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Polynomial approximation of functions and derivatives

The vast majority of numerical methods for ODEs and PDEs rely on polynomial approximation of deriva-
tives and integrals. In this course note we review well-known (and also not so well-known) results in
polynomial approximation theory of smooth functions. To this end, denote by

Pn([a, b]) = span{1, x, . . . , xn} (1)

the space of polynomial of degree at most n defined on the interval [a, b]. It is well-known that any
continuous function f(x) defined on [a, b] can be approximated by a polynomial pn(x) ∈ Pn([a, b]) as close
as we like, where “close” is in the sense of the uniform norm1. This result is summarized in the following
theorem.

Theorem 1 (Weierstrass (1885)). Let f ∈ C0([a, b]) (continuous function defined on an interval [a, b]).
Then for any ϵ > 0 there exists nϵ ∈ N and a polynomial pnϵ(x) ∈ Pn([a, b]) such that

∥f − pnϵ∥∞ = max
x∈[a,b]

|f(x)− pnϵ(x)| ≤ ϵ. (3)

This theorem guarantees the existence of an appropriate sequence of polynomials converging uniformly to
any given continuous function , but it does not provide a constructive way to determine pnϵ(x). There are
many different methods one can use to approximate a function in terms of polynomials, e.g., interpolation
methods, projection methods, least squares, etc. In this course note we discuss primarily interpolation
methods.

Polynomial interpolation

Consider a continuous function f(x) defined on an interval [a, b]. Choose n+1 distinct points {x0, . . . , xn} in
[a, b] (interpolation nodes) and let yi = f(xi) be the value of f(x) at xi. The following theorem guarantees
the existence of a unique polynomial of degree less or equal than n that interpolates f(x) at the nodes
{x0, . . . , xn}.

Theorem 2. Let f ∈ C0([a, b]) and consider n+ 1 distinct nodes {x0, . . . , xn} in [a, b]. Then, there exists
a unique polynomial Πnf(x) of degree less or equal than n that interpolates f at {x0, . . . , xn}, i.e.,

Πnf(xi) = f(xi) i = 0, . . . , n. (4)

Proof. Consider the n+ 1 pairs {xi, yi} where yi = f(xi) (i = 0, . . . , n) and the polynomial

Πnf(x) = a0 + a1x+ . . . anx
n ai ∈ R. (5)

By imposing the interpolation conditions Πnf(xi) = yi we obtain the following linear system of (n + 1)
equations in (n+ 1) unknowns {a0, . . . , an}

1 x0 x20 . . . xn0

1 x1 x21 . . . xn1
...

...
...

...

1 xn x2n . . . xnn


︸ ︷︷ ︸

Vandermonde matrix V


a0

a1
...

an

 =


y0

y1
...

yn

 . (6)

1Let f(x) be a continuous function in [a, b]. The uniform (or L∞) norm of f is defined as

∥f∥∞ = max
x∈[a,b]

|f(x)| . (2)
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Figure 1: Sketch of a function f(x) and the polynomial Π3f(x) of degree 3 that interpolates f(x) at
{x0, . . . , x3}.

The determinant of the Vandermonde matrix V can be expressed as

det(V ) =
∏

0≤i<j≤n

(xj − xi) . (7)

Hence, if xi ̸= xj for i ̸= j (distinct nodes) then det(V ) ̸= 0. This implies that the system (6) has a
unique solution, i.e., that there exist a unique polynomial of degree at most n that interpolates f(x) at
{x0, . . . , xn}.

The Vandermonde matrix is usually ill-conditioned, with few notable exceptions, e.g., trigonometic inter-
polation problems on evenly-spaced grids. Therefore, computing the interpolating polynomial via solution
of the linear system (6) is often not advisable.

Lagrangian interpolation

Lagrangian interpolation relies on representing the polynomial interpolant Πnf(x) in terms of a polynomial
basis defined uniquely by the set of grid points {x0, . . . , xn}. Such basis has the form

li(x) =
n∏

j=0
j ̸=i

x− xj
xi − xj

(Lagrange characteristic polynomial). (8)

By evaluating li(x) at {x0, . . . , xn} we see that, by construction, li(x) is a polynomial of degree n that
interpolates the following dataset

x = {x0, . . . , xi−1, xi, xi+1, . . . , xn} y = {0, . . . , 0, 1, 0, . . . , 0}. (9)
↑

i-th entry

In other words,

li(xj) = δij =

{
1 i = j

0 i ̸= j
(10)
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Figure 2: Lagrange characteristic polynomials corresponding to evenly-spaced and Gauss-Chebyshev-
Lobatto (GCL) grids with 7 points in [−1, 1].

