
sequences of vectors {X0,X1,X2, . . . ,XL} generated by either (1) or (5) are discrete Markov processes1.
Therefore, the joint probability density function (PDF) of the random vectors {X0, . . . ,XL}, i.e., joint
PDF of the state of the entire neural network, can be factored2 as

p(x0, . . . ,xL) = pL|L−1(xL|xL−1)pL−1|L−2(xL−1|xL−2) · · · p1|0(x1|x0)p0(x0). (6)

By using the identity

p(xk+1,xk) = pk+1|k(xk+1|xk)pk(xk) = pk|k+1(xk|xk+1)pk+1(xk+1) (7)

1The independence assumption assumption of the random noise vector {ξ0, . . . , ξL−1} or the random weights and biases
{W1, . . . ,W1} and {b1, . . . , bm} is not necessary for the process {X0,X1,X2, . . . ,XL} to be Markov. Such assumption just
simplifies the expression of the transition density p(xi+1|xi).

2In equation (6) we used the shorthand notation pi|j(x|y) to denote the conditional probability density function of the
random vector Xi given Xj = xj . With this notation we have that the conditional probability density of Xi given Xi = y is
pi|i(x|y) = δ(x− y), where δ(·) is the Dirac delta function.
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we see that the chain of transition probabilities (6) can be reverted, yielding

p(x0, . . . ,xL) = p0|1(x0|x1)p1|2(x1|x2) · · · pL−1|L(xL−1|xL)pL(xL). (8)

From these expression, it follows that

pn|q(x|y) =

∫
pn|j(x|z)pj|q(z|y)dz, (9)

for all indices n, j and q in {0, . . . , L}, excluding n = j = q (see footnote 2). The transition probability
equation (9) is known as discrete Chapman-Kolmogorov equation and it allows us to define the transfer
operator mapping the PDF pn(xn) into pn+1(xn+1), together with the composition operator for the con-
ditional expectation E{u(xL)|Xn = xn}. As we shall will see hereafter, the discrete composition and
transfer operators are adjoint to one another.

Transfer operator. Let us denote by pq(x) the PDF of Xq, i.e., the output of the q-th neural network
layer. We first define the operator that maps pq(x) into pn(x). By integrating the joint probability density
of Xn and Xq, i.e., pn|q(x|y)pq(y) with respect to y we immediately obtain

pn(x) =

∫
pn|q(x|y)pq(y)dy. (10)

At this point, it is convenient to define the operator

N (n, q)f(x) =

∫
pn|q(x|y)f(y)dy. (11)

N (n, q) is known as transfer operator [3]. From a mathematical viewpoint N (n, q) is an integral operator
with kernel pn|q(x,y), i.e., the transition density integrated “from the right”. It follows from the Chapman-
Kolmogorov identity (9) that the set of integral operators {N (n, q)} forms a group. Namely,

N (n, q) = N (n, j)N (j, q), N (j, j) = I, ∀n, j, q ∈ {0, . . . , L}. (12)

The operator N allows us to map the one-layer PDF, e.g., the PDF of Xq, either forward or backward
across the neural network (see Figure 2). As an example, consider a network with four layers with states
X0 (input), X1, X2, X3, and X4 (output). Then Eq. (11) implies that,

p2(x) = N (2, 1)N (1, 0)︸ ︷︷ ︸
N (2,0)

p0(x) = N (2, 3)N (3, 4)︸ ︷︷ ︸
N (2,4)

p4(x).

In summary, we have
pn(x) = N (n, q)pq(x) ∀n, q ∈ {0, . . . , L}, (13)

where

N (n, q)pq(x) =

∫
pn|q(x|y)pq(y)dy. (14)

We emphasize that modeling PDF dynamics via neural networks has been studied extensively in machine
learning, e.g., in the theory of normalizing flows for density estimation or variational inference [17, 10,
18].

Composition operator For any measurable deterministic function u(x), the conditional expectation of
u(Xj) given Xn = x is defined as

E {u(Xj)|Xn = x} =

∫
u(y)pj|n(y|x)dy. (15)
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A substitution of (9) into (15) yields

E {u(Xj)|Xn = x} =

∫
E {u(Xj)|Xq = y} pq|n(y|x)dy, (16)

which holds for all j, n, q ∈ {0, . . . , L− 1}. At this point we define the integral operator

M(n, q)f(x) =

∫
f(y)pq|n(y|x)dy, (17)

which is known as composition [3] or “stochastic Koopman” [19, 23] operator. Thanks to the Chapman-
Kolmogorov identity (9), the set of operators {M(q, j)} forms a group, i.e.,

M(n, q) =M(n, j)M(j, q), M(j, j) = I, ∀n, j, q ∈ {0, . . . , L}. (18)

Equation (18) allows us to map the conditional expectation (15) of any measurable phase space function
u(Xj) forward or backward through the network. As an example, consider again a neural network with
four layers and states {X0, . . . ,X4}. We have

E{u(Xj)|X2 = x} =M(2, 3)M(3, 4)E{u(Xj)|X4 = x}
=M(2, 1)M(1, 0)E{u(Xj)|X0 = x}. (19)

Equation (19) holds for every j ∈ {0, .., 4}. Of particular interest in machine-learning context is the
conditional expectation of u(XL) (network output) given X0 = x, which can be computed as

E{u(XL)|X0 = x} =M(0, L)u(x),

=M(0, 1)M(1, 2) · · ·M(L− 1, L)u(x), (20)

i.e., by propagating u(x) = E{u(XL)|XL = x} backward through the neural network using single layer
operators M(i− 1, i). Similarly, we can compute, e.g., E{u(X0)|XL = x} as

E{u(X0)|XL = x} =M(L, 0)u(x). (21)

For subsequent analysis, it is convenient to define

qn(x) = E{u(XL)|XL−n = x}. (22)

In this way, if E{u(XL)|Xn = x} is propagated backward through the network byM(n−1, n), then qn(x)
is propagated forward by the operator

G(n, q) =M(L− n,L− q). (23)

In fact, equations (22)-(23) allow us to write (20) in the equivalent form

qL(x) =G(L,L− 1)qL−1(x)

=G(L,L− 1) · · · G(1, 0)q0(x), (24)

i.e., as a forward propagation problem (see Figure 2). Note that we can write (24) (or (20)) explicitly in
terms of iterated integrals involving single layer transition densities as

qL(x) =

∫
u(y)p0|L(y|x)dy

=

∫
u(y)

(∫
· · ·
∫
pL|L−1(y|xL−1) · · · p2|1(x2|x1)p1|0(x1|x)dxL−1 · · · dx1

)
dy. (25)
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Figure 2: Sketch of the forward/backward integration process for probability density functions (PDFs)
and conditional expectations. The transfer operator N (n+ 1, n) maps the PDF pn(x) of the state Xn into
pn+1(x) forward through the neural network. On the other hand, the composition operator M maps the
conditional expectation E [u(XL)|Xn+1 = x] backwards to E [u(XL)|Xn = x]. By defining the operator
G(n,m) =M(L − n,L −m) we can transform the backward propagation problem for E [u(XL)|Xn = x]
into a forward propagation problem for qn(x) = E [u(XL)|XL−n = x].

Relation between composition and transfer operators. The integral operatorsM and N defined in
(17) and (11) involve the same kernel function, i.e., the multi-layer transition probability density pq|n(x,y).
In particular, we noticed that M(n, q) integrates pq|n “from the left”, while N (q, n) integrates it “from
the right”. It is easy to show that M(n, q) and N (q, n) are adjoint to each other relative to the standard
inner product in L2 (see [3] for the continuous-time case). In fact,

E{u(Xk)} =

∫
E{u(Xk)|Xq = x}pq(x)dx

=

∫
[M(q, j)E{u(Xk)|Xj = x}] pq(x)dx

=

∫
E{u(Xk)|Xj = x}N (j, q)pq(x)dx. (26)

Therefore
M(q, j)∗ = N (j, q) ∀q, j ∈ {0, . . . , L}, (27)

whereM(q, j)∗ denotes the operator adjoint ofM(q, j) with respect to the L2 inner product. By invoking
the definition (23), we can also write (27) as

G(L− q, L− j)∗ = N (j, q), ∀j, q ∈ {0, . . . , L}. (28)

In Appendix A we show that if the cumulative distribution function of each random vector ξn in the
noise process has partial derivatives that are Lipschitz in R(ξn) (range of ξn), then the composition and
transfer operators defined in Eqs. (17) and 11 are bounded in L2 (see Proposition 0.9 and Proposition
0.10). Moreover, is possible to choose the probability density of ξn such that the single layer composition
and transfer operators become strict contractions.
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Conditional transition density

We have seen that the composition and the transfer operators M and N defined in Eqs. (17) and (11),
allow us to push forward and backward conditional expectations and probability densities across the entire
neural network. Moreover such operators are adjoint to one another (see equation (27)) [3, 22, 2], and
also have the same kernel, i.e., the transition density pn|q(xn|xq). In this section, we determine an explicit
expression for such transition density. To this end, we fist derive analytical formulas for the one-layer
transition density pn+1|n(xn+1|xn) for various types of neural network models. The multi-layer transition
density pn|q(xn|xq) is then obtained by composing one-layer transition densities as follows

pn|q(xn|xq) =

∫
· · ·
∫
pn|n−1(xn|xn−1) · · · pq+1|q(xq+1|xq)dxn−1 · · · dxq+1. (29)

Neural network with additive noise. Let us first consider the neural network model

Xn+1 = F (Xn,wn) + ξn, (30)

where {ξ0, ξ1, . . .} is a discrete (vector-valued) Markov process indexed by “n”. By (30), Xn+1 is the sum
of two independent random vectors3, i.e., F (Xn,wn) and ξn. Given any measurable function h(x) we
clearly have

E {h(Xn+1)} =

∫
h(x)pn+1(x)dx

=

∫ ∫
h(F (x,wn) + ξ)pn(x)ρn(ξ)dxdξ

=

∫ ∫
h(y)) ρn(x− F (y,wn))︸ ︷︷ ︸

pn+1|n(x|y)

pn(x)dydx, (31)

where ρn(x) denotes the probability density of the random vector ξn. Therefore, the one-layer transition
density for the neural network model (30) is4

pn+1|n(xn+1|xn) = ρn(xn+1 − F (xn,wn)). (34)

Note that such transition density depends on the PDF of the random noise ρn, the neural activation
function F , and the neural network weights wn.

Neural network with random weights and random biases. Next, consider the recurrent neural
network model

Xn+1 = ϕ(Wn(ω)Xn + bn(ω)), (35)

3Recall that Xn and ξn are statistically independent random vectors. Hence, F (Xn,wn) and ξn are statistically indepen-
dent random vectors.

4Equation (34) can be derived in a more general setting by recalling the conditional probability identity

pn+1|n(xn+1|xn) =

∫
pXn+1|Xn,ξn(xn+1|xn,z)ρn(z)dz. (32)

The conditional density of Xn+1 given Xn = xn and ξn = z, i.e., pXn+1|Xn,ξn(xn+1|xn,z), can be immediately computed
by using (30) as

pXn+1|Xn,ξn(xn+1|xn,z) = δ(xn+1 − F (xn,wn)− z), (33)

where δ(x) is the multivariate Dirac delta function. Substituting (33) into (32), and integrating over z yields (34).
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where Wn(ω) are random weight matrices and bn(ω) are random bias vectors. The PDF of Xn+1 given
Xn = xn, i.e., the conditional density we are interested in, can be obtained first by computing the PDF of
the random vector

Zn(ω) = Wn(ω)Xn + bn(ω), (36)

i.e., a linear mapping between independent random variables, and then computing the PDF of Xn+1 =
ϕ(Zn), where ϕ is the (invertible) activation function. By using the methods we have seen in chapter 1,
it is rather straightforward to obtain and expression for the conditional density of Xn+1 given Xn = xn
for specific probability distributions of Wn(ω) (random matrix ensembles) and bn.

General neural networks. The transition density of a general neural network of the form

Xn+1 = H(Xn,wn, ξn), (37)

where {ξ0, . . . , ξL−1} are statistically independent and do not depend on {Xj} can be written as (see, e.g.,
[7])

p(xn+1|xn) =

∫
δ (xn+1 −H(xn,wn, ξn))︸ ︷︷ ︸

p(xn+1|xn,ξn)

p(ξn)dξn. (38)

Remark: The transition density (34) associated with the neural network model (30) can be computed
explicitly once we choose a probability model for ξn ∈ RN . For instance, if we assume that {ξ0, ξ1, . . . , }
are i.i.d. Gaussian random vectors with PDF

ρn(ξ) =
1

(2π)N/2
e−ξ

T ξ/2 for all n = 0, . . . , L (39)

then we can explicitly write the one-layer transition density (34) as

pn+1|n(xn+1|xn) =
1

(2π)N/2
exp

[
− [xn+1 − F (xn,wn)]T [xn+1 − F (xn,wn)]

2

]
. (40)

In Appendix A we provide an analytical example of transition density for a neural network with two layers
(one neuron per layer), tanh(·) activation function, and uniformly distributed random noise.

The zero noise limit An important question is what happens to the neural network as we send the
amplitude of the noise to zero. To answer this question consider the system (30) and the introduce the
parameter ε ≥ 0, i.e.,

Xn+1 = F (Xn,wn) + εξn, (41)

We are interested in studying the orbits of this system as ε → 0. To this end, we assume the ξn to be
independent random vectors each having the same density ρ(x). This implies that for all n = 0, . . . , L− 1,
the PDF of εξn is

εξn ∼
1

ε
ρn

(x
ε

)
. (42)

It is shown in [11, Proposition 10.6.1] that the operator N (n+ 1, n) defined in (11)

pn+1(x) =N (n+ 1, n)pn(x)

=

∫
1

ε
ρn

(
x− F (z,wn)

ε

)
pn(z)dz (43)
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converges in norm to the Frobenious-Perron operator corresponding to F (Xn,wn) as ε → 0. Indeed, in
the limit ε→ 0 we have, formally

lim
ε→0

pn|n+1 (xn+1|xn) = lim
ε→0

∫
1

ε
ρn

(
xn+1 − F (xn,wn)

ε

)
= δ (xn+1 − F (xn,wn)) . (44)

Substituting this expression into (11), one gets,

pn+1(x) = N (n+ 1, n)pn(x) =

∫
δ
(
x− F (z,wn)

)
pn(z)dz. (45)

Similarly, a substitution into equation (24) yields

qn+1(x) = G(n+ 1, n)qn(x) = qn (F (x,wL−n−1)) , (46)

i.e, the familiar function composition representation of neural network mappings

qn+1 = q0

(
F
(
F (· · ·F (x,wL−n) · · · ,wL−1),wL

))
. (47)

Training over weights versus training over noise

By adding random noise to the output of each layer in a neural network we are essentially adding an infinite
number of degrees of freedom to our system. This allows us to rethink the process of training the neural
network from a probabilistic perspective. In particular, instead of optimizing a performance metric5 relative
to the neural network weights w = {w0,w1, . . . ,wL−1} for fixed noise, we can now optimize the transition
density6 pn+1|n(xn+1|xn). Clearly, such transition density is connected to the neural network weights,
e.g., by equation (34). Hence, if we prescribe the PDF of the random noise, i.e., ρn(·) in (34), then the
transition density pn+1|n is uniquely determined by the functional form of the activation function F , and by
the weights wn. On the other hand, we can optimize ρn (probability density of the random noise ξn) while
keeping the weights wn fixed. As we shall see hereafter, this process opens the possibility approximately
encode and decode secret messages in a fully trained neural network using random noise.

Encoding secret messages in neural networks using random noise. An interesting question is
whether random noise added to the output of each layer in the neural network can enhance features of the
output, or allow us to encode/decode secret signals in the network. The interaction between random noise
and the nonlinear dynamics modeled by the network can yield indeed many surprising results. For example,
in stochastic resonance [16, 20] it is well known that random noise added to a properly tuned bi-stable
system can induce a peak in the Fourier power spectrum of the output, hence effectively amplifying the
signal. Similarly, random noise added to a neural network can have remarkable effects. In particular, it
allows us to re-purpose (to some extent) a previously trained network by hiding a secret signal in it, which
can be approximately encoded and decoded by using random noise. To this end, it is sufficient to optimize

5In a supervised learning setting the neural network weights are usually determined by minimizing a dissimilarity measure
between the output of the network and a target function. Such measure may be an entropy measure, the Wasserstein distance,
the Kullback–Leibler divergence, or other measures defined by classical Lp norms.

6In a deterministic setting, the transition density for a neural network model of the form Xn+1 = F (Xn,wn) is simply

pn+1|n(xn+1|xn) = δ (xn+1 − F (xn,wn)) , (48)

where δ(·) is the Dirac delta function. Such density does not have any degree of freedom other than wn. On the other hand,
in a stochastic setting we are free to choose the PDF of ξn. For a neural network model of the form Xn+1 = F (Xn,wn) + ξn
the transition density has the form

pn+1|n(xn+1|xn) = ρn (xn+1 − F (xn,wn)) , (49)

where ρn(ξ) is the PDF of ξn. We are clearly free to choose the functional form of ρn.
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the PDF of the noise appropriately, and then train the conditional expectation of the output over such
PDF.

To describe the method, suppose that we are given a fully trained deterministic neural network with only
two layers, and weights chosen to represent an input-output map defined on some domain Ω ⊆ Rd. In the
absence of noise we can write the output of the neural network as

q2(x) = αTF (F0(x,w0),w1) (50)

where {α,w0,w1} can be optimized to minimize the distance between q2(x) and a given target function
f(x) (x ∈ Ω) . Injecting noise ξ0 in the output of the first layer yields the input-output map

h2(x) = αT
∫
F (y + F0(x,w0),w1)ρ0 (y) dy, (51)

where {α,w1,w0} here are fixed, and ρ0 is the PDF of ξ0. Equation (51) resembles a Fredholm integral
equation of the first kind. In fact, it can be written as

h2(x) =

∫
κ2(x,y)ρ0 (y) dy, (52)

where
κ2(x,y) = αTF (y + F0(x,w0),w1). (53)

However, differently from standard Fredholm equations of the first kind, here we have x ∈ Ω ⊆ Rd while
y ∈ RN , i.e., the integral operator with kernel κ2 maps functions in N variables into functions in d variables.
We are interested in finding a PDF ρ0(y) that solves (51) for a given function h2(x). In other words, we are
re-purposing the neural network (50) with output q2(x) ' f(x) to approximate now a different function
h2(x) ' v(x), without modifying the weights {α,w1,w0} but rather simply adding noise ξ0 and averaging
the output over the PDF ρ0 of the noise (Eq. (52)). Equation (52) is unfortunately ill-posed in the space
of probability distributions. In other words, for a given kernel κ2 and a given target q2 there is (in general)
no PDF ρ0 that satisfies (52) exactly. However, one can proceed by optimization. For instance, ρ0 can be
determined by solving the constrained least squares problem7

ρ0 = argmin
ρ

∥∥∥∥h2(x)−
∫
κ2(x,y)ρ(y)dy

∥∥∥∥
L2(Ω)

subject to ‖ρ‖L1(RN ) = 1 ρ ≥ 0. (54)

7The optimization problem (54) is a quadratic program with linear constraints if we represent ρ0 in the span of a basis
made of positive functions, e.g., Gaussian kernels [1].
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Appendix A: Functional setting

Let (S,F ,P) be a probability space. Consider the neural network model (see Figure 1)

X1 = F0(X0,w0) + ξ0 Xn+1 = F (Xn,wn) + ξn n = 1, . . . , L− 1, (55)

where {ξ0, . . . , ξL−1} is a discrete (vector-valued) Markov process. Suppose we are interested in using
the model (55) to approximate a multivariate function f(x). This is usually done by taking a linear
combination of the network output, e.g., Eq. (4). In this setting, the neural network can be thought of
as a process of constructing an adaptive basis by function composition. Here we consider the case where
the function we are approximating is defined on a compact subset Ω0 of Rd. This means that the input
vector of the neural network, i.e. X0, is and element of Ω0. We assume that the following conditions are
satisfied

1. X0 ∈ Ω0 ⊆ Rd (Ω compact), Xn ∈ RN for n = 1, . . . , L− 1;

2. The image of F0 and F is the hyper-cube [−1, 1]N .

For example, if F in (55) is of the form

F (x,w) = tanh(Wx+ b) w = {W , b}, (56)

then conditions 1. and 2. imply that W0 ∈MN×d(R) and Wn ∈MN×N (R) for n = 1, . . . L− 1, while the
biases are bn ∈ MN×1(R) for n = 0, . . . L − 1. The random vectors {ξ0, . . . , ξL−1} added to the output
of each layer make {X1, . . . ,XK} a discrete Markov process (each Xi is a random vector). The range of
Xn+1 depends essentially on the range of ξn, as the image of F is the hyper-cube [−1, 1]N (see condition
2. above). Let us define8

Ωn+1 =[−1, 1]N + R(ξn)

={c ∈ RN : c = a+ b a ∈ [−1, 1]N , b ∈ R(ξn)}, (58)

where R(ξn) denotes the range of the random vector ξn, i.e.,

R(ξn) = {ξn(ω) ∈ RN : ω ∈ S}. (59)

Clearly, the range of the random vector Xn+1 is a subset9 of Ωn+1, i.e., R(Xn+1) ⊆ Ωn+1. This implies
the following lemma.

Lemma 0.1. Let λ(Ωn+1) the Lebesgue measure of the set (58). The Lebesgue measure of the range of
Xn+1 satisfies

λ(R(Xn+1)) ≤ λ(Ωn+1). (60)

Proof. The proof follows from the inclusion R(Xn+1) ⊆ Ωn+1.

8The notation [−1, 1]N denotes a Cartesian product of N one-dimensional domains [−1, 1], i.e.,

[−1, 1]N =
N×

k=1

[−1, 1] = [−1, 1]× [−1, 1]× · · · × [−1, 1]︸ ︷︷ ︸
N times

. (57)

9We emphasize that if we are given a specific form of the activation function F together with suitable bounds on the neural
network weights and biases {W , b} then we can easily identify a domain that is smaller than Ωn, and that still contains
R(Xn). This allows us to construct a tighter bound for λ(R(Xn+1) in Lemma 0.1, which depends on the activation function
and on the bounds we set on neural network weights and biases.
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The L∞ norm of the random vector ξ is defined as the largest value of r ≥ 0 that yields a nonzero
probability on the event {ω ∈ S : ‖ξ(ω)‖∞ > r} ∈ F , i.e.,

‖ξ‖∞ = sup
r∈R
{P({ω ∈ S : ‖ξ(ω)‖∞ > r}) > 0}. (61)

This definition allows us to bound the Lebesgue measure of Ωn+1 as follows.
Proposition 0.2. The Lebesgue measure of the set Ωn+1 defined in (58) can be bounded as

λ(Ωn+1) ≤
(√

N + ‖ξn‖∞
)N πN/2

Γ(1 +N/2)
, (62)

where N is the number of neurons and Γ(·) is the Gamma function.

Proof. As is well known, the length of the diagonal of the hypercube [−1, 1]N is
√
N . Hence,

√
N + ‖ξn‖∞

is the radius of a ball that encloses all elements of Ωn+1. The Lebesgue measure of such ball is obtained
by multiplying the Lebesgue measure of the unit ball in RN , i.e., πN/2/Γ(1 + N/2) by the scaling factor(√

N + ‖ξn‖∞
)N

.

Lemma 0.3. If R(ξn) is bounded then R(Xn+1) is bounded.

Proof. The image of the activation function F is a bounded set. If R(ξn) is bounded then Ωn+1 in (58) is
bounded. R(Xn+1) ⊆ Ωn+1 and therefore R(Xn+1) is bounded.

Clearly, if {ξ0, . . . , ξL−1} are i.i.d. random variables then there exists a domain V = Ω1 = · · · = ΩL such
that

R(ξn) ⊆ R(Xn+1) ⊆ V ∀n = 0, . . . , L− 1. (63)

In fact, if {ξ0, . . . , ξL−1} are i.i.d. random variables then we have

R(ξ0) = R(ξ1) = · · · = R(ξL−1), (64)

which implies that all of Ωi defined in (58) are the same. If the range of each random vector ξn is a
tensor product of one-dimensional domain, e.g., if the components of ξn are statistically independent, then
V = Ω1 = · · · = ΩL becomes particularly simple, i.e., a hypercube.

Lemma 0.4. Let {ξ0, . . . , ξL−1} be i.i.d. random variables with bounded range and suppose that each
ξk has statistically independent components with range [a, b]. Then all domains {Ω1, . . . ,ΩL} defined in
equation (58) are the same, and they are equivalent to

V =
N

×
k=1

[−1 + a, 1 + b]. (65)

V includes the range of all random vectors Xn (n = 1, . . . , L) and has Lebesgue measure

λ(V ) = (2 + b− a)N . (66)

Proof. The proof is trivial and therefore omitted.
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Remark: It is worth noticing that if each ξk is a uniformly distributed random vector with statistically
independent components in [−1, 1], then for N = 10 (number of neurons) the upper bound in (62) is
3.98× 106 while the exact result (66) gives 1.05× 106. Hence the estimate (62) is quite sharp in the case
of uniform random vectors.

Boundedness of composition and transfer operators

Lemma 0.3 states that if we perturb the output of the n-th layer of a neural network by a random vector
ξn with finite range then we obtain a random vector Xn+1 with finite range. In this hypothesis it is
straightforward to show that that the composition and transfer operators defined in (17) and (11) are
bounded. We have seen that these operators can be written as

M(n, n+ 1)v =

∫
R(Xn+1)

v(y)pn+1|n(y|x)dy, N (n+ 1, n)v =

∫
R(Xn)

pn+1|n(x|y)v(y)dy, (67)

where pn+1|n(y|x) = ρn(y−F (x,wn)) is the conditional transition density ofXn+1 givenXn, and ρn is the
joint PDF of the random vector ξn. The conditional transition density pn+1|n(y|x) is always non-negative,
i.e.,

pn+1|n(y|x) ≥ 0 ∀y ∈ R(Xn+1), ∀x ∈ R(Xn). (68)

Moreover, the conditional density pn+1|n is defined on the set

Bn = {(x,y) ∈ R(Xn)×R(Xn+1) : (y − F (x,wn)) ∈ R(ξn)}. (69)

It is also important to emphasize that y ∈ R(Xn+1) and x ∈ R(Xn). Both R(Xn+1) and R(Xn) depend
on Ω0 (domain of the input), the neural network weights, and the noise amplitude. Thanks to Lemma 0.1,
we have that

Bn ⊆ Ωn × Ωn+1. (70)

The Lebesgue measure of Bn can be calculated as follows.

Lemma 0.5. The Lebesgue measure of the set Bn defined in (69) is equal to the product of the measure
of λ(R(Xn)) and the measure of R(ξn), i.e.,

λ(Bn) = λ(R(Xn))λ(R(ξn)). (71)

Moreover, λ(Bn) is bounded by λ(R(Ωn))λ(R(ξn)), which is independent of the neural network weights.

Proof. Let χn be the indicator function of the set R(ξn), y ∈ R(Xn+1) and x ∈ R(Xn). Then

λ(Bn) =

∫
R(Xn+1)

∫
R(Xn)

χn(y − F (x,wn))dxdy

=λ(R(ξn))

∫
R(Xn)

dx

=λ(R(Xn))λ(R(ξn)). (72)

By using Lemma 0.1 we conclude that λ(Bn) is bounded from above by λ(R(ΩL−m))λ(R(ξn)), which is
independent of the neural network weights.
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Remark: The result (71) has a straightforward geometrical interpretation in two dimensions. Pick a ruler
of length r = λ(R(ξn)) with endpoints that can leave markings if we slide it on a rectangular table with
side lengths sb = λ(R(Xn+1)) (horizontal side) sh = λ(R(Xn)) (vertical side). Then slide the ruler from
the top to the bottom of the table, while keeping it horizontal, i.e., parallel to the horizontal sides of the
table (see Figure 3). The area of the domain defined by the two curves drawn by the endpoints of the ruler
is always r× sh independently of the way we slide the ruler laterally – provided the ruler never gets out of
the table.

Lemma 0.6. If the range of ξn−1 is a bounded subset of RN then the transition density pn+1|n(y|x) is an
element of L1 (R(Xn+1)×R(Xn)).

Proof. Note that ∫
R(Xn+1)

∫
R(Xn)

pn+1|n(y|x)dydx = λ (R(Xn)) ≤ λ(Ωn). (73)

The Lebesgue measure λ(Ωn) can be bounded as (see Proposition 0.2)

λ(Ωn) ≤
(√

N + ‖ξn−1‖∞
)N πN/2

Γ(1 +N/2)
. (74)

Since the range of ξn−1 is bounded by hypothesis we have that there exists a finite real number M > 0
such that ‖ξn−1‖∞ ≤ M . This implies that the integral in (73) is finite, i.e., that the transition kernel
pn+1|n(y|x) is in L1 (R(Xn+1)×R(Xn)).

Theorem 0.7. Let Cξn(x) be the cumulative distribution function ξn. If Cξn(x) is Lipschitz continuous
on R(ξn) and the partial derivatives ∂Cξn/∂xk (k = 1, . . . , N) are Lipschitz continuous in x1, x2, ..., xN ,
respectively, then the joint probability density function of ξn is bounded on R(ξn).

Proof. By using Rademacher’s theorem we have that if Cξn(x) is Lipschitz on R(ξn) then it is differentiable
almost everywhere on R(ξn) (except on a set with zero Lebesgue measure). Therefore the partial derivatives
∂Cξn/∂xk exist almost everywhere on R(ξn). If, in addition, we assume that ∂Cξn/∂xk are Lipschitz
continuous with respect to xk (for all k = 1, . . . , N) then by applying [15, Theorem 9] recursively we
conclude that the joint probability density function of ξn is bounded.

Lemma 0.8. Under the same assumptions of Theorem 0.7 we have that the conditional PDF pn+1|n(y|x) =
ρn(y − F (x,w)) is bounded on R(Xn+1)×R(Xn).

Proof. Theorem 0.7 states that ρn is a bounded function. This implies that the conditional density
pn+1|n(y|x) = ρn(y − F (x,w)) is bounded on R(Xn+1)×R(Xn).

Proposition 0.9. Let R(ξn) and R(ξn−1) be bounded subsets of RN . Then, under the same assumptions
of Theorem 0.7, we have that the composition and the transfer operators defined in (67) are bounded in L2.
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Proof. Let us first prove thatM(n, n+1) is a bounded linear operator from L2(R(Xn+1)) into L2(R(Xn)).
To this end, note that

‖M(n, n+ 1)v‖2L2(R(Xn)) =

∫
R(Xn)

∣∣∣∣∣
∫

R(Xn+1)
v(y)pn+1|n(y|x)dy

∣∣∣∣∣
2

dx

≤‖v‖2L2(R(Xn+1))

∫
R(Xn)

∫
R(Xn+1)

pn+1|n(y|x)2dydx︸ ︷︷ ︸
Kn

=Kn ‖v‖2L2(R(Xn+1)) . (75)

Clearly, Kn < ∞. In fact, if R(ξn) and R(ξn−1) are bounded then R(Xn+1) and R(Xn) are bounded.
Moreover, thanks to Lemma 0.8 we have that pn+1|n(y|x) is bounded on R(Xn+1)×R(Xn). Hence, Kn

is the integral of the square of a bounded function defined on a bounded domain, and therefore it is finite.
By following the same steps it is straightforward to show that the transfer operator N is a bounded linear
operator. Alternatively, simply recall that N is the adjoint of M, and the adjoint of a bounded linear
operator is bounded. Specifically we have,

‖N (n+ 1, n)p‖2L2(R(Xn+1)) ≤ Kn ‖p‖2L2(R(Xn)) . (76)

Remark: The integrals

Kn =

∫
R(Xn)

∫
R(Xn+1)

pn+1|n(y|x)2dydx (77)

can be computed by noting that
pn+1|n(y|x) = ρn(y − F (x,w)) (78)

is essentially a shift of the PDF ρn by a quantity F (x,w) that depends on x and w (see, e.g., Figure 3).
Such a shift does not influence the integral with respect to y, meaning that the integral of pn+1|n(y|x) or
pn+1|n(y|x)2 with respect to y is the same for all x. Hence, by changing variables we have that the integral
(77) is equivalent to

Kn = λ(R(Xn))

∫
R(ξn)

ρn(x)2dx, (79)

where λ(R(Xn)) is the Lebesgue measure of R(Xn), and R(ξn) is the range of ξn. Note that Kn depends
on the neural net weights only through the Lebesgue measure of R(Xn). Clearly, since the set Ωn includes
R(Xn) we have by Lemma 0.1 that λ(R(Xn)) ≤ λ(Ωn). This implies that

Kn ≤ λ(Ωn)

∫
R(ξn)

ρn(x)2dx. (80)

The upper bound here does not depend on the neural network weights. The following lemma summarizes
all these remarks.

Proposition 0.10. Under the same assumptions of Theorem 0.7, we have that the composition and the
transfer operators defined in (67) can be bounded as

‖M(n, n+ 1)‖2 ≤ Kn, ‖N (n+ 1, n)‖2 ≤ Kn, (81)

where

Kn = λ(R(Xn))

∫
R(ξn)

ρn(x)2dx. (82)
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Moreover, Kn can be bounded as

Kn ≤ λ(Ωn)

∫
R(ξn)

ρn(x)2dx, (83)

where Ωn is defined in (58) and ρn is the PDF of ξn. The upper bound in (83) does not depend on the
neural network weights and biases.

Under additional assumptions on the PDF ρn(x) it is also possible to bound the integrals at the right hand
side of (82) and (83). Specifically we have the following sharp bound.

Lemma 0.11. Let
sn = inf

x∈R(ξn)
ρn(x), Sn = sup

x∈R(ξn)
ρn(x). (84)

If sn > 0 then under the same assumptions of Theorem 0.7 we have that∫
R(ξn)

ρn(x)2dx ≤ 1

λ(R(ξn))

(Sn + sn)2

4Snsn
. (85)

Proof. First we notice that if the random vector ξn satisfies the assumptions of Theorem 0.7 then the
upper bound Sn is finite. By using the definition (84) we have

(ρn(x)− sn)(Sn − ρn(x)) ≥ 0 for all x ∈ R(ξn). (86)

This implies ∫
R(ξn)

ρn(x)2dx ≤ (Sn + sn)− Snsnλ(R(ξn)), (87)

where we used the fact that the PDF ρn integrates to one over R(ξn). Next, define

Rn =
1

λ(R(ξn))

(Sn + sn)2

4Snsn
. (88)

Clearly,

Rn

(
1− 2Snsn

sn + Sn
λ(R(ξn))

)2

= Rn − (Sn + sn) + Snsnλ(R(ξn)) ≥ 0 (89)

which implies that
(Sn + sn)− Snsnλ(R(ξn)) ≤ Rn. (90)

A substitution of (90) into (87) yields (85).

An example. Let X0 ∈ Ω0 = [−1, 1] and consider

X1 = tanh(X0 + 3) + ξ0, X2 = tanh(2X1 − 1) + ξ1, (91)

where ξ0 and ξ1 are uniform random variables with range R(ξ0) = R(ξ1) = [−2, 2]. In this setting,

R(X1) =[tanh(2)− 2, tanh(4) + 2],

R(X2) =[tanh(2 tanh(2)− 5)− 2, tanh(2 tanh(4) + 3) + 2].
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Figure 3: Conditional probability density function p1|0(x1|x0) defined in equation (92). The domain
R(X1)×R(X0) is the interior of the rectangle delimited by dashed red lines.

The conditional density of X1 given X0 is given by

p1|0(x1|x0) =


1

4
if |x1 − tanh(x0 + 3)| ≤ 2

0 otherwise
(92)

This function is plotted in Figure 3 together with the domain R(X1) ×R(X0) (interior of the rectangle
delimited by dashed red lines). Clearly, the integral of the conditional PDF (92) is∫

R(X0)

∫
R(X1)

p1|0(x1|x0)dx1dx0 = λ(R(X0)) = 2, (93)

where λ(R(X0)) is the Lebesgue measure of R(X0) = [−1, 1]. The L2 norm of the operators N and M is
bounded by10

K0 =

∫
R(X0)

∫
R(X1)

p1|0(x1|x0)2dx1dx0 =
λ(R(X0))

λ(R(ξ0))
=

1

2
. (96)

Hence, both operators N (1, 0) andM(0, 1) are contractions (Proposition 0.10). On the other hand,

K1 =
λ(R(X1))

λ(R(ξ1))
= 1 +

tan(4)− tan(2)

4
> 1. (97)

Next, define V as in Lemma 0.4, i.e., V = [−3, 3]. Clearly, both R(X0) and R(X1) are subsets of V . If we
integrate the conditional PDF shown in Figure 3 in V × V we obtain∫

V

∫
V
p1|0(x1|x0)2dx1dx0 =

λ(V )

λ(R(ξ0))
=

3

2
. (98)

10For uniformly distributed random variables we have that∫
R(ξn)

ρn(x)2dx =
1

λ(R(ξn))
. (94)

Therefore equation (82) yields

Kn =
λ (R(Xn))

λ (R(ξn))
≤ λ (Ωn)

λ (R(ξn))
. (95)

Depending on the ratio between the Lebesgue measure of R(Xn) and R(ξn) one can have Kn smaller or larger than 1.
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Random noise can induce contractions

In this section we prove a result on neural networks perturbed by random noise of increasing amplitude
which states that it is possible to make both operators N and M in (67) contractions11 if the noise is
properly chosen. To this end, we begin with the following lemma.
Lemma 0.12. Let

‖ρn‖2L2(R(ξn)) =

∫
R(ξn)

ρn(x)2dx. (99)

If

‖ρn‖2L2(R(ξn)) ≤
κ

λ(Ωn)
0 ≤ κ < 1 (100)

then M(n, n + 1) and N (n + 1, n) are contractions. The condition (100) is independent of the neural
network weights.

Proof. The proof follows from equation (83).

Hereafter we specialize Lemma 0.12 to neural network perturbed by uniformly distributed random noise.

Proposition 0.13. Let {ξ0, . . . , ξL−1} be independent random vectors. Suppose that the components of
each ξn are zero-mean i.i.d. uniform random variables with range [−bn, bn] (bn > 0). If

b0 ≥
1

2

(
λ(Ω0)

κ

)1/N

and bn ≥
bn−1 + 1

κ1/N
n = 1, . . . , L− 1, (101)

where Ω0 is the domain of the neural network input, 0 ≤ κ < 1, and N is the number of neurons in
each layer, then both operators M(n, n + 1) and N (n + 1, n) defined in (67) are contractions for all
n = 0, . . . , L − 1, i.e., their norm can be bounded by a constant Kn ≤ κ, independently of the weights of
the neural network.

Proof. If ξn is uniformly distributed then from (82) we have that

Kn =
λ (R(Xn))

λ (R(ξn))
. (102)

By using Lemma 0.4 we can bound Kn as

Kn ≤
(

1 + bn−1

bn

)N
, (103)

where N is the number of neurons in each layer of the neural network. Therefore, if bn ≥ (bn−1 + 1)/κ1/N

(n = 1, . . . , L− 1) we have that Kn is bounded by a quantity κ smaller than one. Regarding b0, we notice
that

K0 =
λ (R(X0))

λ (R(ξ0))
=

λ(Ω0)

(2b0)N
, (104)

where Ω0 is the domain of the neural network input. Hence, if b0 satisfies (102) then K0 ≤ κ.

11An linear operator is called a contraction if its operator norm is smaller than one.
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Figure 4: Lower bound on the coefficients bn defined in (106) for λ(Ω0) = 1 as a function of the number of
neuronsN and number of layers of the neural network. With such values of bn the operator G(L−n+1, L−n)
is a contraction satisfying ‖G(L− n+ 1, L− n)‖2 ≤ κ. Shown are results for κ = 0.2 and κ = 10−4

(contraction index).

One consequence of Proposition 0.13 is that the L2 norm of the neural network output decays with both
the number of layers and the number of neurons if the noise amplitude from one layer to the next increases
as in (101). For example, if we represent the input-output map as a sequence of conditional expectations
(see (20)), and set u(x) = αTx (linear output) then we have

q0(x) =M(0, 1)M(1, 2) · · ·M(L− 1, L)(αTx). (105)

By iterating the inequalities (101) in Proposition 0.13 we find that

bn ≥
1

2κn/N

(
λ(Ω0)

κ

)1/N

+
n∑
k=1

1

κk/N
n = 0, . . . , L− 1, (106)

In Figure 4 we plot the lower bound at the right hand side of (106) for κ = 0.2 and κ = 10−4 as a function
of the number of neurons (N). With bn given in (106) we have that the operator norms of M(n, n + 1)
and N (n+ 1, n) (n = 0, . . . , L− 1) are bounded exactly by κ (see Lemma 0.12). Hence, by taking the L2

norm of (105), and recalling that ‖M(n, n+ 1)‖2 ≤ κ we obtain

‖q0‖2L2(Ω0) ≤Z
2 ‖α‖22 κ

L, (107)
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where12

Z2 =
N∑
k=1

∫
R(XL)

x2
kdx and ‖α‖22 =

N∑
k=1

α2
k. (109)

The inequality (107) shows that the 2-norm of the vector of weights α must increase exponentially fast
with the number of layers L if we chose the noise amplitude as in (106). As shown in the following Lemma,
the growth rate of bn that guarantees that both M and N are contractions is linear (asymptotically with
the number of neurons).