It is straightforward to show that {l0(x), . . . , ln(x)} are linearly independent and therefore {l0(x), . . . , ln(x)}
is a cardinal2 basis for Pn (space of polynomials of degree at most n).

With the Lagrange characteristic polynomials available, it is very easy to compute the (unique) polynomial
that interpolates f(x) at the nodes {x0, . . . , xn}. In fact, since {l0(x), . . . , ln(x)} is a basis for Pn, we have
that the linear combination representing Πnf(x) is unique. Moreover, since {l0(x), . . . , ln(x)} is a cardinal
basis we have that the coefficients of the linear combination are simply the values of f at the grid points
{x0, . . . , xn}, i.e.,

Πnf(x) =
n∑

k=0

f(xk)lk(x) (Lagrange interpolation formula). (11)

Let us verify that Πnf(x) indeed interpolates f(x) on the grid {x0, . . . , xn}. To this end, we simply evaluate
Πnf at an arbitrary node xj to obtain

Πnf(xj) =

n∑
k=0

f(xk)lk(xj) =

n∑
k=0

f(xk)δkj = f(xj), (12)

i.e., Πnf interpolates f at xj (j = 0, . . . , n).

Remark: The Lagrange characteristic polynomial lj(x) can be also written in terms of the so-called nodal
polynomial (degree n+ 1)

ωn+1(x) =
n∏

k=0

(x− xk) (13)

as

lj(x) =
ωn+1(x)

(x− xj)ω′
n+1(xj)

. (14)

Remark: The Lagrange characteristic polynomials (8) (or (14)) depend exclusively on the interpolation
nodes {x0, . . . , xn} and they can be computed numerically by solving the polynomial interpolation problem

2A basis defined by some set of grid points is called cardinal if each basis element is equal to one at one grid points and
zero at all other points.
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Figure 3: Geometric construction of Gauss-Chebyshev-Lobatto points.

(6) for the dataset (9). To minimize the condition number of the Vandermonde matrix V it is advisable to
perform a preliminary scaling of the interpolation nodes. In Figure 2 we plot the Lagrange characteristic
polynomials corresponding to an evenly-spaced grid with 7 points in [−1, 1], and a Gauss-Chebyshev-
Lobatto grid with the same number of points

xj = − cos

(
jπ

6

)
j = 0, . . . , 6. (15)

The GCL points are obtained by dividing a half circle with radius 1 centered at the origin into equally
spaced sectors (in this case 6) and projecting the corresponding points onto the x-axis. In Appendix A we
show that CGL points are zeros of the polynomial

Qn+1(x) = (1− x2)
dTn(x)

dx
, (16)

where Tn(x) is n-th degree Chebyshev polynomial of the first kind. In Figure 3 we set n = 6.

Interpolation error

The interpolation error incurred when replacing a function f(x) by its polynomial interpolant Πnf depends
on the function and on the location (and number) of the interpolation nodes {x0, . . . , xn}. The following
Theorem provides an exact analytical expression for the pointwise interpolation error (see [2, p. 335]).

Figure 4: Pointwise interpolation error when approximating f(x) with a third-order polynomial in [a, b].

Theorem 3. Let f ∈ Cn+1([a, b]) and Πnf(x) the polynomial of degree n interpolating f(x) at the n+ 1
distinct nodes {x0, . . . , xn} in [a, b]. Then for any x ∈ I[a, b]

En(x) = f(x)−Πnf(x) =
f (n+1)(ξ)

(n+ 1)!
ωn+1(x), (17)
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where f (n+1)(ξ) is the (n+ 1)-th derivative of f evaluated at some point ξ ∈ [a, b] and

ωn+1(x) =

n∏
k=0

(x− xk) (nodal polynomial). (18)

Theorem 3 provides the exact interpolation error in terms of the (n + 1)-th derivative of the function
f(x) evaluated at some point ξ ∈ [a, b] and the nodal polynomial (18). Taking the uniform norm3 of (17)
yields

∥f(x)−Πnf(x)∥∞ =

∣∣f (n+1)(ξ)
∣∣

(n+ 1)!
∥ωn+1(x)∥∞ . (20)

Evenly-spaced grids. Consider an evenly-spaced interpolation grid in [a, b] with n+ 1 points

xj = a+
j

n
(b− a) j = 0, . . . , n. (21)

The nodal polynomial at the right hand side of (20) can be bounded as

∥ωn+1(x)∥∞ = max
x∈[a,b]

∣∣∣∣∣
n∏

k=0

(x− xj)

∣∣∣∣∣
= max

x∈[a,b]

n∏
k=0

|(x− xj)|

≤n!∆xn+1, (22)

where ∆x = (b − a)/n is the uniform grid spacing. The last inequality can be proved by noting that the
maximum of the product of the absolute values |(x− xj)| can be bounded when x is close to one of the
endpoints of the interval [a, b]. Substituting (22) into (20) yields