Lemma 0.14. Consider a neural network satisfying the hypotheses of Proposition 0.13. Then, in the limit
of an infinite number of neurons (N →∞), the noise amplitude (106) satisfies

lim
N→∞

bn =
1

2
+ n, (110)

independently of the contraction factor κ and the domain Ω0. This means that for a finite number of
neurons the noise amplitude bn that guarantees that ‖M(n, n+ 1)‖ ≤ κ is bounded from below (κ < 1) or
from above (κ > 1) by a function that increases linearly with the number of layers.

Proof. The proof follows by taking the limit of (106) for N →∞.

An example: Set k = 10−4, L = 4 (four layers) and N = 10 neurons per layer. The factor κL in (107) is
10−16. If we are interested in representing a d-dimensional function in the unit cube Ω0 = [0, 1]d then we
have13

λ(Ω0) = 1 Z2 ≤ N 2N (1 + b3)N+2

3
, (112)

where b3 = 3.684 (see Figure 4 for N = 10). Hence, the norm of the output (107) is bounded by

‖qL‖L2(Ω0) ≤C ‖α‖2 C = 10−16

√
10

210(1 + b3)12

3
' 6.17× 10−11. (113)

This means that the 2-norm of the output coefficients α has to be of the order of 1011 to represent, e.g., a
two-dimensional function of norm about one on the square Ω0 = [0, 1]2.

12In equation (107) we used the Cauchy-Schwarz inequality∥∥∥αTx
∥∥∥2

L2(R(XL))
≤ Z2 ‖α‖22 . (108)

13In fact,
N∑
i=1

∫
R(X4)

x2
i dx ≤

N∑
i=1

∫
Ω4

x2
i dx =

N∑
i=1

∫ 1+b3

−1−b3

· · ·
∫ 1+b3

−1−b3︸ ︷︷ ︸
N times

x2
i dx =

2NN(1 + b3)N+2

3
. (111)
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Polynomial chaos

The theory of polynomial chaos dates back to Wiener [16, 1]. It was originally developed in a rather
general/abstract setting, i.e., to represent L2 functionals of the Browninan motion process X(t;ω) (see
course note 1). What is a functional of the Brownian motion process? Think about the solution to an
ODE driven by Brownian motion. The solution of the ODE at final time is a functional of the Brownian
motion (forcing term). The main result is that any L2 functional of the Brownian motion can be expanded in
the so-called Wiener-Hermite series involving orthogonal1 polynomial functionals of the Brownian motion.
Long story short, if we denote by C0([0, 1]) the set of continuous functions on the interval [0, 1] vanishing
at zero and

F : C0([0, 1])→ R

a real-valued functional mapping functions on C0([0, 1]) onto the real line, then we have the following
convergence result [1, 2]

F ([X(t;ω)]) = lim
N→∞

N∑
n=0

Gn([X(t;ω)]), (1)

where G0 is a constant, and Gn([X(t;ω)]) are Wiener-Hermite polynomials functionals. The first two of
such functionals are2 [17, p. 32]

G1([X]) =

∫ 1

0
κ1(t1)dX(t1;ω), (3)

G2([X]) =

∫ 1

0

∫ 1

0
κ2(t1, t2)dX(t1;ω)dX(t2;ω)−

∫ 1

0
κ2(t1, t1)dt1, (4)

The kernel functions κ1, κ2, etc., satisfy a certain number of conditions that follow from the orthogonality
requirements

E {G0, G1} = 0, E {G0, G2} = E {G1, G2} = 0 (5)

and the normalization conditions (see [17, Lecture 3])

E
{
G2

0

}
= E

{
G2

1

}
= E

{
G2

2

}
= 1. (6)

Roughly speaking, the series expansion (1) says that it is possible to identify a nonlinear system by simply
recording its response to Gaussian white noise [9, 11]. Another usage of (1) is to represent the solution
to a problem, e.g. an ODE or PDE, driven by Gaussian white noise. The solution to such problems is a
functional of the Browninan motion, and therefore it admits a Wiener-Hermite expansion.

There were attempts to generalize the Wiener-Hermite functional expansion to processes other than the
Brownian motion (see, e.g., [10, 7, 2]). The reason for such generalization is obvious. For instance, such
expansions can be used to represent the solution of an ODE driven by random noise other than Brownian
motion. However, it was found in [10, 7] that expanding a given functional in terms of series of orthogonal
polynomial functionals of processes other than Brownian motion can yield non-convergent expansions. As
we shall see hereafter, this is also true in the much simpler case of systems driven by a finite number of
random variables, or even one random variable.

1Wiener-Hermite polynomial functionals are orthogonal with respect to the Gaussian measure.
2Note that the integrals in (3)-(4) do not exist in the ordinary Stieltjes sense because X(t;ω) is nowhere differentiable.

However, we can get around this by defining the integrals such as (3) using integration by parts as

G1([X]) =

∫ 1

0

κ1(t1)dX(t1;ω) = κ1(1)X(1;ω)− κ1(0)X(0;ω)−
∫ 1

0

κ′
1(t1)X(t1;ω)dt1 = κ1(1)X(1;ω)−

∫ 1

0

κ′
1(t1)X(t1;ω)dt1.

(2)
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Generalized polynomial chaos expansion for systems driven by one random variable. While
theoretically sound, the Wiener-Hermite expansion in terms of orthogonal polynomial functionals does
not have a great deal of practical applicability, mostly because it is an expansion relative to an infinite-
dimensional stochastic process, i.e., the Brownian motion process. However, the theory can be simplified
substantially for systems driven by a finite number of random variables [18, 2]. The simplest case is a
system driven by only one random variable, i.e., a mapping of the form

η(ω) = g(ξ(ω)). (7)

The generalized polynomial chaos (gPC) expansion of η(ω) is a series expansion of g(ξ(ω)) in terms of
polynomials of ξ(ω) orthogonal with respect to the PDF of ξ(ω). Let us write such gPC expansion as

g(ξ(ω)) =
∞∑
k=0

akPk(ξ(ω)), (8)

where ak are real numbers, and Pk(ξ(ω)) are polynomials of the random variable ξ(ω) satisfying the
orthogonality conditions

E {Pk(ξ)Pj(ξ)} =

∫ ∞
−∞

Pk(x)Pj(x)pξ(x)dx = E
{
P 2
k (ξ)

}
δkj . (9)

A substitution of (9) into (8) yields

ak =
E {Pk(ξ)g(ξ)}
E
{
P 2
k (ξ)

} . (10)

Remark: The theory of orthogonal polynomials is summarized in [18, Ch. 3] and in Appendix A of this
note. One of the key elements is that there exists a one-to-one correspondence between the PDF pξ(x)
and a set of (monic) orthogonal polynomials. In other words, the function pξ(x) defines uniquely a set of
orthogonal polynomials, e.g., through the Stieltjes algorithm [4, 3] (see Appendix A).

Theorem 1 (Convergence of gPC expansion). The set of orthogonal polynomials associated with the
random variable ξ(ω) is dense in L2(Ω,F , P ) if and only if the moment problem for ξ(ω) is uniquely
solvable.

The proof of the theorem is provided in [2]. Stated differently, theorem 1 says that the sequence of random
variables

gn(ξ) =
n∑
k=0

akPk(ξ) ak =
E {Pk(ξ)g(ξ)}
E
{
P 2
k (ξ)

} , (11)

where Pk(ξ) are orthogonal polynomials relative to the PDF of ξ, converges to the random variable η(ω) =
g(ξ(ω)) in L2(Ω,F , P ), i.e., in the mean square sense (see Appendix B). In other words

lim
n→∞

E
{
|g(ξ)− gn(ξ)|2

}
= 0. (12)

We have shown in Appendix B that mean square convergence implies convergence in probability and
therefore convergence in distribution. This means that the if the random variables are continuous then the
PDF of gn(ξ) converges to the PDF of g(ξ) pointwise.

An important question at this point is: under which conditions is the moment problem for a random
variable uniquely solvable?
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PDF of ξ(ω) gPC support

Gaussian Hermite (−∞,∞)

Uniform Legendre [−1, 1]

Gamma Laguerre [0,∞)

Arbitrary PDF Stieltjes algorithm [a, b]

Table 1: Correspondence between the PDF of the continuous random variable ξ(ω) and the gPC basis.

Theorem 2 (Uniqueness of the solution to the moment problem). The moment problem for the distribution
function of a random variable ξ(ω) is uniquely solvable if one of the following conditions is satisfied:

1. The PDF pξ(x) is compactly supported;

2. The moment generating function m(a) = E{eaξ(ω)} exists and it is finite in a neighborhood of a = 0;

3. ξ(ω) is exponentially integrable, i.e.,

E{ea|ξ(ω)|} <∞ for some a > 0; (13)

4. The sequence of moments mn = E{ξn} satisfies

∞∑
n=0

(
1

m2n

) 1
2n

=∞. (14)

The proof of the theorem is provided in [2] and therefore omitted here.

Example: The moment problem is uniquely solvable for Gaussian PDFs, uniform PDFs, and gamma
PDFs

pξ(x) =
1

Γ(k)θk
xk−1e−x/θ, x > 0, k, θ > 0. (15)

Example: A log-normal random variable is defined as

ξ(ω) = log(X(ω)), (16)

where X(ω) is normal. It is straightforward to show that

pξ(x) =
1

x
√

2π
e− log(x)2/2x > 0. (17)

The moments of ξ are
E{ξn} = en

2/2, (18)

and clearly exist for all n ≥ 1. However, the moment problem is not uniquely solvable in this case. Indeed,
there are multiple PDFs with exactly the same sequence of moments. For example, for any v ∈ (0, 1) and
any k > 0 the PDF

pη(x) =
1

x
√

2π
e− log(x)2/2 [1 + v sin(2kπ log(x)] x > 0 (19)
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has exactly the same moments as (17) (see [2, §4.1]). In other words,∫ ∞
0

xnpξ(x)dx =

∫ ∞
0

xnpη(x)dx for all n ≥ 1. (20)

Note that condition 4. in Theorem 2 does not hold for lognormal variables. Indeed, for lognormal variables
we have mn = en

2/2 (see Eq. (18)) and therefore

∞∑
n=0

(
1

e2n2

) 1
2n

=

∞∑
n=0

1

en
=

e

e− 1
. (21)

In Table 1 we summarize the generalized polynomial chaos corresponding to continuous random variables
ξ(ω) with known probability distribution.

gPC expansion for systems driven by multiple random variables.

Consider the random variable η(ω) defined as a scalar function of M independent random variables
{ξ(ω), . . . , ξM (ω)}

η = g(ξ1, . . . , ξM ) (22)

We have seen in Chapter 1 that the PDF η can be represented as a multidimensional convolution of the

PDFs of {ξj}. Denote by {P (i)
ji

(ξi)} the gPC expansion associated with the random variable ξi(ω). By

leveraging the separability of L2
p(ξ) following from the independence assumption on {ξn(ω)}, we have the

following multivariate gPC expansion

g(ξ1, . . . , ξM ) =
∞∑
j1=0

· · ·
∞∑

jM=0

aj1...jMP
(1)
j1

(ξ1) · · ·P (M)
jM

(ξM ), (23)

where

aj1...jM =
E{g(ξ1, . . . , ξM )P

(1)
j1

(ξ1) · · ·P (M)
jM

(ξM )}

E
{
P

(1)
j1

(ξ1)2
}
· · ·E

{
P

(M)
jM

(ξM )2
} (24)

If the moment problem for each random variable ξi(ω) is uniquely solvable, then the tensor product gPC
expansion (23)-(24) converges in the mean square sense (see [2]), i.e., in the L2(Ω,F , P ) sense

lim
n1→∞

· · · lim
nM→∞

E

g(ξ1, . . . , ξM )−
n1∑
j1

· · ·
nM∑
jM

aj1...jMP
(1)
j1

(ξ1) · · ·P (M)
jM

(ξM )

 = 0 (25)

It convenient to write the expansion (23) more compactly. Upon definition of ξ = (ξ1, . . . , xiM ) we
have

g(ξ) =
∞∑
k=0

akΦk(ξ), (26)

where Φk(ξ) are multivariate polynomials constructed by taking products of one-dimensional polynomials
P iji(ξi). A convenient way to arrange the polynomials Φk(ξ) is to sort the tensor product in a degree lexico-
graphic order. In Table 2) we summarize such ordering for the three-dimensional polynomial chaos

Φk(ξ) = P
(1)
j1

(ξ1)P
(2)
j2

(ξ2)P
(3)
j3

(ξ3), (27)

It is clear that the number of terms grows with the dimension M and maximum polynomial degree in each
variable quite fast (exponentially fast as a matter of fact). For instance, gPC of degree p = 2 in M = 3
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j1 j2 j3 k Total degree gPC basis

0 0 0 0 0 Φ0(ξ) = P
(1)
0 (ξ1)P

(2)
0 (ξ2)P

(3)
0 (ξ3)

0 0 1 1 1 Φ1(ξ) = P
(1)
0 (ξ1)P

(2)
0 (ξ2)P

(3)
1 (ξ3)

0 1 0 2 1 Φ2(ξ) = P
(1)
0 (ξ1)P

(2)
1 (ξ2)P

(3)
0 (ξ3)

1 0 0 3 1 Φ3(ξ) = P
(1)
1 (ξ1)P

(2)
0 (ξ2)P

(3)
0 (ξ3)

0 0 2 4 2 Φ4(ξ) = P
(1)
0 (ξ1)P

(2)
0 (ξ2)P

(3)
2 (ξ3)

0 1 1 5 2 Φ5(ξ) = P
(1)
0 (ξ1)P

(2)
1 (ξ2)P

(3)
1 (ξ3)

0 2 0 6 2 Φ6(ξ) = P
(1)
0 (ξ1)P

(2)
2 (ξ2)P

(3)
0 (ξ3)

1 0 1 7 2 Φ7(ξ) = P
(1)
1 (ξ1)P

(2)
0 (ξ2)P

(3)
1 (ξ3)

1 1 0 8 2 Φ8(ξ) = P
(1)
1 (ξ1)P

(2)
1 (ξ2)P

(3)
0 (ξ3)

2 0 0 9 2 Φ9(ξ) = P
(1)
2 (ξ1)P

(2)
0 (ξ2)P

(3)
0 (ξ3)

Table 2: Degree lexicographic order of the multivariate polynomial chaos Φk(ξ) = P
(1)
j1

(ξ1)P
(2)
j2

(ξ2)P
(3)
j3

(ξ3).
Shown are polynomials up to total degree 2.

p

1 2 3 4 5 6

M

1 2 3 4 5 6 7

2 3 6 10 15 21 28

3 4 10 20 35 56 84

4 5 15 35 70 126 210

5 6 21 56 126 252 462

6 7 28 84 210 462 924

Table 3: Dimensionality of multivariate gPC for different values of p (max polynomial degree in each 1D
gPC expansion) and M (number of random variables).

random variables yields 10 basis elements {Φ0, . . . ,Φ9} (see Table 2 and Table 3). The combinatorial nature
of the tensor product basis allows us to calculate the number of terms for each fixed M and polynomial
degree p exactly. If we denote by K + 1 the total number terms, i.e., a truncation of the (26) to K terms,
then we have

K + 1 =

(
p+M

p

)
=

(M + p)!

M !p!
. (28)

Note that K + 1 chosen in this way allows a full development of total degree terms up to (and including)
p in the gPC basis {Φ0, . . . ,ΦK}. In Table 3 we summarize the dimensionality of gPC, i.e., the number of
terms K + 1 for different p (max polynomial degree in each 1D polynomial expansion) and M (number of
random variables).

Statistical properties. Once the gPC series expansion of a mapping between random variables is available
it is rather straightforward to compute statistical properties such as moments, cumulants, and even the
PDF of η (using sampling). To this end, let

η = g(ξ) '
K∑
j=0

ajΦj(ξ), aj =
E {ηΦj(ξ)}
E{Φ2

j}
, (29)
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be the gPC expansion of η = g(ξ). It is straightforward to show that,

E {g(ξ)} =a0, (30)

E
{
g(ξ)2

}
=

K∑
k=0

a2kE{Φ2
k}. (31)

In fact, by construction, all 1D orthogonal polynomials of degree larger or equal to one defining Φk(ξ)
average to zero as a consequence of orthogonality3. Also, the constant polynomial in each 1D expansion
is, by construction always equal to one and therefore Φ0(ξ) = 1, which implies E{Φ0} = 1. Equations
(30)-(31) allow us to express the variance of g(ξ) (second cumulant) as

var{g(ξ)} =
K∑
k=1

a2kE{Φ2
k}. (33)

Regarding the PDF of η, we recall that the gPC expansion (29) converges in the mean square sense, and
therefore in distribution (see Appendix B). This means that if we sample each random variable ξi according
to its PDF and substitute such samples into the the gPC expansion then we obtain samples of η.

Multi-element generalized polynomial chaos (ME-gPC) expansion. The ME-gPC expansion was
originally developed in [15, 14] to address the loss of accuracy of gPC simulations of certain time-dependent
problems. One of the reasons that leads to a loss accuracy in gPC simulations is related to the complexity of
the mapping being approximated by gPC, which eventually requires more and more terms as time evolves.
As a simple example consider an harmonic oscillator with random frequency ξ(ω), uniformly distributed
in [0, 1],

ẍ+ ξ2(ω)x = 0, ẋ(0) = 1, x(0) = 0. (34)

As is well known, the solution to (34) is

x(t, ξ) = sin(ξ(ω)t). (35)

It is clear that the gPC representation of the solution (35) requires polynomials of increasing order as
t increases. The reason is clearly explained in Figure 1, where we see that as t increases the function
ξ → sin(ξt) has more and more zeroes in [0, 1]. Another example in which gPC fails miserably is the
approximation of the solution to the simple decay problem

ẋ = −ξ(ω)x, x(0) = 1, ξ ∼ U([0, 1]), (36)

i.e.,
x(t;ω) = e−ξt. (37)

The basic idea of ME-gPC is to partition the support of the joint PDF of the random input variables,
i.e., the range of the random input variables, into non-overlapping elements and construct a local gPC
series expansion corresponding to each element. To describe ME-gPC we consider, for simplicity, only one
random input variable ξ(ω), continuous and with bounded range [a, b].

First, we partition the range of ξ into two non-overlapping elements (see Figure 2)

E1 = {x ∈ R : a ≤ x ≤ c}, E2 = {x ∈ R : c ≤ x ≤ b}. (38)

3In fact, since P
(j)
0 (ξj) are constants we have

E{P (j)
0 (ξj)P

(j)
q (ξj)} = 0 for all q 6= 0 ⇒ P

(j)
0 (ξj)E{P (j)

q (ξj)} = 0 ⇒ E{P (j)
q (ξj)} = 0 for all q 6= 0. (32)
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Figure 1: Random frequency problem. A gPC expansion of the time-dependent function sin(ξt) requires
polynomials of higher and higher degrees as t increases. To see this, simply note that sin(ξt) has 4 zeros
in ξ at t = 10 and 32 zeros in ξ at t = 100. Therefore, at t = 4 we need a gPC expansion of degree of at
least 4 while at t = 100 we a gPC expansion of degree at least of 32. Such estimates are of course a lower
bound for the gPC degree that actually guarantees a specified accuracy.

Then we define two indicator functions

IEi =

{
1 if ξ(ω) ∈ Ei
0 otherwise

i = 1, 2. (39)

Clearly, Ai = I−1Ei (1) ⊂ Ω represents the subset of the sample space Ω such that ξ(ω) ∈ Ei. Note that,

A1 = {ω ∈ Ω : ξ(ω) ∈ E1} and A2 = {ω ∈ Ω : ξ(ω) ∈ E2} (40)

are non-intersecting subsets of Ω such that

Ω = A1 ∪A2. (41)

At this point, consider the input-output map

η(ω) = g(ξ(ω)). (42)

We know that the statistical properties of η are fully described by the distribution function

Fη(y) = P ({ω ∈ Ω : g(ξ(ω)) ≤ y}︸ ︷︷ ︸
set By

). (43)

The set By can be written as union of two non-intersecting4 sets

By =By ∩ Ω

=By ∩ (A1 ∪A2)

=(By ∩A1) ∪ (By ∩A2). (44)

Since (By ∩A1) and (By ∩A2) are disjoint we have

P (By) = P (By ∩A1) + P (By ∩A2). (45)

In terms of conditional probabilities this can be written as

P (By) = P (By|A1)P (A1) + P (By|A2)P (A2). (46)

4To be more precise A1 and A2 do intersect, but the intersection set has zero measure.
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Figure 2: Basic idea of Multi-Element generalized Polynomial Chaos (ME-gPC). The range of the random
input variable ξ(ω), i.e., the support of the PDF pξ(x) is partitioned into non-overlapping elements, say E1

and E2. A local gPC expansion is then constructed relative to the conditional PDF of ξ(ω) in E1 and E2.
Such conditional PDF is obtained by simply rescaling the PDF pξ(x) restricted to each element E1 and
E2, and eventually remapping it to the standard element [−1, 1]. The latter step allow standardization of
the Stieltjes algorithm to construct the set of orthogonal polynomials corresponding to the PDFs p̂ξ|Ei(z).

Recall that P (A1) represents the probability that ξ(ω) is in the element E1, while P (A2) represents the
probability that ξ(ω) is in the element E2. Such probabilities can be expressed in terms of the PDF of ξ
as (See Figure 2)

P (A1) =

∫
E1

pξ(x)dx P (A2) =

∫
E2

pξ(x)dx. (47)

By combining (43), (46) and (47) we finally obtain

Fη(y) = Fη|ξ∈E1
(y)

∫
E1

pξ(x)dx+ Fη|ξ∈E2
(y)

∫
E2

pξ(x)dx. (48)

By differentiating this expression with respect to y we obtain the corresponding expression for the PDF of
η

pη(y) = pη|ξ∈E1
(y)

∫
E1

pξ(x)dx+ pη|ξ∈E2
(y)

∫
E2

pξ(x)dx. (49)

Based on this formula, we see that the PDF of the output η is represented as a weighted mean of two
conditional PDFs, i.e.,

pη|ξ∈E1
(y) and pη|ξ∈E2

(y). (50)

Such conditional PDFs represent the response of the system to two conditionally independent random
variables ξ|E1 and ξ|E2 with PDF that coincide with the conditionals pξ(x|ξ ∈ E1) and pξ(x|ξ ∈ E2)
(suitably normalized). Hence, if we compute two different gPC expansions of the response η = g(ξ)
corresponding to the conditionally independent random variables to ξ|E1 and xi|E2 and combine the
results as in (49) then we can compute any statistical properties of η, including the PDF of η

The procedure for ME-gPC is as follows:

1. Partition the range of ξ(ω), i.e., the support of pξ(x) as in Figure 2, i.e., as a covering of non-
overlapping elements.

2. Determine the conditionals pξ(x|ξ ∈ Ei) and map them onto [−1, 1] using the transformation (87).
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3. Generate a gPC expansion relative to each mapped PDF with the Stieltjes algorihtm (Appendix B).

4. Compute the polynomial chaos coefficients relative to each local gPC expansion.

This allows us to compute an element-by-element representation of the response. For example, to generate
samples of pη(y) we can generate independent samples of pη|ξ∈Ei(y) using the gPC expansion in terms of
the random variable ξ|Ei with PDF pξ(x|ξ ∈ E1).

Remark: Another approach to address the random frequency problem associated with the solution of
certain random dynamical systems was proposed in [6]. The key idea is to approximate with gPC the
mapping that pushes forward the solution of the random ODE in time rather than the solution itself.
With such flow map approximation and composition it is demonstrated that gPC retains accuracy as t
increases. At the same time the gPC polynomial degree naturally increases in the scheme, which makes it
essentially inapplicable for system driven by multiple random variables.

The stochastic Galerkin method

The stochastic Galerkin method is a projection operator method to solve a wide variety of UQ problems
ranging from random eigenvalue problems, to system of ordinary or partial differential equations evolving
from random initial states, with random boundary conditions, random parameters, or random forcing
terms. The basic idea it to represent the solution of the UQ problem in a polynomial chaos expansion with
unknown coefficients, substitute the expansion into the equations defining the problem, and the project
(in the sense of L2(Ω,F , P )) the resulting equation onto the gPC basis to obtain a system of deterministic
equations for the gPC coefficients. The number of such equations depends on the number of random input
and the polynomial chaos order as summarized in Table 3.

Decay problem (linear ODE). Consider the simple linear ODE

dx

dt
= −ξ(ω)2x, x(0;ω) = 1, (51)

where ξ(ω) is a uniform random variable in [−1, 1], and the initial condition is deterministic. We expand
the solution in a Legendre polynomial chaos expansion (see Table 1)

x(t, ω) =
n∑
k=0

ak(t)Lk(ξ(ω)), (52)

where Lk(ξ) are Legendre polynomials5 of the uniform random variable ξ. Note that here the polynomial
chaos modes are function of time and defined through projection

ak(t) =
E{x(t;ω)Lk(ξ)}

E{L2
k(ξ)}

. (53)

A substitution of (52) into (51) yields

n∑
k=0

dak(t)

dt
Lk(ξ) = −ξ(ω)2

n∑
k=0

ak(t)Lk(ξ) +Rn(t; ξ),
n∑
k=0

ak(0)Lk(ξ) = x0, (54)

where Rn(t, ξ) is the residual arising from the fact that (52) does not satisfy the ODE (51) exactly.
In the stochastic Galerkin method we impose that the residual is orthogonal to the gPC space Bn =

5Legendre polynomials are defined are orthogonal with respect to the recursively in Eq. (83).
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span{L0, . . . , Ln} relative to the L2(Ω,F , P ) inner product6. In practice, we multiply (54) by Lj(ξ) and
then integrate relative to the PDF of ξ(ω), i.e., take the expectation, to obtain

n∑
k=0

dak(t)

dt
E{LkLj} = −

n∑
k=0

ak(t)E{ξ2LkLj}

n∑
k=0

ak(0)E{LkLj} = x0

(55)

Using the orthogonality of {Lk} relative to the uniform PDF of ξ and recalling that

L0(ξ) = 1 L1(ξ) = ξ L2(ξ) =
3

2
ξ2 − 1

2
, (56)

i.e.,

ξ2 =
2L2(ξ) + 1

3
. (57)

we can write (55) as
daj(t)

dt
= −aj(t)

3
− 2

3E{L2
j}

n∑
k=0

E{L2LkLj}ak(t) j = 0, . . . , n

a0(0) = 1

aj(0) = 0 j = 1, . . . , n

(58)

This is a system of n + 1 linear ODEs that can solved numerically with any discretization scheme. Once
the gPC modes {a0(t), . . . , an(t)} are available, we can substitute them back into the gPC expansion of
the solution (52), and compute statistical properties such as the mean,

E{x(t;ω)} = a0(t), (59)

the variance

var{x(t;ω)} =
n∑
k=1

a2k(t)E{L2
k}, (60)

or the PDF of x(t;ω) by sampling or transforming the polynomial chaos expansion (52).

Remark: Recall that the PDF of x(t;ω) can be also computed by solving the Liouville equation for the joint
PDF of x(t;ω) and ξ and then marginalizing out ξ. Alternatively, we can try to solve the BBGKY equation
for the PDF of x(t;ω) alone, e.g., by computing a data-driven closure for the conditional expectations
appearing in the reduced-order PDF equation.

Remark: What happens if ξ(ω) is a uniform random variable in [a, b] instead of [−1, 1]? Not much of a
difference. We simply need to generate a gPC expansion for a uniform random variable defined in [a, b].
How do we do that? We first change the coordinate system and map the support [a, b] to [−1, 1]. In such
new coordinates we generate the orthogonal polynomial basis, which is made of Legendre polynomials.
Once the polynomials are available in [−1, 1] we map them back then we map them back to [a, b]. As easily
seen, these are still orthogonal polynomials. What changes is simply that there is a scaling factor (b−a)/2
appearing when computing E{LkLj}.

6In numerical methods for deterministic PDEs this procedure is also known as Galerkin projection method [5, ?].
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The coefficients

E{LiLjLk} =

∫ 1

−1
Li(x)Lj(x)Lk(x)dx (61)

appearing in the the gPC propagator (55) can be pre-computed offline using Gauss quadrature, or can be
computed analytically using the so-called linearization formulas [13, Appendix] for orthogonal polynomials.
Such formulas basically express the product of two orthogonal polynomials in terms of polynomials that
belong to same family as

Lk(ξ)Lj(ξ) =

k+j∑
m=0

βmLm(ξ). (62)

Indeed a substitution of (62) (with βm known) into (61) yields

E{LiLjLk} =

k+j∑
m=0

βmE{LmLi} = βiE{L2
i }. (63)

Heat equation with random boundary condition. Consider the following initial/boundary value
problem 

∂u

∂t
=
∂2u

∂x2
x ∈ [0, L]

u(x, 0) = 0

u(0, t) = u0(t)

u(L, t) = A+ σξ(ω) sin(t)

(64)

where A, σ are a positive constant, and ξ(ω) is a random variable with known distribution supported in
[−1, 1]. To solve this problem we first compute the gPC expansion corresponding to the PDF of ξ. To
this end, we can use the Stieltjes algorithm summarized in Appendix B. Such algorithm produces a set of
polynomials {P0, P1, . . .} orthogonal in [−1, 1] with respect to the PDF of ξ. We expand the solution of
(64) relative to the (monic) gPC basis {P0, P1, . . .} as

u(x, t;ω) =
n∑
k=0

ak(x, t)Pk(ξ). (65)

Substituting (65) into (64) and imposing that the residual is orthogonal to Bn = span{P0, . . . , Pn} relative
to the L2(Ω,F , P ) yields the gPC propagator

∂ak(x, t)

∂t
=
∂2ak
∂x2

k = 0, . . . ,K x ∈ [0, L]

ak(x, 0) = 0

a0(0, t) = u0(t)

ak(0, t) = 0 k = 1, . . . , n

a0(L, t) = A

a1(L, t) = σ sin(t)E{P 2
1 }

ak(L, t) = 0 k = 2, . . . , n

(66)

This is a system of n + 1 uncoupled initial/boundary value problems for the polynomial chaos modes
ak(x, t). Note that these modes are functions of space and time in the case of PDEs.
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Figure 3: Schematic of the geometry and dimensionless temperature boundary conditions. The velocity
boundary conditions are of no-slip type, i.e. u = 0 at the walls.

Burgers equation with random initial condition. Consider the following initial/boundary value
problem 

∂u

∂t
+ u

∂u

∂x
=
∂2u

∂x2
x ∈ [0, 2π]

u(x, 0) = u0(x) + σ
M∑
j=1

ξj(ω)ψj(x)

Periodic B.C.

(67)

The random initial condition here assumed to be a correlated Gaussian random process represented in
terms of a Karhunen-Loéve expansion with M independent Gaussian random variables ξ = {x1, . . . , ξM}.
To construct a gPC basis, we first build the gPC basis for one Gaussian random variable, which is known
to be made of Hermite polynomials (see Table 1), and then build a tensor product basis using the degree
lexicographic ordering summarized in Table 2. Once the multivariate gPC basis {Φ0, . . . ,ΦK} is available,
we expand the solution of (67) as

u(x, t;ω) =

K∑
k=0

ak(x, t)Φk(ξ). (68)

A substitution of (68) into (67) and subsequent projection onto the gPC basis {Φj} yields

∂ak
∂t

+
1

E{Φ2
k}
∑
i,j

E{ΦkΦiΦj}ai(x, t)
∂aj(x, t)

∂x
=
∂2ak(x, t)

∂x2
k = 0, . . .K x ∈ [0, 2π]

a0(x, 0) = u0(x)

a1(x, 0) = σψM (x)

a2(x, 0) = σψM−1(x)
...

aM (x, 0) = σψ1(x)

ak(x, 0) = 0 k = M + 1, . . . ,K

Periodic B.C. for each ak(x, t)

(69)

Note that if the KL expansion of the random initial condition in (67) involves just 6 random variables,
and we use a gPC expansion of degree 5 then K + 1 = 462 (see Table 3). This means that the number of
coupled PDEs in the gPC propagator (69) is 462!
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Figure 4: Bifurcation analysis of the cavity flow near the onset of convective instability.

Stochastic thermal convection. Consider the system of PDEs system

∂u

∂t
+ (u · ∇)u =−∇p+ Pr∇2u+ RaPr Tj (70)

∂T

∂t
+ u · ∇T =∇2T (71)

∇ · u =0 (72)

describing the motion of an incompressible fluid within the square cavity shown in Figure 3. The fluid
motion is sustained by buoyancy forces (natural convection) induced by the the temperature difference
between the horizontal sides of the cavity. In (70)-(72) u(x, t) is the (dimensionless) velocity field, T (x, t)
is the (dimensionless) temperature field, j is the upward unit vector, Pr = ν/α2 is the Prandtl number,
and Ra = gβL3∆τ/(να2) is the Rayleigh number. The bifurcation analysis of the PDE system near the
onset of convective instability is shown in Figure 4.

Next, we assume that the Rayleigh number in (70) is a uniform random variable centered at Rac = 2585
(onset of convective instability), i.e.,

Ra = Rac (1 + σξ) , ξ ∼ U([−1, 1]) σ = 0.05. (73)

We are interested in computing the velocity, pressure and temperature fields corresponding to such random
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Figure 5: Stochastic convection near the onset. Shown are means (first row) and standard deviations
(second row) of velocity and temperature fields along the crossline y = 0.5. We plot different results: MC
benchmark (−), gPC order 3 (−−), ME-gPC 2 elements of order 3 (· · · ), ME-gPC 8 elements of order 3
(−·).

Rayleigh number (see [12]). To this end, consider the gPC expansions

u (x, t; ξ) =
n∑
i=0

ûi (x, t) Φi (ξ) , (74)

p (x, t; ξ) =
n∑
i=0

p̂i (x, t) Φi (ξ) , (75)

T (x, t; ξ) =
n∑
i=0

T̂i (x, t) Φi (ξ) . (76)

where, Φi (ξ) are Legendre polynomials of the uniform random variable ξ. A substitution of (74)-(76)) into
the system (70)-(72) and subsequent projection onto the basis {Φi} yields the gPC propagator

∂ûk
∂t

+
n∑

i,j=0

E{ΦiΦjΦk}
E{Φ2

k}
(ûi · ∇) ûj =−∇p̂k + Pr∇2ûk + RacPr

T̂k + σ
n∑

i,j=0

E{Φ1ΦjΦk}
E{Φ2

k}
T̂j

 ĵ, (77)

∂T̂k
∂t

+

n∑
i,j=0

E{ΦiΦjΦk}
E{Φ2

k}
ûi · ∇T̂j =∇2T̂k, (78)

∇ · ûk =0. (79)

This is a system in 3(n + 1) coupled PDEs of the form (70)-(72), where n is the gPC order. In Figure 5
we compare the performance of gPC and ME-gPC in predicting the mean and standard deviation of the
velocity and temperature fields at y = 0.5.
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Appendix A: Orthogonal polynomials

A polynomial of degree n can be written as

Qn(x) = bnx
n + · · ·+ b1x+ b0, bn 6= 0. (80)

We denote by πn(x) = Qn(x)/bn the monic version of Qn(x), i.e., a polynomial with leading coefficient
equal to one. A system of polynomials {Qn(x)} is said to be orthogonal in L2

µ with respect to a real positive
weight function µ(x) if∫

supp(µ)
Qn(x)Qm(x)µ(x)dx = δnmγn where γn =

∫
supp(µ)

Qn(x)2µ(x)dx, (81)

where δnm is the Kronecker delta. The weight function µ(x) defines the set of orthogonal polynomials
uniquely. It is well-known that all orthogonal polynomials {Qn(x)} satisfy a three-term recurrence relation
(see, [4, 5]) 

Qn+1(x) = (Anx+Bn)Qn(x)− CnQn−1(x)

Q0(x) = 1

Q−1(x) = 0

(82)

where An 6= 0, Cn 6= 0 and CnAnAn−1 > 0 for all n (Favard’s theorem [18, p. 26]).

Legendre polynomials: Legendre polynomials are orthogonal in [−1, 1] with respect to the weight function
µ(x) = 1, and they satisfy the three-term recurrence relation

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n− 1
Ln−1(x). (83)

Hermite polynomials: Hermite polynomials are orthogonal in (−∞,∞) with respect to the weight func-
tion

µ(x) =
1√
2π
e−x

2/2 (84)

and they satisfy the three-term recurrence relation

Hn+1(x) = xHn(x)− nHn−1(x) (85)

For monic orthogonal polynomials the three-term recurrence relation simplifies to
πn+1(x) = (x− αn)πn(x)− βnπn−1(x)

π0(x) = 1

π−1(x) = 0

(86)

The coefficients αn and βn are uniquely determined by the weight function. Let us show show how.

Stieltjes algorithm. The coefficients αn and βn in (86), which define monic orthogonal polynomials
corresponding to a given measure, can be computed numerically using a simple algorithm known as Stieltjes
algorithm. To this end, suppose that the weight function µ(x) ≥ 0 is continuous and supported7 on [−1, 1].

7If the measure µ(x) is supported on a general interval [a, b] then we can map it to the standard interval [−1, 1] by using
the transformation

x =
b− a

2
z +

b+ a

2
z ∈ [−1, 1]. (87)
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Define the inner product

(p, q) =

∫ 1

−1
p(x)q(x)µ(x)dx. (88)

Multiplying (86) by πn(x) and imposing orthogonality yields

αn =
(xπn, πn)

(πn, πn)
n = 0, 1, 2, . . . (89)

βn =
(πn, πn)

(πn−1, πn−1)
n = 1, 2, 3, . . . (90)

This allows us to derive the following algorithm (known as Stieltjes algorithm) to compute the recurrence
coefficients αk and βk in (86):

1. Set n = 0 and π0(x) = 1 in (89). Compute α0.

2. With α0 and π0(x) = 1 available compute

π1(x) = (x− α0)π0(x)− β0 π−1(x)︸ ︷︷ ︸
=0

= (x− α0). (91)

3. With π1(x) and π0(x) available compute β1 form (90).

4. At this point we can compute α1 from (89), π2(x) from (86), β2 from (90), and so on so forth.

In practice, we can compute αn and βn to machine precision by replacing the inner product (88) with, e.g.,
a Gaussian quadrature rule [8]

(p, q) '
M∑
j=0

wjp(xj)q(xj)µ(xj), (92)

wj being the Gaussian quadrature weights.

Polynomial approximation theory. Denote by

Pn([a, b]) = span{1, x, . . . , xn} (93)

the space of polynomial of degree at most n defined on the interval [a, b]. It is well-known that any
continuous function f(x) defined on [a, b] can be approximated by a polynomial pn(x) ∈ Pn([a, b]) as close
as we like, where “close” here means in the uniform (i.e., L∞([a, b])) norm. This is summarized in the
following theorem.

Theorem 3 (Weierstrass). Let f ∈ C0([a, b]). Then for any ε > 0 there exists nε ∈ N and a polynomial
pnε(x) ∈ Pn([a, b]) such that

‖f − pnε‖L∞([a,b]) = sup
x∈[a,b]

|f(x)− pnε(x)| ≤ ε. (94)

This theorem does not provide a constructive way to determine pnε(x). It just states the existence of such
a polynomial.

However, if we consider the polynomial approximation problem of a function f(x) in the function space
L2
µ([a, b]) (which is a Hilbert space) rather than the Banach space C0([a, b]) then it is rather straight-

forward to develop a constructive approximation theory, i.e., a systematic way to build the approx-
imating polynomial with estimated on the convergence rate of the approximation. To this end, let
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{Q0(x), Q1(x), . . . , Qn(x)} be a set of polynomials orthogonal with respect to the inner product

(Qi, Qj) =

∫ b

a
Qi(x)Qj(x)µ(x)dx, (95)

i.e., (Qi, Qj) = δij ‖Qj‖2L2
µ
. For each function f(x) ∈ L2

µ([a, b]) we define the orthogonal projection operator

onto the span of {Q0(x), Q1(x), . . . , Qn(x)}

Pn : L2
µ([a, b])→ Pn([a, b]) (96)

as

Pnf(x) =
n∑
k=0

akQk(x), ak =
(f,Qk)

(Qk, Qk)
. (97)

It is straightforward to show that Pnf(x) is the best polynomial of degree n approximating f(x) in the
sense of L2

µ([a, b]), i.e.,

‖f − Pnf‖2L2
µ

= inf
p∈Pn([a,b])

‖f − p‖2L2
µ
. (98)

It can be shown that polynomials are dense in L2
µ([a, b]), meaning that every function f ∈ L2

µ([a, b]) can
be approximated as a limit of a convergent sequence of polynomials (the limit being in L2

µ). Since every
polynomial of degree n is in the span of {Q0(x), Q1(x), . . . , Qn(x)} this implies that

lim
n→∞

‖f − Pnf‖2L2
µ

= 0. (99)

An important question is how fast Pnf converges to f . This depends on the smoothness of f , and on the
specific class orthogonal polynomials. In particular, for Legendre polynomials (83) we have the following
approximation result (see [5, p. 109] or [18, p. 33]).