∥f −Πnf∥∞ ≤ ∆xn+1

∣∣f (n+1)(ξ)
∣∣

(n+ 1)
≤ ∆xn+1

∥∥f (n+1)
∥∥
∞

(n+ 1)
. (23)

Hence, convergence of polynomial interpolation on evenly-spaced grids is granted if ∆xn+1 goes to zero
faster (as we increase n) than

∥∥f (n+1)
∥∥
∞ /(n + 1). Note that for a fixed number of evenly-spaced nodes,

i.e., fixed n, convergence is granted if we send (b− a) to zero. In fact,

∥f −Πnf∥∞ ≤ Cn(b− a)n+1
∥∥∥f (n+1)

∥∥∥
∞

where Cn =
1

nn+1(n+ 1)
, (24)

which goes to zero for fixed n if (b− a) → 0. This happens, for example, if we interpolate a function f(x)
locally, e.g., via piecewise polynomial interpolation within a small spatial domain. Clearly, if

∥∥f (n+1)
∥∥
∞ is

bounded as n → ∞ then Lagrangian interpolation on evenly-spaced grids converges in the uniform norm
as n → ∞.

3Recall that the uniform norm of a continuous function f on an interval [a, b] is defined as

∥f∥∞ = max
x∈[a,b]

|f(x)| . (19)
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Lebesgue constant. The effects of grid spacing on the accuracy of polynomial interpolation can be also
studied via the following general theorem.

Theorem 4. Let f ∈ C0([a, b]) and Πnf(z) the polynomial of degree n interpolating f(x) at the n + 1
distinct nodes {x0, . . . , xn}. Then

∥f(x)−Πnf(x)∥∞ ≤ (1 + Λn) inf
Ψn∈Pn

∥f(x)−Ψn(x)∥∞ (25)

where

Λn = max
x∈[a,b]

λn(x) (Lebesgue constant), (26)

λn(z) =
n∑

j=0

|lj(x)| (Lebesgue function). (27)

Proof. Let Ψ ∈ Pn be the best approximating polynomial

∥f(x)−Πnf(x)∥∞ ≤∥f(x)−Ψn(x)∥∞ + ∥Ψn(x)−Πnf(x)∥∞ . (28)

At this point, we represent Ψn(z) and Πnf(z) in terms of the same set of Lagrange polynomials associated
with the grid {x0, . . . , xn} to obtain

∥Ψn(x)−Πnf(z)∥∞ =

∥∥∥∥∥∥
n∑

j=0

[Ψ(xj)− f(xj)] lj(x)

∥∥∥∥∥∥
∞

≤∥Ψn(x)− f(x)∥∞ max
x∈[a,b]

n∑
j=0

|lj(x)|︸ ︷︷ ︸
Λn

. (29)

A substitution of (29) into (28) yields (25).

Estimates on the Lebesgue constant

The Lebesgue constant depends exclusively on the interpolation nodes {x0, . . . , xn} (see equations (26)-
(27) and equation (8)). Clearly, the smaller the Lebesgue constant, the smaller the upper bound on the
polynomial interpolation error (25).

It can be shown that, no matter how we choose the points, the Lebesgue constant grows at least logarith-
mically with n, i.e.,

Λn ≥ 2

π
log(1 + n) + C as n → ∞, (30)

where C is a constant independent of n (see [1, p. 102]). This does not mean that the interpolation error
necessarily grows with n. It just means that the upper bound in (25) diverges as n → ∞, i.e., that we
many not be able to grant uniform convergence of Lagrangian interpolation based on equation (25). For
any given sequence of grid points one can find continuous functions for which the polynomial interpolant
will exhibit non-uniform convergence. On the other hand, one can also show that for any given continuous
function one can always construct a set of grid points that will result in a uniformly convergent polynomial
approximations. Thus, we cannot (in general) seek one set of grid points xj that will exhibit optimal
behavior for all possible interpolation problems. However, the behavior of the Lebesgue constant can serve
as a guideline to understand whether certain families of grid points are likely to result in well-behaved
interpolation polynomials.
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It is possible to bound the Lebesgue constant corresponding to different types of grids. For instance, for
evenly-spaced grids of n+ 1 points in [−1, 1], i.e.,

xj = −1 +
2j

n
j = 0, . . . , n (31)

we have
2n−2

n2
≤ Λn ≤ 2n+3

n
. (32)

Similarly, for the Gauss-Chebyshev-Lobatto (GCL) grid (see Appendix A and Figure 3)

xj = − cos

(
jπ

n

)
j = 0, . . . , n (33)

we have

Λn ≤ 2

π
log(n) +B (finite n), (34)

where B is a suitable constant independent of n [1, p. 105].