Theorem 4. Let Hs([−1, 1]) be the Sobolev space of degree s, and f(x) ∈ Hs([−1, 1]). Then there exists
a constant C, independent of n, such that

‖f − Pnf‖2L2([−1,1]) ≤ Cn
−s ‖f‖Hs([−1,1] (100)

where Pnf is the orthogonal projection of f onto the space of Legendre polynomials (Eq. (97)).

This theorem demonstrates that the error, as measured in the L2([−1, 1]) norm, decays spectrally, i.e., as
n−s. Moreover, the rate of decay (the exponent s), is defined by how smooth f is. Indeed, the statement
f ∈ Hs means that f is differentiable s times, and that all derivatives up to the order s are in L2([−1, 1]). If
f is of class C∞, i.e., infinitely differentiable in [−1, 1] then the convergence rate becomes exponential

‖f − Pnf‖2L2([−1,1]) ∼ e
−βn. (101)

Appendix B: Modes of convergence of sequences of random variables

In this appendix we briefly review the basic modes of convergence of sequences of random variables.

Convergence in distribution. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the
probability space (Ω,F , P ). We say that the sequence {Xj(ω)} converges to the random variable X(ω) in
distribution if for all bounded continuous functions h : R→ R we have that

lim
j→∞

E {h(Xj)} = E {h(X)} . (102)

Page 17



AM 238 Prof. Daniele Venturi

This equation can be equivalently written as

lim
j→∞

∫ ∞
−∞

h(x)dFXj (x) =

∫ ∞
−∞

h(x)dFX(x) for all bounded continuous functions h(x), (103)

where FXj (x) and FX(x) are the distribution functions of Xj(ω) and X(ω), respectively. For continuous
random variables we know that FXj (x) and FX(x) are continuous. In this case, it follows from (103) that
FXj (x) converges to FX(x) pointwise, i.e.,

sup
x

∣∣FXj (x)− FX(x)
∣∣ −−−→
j→∞

0. (104)

Moreover, if FXj (x) and FX(x) admit PDFs pXj (x) and pX(x), i.e.,

dFXj (x) = pXj (x)dx, dFX(x) = pX(x)dx, (105)

then (103) implies that
sup
x

∣∣pXj (x)− pX(x)
∣∣ −−−→
j→∞

0, (106)

i.e., the PDF of Xj converges to the PDF of X pointwise as we increase j.

Convergence in probability. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the
probability space (Ω,F , P ). We say that the sequence {Xj(ω)} converges to the random variable X(ω) in
probability if for every ε ≥ 0

P ({ω ∈ Ω : |Xj(ω)−X(ω)| > ε}) −−−→
j→∞

0. (107)

Theorem 5. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the probability space
(Ω,F , P ). If {Xj(ω)} converges to X(ω) in probability then {Xj(ω)} converges to X(ω) in distribution.

Proof. We first notice that for every pair of random variables Xj and X, every a ∈ R and every ε ≥ 0 we
have (see Figure 6)

{ω : Xj(ω) ≤ a} = {ω : X(ω) ≤ a+ ε} ∪ {ω : |Xj(ω)−X(ω)| > ε}. (108)

Since the two set at the right hand side of (108) do intersect, we have8

P ({ω : Xj(ω) ≤ a})︸ ︷︷ ︸
FXj (a)

≤ P ({ω : X(ω) ≤ a+ ε})︸ ︷︷ ︸
FX(a+ε)

+P ({ω : |Xj(ω)−X(ω)| > ε}). (110)

Similarly (see Figure 6),

P ({ω : X(ω) ≤ a− ε}) ≤ P ({ω : Xj(ω) ≤ a}) + P ({ω : |Xj(ω)−X(ω)| > ε}). (111)

Combining (110)-(111) yields

FX(a− ε)− P ({ω : |Xj(ω)−X(ω)| > ε}) ≤ FXj (a) ≤ FX(a+ ε) + P ({ω : |Xj(ω)−X(ω)| > ε}). (112)

8Recall that for every pair of events A and B in the σ-algebra F we have:

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B). (109)
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Figure 6: Sketch of the sets in equation (108). Clearly, {Xj ≤ a} is a subset of {X ≤ a+ε}∪{|Xj−X| > ε},
and {X ≤ a− ε} is a subset of {Xj ≤ a} ∪ {|Xj −X| > ε}.

If {Xj(ω)} converges to X(ω) in probability then for every ε ≥ 0

lim
j→∞

P ({ω : |Xj(ω)−X(ω)| > ε}) = 0. (113)

This implies that in the limit j →∞

FX(a− ε) ≤ FXj (a) ≤ FX(a+ ε). (114)

If we send ε to zero we obtain (under continuity assumptions) that FXj (a) converges to FX(a) for every
a ∈ R, i.e., {Xj(ω)} converges to X(ω) in distribution.

Mean square convergence. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the
probability space (Ω,F , P ). We say that the sequence {Xj(ω)} converges to the random variable X(ω) in
the mean square sense (or in L2(Ω,F , P )) if

lim
j→∞

E
{
|Xj(ω)−X(ω)|2

}
= 0. (115)

By using the Markov inequality

P ({ω : |Xj(ω)−X(ω)| > ε}) ≤ 1

ε2
E
{
|Xj(ω)−X(ω)|2

}
, (116)

we see that if {Xj(ω)} converges to the random variable X(ω) in L2 then it converges in probability, and
therefore in distribution.

Hence, mean square convergence implies convergence in distribution. In other words, X and {Xj} have
PDFs then (116) implies that the PDF of Xj converges to the PDF of X pointwise (see (106)).
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Sampling Methods

In this lecture note we discuss several sampling methods commonly used to propagate uncertainty in
numerical simulations of nonlinear systems. The basic idea is very simple: compute samples of the solution
to the model equations, corresponding to suitable samples of the random input variables. Such samples
can be randomly generated (using pseudo-random number generators) as in the Monte Carlo method [7],
or can be part of deterministic sequences as in the quasi Monte Carlo method [7, 4], sparse grids [3], or in
the probabilistic collocation method [10, 5].

The most appropriate sampling scheme depends on the application, in particular on the number of random
variables and the quantity of interest. For instance, if we are interested in approximating the expectation
of a quantity of interest in a system that depends only on one random variable ξ(ω) with bounded range
then perhaps Monte-Carlo is not the most efficient method. Indeed, in this case, it is rather straightforward
to derive a highly accurate Gauss quadrature rule to approximate the expectation as

E {h(ξ)} =

∫ b

a
h(x)pξ(x)dx '

N∑
k=1

h(ξk)wk. (1)

As we will see, if the function h of class C∞, then the Gauss quadrature rule (1) can converge exponentially
fast with N (number of samples). On the other hand, the convergence rate of the Monte Carlo method to
approximate (1) is 1/

√
N . On the other hand, if the system is driven by high-dimensional random input

vector then Gauss quadrature becomes impractical, and oftentimes we are left with no other choice than
random sampling.

A distinctive advantage of sampling methods over polynomial chaos or PDF methods is that they are non-
intrusive. This means that they do not require devising equations or writing new codes and algorithms
from scratch perform UQ analyses, but rather simply run existing deterministic algorithms and codes many
times, eventually in a massively parallel way.

Monte Carlo (MC)

Monte Carlo methods are a broad class of computational algorithms that rely on repeated random sampling
to obtain numerical results of various types, e.g., estimation of high-dimensional PDFs or approximation
of high-dimensional integrals representing, e.g., expectation operators.

Example (PDF estimation): Suppose we are interested in estimating the PDF of a random variable Y
depending on three random variables X1, X2 and X3. We are given joint PDF of (X1, X2, X3), i.e.,
p(x1, x2, x3) and the mapping

Y = g(X). (2)

In a (Markov-Chain) Monte-Carlo setting the estimation of the PDF Y proceeds as follows:

1. Determine N samples of p(x1, x2, x3), e.g., using Gibbs sampling (see Chapter 1). This yields{
X [1], . . . ,X [N ]

}
;

2. Compute N samples of Y using (2), i.e., Y [j] = g
(
X [j]

)
;

3. Estimate the joint PDF of Y (ω) using relative frequencies, or kernel density estimation [2].
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Example (Expectation operator): Suppose we are interested in approximating the mean of scalar phase
space function of interest h(x) depending on the solution of the ODE system

dx

dt
= G(x, ξ(ω), t)

x(0;ω) = x0

(3)

where x0 is deterministic and ξ is a random vector. The expectation of h(x(t;ω)) can be written as

E {h(x(t;ω))} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

h (x (t;y)) pξ(y)dy, (4)

i.e., as a high-dimensional integral over the PDF of ξ. In a Monte-Carlo setting, such an integral is
approximated by an equal-weight quadrature formula of the form

E {h(x(t;ω))} ' 1

N

N∑
k=1

h
(
x
(
t; ξ[k]

))
, (5)

where {ξ[1], . . . , ξ[N ]} are independent random samples obtained from p(ξ) using, e.g., Gibbs sampling.

Similarly, Monte Carlo can be used to obtain response samples of random eigenvalue problems (random
eigenvalues and random eigenvectors), solution to PDE, etc.

Monte Carlo integration. Consider the following mapping between an n-dimensional random vector X
and a random variable Y

Y = g(X). (6)

We are interested in computing

E{Y } =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)pX(x)dx. (7)

To this end, we draw N independent random samples
{
X [1], . . . ,X [N ]

}
, and approximate the integral at

the right hand side of (7) as

E{Y } ' 1

N

N∑
k=1

g
(
X [k]

)
. (8)

The following error bound then holds true.

Theorem 1. For all functions g ∈ L2
pX

(Rn), i.e., for all random variables Y = G(X) with finite second-
order moment we have

Ê


∣∣∣∣∣
∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)pX(x)dx− 1

N

N∑
k=1

g
(
X [k]

)∣∣∣∣∣
2
 =

σ2(g)

N
, (9)

where Ê is an expectation of the joint PDF of
{
X [1], . . . ,X [N ]

}
(treated as independent random vectors),

and

σ2(g) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g2(x)pX(x)dx−
(∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)pX(x)dx

)2

(10)

is the variance of g(X), i.e., the variance of Y in (6).
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The proof of this theorem is available in [4, 7] and therefore omitted here. Note that if we approximate
(7) using (8) and different sets of samples {X [1], . . . ,X [N ]} then we obtain different results. Hence, we
should really think of (8) as a sum of independent random variables X [k], each one of which is distributed
as pX(x). This means that the right hand side of (8) can be thought of as a sum of independent random
variables.

By using the central limit theorem1 it is straightforward to obtain the following probabilistic error bound
on the MC approximation (8)

lim
N→∞

P

({
ω :

∣∣∣∣∣
∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)pX(x)dx− 1

N

N∑
k=1

g
(
X [k](ω)

)∣∣∣∣∣ ≤ cσ(g)√
N

})
=

1√
2π

∫ c

−c
e−y

2/2dy. (14)

To this end, we simply substitute Y [k] = g
(
X [k]

)
, σ2 = σ2(g) and

m =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)pX(x)dx. (15)

into (13).

Equation (14) is an asymptotic probabilistic error bound stating that as we increase the number of samples
the MC approximation goes to zero as2 1/

√
N . Note that (14) is independent of the dimension of the integral

(dimension of the vector x), which is a great deal that makes MC suitable for high-dimensional integration.
Similarly, by using the Markov inequality, it follows from (9) that

P

({
ω :

∣∣∣∣∣
∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)pX(x)dx− 1

N

N∑
k=1

g
(
X [k](ω)

)∣∣∣∣∣ ≥ ε
})
≤ σ(g)

ε
√
N
. (16)

Remark: While independent of the dimension of the integral, the convergence rate O(N−1/2) of the Monte
Carlo approximation (8) is not too great. Roughly speaking, to obtain a one digit increase in accuracy
we need 100 times more samples! To show this Let E1 be the integration error. We know that E1 is

proportional to N
−1/2
1 , i.e.,

E1 = CN
−1/2
1 . (17)

To obtain an error E2 = E1/10, i.e., gain one digit accuracy, we need

CN
−1/2
2 = CN

−1/2
1 /10 ⇒ N2 = 100N1. (18)

Hence, if we get the first two digits of our integral right with an MC formula involving 5000 random
samples, then we would need roughly 500000 samples to get third digit right!

1The central limit theorem can be stated as follows: let {Y [1], . . . , Y [N ]} be a sequence of i.i.d. random variables with mean
m and variance σ2. Define

ZN =
√
N

(
1

N

N∑
k=1

Y [k] −m

)
. (11)

Then the PDF of ZN converges to a normal distribution with zero mean and variance σ2, i.e.,

lim
N→∞

pZN (x) =
1√

2πσ2
e−x

2/(2σ2). (12)

This means that

lim
N→∞

P ({ω : |ZN (ω)| ≤ cσ}) =
1√

2πσ2

∫ cσ

−cσ
e−x

2/(2σ2)dx =
1√
2π

∫ c

−c
e−y

2/2dy. (13)

2Simply set c = 3 in (14) to obtain the right hand side approximately equal to 1.
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Figure 1: Error in the numerical approximation of the integral (19) using the Monte Carlo rule (8) and
the trapezoidal rule versus the number of points N .

As an example, in Figure 1 we compare the error in the numerical approximation of the integral

I(f) =

∫ 1

−1
g(x)dx, g(x) = e−xx2 sin(10x)2 (19)

using Monte Carlo and the trapezoidal rule. For Monte Carlo, we simply compute N independent samples
of a uniform random variable X in [−1, 1] and compute the sum

IN (f) =
2

N

N∑
k=1

g(X [k]). (20)

The factor 2 accounts for the fact that the PDF of a uniform variable in [−1, 1] is 1/2. Note that on average
the convergence rate of MC is 1/

√
N while the converge rate of the trapezoidal rule is 1/N2.

Quasi Monte Carlo (QMC)

Just like Monte Carlo, quasi-Monte Carlo methods [7, 4] aim at representing multidimensional integrals
of the form (7) as equal-weights quadrature rules (8). However, in QMC the sequence of points X [k] are
not realizations of a random vector, but rather elements of a deterministic sequence called low-discrepancy
sequence. The whole point such low-discrepancy sequences is to improve the (very) slow convergence rate
of MC (i.e., O(N−1/2)) when evaluating multidimensional integrals of the form

I(g) =

∫
[0,1]n

g(x)dx. (21)

QMC methods are usually classified based on how the points in the low-discrepancy sequences are com-
puted. In particular, we can have sequences of points that can be increased without recomputing the first
few points (open QMC formulas), and sequences of points that require recalculation of all points if N
changes (closed QMC formulas) [4]. Hereafter we provide a two examples of QMC rules leveraging the
radical inverse function.

Radical inverse function. Let b ≥ 2 be a natural number. As is well known, any integer number can
be represented relative to the base b as

i =

∞∑
k=1

ikb
k−1 (22)
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where ik can take values in {0, 1, . . . , b − 1}. For example, the number 11 can be written in base 2 and
base 3 as c

11 =1× 20 + 1× 21 + 0× 22 + 1× 23 = [· · · 01011]2, (23)

=2× 30 + 0× 31 + 1× 32 = [· · · 0102]3. (24)

We define the radical inverse function corresponding to an integer number i ∈ N0

φb(i) =
∞∑
k=1

ik
bk
. (25)

The function (25) operates as follows:

i = [· · · i3i2i1]b ⇒ φb(i) = [0.i1i2i3 · · · ]b. (26)

With reference to (23)-(24) we have, for example,

φ2(11) =1× 2−1 + 1× 2−2 + 1× 2−4 =
1

2
+

1

4
+

1

16
=

13

16
, (27)

φ3(11) =2× 3−1 + 1× 3−3 =
2

3
+ 1

1

27
=

19

27
. (28)

Halton’s sequence. The Halton’s sequence is a point set in the hypercube [0, 1]n defined as

X
[i]
Hl = (φp1(i), . . . , φpn(i)) i = 1, 2, . . . , N, (29)

where {p1, . . . , pn} are the first n prime numbers, and φpj (i) is the radical inverse function (25). For
example, in dimension n = 5 we have

X
[i]
Hl = (φ2(i), φ3(i), φ5(i), φ7(i), φ11(i)) i = 1, 2, . . . , N. (30)

By using the Halton’s sequence we can approximate integrals relative to uniform PDFs in [0, 1]n as∫
[0,1]n

g(x)dx ' 1

N

N∑
k=1

g
(
X

[k]
Hl

)
. (31)

It can be shown that (see [4])∣∣∣∣∣
∫

[0,1]n
g(x)dx− 1

N

N∑
k=1

g
(
X

[k]
Hl

)∣∣∣∣∣ ≤ Cn (log(N))n

N
VHK(g), (32)

where VHK(g) is the variation of g(x) in the sense of Hardy and Krause (see [4]). For fixed g we have
that VHK(g) is a number depending only on g. The function (log(N))n /N defining the upper bound in
(32) has an asymptote at N = 0, a minimum at N = 1 (equal to zero), a maximum at N = en (equal to
(n/e)n), and goes to zero faster than N−1/2 as N goes to infinity (see Figure 2. In dimension n = 10 we
have en = 22026. Hence, to go past the “hump” in dimension n = 10 we need N > 22026 samples.

Hammersley’s sequence. The Hammersley’s sequence is a point set in the hypercube [0, 1]n defined
as

X
[i]
Hm =

(
i

N
φp1(i), . . . , φpn(i)

)
i = 1, 2, . . . , N − 1 (33)
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Figure 2: (a) Sketch of the upper bound of the approximation error of the quasi-Monte Carlo quadradure
rule based on the Halton’s sequence applied to an n-dimensional integral versus the number of samples N .
(b) Comparison between the decay rate for of Halton QMC and MC for n = 3.

where {p1, . . . , pn} are the first n prime numbers, and φpj (i) is the radical inverse function (25). Note that
the first column in (33) needs to be recomputed if we change N . It can be shown (e.g., [4]) that∣∣∣∣∣

∫
[0,1]n

g(x)dx− 1

N

N∑
k=1

g
(
X

[i]
Hm

)∣∣∣∣∣ ≤ Cn (log(N))n−1

N
VHK(g), (34)

which represents a slight improvement over (32).

Remark: To further improve the convergence rate of quasi-Monte Carlo one can introduce randomizations
of the QMC point sets, e.g., in the form of random shifts or point scrambling. The randomization allows us
derive probabilistic error bounds similar to MC, and at the same time can improve the convergence rate
of QMC (see [7, 4]).

Probabilistic collocation method (PCM)

The probabilistic collocation method is a high-order method based on deterministic point sets that allows
us to compute expectation operators involving low-dimensional integrals. The method leverages high-order
interpolatory quadrature rules [9], in particular, Gaussian quadrature.

We have seen in previous lecture that orthogonal polynomials play a fundamental role in the approximation
of smooth functions. As we shall see hereafter, orthogonal polynomials play also a crucial role in devising
interpolants and quadrature formulae with maximal degrees of exactness3. These formulae are known as
Gaussian quadrature formulae [9, §10.2].

To introduce Gaussian quadrature in the context of UQ, suppose we are given a random variable X with
range [a, b] and PDF pX(x). We have seen that for every measurable function g : [a, b]→ R the expectation
of g(X) is defined as

E {g(X)} =

∫ b

a
g(x)pX(x)dx. (35)

3The degree of exactness of a quadrature formula is the maximum degree of the polynomial that can be integrated exactly
by the formula. In other words, we say that a quadrature formula has degree of exactness p if it can integrate exactly
polynomials of degree p or less.
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By using the coordinate transformation

x =
b− a

2
z +

b+ a

2
z =

2

b− a

(
x− b+ a

2

)
z ∈ [−1, 1] (36)

we can rewrite the expectation in (35) as∫ b

a
g(x)pX(x)dx =

b− a
2

∫ 1

−1
f(z)µ(z)dz, (37)

where

f(z) = g

(
b− a

2
z +

b+ a

2

)
, µ(z) = pX

(
b− a

2
z +

b+ a

2

)
. (38)

For the approximation of the weighted integral at the right hand side of (37), we consider the quadrature
rule ∫ 1

−1
f(z)µ(z)dz '

M∑
k=0

f(zk)wk, (39)

where {z0, . . . , zM} are quadrature points in [−1, 1] while {w0, . . . , wM} are quadrature weights.

If we approximate f(z) by the Lagrange interpolation polynomial ΠMf(z) at the M+1 nodes {z0, . . . , zM}
then (39) is a quadrature formula that has degrees of exactness at least equal to M , and explicit expression
for the quadrature weights wk. This follows from∫ 1

−1
f(z)µ(z)dz '

∫ 1

−1
ΠMf(z)µ(z)dz =

M∑
k=0

f(zk)

∫ 1

−1
lk(z)µ(z)dz︸ ︷︷ ︸

wk

, (40)

where

lk(z) =

M∏
j=0
j 6=k

z − zj
zk − zj

(41)

are the Lagrange characteristic polynomial associated with the grid {z0, . . . , zM}.

At this point the question is whether suitable choices of the nodes exist such that the degree of exactness
is greater than M , say, equal to r = M + m for some m > 0. The answer is given by the following
theorem

Theorem 2 (Gaussian quadrature - Jacobi’s theorem). For any given m > 0 the interpolatory quadrature
rule (39) has degree of exactness M +m if and only if the polynomial

qM+1(z) =
M∏
j=0

(z − zj) (42)

associated with the nodes {z0, . . . , zM} satisfies the orthogonality conditions∫ 1

−1
qM+1(z)b(z)µ(z)dz = 0 (43)

for all polynomial b(z) of degree at most m− 1.

In other words, if we can find a set of nodes {z0, . . . , zM} such that qM+1(z) is orthogonal in L2
µ([−1, 1])

to any polynomial of degree m− 1 then the quadrature rule (39) has degree of exactness M +m.
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Proof. Suppose that f(z) in (39) is a polynomial of degree m+M . Divide f(z) by (42) to obtain4

f(z) = qM+1(z)︸ ︷︷ ︸
divisor

dm−1(z)︸ ︷︷ ︸
quotient

+ rM (z)︸ ︷︷ ︸
reminder

(45)

Note that the degree of the quotient is (m+M)− (M + 1) = m− 1 while the degree of the remainder is
(M + 1)− 1 = M (i.e., a polynomial that cannot be divided by qM+1(z)). Since rM (z) is a polynomial of
degree M it can be integrated exactly by the quadrature rule with M + 1 nodes. This yields,

M∑
k=1

wkrM (zk) =

∫ 1

−1
rM (z)µ(z)dz =

∫ 1

−1
f(z)µ(z)dz −

∫ 1

−1
qM+1(z)dm−1(z)µ(z)dz. (46)

If hypothesis (43) holds true then the last term at the right hand side vanishes. This allows us to conclude
that ∫ 1

−1
f(z)µ(z)dz =

M∑
k=1

wkrM (zk), (47)

i.e., that the polynomial f(z) of degree M + m can be integrated exactly on the grid with M + 1 points
{z0, . . . , zM} satisfying the condition (43).

Example (Gauss-Legendre quadrature): Let {z0, . . . , zM} the zeros of the Legendre orthogonal polynomial
LM+1(z), i.e., LM+1(zj) = 0. Clearly, the nodal polynomial qM+1(z) in theorem (2) coincides (modulus
sign) with LM+1(z). In fact, qM+1(z) and LM+1(z) have the same zeros. Setting µ(z) = 1 in (43) (Legendre
polynomials are orthogonal in [−1, 1] with respect to µ(z) = 1) yields∫ 1

−1
LM+1(z)b(z)dz = 0. (48)

At this point we write the polynomial b(z) (of degree m− 1) in terms of a linear combination of Legendre
polynomials

b(z) =
m−1∑
j=0

bjLj(z). (49)

Next, substitute (49) into (48) to obtain

m−1∑
j=0

bj

∫ 1

−1
LM+1(z)Lj(z)dz = 0. (50)

By using orthogonality of the Legendre polynomials we see that the maximum degree m − 1 of the poly-
nomial b(z) that satisfies equation (50) is m − 1 = M (i.e., m = M + 1). Hence, the degree of exactness
of Gauss-Legendre quadrature is M +m = 2M + 1. This means that with M + 1 points we can integrate

4As an example, consider the polynomial division of f(z) = z3 + z2 − 3z + 4 by q2(z) = z2 − 3z + 2. To this end, we firt
multiply q2(z) by z to obtain z3 − 3z2 + 2z. Subtracting this from f(z) yields the reminder 4z2 − 5z + 4. At this point we
multiply q2(z) by 4, i.e., 4q2(z) = 4z2− 12z+ 8 and subtract it from 4z2− 5z+ 4 to obtain the final remainder 7z− 4. Hence,
we obtained the factorization

z3 + z2 − 3z + 4 = (z2 − 3z + 2)︸ ︷︷ ︸
divisor

(z + 4)︸ ︷︷ ︸
quotient

+ (7z − 4)︸ ︷︷ ︸
reminder

. (44)
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Figure 3: Error in the numerical approximation of the integral (53) using the Gauss-Legendre quadrature
rule and the trapezoidal rule versus the number of collocation points M . Note that the Gauss-Legendre
rule converges exponentially fast. In particular, with only 25 points the Gauss-Legendre rule achieves error
1.3× 10−15. On the other hand, the trapezoidal rule with 300 points achieves error 10−4.

exactly polynomials up to degree 2M + 1! Not really intuitive, huh? Regarding the integration weights for
the Gauss-Legendre quadrature, it can be shown that

wj =
2

(1− z2
j )
[
L′M+1(zj)

]2 j = 0, . . . , n. (51)

Moreover, for every f ∈ Hs([−1, 1]) we have the following spectral convergence result5 [9, p. 437]∣∣∣∣∣
∫ 1

−1
f(z)dz −

M∑
k=0

f(zk)wk

∣∣∣∣∣ ≤ CM−s ‖f‖Hs([−1,1]) . (52)

In Appendix A, we discuss similar results for Chebyshev-Gauss-Lobatto quadrature. If f is infinitely
differentiable then convergence is exponential. As an example, in Figure 3 we compare the error in the
numerical approximation of the integral

I(f) =

∫ 1

−1
f(z)dz f(z) = e−zz2 sin(10z)2 (53)

using the Gauss-Lobatto rule and the trapezoidal rule.

Lemma 1. The maximum degree of exactness of the interpolatory quadrature formula (39) is 2M + 1.

Proof. The proof is very simple. Suppose we could choose the max degree of b(z) to be m = M + 2.
Following what we just said for the Gauss-Legendre quadrature this would imply∫ 1

−1
q2
M+1(z)µ(z)dz = 0, (54)

i.e., q2
M+1(z) = 0 which is impossible (see [9, Corollary 10.2]).

5The error estimate holds for Gauss-Legendre-Lobatto quadrature (see Table 1), which has degree of exactness 2M − 1.
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Gauss-Legendre Gauss-Legendre-Lobatto

nodes {z0, . . . , zM} LM+1(z) = 0 (1− x2)L′M (z) = 0

Lagrange polynomials li(z) =
LM+1(z)

(z − zi)L′M+1(z)
li(z) = − 1

M(M + 1)

(1− z2)

(z − zi)
L′M (z)

L′M (zi)

Integration weights wi(z) =
2

(1− z2
i )
[
L′M+1(zi)

]2 wi(z) =
1

M(M + 1)LM (zi)2

Table 1: Gauss-Legendre (GL) and Gauss-Lobatto-Legendre (GLL) quadrature and interpolation rules.
The GL rule has degree of exactness 2M + 1, while the GLL rule has degree of exactness 2M − 1.

Gauss and Gauss-Lobatto points have also excellent properties when used for polynomial interpolation (see
Appendix B).

Computation of Gaussian quadrature points and weights. With the exception of a few special
cases, like the Chebyshev polynomials, no closed form expressions for the quadrature nodes and weights
are known (see, e.g., Table 1). Nevertheless, there is a simple and elegant way of computing these nodes
as well as the corresponding weights based on the eigenvalues suitable tridiagonal matrices [6, §11.2]. The
method relies on the three-term recurrence relation for orthogonal polynomials, written hereafter for monic
orthogonal polynomials

πn+1(z) = (z − αn)πn(x)− βnπn−1(x). (55)

We have seen that the coefficients αn and βn can be computed for every measure µ(z) using the Stieltjes
algorithm (see Appendix B of Chapter 4). Equation (55) can be rewritten as

zπn(z) = πn+1(z) + αnπn(x) + βnπn−1(x), (56)

or in the following convenient matrix-vector form

z



π0(z)

π1(z)

π2(z)
...

πn−1(z)

πn(z)


︸ ︷︷ ︸

π(z)

=



α0 1 0 0 · · · 0

β1 α1 1 0 · · · 0

0 β2 α2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 βn−1 αn−1 1

0 · · · 0 0 βn αn


︸ ︷︷ ︸

Jacobi matrix J



π0(z)

π1(z)

π2(z)
...

πn−1(z)

πn(z)


︸ ︷︷ ︸

π(z)

+



0

0

0
...

0

πn+1(z)


. (57)

At this point, it is clear that the zeros of πn+1(z) are eigenvalues of the Jacobi matrix J . In fact, if zj is
such that πn+1(zj) = 0 then

Jπ(zj) = zjπ(zj). (58)

This eigenvalue problem may be solved using the QR algorithm. This yields the Gauss quadrature points
{z0, . . . , zn}. The corresponding quadrature weights can be computed by expanding each Lagrange poly-
nomial lj(z) in (40) in terms of πj(z), and using orthogonality of πj(z) relative µ(z) to we obtain

wk =

∫ 1

−1
lk(z)µ(z)dz =

M∑
j=0

akj

∫ 1

−1
πj(z)µ(z)dz = ak0

∫ 1

−1
µ(z)dz (integration weights). (59)
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Figure 4: Tensor product of two one-dimensional Chebyshev grids (97) of 8 points.

Quadrature and interpolation on tensor product grids. Suppose we are interested in approxi-
mating the integral of a two-dimensional function g(x, y) in [−1, 1]2 relative to the separable integration
weight

µ(x, y) = µ1(x)µ2(y), (60)

i.e., ∫
[−1,1]2

g(x, y)µ1(x)µ2(y)dxdy. (61)

By leveraging the isomorphism

L2
µ([−1, 1]2) = L2

µ1([−1, 1])⊗ L2
µ2([−1, 1]) (62)

we see that we can represent g(x, y) in terms of a tensor product of one-dimensional bases involving
functions of x alone and y alone. In particular, such bases could be Lagrange characteristic polynomials
corresponding to appropriate one-dimensional grids in x ∈ [−1, 1] and y ∈ [−1, 1]. Let us denote by

{x0, . . . , xM} and {y0, . . . , yN} (63)

the aforementioned one-dimensional grids, and by {lj(x)} and hi(y) the corresponding Lagrange polyno-
mials. Then 2D polynomial interpolant of the dataset {g (xi, yj)} can be written as

Πg(x, y) =
M∑
i=0

N∑
j=0

g (xi, yj) li(x)hj(y). (64)

Clearly, Πg(x, y) is a polynomial of total degree M + N . In Figure 4 we show a tensor product of two
Gauss-Chebyshev-Lobatto one-dimensional grids (97). In Figure 5 we plot a few 2D Lagrange characteristic
polynomials li(x)hj(y) associated with the Chebyshev grid shown in Figure 4. The convergence rate of
the interpolant (64) is determined by the tensor product interpolation grid. In particular, for each fixed
x = xj or y = yk it is clear that the spectral convergence results summarized in Appendix B hold. With
the 2D interpolant (64) available, it is straightforward to derive a 2D interpolatory quadrature rule. In

Page 11



AM 238 Prof. Daniele Venturi

Figure 5: 2D Lagrange characteristic polynomials li(x)hj(y) associated with the 2D Chebyshev grid shown
in Figure 4.

fact, ∫ 1

−1

∫ 1

−1
g(x, y)µ1(x)µ2(y)dxdy '

∫ 1

−1

∫ 1

−1
Πg(x, y)µ1(x)µ2(y)dxdy

=

M∑
i=0

N∑
j=0

g (xi, yj)

∫ 1

−1
li(x)µ1(x)dx︸ ︷︷ ︸

wi

∫ 1

−1
hj(y)µ2(y)dy︸ ︷︷ ︸

qj

=
M∑
i=0

N∑
j=0

g (xi, yj)wiqj . (65)

Next, consider the random variable
η(ω) = g(ξ1, . . . , ξn) (66)

and assume that all random variables {ξ1, . . . , ξn} are i.i.d. with PDF pξ(x) supported in [−1, 1]. We
have

E{η(ω)} =

∫ 1

−1
· · ·
∫ 1

−1
g(x1, . . . , xn)pξ(x1) · · · pξ(xn)dx1 · · · dxn. (67)

We approximate this integral using tensor product PCM. To this end, we first construct a one-dimensional
quadrature rule with high-degree of exactness (i.e., Gauss or Gauss-Lobatto) using the methods described
in previous sections. With the one-dimensional quadrature points {x0, . . . , xM} and quadrature weights
{w0, . . . , wM} available we approximate the integral in (67) as

E{η(ω)} =
N∑
j1=0

· · ·
N∑

jn=0

g (xj1 , . . . , xjn)wj1 · · ·wjn . (68)
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Figure 6: Chebyshev-Gauss-Lobatto (GCL) nested point sets χ1
i , χ

2
i , and χ3

i .

Computational cost: To compute all the sums we essentially need to evaluate all g(ξ1, . . . , xn) at a number
of points that grows as (N + 1)n, i.e., polynomially in N (number of points) and exponentially in n
(dimension). In dimension n = 10 with just N + 1 = 10 points per dimension this yields 1010 collocation
points! Each point has n coordinates. Hence, to store the grid in double precision floating point (64 bits,
8 Bytes per floating point number) we need

1010 × 10× 8 = 800 GB. (69)

To store g (xj1 , . . . , xjn) we need an extra 80 GB, and 1.25 Bytes for the vector of weights. Hence, similarly
to polynomial chaos, tensor product PCM undergoes an exponential growth of degrees of freedom with the
dimension of the problem. However, differently than polynomial chaos, PCM is a non-intrusive method that
allows us to perform UQ calculations on legacy codes in a straightforward way, without coding polynomial
chaos propagators or PDF equation solvers from scratch.

Sparse grids

Sparse grids are numerical techniques to represent, integrate or interpolate high dimensional functions.
They were originally developed by the Russian mathematician Sergey A. Smolyak, and are based on a
sparse tensor product construction [3]. The fundamental building block of sparse grids is a one-dimensional
nested points set, e.g., the Gauss-Chebyshev-Lobatto grid (97) for M = 2, 4, 8, . . ., 2s, or any other nested
point set. To describe how sparse grids are constructed, let

χsi = {x1
i . . . , x

ns
i } (70)

be the nested points set in the variable xi where

n1 = 1, ns = 2s−1 + 1 (s ≥ 2), (71)

is the total number of points in the nested point set, e.g., in the Gauss-Chebyshev-Lobatto grid. In Figure
6 we provide a graphical representation of the GCL nested point set.

The level q sparse grids in d dimensions is defined as the multidimensional point set

Hd
q =

⋃
q+1−d≤i1+···+id≤q

χi11 × · · · × χ
id
d , (72)
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Figure 7: Construction of two-dimensional Chebyshev-Gauss-Lobatto (GCL) sparse grids of level 4 (see
Eq. (74)). The final point set is denoted by H2

4 .

i.e., the union of suitable Cartesian products of one-dimensional grids. As we will see sparse grids follow
naturally from the definition of Smolyak interpolant of a multivartiate function, which we will discuss in
detail in the next section. For now, we simply notice that the point set (72) is nested in the sense that

Hd
q−1 ⊂ Hd

q (73)

if χsi is a nested point set.

Example (Level 4 Gauss-Chebyshev-Lobatto (GCL) sparse grids in two-dimensions): To derive the level 4
GCL sparse grids in two dimensions we set q = 4 and d = 2 in (72). This yields

H2
4 =

⋃
3≤i1+i2≤4

χi11 × χ
i2
2

=
(
χ2

1 × χ1
2

)
∪
(
χ1

1 × χ2
2

)
∪
(
χ3

1 × χ1
2

)
∪
(
χ1

1 × χ3
2

)
∪
(
χ2

1 × χ2
2

)
. (74)

The Cartesian product grids appearing in this expression can be easily derived by taking Cartesian products
of the elementary 1D grids shown in Figure 6. Such product grids are shown in Figure 7 In Figure 8 we
plot CGL sparse grids of level 5 and 6 in 2D and 3D.

Interpolation on sparse grids. Let Πs
i be the interpolation operator in the variable xi corresponding to

the 1D point set (70). Note that for s = 1 we have that χ1
i has only one point (see Figure 6). Therefore that

Π1
i is an interpolant at one point only (for polynomial this is the constant function). Define the difference

between two interpolation operators as6

∆0
i = 0 ∆s

i = Πs
i −Πs−1

i . (75)

The Smolyak interpolant of a multivariate function f(x1, . . . , xd) is defined as

Sdq (f) =
∑

i1+···+id≤q
∆i1

1 ⊗ · · · ⊗∆id
d , (76)

6In equation (75) Πs
i denotes the one-dimensional interpolant of a function f(x) on a grid in the variable xi.
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Figure 8: Chebyshev-Gauss-Lobatto (GCL) sparse grids of level 5 (first row) and 6 (second row) in dimen-
sion 2 and 3.

where ij ≥ 1, and q ≥ d is a parameter called sparse grids level. To clarify the meaning of (76), let us
compute the two-dimensional Smolyak interpolant of level 3 of a two-dimensional function f(x1, x2). By
definition,

S2
3(f) =

∑
i1+i2≤3

∆i1
1 ⊗∆i2

2

=∆1
1 ⊗∆1

2 + ∆2
1 ⊗∆1

2 + ∆1
1 ⊗∆2

2

=Π1
1 ⊗Π1

2 +
(
Π2

1 −Π1
1

)
⊗Π1

2 + Π1
1 ⊗

(
Π2

2 −Π1
2

)
=Π2

1 ⊗Π1
2 + Π1

1 ⊗Π2
2 −Π1

1 ⊗Π1
2. (77)

The interpolant (77) is built upon the sparse gridH2
3 as shown in Figure 9. Note that each point is accounted

for only once in the final grid H2
3 (the origin is summed up twice and subtracted once). Specifically, we

have

S2
3(f) =

[
f(−1, 0)l

(1)
1 (x1) + f(0, 0)l

(1)
2 (x1) + f(1, 0)l

(1)
3 (x1)

]
l
(2)
1 (x2)+[

f(0,−1)l
(1)
1 (x2) + f(0, 0)l

(1)
2 (x2) + f(0, 1)l

(1)
3 (x2)

]
l
(2)
1 (x1)−

f(0, 0)l
(2)
1 (x1)l

(2)
1 (x2), (78)

where l
(i)
j are the Lagrange polynomials shown in Figure 9. By substituting (75) into (76) we can rewrite

the Smolyak interpolant in terms of elementary one-dimensional interpolants as

Sdq (f) =
∑

q+1−d≤i1+···+id≤q
(−1)q−i1−···−id

(
d− 1

q − i1 − · · · − id

)
Πi1

1 ⊗ · · · ⊗Πid
d . (79)
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Figure 9: Construction of the Smolyak interpolant (77) and corresponding grids. Similar expression can
be derived for Π1

1 ⊗Π2
2 and Π1

1 ⊗Π1
2.

Hereafter we summarize an error estimate obtained in [1, Remark 11].

Theorem 3. Let Hs
µ([−1, 1]d) be the weighted Sobolev space of order s, with weight7

µ(x1, . . . , xd) =
[
(1− x2

1) · · · (1− x2
d)]
]−1/2

. (80)

Then, ∥∥∥f − Sdq (f)
∥∥∥
L2
µ([−1,1]d)

≤ C(s, d)n−s log(n)(s+1)(d−1) ‖f‖Hs
µ([−1,1]d) , (81)

where C(s, d) is a constant that depends on s and d, and n = n is the total number of sparse grids points
(which depends on d and q).

As easily seen, convergence is no longer spectral (unless d = 1) because of the factor log(n)(s+1)(d−1).

Integration on sparse grids. The Smolyak algorithm can be used to construct cubature formulas to
integrate high-dimensional functions. The key idea is very simple: replace the function with the Smolyak
interpolant on a sparse grid and then integrate. Assuming that the integration weight is separable as in
Theorem 3 we ∫

[−1,1]d
f(x)

d∏
j=1

µj(xj)dx '
∫

[−1,1]d
Sdq (f)(x)

d∏
j=1

µj(xj)dx︸ ︷︷ ︸
Idq (f)

. (82)

7Note that the weight (80) corresponds to a tensor product of Chebyshev polynomials
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This yields an interpolatory quadrature rule with high degree of exactness [8]. In particular, by substituting
(79) into (82) we obtain

Idq (f) =

∫
[−1,1]d

Sdq (f)(x)
d∏
j=1

µj(xj)dx

=
∑

q+1−d≤i1+···+id≤q
(−1)q−i1−···−id

(
d− 1

q − i1 − · · · − id

)
U i11 ⊗ · · · ⊗ U

id
d , (83)

where

U
ij
j =

∫ 1

−1
Π
ij
j µj(xj)dxj . (84)

Example: To illustrate (83), let us integrate the two-dimensional interpolant S2
3(f) defined in (78) on

[−1, 1]2. This yields the interpolatory quadrature formula

I2
3 (f) =f(−1, 0)w1

11w
2
12 + f(0, 0)

[
w1

21w
2
12 + w1

22w
2
11 − w1

11w
1
12

]
+

f(0,−1)w1
12w

2
11 + f(1, 0)w1

31w
2
12 + f(0, 1)w1

32w
2
11, (85)

where

wjip =

∫ 1

−1
l
(j)
i (xp)µ(xp)dxp. (86)

Note that the integration weights in sparse grids are not necessarily all positive. For example, the weight
multiplying f(0, 0), i.e., w1

21w
2
12 +w1

22w
2
11 −w1

11w
1
12, could be negative. Regarding the degree of exactness,

for CGL sparse grids we have the following result (see [8, Corollary 3])

Theorem 4. Let q = σd+ τ , σ ∈ N, τ ∈ {0, . . . , d− 1} Then Idq (f) has degree of exactness{
2(q − d) + 1 if q < 4d

2σ−2(d+ 1 + τ) + 2d− 1 if q ≥ 4d
(87)

Other convergence estimates for interpolatory quadrature rules on sparse grids can be derived based on
convergence estimates of one-dimensional quadrature (see [1, Remark 11]).

Page 17



AM 238 Prof. Daniele Venturi

Appendix A: Chebyshev-Gauss-Lobatto quadrature

Let briefly review the main ingredients of the Gauss-Lobatto Chebyshev expansion. For more details we
refer to [6]. We first recall that the Chebyshev polynomials of the first kind are defined as8

Tk(x) = cos(k arccos(x)) x ∈ [−1, 1] (trigonometric representation). (91)

It can be shown that Tk(x) (like any other orthogonal polynomial) satisfy the three-term recurrence rela-
tion

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

(92)

and the orthogonality conditions∫ 1

−1
Tk(x)Tj(x)

1√
1− x2︸ ︷︷ ︸
µ(x)

dx = δkj ‖Tk‖2L2
µ
. (93)

Note that the first polynomials which gives

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x T4(x) = 8x4 − 8x2 + 1, . . . . (94)

The Chebyshev-Gauss-Lobatto nodes are zeros of the polynomial

QM+1(x) = (1− x2)
dTM (x)

dx
, (95)

i.e., x0 = −1, xM = 1 and all maxima and minima of TM (x). By differentiating (91) with respect to x we
obtain

dTM (x)

dx
=

sin(M arccos(x))√
1− x2

. (96)

Hence QM+1(x) = 0 implies that

xj = − cos

(
kπ

M

)
j = 0, . . . ,M (Chebyshev-Gauss-Lobatto points). (97)

These points are obtained by dividing half unit circle in evenly-spaced parts and projecting them onto the
x-axis. Note also that Chebyshev grid points are nested for M = 2, 4, 8, . . ., 2s.

It can be shown that the Lagrange characteristic polynomials associated with the Gauss-Chebyshev-Lobatto
nodes are

lj(x) =
(−1)M+j+1(1− x2)

djM2(x− xj)
dTM (x)

dx
=

(−1)M+j+1
√

(1− x2)

djM2(x− xj)
sin(M arccos(x)), (98)

where xj is given in (97) and

d0 = dM = 2 d1 = d2 = · · · = dM−1 = 1. (99)

8Note that (91) are indeed polynomials. For example,

cos(arccos(x)) =x, (88)

cos(2 arccos(x)) =2 (cos(arccos(x)))2 − 1 = 2x2 − 1, (89)

cos(3 arccos(x)) =4 (cos(arccos(x)))3 − 3 cos(arccos(x)) = 4x3 − 3x. (90)
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Figure 10: Nested property of Chebyshev grids for M = 2s (s = 1, 2, 3, . . .).

For any function f(x) defined in [−1, 1] we have the following Lagrangian interpolant

ΠMf(x) =

M∑
k=0

f(xk)lk(x), x ∈ [−1, 1]. (100)

At this point we integrate (100) to obtain the quadrature formula∫ 1

−1
f(x)

1√
1− x2

dx '
M∑
k=0

f(xk)wk, (101)

where

wk =

∫ 1

−1

lk(x)√
1− x2

dx =
π

Mdj
(102)

and dj is defined in (99).
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Appendix B: Lagrangian interpolation at Gauss points

The quadrature rule (39) induces a discrete inner product that establishes a correspondence between series
expansions in terms of orthogonal polynomials9 and Lagrangian interpolation formulas. To show this,
let

f(z) '
M∑
k=0

akPk(z) ak =
(f, Pk)L2

µ([−1,1])

(Pk, Pk)L2
µ([−1,1])

(103)

be a polynomial expansion of f(z) in [−1, 1], where {P0, . . . , PM} is a set of polynomials orthogonal relative
to the weight function µ(z). Consider the following Gauss approximation the inner product

(f, Pk)L2
µ([−1,1]) =

∫ 1

−1
f(z)Pk(z)µ(z)dz

'
M∑
j=0

f(zj)Pk(zj)wj , (discrete inner product) (104)

where
{z0, . . . , zM} and {w0, . . . , wM} (105)

are M + 1 Gauss quadrature points and quadrature weights, respectively. Recall that the Gauss rule (104)
has degree of exactness 2M + 1 and therefore it can be used to compute

γk = (Pk, Pk)L2
µ

(106)

exactly up to k = M . A substitution of (104) into (103) yields

f(z) '
M∑
j=0

f(zj)
M∑
k=0

wj
γk
Pk(zj)Pk(z)︸ ︷︷ ︸
lj(z)

. (107)

In this form, we recognize that the Lagrangian interpolation formula, where

lj(z) =
M∑
k=0

wj
γk
Pk(zj)Pk(z) (108)

are Lagrange characteristic polynomials associated with the Gauss nodes (105).

The identification of the approximation (103) with the Lagrangian interpolant (107) at Gauss nodes (105)
suggests a mathematically equivalent but computationally different way of representing the function f(z).
Regarding the approximation error in (103), the following general estimate in terms of the uniform norm
holds true.

Theorem 5. Let f ∈ C0([−1, 1]) and ΠMf(z) the polynomial of degreeM interpolating f(z) at {z0, . . . , zM}.
Then

‖f(z)−ΠMf(z)‖∞ ≤ (1 + ΛM ) inf
Ψ∈PM

‖f(z)−Ψ(z)‖∞ (109)

where

ΛM = max
z∈[−1,1]

λM (z) (Lebesgue constant), (110)

λM (z) =
M∑
j=0

|lj(z)| (Lebesgue function). (111)

9We have seen in Chapter 4 that orthogonal polynomial expansions exhibit spectral convergence.
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Proof. The proof for the upper bound (109) is very simple. Let Ψ ∈ PM be the best approximating
polynomial

‖f(z)−ΠMf(z)‖∞ ≤‖f(z)−Ψ(z)‖∞ + ‖Ψ(z)−ΠMf(z)‖∞ . (112)

At this point, we represent Ψ(z) and Πf (z) in terms of the same set of Lagrange polynomials associated
with the grid {z0, . . . , zM} to obtain

‖Ψ(z)−ΠMf(z)‖∞ =

∥∥∥∥∥∥
M∑
j=0

[Ψ(zj)− f(zj)] lj(z)

∥∥∥∥∥∥
∞

≤‖Ψ(z)− f(z)‖∞ max
z∈[−1,1]

M∑
j=0

|lj(z)|︸ ︷︷ ︸
ΛM

. (113)

A substitution of (113) into (112) yields (109).

Note that the Lebesgue constant depends only on the set of grid points. Clearly, the smaller the Lebesgue
constant, the smaller the interpolation error in the uniform norm. It can be shown that, no matter how we
choose the points, the Lebesgue constant grows at least logarithmically with M , i.e. (see [6, p.102]),

ΛM ≥
2

π
log(1 +M) + C as M →∞. (114)

Note that this does not mean that the interpolation error necessarily grows with M . It just means that the
upper bound in (109) diverges as M → ∞, i.e., that we cannot grant uniform convergence of Lagrangian
interpolation using (109). In other words, for any given set of grid points there exist continuous functions
for which the polynomial interpolant will exhibit non-uniform convergence. On the other hand, one can
also show that for any given continuous function one can always construct a set of grid points that will
result in a uniformly convergent polynomial representation.

It is possible to bound the Lebesgue constant corresponding to various types grids. For instance, for
evenly-spaced grids of M + 1 points in [−1, 1] we have

2M−2

M2
≤ ΛM ≤

2M+3

M
. (115)

Similarly, for the Gauss-Chebyshev-Lobatto (GCL) grid (97) we have (e.g., [6, p. 105])

ΛM ≤
2

π
log(M) +B (finite M), (116)

where B is a suitable constant independent of M .

Example: In Figure 11 we plot the Lagrangian interpolant of

f(z) =
1

1 + 10z2
(117)

computed at 17 evenly-spaced nodes or 17 Gauss-Chebyshev-Lobatto (GCL) nodes (M = 16). In the same
Figure we plot the Lebesgue functions of both interpolation problems. The Lebesgue constants for the
evenly-spaced grid and the GCL grid are obtained, respectively, as

ΛeqM = 934.532 ΛGCLM = 2.468. (118)
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evenly-spaced grid GCL grid

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
10

0

10
1

10
2

10
3

-1 -0.5 0 0.5 1
1

1.5

2

2.5

Figure 11: Lagrangian interpolation of f(z) = (1 + 10z2)−1 using 17 evenly-spaced nodes (left), and 17
GCL nodes (right). The Lebesgue functions λM (z) associated with the evenly-spaced grid and the GCL
grid have maxima ΛeqM = 934.532 and ΛGCLM = 2.468, respectively.

If we measure the interpolation error in terms of the L2
µ([−1, 1]) (instead of the uniform norm we used

in Theorem (5)) then by leveraging the correspondence between orthogonal polynomial expansions and
the Lagrangian interpolant in Eq. (107) is possible to obtain spectral convergence results. For example,
the following convergence result holds for Gauss-Legendre and Gauss-Legendre-Lobatto interpolation (see
Table 1 and [6, p. 114]).

Theorem 6. Let f(z) ∈ Hs([−1, 1]), p ≥ 1. Then∥∥∥∥∥f(z)−
M∑
k=0

f(zk)lk(z)

∥∥∥∥∥
L2([−1,1])

≤ CM−s ‖f(z)‖Hs([−1,1]) (119)

where {z0, . . . , zM} are either Gauss-Legendre points or Gauss-Legendre-Lobatto points (see Table 1).
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Tensor methods for deterministic and stochastic PDEs

We have seen how to propagate uncertainty in PDE models involving random initial conditions, random
parameters, random boundary conditions or random forcing terms. Specifically, we disussed PDF methods
(Hopf equation and Lundgren-Monin-Novikov hierarchies), polynomial chaos methods (gPC, ME-gPC),
and sampling methods (MC, qMC, PCM, ME-PCM, and sparse grids). In this lecture note we discuss
another method that relies upon orthogonal tensor expansions to compute the solution of stochastic PDEs.
The same theory can be used to compute the numerical solution of high-dimensional PDEs such as the
Liouville equation or the Fokker-Plank equation.

Dynamically orthogonal (DO) tensor methods for stochastic PDEs

The dynamically orthogonal field equation method for SPDEs was pioneered by Sapsis and Lermusiaux in
[14], and it is essentially a tensor method for linear or nonlinear PDEs in a separable Hilbert space [7, 6].
To describe DO, suppose we are interested in computing the solution to an initial/boundary value problem
for a stochastic PDE of the form 

∂u(x, t;ω)

∂t
= Gω(u(x, t;ω)),

u(x, 0;ω) = u0(x;ω),
(1)

where x ∈ V ⊆ Rd (V is the spatial domain d ≥ 1), and Gω is a random nonlinear operator which may
take into account random forcing terms, random parameters or random boundary conditions. A simple
example of Gω(u(x, t;ω)) could be1

Gω (u(x, t;ω) = ∇ · [κ(x;ω)∇u(x, t;ω)] , κ(x;ω) > 0, (2)

in Rd. We look for a representation of the solution to (1) of the form

u(x, t;ω) = E{u(x, t;ω)}+
∞∑
k=1

ûk(x, t)Yk(t;ω), (3)

where {û1(x, t), û2(x, t), · · · } are deterministic spatio-temporal modes, while {Y1(t;ω), Y2(t;ω), . . .} are
random temporal modes. Note the time redundancy in both the space-time modes ûk(x, t) and the ran-
dom modes Yk(t;ω). The theoretical justification of the series expansion (3) relies on a tensor product
representation of the Hilbert space L2(V × T × Ω) (T is the temporal domain and Ω is the sample space)
as

L2(V × T × Ω) = L2(V × T )⊗ L2(T × Ω). (4)

The expansion (3) includes time-dependent gPC [9] as a sub-case.

Properties of the modes ûk(x, t) and Yk(t;ω). The random temporal modes Yk(t;ω) are clearly zero
mean. In fact, by applying the expectation operator to (3) we obtain

∞∑
k=1

ûk(x, t)E{Yk(t;ω)} = 0 ⇒ E{Yk(t;ω)} = 0. (5)

1The PDE (1)-(2) describes heat conduction in a heterogeneous medium with random thermal conductivity κ(x;ω).
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We also assume that the space-time modes ûk(x, t) satisfy the gauge2 conditions〈
ûk(x, t),

∂ûj(x, t)

∂t

〉
L2(V )

=

∫
V
ûk(x, t)

∂ûj(x, t)

∂t
dx = 0 for all t ≥ 0 and all j, k ≥ 1. (6)

These conditions are called dynamically orthogonal (DO) conditions. The reason is that if the set of modes
{ûk(x, t)} is initially orthonormal, i.e.,

〈ûk(x, 0), ûj(x, 0)〉L2(V ) = δkj . (7)

then it stays orthonormal in time. In fact, for all t ≥ 0 we have

∂

∂t
〈ûk(x, t), ûj(x, t)〉L2(V ) =

〈
∂ûk(x, t)

∂t
, ûj(x, t)

〉
L2(V )

+

〈
ûk(x, t),

∂ûj(x, t)

∂t

〉
L2(V )

= 0 for all i, j ≥ 1.

(8)
This implies that

〈ûk(x, t), ûj(x, t)〉L2(V ) = 〈ûk(x, 0), ûj(x, 0)〉L2(V ) = δkj , (9)

i.e., space time modes ûk(x, t) that are orthogonal at t = 0 remain orthogonal at later times. For this
reason we shall call ûk(x, t) dynamically orthogonal modes.

DO propagator. At this point we have all elements to derive a coupled system of equations for the DO
modes ûj(x, t), the stochastic modes Yt(t;ω) and the mean field

u(x, t) = E{u(x, t;ω} (10)

appearing in (3). To this end, we first substitute a truncated expansion of the form (3), i.e.,

uM (x, t;ω) = u(x, t) +

M∑
k=1

ûk(x, t)Yk(t;ω), (11)

into the SPDE (1) to obtain

∂u(x, t)

∂t
+

M∑
k=1

(
∂ûk(x, t)

∂t
Yk(t;ω) + ûk(x, t)

dYk(t;ω)

dt

)
= Gω (uM (x, t;ω)) +RM (x, t;ω). (12)

Then we impose that the residual RM (x, t;ω) is orthogonal to

SM = span {û1(x, t), . . . , ûM (x, t)} and ZM = span {Y1(t;ω), . . . , YM (t;ω)} (13)

relative to the inner products 〈·〉L2(V ) (see Eq. (6)) and E{·}. This gives the 2M + 1 conditions

0 =E {RM (x, t;ω)} , (14)

0 =E {RM (x, t;ω)Yk(t;ω)} k = 1, . . . ,M, (15)

0 = 〈RM (x, t;ω)ûk(x, t)〉L2(V ) k = 1, . . . ,M (16)

which are sufficient to identify a set of equation for the mean field u(x, t), the DO modes {ûk(x, t)},
and the stochastic modes {Yk(t;ω)}. By taking the expectation of (12) and taking into account (14) we
obtain

∂u

∂t
= E {Gω (uM )} (evolution equation for the mean field). (17)

2In physics, choosing a gauge denotes a mathematical procedure for coping with redundant degrees of freedom in field
variables. In the case of the series expansion (3), t is the redundant degree of freedom. We also emphasize that the inner
product (6) can be generalized to include, e.g., a weight function µ(x) (weighted L2

µ(V ) space), or spatial derivatives of ûk(x, t)
(Sobolev space Hs(V )).
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Next, we project (12) onto ûp(x, t) and take (16) into account to obtain〈
∂u

∂t
, ûp

〉
L2(V )

+
M∑
k=1

〈
∂ûk
∂t

, ûp

〉
L2(V )︸ ︷︷ ︸

=0

Yk +
M∑
k=1

〈ûkûp〉L2(V )︸ ︷︷ ︸
=δkp

dYk
dt

= 〈Gω (uM ) ûp〉L2(V ) , (18)

where we assumed that the DO modes {ûk(x, t)} are orthonormal at t = 0 and therefore at all t (see Eq.
(9)). Equation (18) can be written as

dYp
dt

= 〈[Gω (uM )− E{Gω (uM )}] ûp〉L2(V ) . (19)

Finally we project (12) onto Yp(t;ω) and take (16) into account to obtain

E
{
∂u

∂t
Yp

}
︸ ︷︷ ︸

=0

+

M∑
k=1

∂ûk
∂t

E {YkYp}︸ ︷︷ ︸
Σkp(t)

+

M∑
k=1

ûkE
{
dYk
dt

Yp

}
= E {Gω (uM )Yp} . (20)

Note that
Σkp(t) = E {Yk(t;ω)Yp(t;ω)} (21)

is the covariance function of the random process Yk(t;ω) and Yp(t;ω). By using (19) we can write the last
terms at the right hand side of (20) as3

E
{
dYk
dt

Yp

}
= E

{
〈Gω(uM )ûk〉L2(V ) Yp

}
. (23)

A substitution of (23) into (20) yields

M∑
k=1

∂ûk
∂t

Σkp(t) = E {Gω (uM )Yp} −
M∑
k=1

〈E {Gω (uM )Yp} ûk〉L2(V ) ûk. (24)

In summary, the DO propagator can be written as [14, 5] (for p = 1, . . . ,M)

∂u

∂t
= E {Gω (uM )} ,

dYp
dt

= 〈[Gω (uM )− E{Gω (uM )}] ûp〉L2(V ) ,

M∑
k=1

∂ûk
∂t

Σkp(t) = E {Gω (uM )Yp} −
M∑
k=1

〈E {Gω (uM )Yp} ûk〉L2(V ) ûk.

(25)

The initial and boundary conditions for this PDE system are obtained by projection (see [14]). Clearly,
the evolution equations for the DO modes ûk in (25) have some issues if the covariance matrix Σkp of
the stochastic modes is singular. This happens, for example when a random mode Yk has zero energy,
e.g., when we add a mode during integration to increase accuracy. In this case, the system (25) becomes
algebraic-differential (covariance matrix singular). This requires special numerical techniques for temporal
integration. One can overcome this problem by considering pseudo-inverse matrix operations [1]. More
rigorously, it can be shown that is possible to rewrite the system (25) in fully equivalent form that does not
require covariance matrix inversion, and solve such a system using operator splitting (see, e.g., [6]).

3Note that
E {E {Gω(uM )}Yp} = E {Gω(uM )}E {Yp} = 0. (22)
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Figure 1: Construction of functional tensor train (FTT). Shown is the sequence of hierarchical Schmidt
decomposition for a function in four variables.

An advantage of (25) over, e.g., polynomial chaos is that the stochastic modes are evolving with time in a
way that depends on the PDE. Moreover, it can be shown that the DO equations (25) satisfy an optimality
(variational) principle similar to the one satisfied by the Karhunen-Loève expansion (see [7]), which implies
that we can obtain accurate stochastic solutions of (1) using a series expansion (11) with a relatively small
number of modes M .

In a parallel research effort, T. Hou and collaborators developed an alternative version of DO on bi-
orthogonal (BO) expansions [3, 4]. Bi-orthogonality essentially represents a different gauge condition,
which yields a propagator, i.e., a coupled system of equations for the modes ûk and Yk that differs from
(25)(see [3, 4] for details). The correspondence between DO and BO was investigated in [5, 7].

Dynamically orthogonal tensor methods for high-dimensional deterministic PDE

In this section we generalize the series expansion (3) to compute the numerical solution of a high-
dimensional deterministic PDE of the form

∂u(x, t)

∂t
= G(u(x, t)), u(x, 0) = u0(x), (26)

where u : V × [0, T ] → R is a (time-dependent) scalar field in d variables defined on the domain V ⊆ Rd
and G is a nonlinear operator which may depend on the spatial variables, and may incorporate boundary
conditions.

The PDE (26) may be a Liouville equation, a Fokker-Planck equation, or an approximation of the Hopf
characteristic functional equation we have seen in Chapter 2.

Functional tensor train (FTT). Let V ⊆ Rd be a Cartesian product of d real intervals Vi = [ai, bi]

V =
d

×
i=1

Vi, (27)

µ a finite product measure on V

µ(x) =

d∏
i=1

µi(xi), (28)

and
H = L2

µ(V ) (29)
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the standard weighted Hilbert space4 of square–integrable functions on V . It was shown in [12, 2, 8] that
any function u(x) ∈ H can be represented as

u(x) =

∞∑
α1,...,αd−1=1

ψ1(1;x1;α1)ψ2(α1;x2;α2) · · ·ψd(αd−1;xd; 1), (30)

where ψi(αi−1;xi;αi) are matrices of functions depending only on the variable xi. Such functions are
computed by solving a hierarchical sequence of eigenvalue problems that is similar to the Karhunen-Loève
eigenvalue problem.

Computation of FTT. In Figure 1 we show the sequence of hierarchical (Schmidt) decompositions to
compute the functional tensor train expansion for a four-dimensional function. The first step is to solve
the eigenvalue problem

λ1ψ1(1;x1;α1) =

∫
V1

K(x1, x
′
1)ψ1(1;x′1;α1)dx′1, (31)

where

K1(x1, x
′
1) =

∫
V2×V3×V4

u(x1, x2, x3, x4)u(x′1, x2, x3, x4)dx2dx3dx4. (32)

The (not-normalized) modes ϕ1(α1;x2, x3, x4) are obtained by projection of u onto the orthonormal modes
ψ1 as

ϕ1(α1;x2, x3, x4) =

∫
V1

u(x1, x2, x3, x4)ψ1(1;x1;α1)dx1. (33)

At this point we perform another Schmidt decomposition by solving the eigenvalue problem

λ2ψ2(α1;x2;α2) =

∫
V2

K2(x2, x
′
2;α1)ψ2(α1;x′2;α2)dx′2, (34)

where

K2(x2, x
′
2;α1) =

∫
V3×V4

ϕ1(α1;x2, x3, x4)ϕ1(α1;x′2, x3, x4)dx3dx4. (35)

Note that the kernel K2 is defined by the orthogonal modes ϕ1 we obtained from the previous decomposi-
tion. We project ϕ1(α1;x2, x3, x4) onto the orthonormal modes ψ2(α1;x′2;α2) to obtain

ϕ2(α2;x3, x4) =

∞∑
α1=1

∫
V2

ϕ1(α1;x2, x3, x4)ψ2(α1;x2;α2)dx2. (36)

Lastly we perform a decomposition the ϕ2(α2;x3, x4), which yields the modes ψ3(α2;x3;α3) and ψ4(α3;x4; 1)
(see Figure 1). The final expansion corresponds to the following sequence of function space decomposi-
tions

H(V1 × V2 × V3 × V4) =[H(V1)⊗H(V2 × V3 × V4)]

[H(V1)⊗ [H(V2)⊗H(V3 × V4)]]

[H(V1)⊗ [H(V2)⊗ [H(V3)⊗H(V4)]]], (37)

where the notation [H(V1)⊗H(V2×V3×V4)] emphasizes the fact that that we diagonalized the expansion
involving the function spaces within the bracket.

In a finite-dimensional setting, such decomposition are essentially generated by a hierarchical sequence of
singular value decompositions corresponding to various flattening of a multi-dimensional array (see Figure

4Note that the Hilbert space H in equation (29) can be equivalently chosen to be a Sobolev space W 2,p (see [7] for details).
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Figure 2: Construction of functional tensor train (FTT). Shown is the sequence of hierarchical Schmidt
decomposition for a function in four variables.

2). By truncating the expansion (30) so that the terms corresponding to the largest eigenvalues in (31),
(34), etc., are retained yields

ur(x) =

r∑
α1,...,αd−1=1

ψ1(1;x1;α1)ψ2(α1;x2;α2) · · ·ψd(αd−1;xd; 1), (38)

where r = (1, r1, . . . , rd−1, 1) is the FTT-rank.

It was shown by Bigoni et al. [2] that the truncated FTT expansion expansion (38) converges optimally (in
r) with respect to the L2

µ(V ) norm. More precisely, for any given function u ∈ L2
µ(V ) the FTT approximant

(38) minimizes the residual ‖u−ur‖L2
µ(V ) relative to independent variations of the functions ψi(αi−1;xi;αi)

on a tensor manifold with constant rank r. It is convenient to write (38) in a more compact form as

ur(x) = Ψ1(x1)Ψ2(x2) · · ·Ψd(xd), (39)

where Ψi(xi) is a ri−1×ri matrix with entries [Ψi(xi)]jk = ψi(j;xi; k). The matrix-valued functions Ψi(xi)
are known as FTT tensor cores. To simplify notation even more we can suppress explicit tensor core
dependence on the spatial variable xi, allowing us to simply write Ψi = Ψi(xi) as the spatial dependence
is indicated by the tensor core subscript. If we discretize the domain V in terms of a grid with N points
in each variable then we can represent (39) as a product of 2D and 3D matrices (see Figure 2).

FTT tensor manifold. It was shown in [15, 8] that the set of truncated tensors (38) (with invertible
covariance matrices of each tensor modes) belongs to a smooth manifold5 Mr, i.e., a manifold in which

we can define a tangent space TurMr at a point ur ∈ Mr. Specifically, let us denote by H
(i)
ri−1×ri

the set of all tensor cores Ψi ∈ Mri−1×ri(L
2
µi(Vi)) with the property that the autocovariance matrices〈

ΨT
i Ψi

〉
i
∈Mri×ri(R) and

〈
ΨiΨ

T
i

〉
i
∈Mri−1×ri−1(R) are invertible for i = 1, . . . , d. The set

Mr = {ur ∈ L2
µ(V ) : ur = Ψ1Ψ2 · · ·Ψd, Ψi ∈ H(i)

ri−1×ri , ∀i = 1, 2, . . . , d}, (40)

consisting of fixed-rank FTT tensors, is a smooth sub-manifold of L2
µ(V ). We represent elements in the

tangent space, TurMr, of Mr at the point ur ∈ Mr as equivalence classes of velocities of continuously
differentiable curves on Mr passing through ur

TurMr =
{
γ′(s)|s=0 : γ ∈ C1 ((−δ, δ),Mr) , γ(0) = ur

}
. (41)

5A manifold is a generalization and abstraction of the notion of a curved surface. In particular, the manifold of the FTT
tensors with fixed rank is a topological function space that admits a tangent space at each point, an inner product defined on
the tangent space, etc.
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Figure 3: Sketch of the tensor manifold Mr and the tangent space TurMr at ur ∈ Mr. The tangent
space is defined as equivalence classes of velocities of continuously differentiable curves γ(s) onMr passing
through ur.

A sketch of Mr and TurMr is provided in Figure 3. Since L2
µ(V ) is an inner product space, for each

u ∈ L2
µ(V ) the tangent space TuL

2
µ(V ) is canonically isomorphic to L2

µ(V ). Moreover, for each ur ∈ Mr

the normal space to Mr at the point ur, denoted by NurMr, consists of all vectors in L2
µ(V ) that are

orthogonal to TurMr with respect to the inner product in L2
µ(V )

NurMr = {w ∈ L2
µ(V ) : 〈w, v〉L2

µ(V ) = 0, ∀v ∈ TurMr}. (42)

Since the tangent space TurMr is closed, for each point ur ∈Mr the space L2
µ(V ) admits a decomposition

into tangential and normal components

L2
µ(V ) = TurMr ⊕NurMr. (43)

We represent elements of the tangent space TurMr as equivalence classes of velocities of curves passing
through the point ur

TurMr =
{
y′(s)|s=0 : y ∈ C1 ((−δ, δ),Mr) , y(0) = ur

}
. (44)

Here C1 ((−δ, δ),Mr) is the space of continuously differentiable functions from the interval (−δ, δ) to the
space of constant rank FTT tensors Mr.

Next, we can now define a projection onto the tangent space of Mr at ur by

Pur : L2
µ(V )→ TurMr

Purv = argmin
vr∈TurMr

‖v − vr‖L2
µ(V ).

(45)

For fixed ur, the map Pur is linear and bounded. Each v ∈ L2
µ(V ) admits a unique representation as

v = vt + vn where vt ∈ TurMr and vn ∈ NurMr (see equation (43)). From this representation it is clear
that Pur is an orthogonal projection onto the tangent space TurMr.

An arbitrary element of the tangent space TurMr can be expressed as

u̇r = Ψ̇1Ψ≥2 + · · ·+ Ψ≤i−1Ψ̇iΨ≥i+1 + · · ·+ Ψ≤d−1Ψ̇d, (46)
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Figure 4: Tangent and normal components of G (ur) = ∂ur/∂t at ur. The tensor rank of the solution is
increased at time ti if the norm of the normal component Nur(G(ur)) is larger than a specified threshold
εinc.

where u̇r = ∂ur/∂t and Ψ̇i = ∂Ψi/∂t.

Dynamic tensor approximation of high-dimensional nonlinear PDEs. With the machinery on
FTT tensors available, we can now approximate the solution of (26) on the tensor manifold Mr. To
this end, suppose that the initial condition u0(x) is on the manifold Mr. Clearly, the solution to the
initial/boundary value problem (see Figure 4)

∂ur
∂t

= PurG(ur),

u(x, 0) = u0(x),
(47)

remains on the manifold Mr for all t ≥ 0. Here G is the nonlinear operator on the right hand side of
equation (1). The solution to (47) is known as a dynamic approximation to the solution of (1). To compute
the tangent space projection of the PDE (48) we solve the convex optimization problem

min
v(x,t)∈Tu(x,t)Mr

‖v(x, t)−G(ur(x, t))‖2L2
µ(V ) . (48)

subject to the DO constraints 〈
Ψ̇T
i Ψi

〉
i

= 0ri×ri , i = 1, . . . , d− 1, (49)

which ensures that
〈
ΨT
i (t)Ψi(t)

〉
i

= Iri×ri for all i = 1, . . . , d− 1 and for all t ≥ 0.

DO-TT propagator. It was shown in [8] that under these constraints, the convex minimization problem
(48) admits a unique minimum for vectors in the tangent space (46) satisfying the PDE system

Ψ̇1 =
[〈
G(ur)ΨT

≥2

〉
≥2
−Ψ1

〈
ΨT

1 G(ur)ΨT
≥2

〉
≥1

] 〈
Ψ≥2Ψ

T
≥2

〉−1

≥2
,

Ψ̇k =
[〈

ΨT
≤k−1G(ur)ΨT

≥k+1

〉
≤k−1,≥k+1

−

Ψk

〈
ΨT
≤kG(ur)ΨT

≥k+1

〉
≥1

] 〈
Ψ≥k+1Ψ

T
≥k+1

〉−1

≥k+1
, k = 2, 3, . . . , d− 1,

Ψ̇d =
〈
ΨT
≤d−1G(ur)

〉
≤d−1

.

(50)
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Here, ur(x, t) = Ψ1(t)Ψ2(t) · · ·Ψd(t) ∈Mr and we have introduced the notation

〈Ψ〉≤k =

∫
V1×···×Vk

Ψ(x)dµ1(x1) · · ·µk(xk),

〈Ψ〉≥k =

∫
Vk×···×Vd

Ψ(x)dµk(xk) · · ·µd(xd),

〈Ψ〉≤k−1,≥k+1 =

∫
V1×···×Vk−1×Vk+1×···×Vd

Ψ(x)dµ1(x1) · · ·µk−1(xk−1)µk+1(xk+1) · · ·µd(xd),

(51)

for any matrix Ψ(x) ∈ Mr×s
(
L2
µ (V )

)
. The DO-FTT system (50) involves several inverse covariance

matrices
〈
Ψ≥kΨ

T
≥k

〉−1

≥k
, which can become poorly conditioned in the presence of tensor modes with small

energy (i.e. autocovariance matrices with small singular values). This phenomenon has been shown to
be a result of the fact that the curvature of the tensor manifold at a tensor is inversely proportional to
the smallest singular value present in the tensor [10, section 4]. To overcome the problem of inverting
potentially ill-conditioned covariance matrices a rank-adaptive operator splitting method was proposed in
[6].

Numerical application of DO-TT to the Fokker-Planck equation. We have seen in Chapter 2 that
the Fokker–Planck equation describes the evolution of the probability density function (PDF) of the state
vector solving the Itô stochastic differential equation (SDE) [13]

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt. (52)

Here, Xt is the d-dimensional state vector, µ(Xt, t) is the d-dimensional drift, σ(Xt, t) is an d×m matrix
and Wt is an m-dimensional standard Wiener process. The Fokker–Planck equation that corresponds to
(52) has the form 

∂p(x, t)

∂t
= L(x, t)p(x, t),

p(x, 0) = p0(x),

(53)

where p0(x) is the PDF of the initial state X0, L is a second-order linear differential operator defined
as

L(x, t)p(x, t) = −
d∑

k=1

∂

∂xk
(µk(x, t)p(x, t)) +

d∑
k,j=1

∂2

∂xk∂xj
(Dij(x, t)p(x, t)) , (54)

and D(x, t) = σ(x, t)σ(x, t)T/2 is the diffusion tensor. For our numerical demonstration we set

µ(x) = α


sin(x1)

sin(x3)

sin(x4)

sin(x1)

 , σ(x) =
√

2β


g(x2) 0 0 0

0 g(x3) 0 0

0 0 g(x4) 0

0 0 0 g(x1)

 , (55)

where g(x) =
√

1 + k sin(x). With the drift and diffusion matrices chosen in (55) the operator (54) takes
the form

L =− α
(

cos(x1) + sin(x1)
∂

∂x1
+ sin(x3)

∂

∂x2
+ sin(x4)

∂

∂x3
+ sin(x1)

∂

∂x4

)
+ β

(
(1 + k sin(x2))

∂2

∂x2
1

+ (1 + k sin(x3))
∂2

∂x2
2

+ (1 + k sin(x4))
∂2

∂x2
3

+ (1 + k sin(x1))
∂2

∂x2
4

)
.

(56)

Page 9



AM 238 Prof. Daniele Venturi

Clearly L is a linear, time-independent separable operator of rank 9, since it can be written as

L =

9∑
i=1

L
(1)
i ⊗ L

(2)
i ⊗ L

(3)
i ⊗ L

(4)
i , (57)

where each L
(j)
i operates on xj only. Specifically, we have

L
(1)
1 = −α cos(x1), L

(1)
2 = −α sin(x1)

∂

∂x1
, L

(2)
3 = −α ∂

∂x2
, L

(3)
3 = sin(x3),

L
(3)
4 = −α ∂

∂x3
, L

(4)
4 = sin(x4), L

(1)
5 = −α sin(x1), L

(4)
5 =

∂

∂x4
,

L
(1)
6 = β

∂2

∂x2
1

, L
(2)
6 = 1 + k sin(x2), L

(2)
7 = β

∂2

∂x2
2

, L
(3)
7 = 1 + k sin(x3),

L
(3)
8 = β

∂2

∂x2
3

, L
(2)
8 = 1 + k sin(x4), L

(4)
9 = β

∂2

∂x2
4

, L
(1)
9 = 1 + k sin(x1),

(58)

and all other unspecified L
(j)
i are identity operators. We set the parameters in (55) as α = 0.1, β = 2.0,

k = 1.0 and solve (53) on the four-dimensional flat torus T4. The initial PDF is set as

p0(x) =
sin(x1) sin(x2) sin(x3) sin(x4) + 1

16π4
. (59)

Note that (59) is a four-dimensional FTT tensor with multilinear rank r =
[
1 2 2 2 1

]
. Upon

normalizing the modes appropriately we obtain the left orthogonalized initial condition required to begin
integration

p0(x) = ψ1(1;x1; 1)ψ2(1;x2; 1)ψ3(1;x3; 1)ψ4(1;x4; 1)
√
λ(1)

+ ψ1(1;x1; 2)ψ2(2;x2; 2)ψ3(2;x3; 2)ψ4(2;x4; 1)
√
λ(2),

(60)

where

ψi(1;xi; 1) =
sin(xi)√

π
,

√
λ(1) =

1

16π2
. (61)

All other tensor modes are equal to 1/
√

2π, and
√
λ(2) = 1/(2π2). To obtain a benchmark solution with

which to compare the rank-adaptive FTT solution, we solve the PDE (53) using a Fourier pseudo-spectral
method on the flat torus T4 with 214 = 194481 evenly-spaced points. As before, the operator L is repre-
sented in terms of pseudo-spectral differentiation matrices, and the resulting semi-discrete approximation
(ODE system) is integrated with an explicit fourth-order Runge Kutta method using time step ∆t = 10−4.
The numerical solution we obtained in this way is denoted by pref(x, t). We also solve the Fokker-Planck
using the proposed rank-adaptive FTT method with first-order Lie-Trotter time integrator and normal
vector thresholding. We run three simulations all with time step ∆t = 10−4: one with no rank adaption,
and two with rank-adaptation and normal component thresholds set to εinc = 10−3 and εinc = 10−4. In
Figure 5 we plot three time snapshots of the two-dimensional solution marginal

p(x1, x2, t) =

∫ 2π

0

∫ 2π

0
p(x1, x2, x3, x4, t)dx3dx4 (62)

computed with the rank-adaptive FTT integrator (εinc = 10−4) and the full tensor product pseudo-spectral
method (reference solution). In Figure 6(a) we compare the L2(Ω) errors of the rank-adaptive method
relative to the reference solution. It is seen that as we decrease the threshold the solution becomes more
accurate. In Figure 6(b) we plot the component of Lpr normal to the tensor manifold. Note that in
the rank-adaptive FTT solution with thresholds εinc = 10−3 and εinc = 10−4 the solver performs both
mode addition as well as mode removal. This is documented in Figure 7. The abrupt change in rank
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Figure 5: Time snapshots of marginal PDF pr(x1, x2, t) corresponding to the solution to the Fokker-Planck
equation (53). We plot marginals computed with the rank-adaptive FTT integrator using εinc = 10−4 (top
row) and with the full tensor product Fourier pseudo-spectral method (middle row). We also plot the
pointwise error between the two numerical solutions (bottom row). The initial condition is the FTT tensor
(59).

observed in Figure 7(a)-(c) near time t = 0.4 corresponding to the rank-adaptive solution with threshold
εinc = 10−4 is due to the time step size ∆t being equal to εinc. This can be justified as follows. Recall that
the solution is first order accurate in ∆t and therefore the approximation of the component of Lpr normal
to the tensor manifoldMr is first-order accurate in ∆t. If we set εinc ≤ ∆t, then the rank-adaptive scheme
may overestimate the number of modes needed to achieve accuracy on the order of ∆t. This does not
affect the accuracy of the numerical solution due to the robustness of the Lie-Trotter integrator to over-
approximation [11]. Moreover we notice that the rank-adaptive scheme removes the unnecessary modes
ensure that the tensor rank is not unnecessarily large. In fact, the diffusive nature of the Fokker-Plank
equation on the flat torus T4 yields relaxation to a statistical equilibrium state that depends on the drift
and diffusion coefficients in (53). Such an equilibrium state may be well-approximated by a low-rank FTT
tensor.
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(a) (b)

Figure 6: (a) The L2(Ω) error of the FTT solution pr(x, t) relative to the benchmark solution pref(x, t)
computed with a Fourier pseudo-spectral method on a tensor product grid. (b) Norm of the component
of Lpr normal to the tensor manifold (see Figure 4). Such component is approximated a two-point BDF
formula at each time step.

(a) (b) (c)

Figure 7: Tensor rank r = [1 r1 r2 r3 1] of adaptive FTT solution to the four dimensional Fokker-Planck
equation (53).
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