Example: In Figure 5 we plot the Lagrangian interpolant of the function

f(x) =
1

1 + 10x2
x ∈ [−1, 1] (35)

computed at 17 evenly-spaced nodes, 17 Gauss-Chebyshev-Lobatto (GCL) nodes, and 17 Gauss-Chebyshev-
Lobatto nodes in [−1, 1]. We also plot the Lebesgue functions corresponding to all three interpolation grids.
The Lebesgue constants for the evenly-spaced, GCL, and GLL grids, i.e., the maxima of the functions λn(x)
displayed in Figure 5 are, respectively

Λeven
n = 934.53 ΛGCL

n = 2.72, ΛGLL
n = 2.47. (36)

If we measure the interpolation error corresponding to GLL grid in the L2([−1, 1]) norm instead of the
uniform norm we used in Theorem 4, then it is possible to obtain a spectral convergence result. For example,
the following error bound holds for Gauss-Legendre and Gauss-Legendre-Lobatto interpolation (see Table
3 in Appendix A, or [1, p. 114]).

Theorem 5. Let f(x) ∈ Hs([−1, 1]), s ≥ 1. Then

∥f −Πnf∥L2([−1,1]) ≤ Cn−s ∥f(x)∥Hs([−1,1]) , (37)

where {x0, . . . , xn} are either Gauss-Legendre points or Gauss-Legendre-Lobatto points (see Table 3).

In Theorem 5, Hs([−1, 1]) denotes the Sobolev space of degree s, which is defined to be the space of
functions with square integrable (weak) derivatives up to order s and norm

∥f(x)∥2Hs([−1,1]) =

∫ 1

−1

[
f2(x) +

s∑
k=1

(
dkf(x)

dxk

)2
]
dx < ∞. (38)

Note that the L2([−1, 1]) interpolation error for Gauss-Legendre and Gauss-Legendre-Lobatto grids de-
pends on the degree of smoothness of the function f we are approximating, i.e., the exponent s in (37).
This type of convergence is called spectral convergence. If f is of class C∞ (i.e. infinitely smooth, s → ∞)
then convergence can be exponential, i.e., the interpolation error (37) goes to zero, e.g., as e−αn, for some
positive α > 0. In Figure 6 we demonstrate such exponential converge for the GLL interpolant Πnf of the
function f defined in (35) as the number of GLL points (n+ 1) increases.
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evenly-spaced grid Gauss-Chebyshev-Lobatto grid Gauss-Legendre-Lobatto grid
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Figure 5: Lagrangian interpolation of f(x) = (1+10x2)−1 using 17 evenly-spaced nodes (left), and 17 Gauss-
Chebyshev-Lobatto (GCL) nodes (center), and 17 Gauss-Legendre-Lobatto (GLL) nodes. The Lebesgue
functions λn(x) associated with the evenly-spaced, GCL and GLL grids have maxima Λeven

n = 934.53 and
ΛGCL
n = 2.72, ΛGLL

n = 2.47, respectively.
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Figure 6: Exponential converge for the GLL interpolant of the function (35) as n increases. Shown are
results in the L2 norm (left) and L∞ (i.e., uniform) norm (right).

Piecewise polynomial interpolation

Rather than looking for a polynomial interpolant that approximates f(x) globally within an interval [a, b],
we can look for an interpolant made of local polynomial patches. The union of such patches can be a
continuous (piecewise differentiable) function as in the case of piecewise linear interpolation, or a smooth
function of class C(k−1)([a, b]) as in the case of interpolatory splines [2, p. 355] (see Figure 7).
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Figure 7: Piecewise polynomial interpolation with linear and cubic polynomials (interpolatory cubic spline).
The interpolation nodes are shown with red circles.

Numerical differentiation

To compute the derivative of a function f(x) numerically, we first approximate f using simpler functions,
e.g., local or global interpolating polynomials. Subsequently, we differentiate these polynomials and utilize
their derivatives as an approximation of the derivative of the function f . In this section, we discuss two
numerical differentiation methods, i.e.,

• finite differences,

• pseudo-spectral methods.

Both methods are based on polynomial interpolation. In particular, finite difference methods are based on
local interpolation (usually at evenly-spaced grids), while pseudo-spectral methods are based on polynomial
interpolants at Gauss or Gauss-Lobatto points.

Finite differences

Finite differences are numerical differentiation methods based on replacing f(x) locally with a Lagrangian
interpolating polynomial Πnf(x) ≃ f(x), which is then used to approximate the derivative of f(x) as

df(x)

dx
≃ dΠnf(x)

dx
, (39)

for all x in the neighborhood of a desired point xk. The local interpolating polynomial Πnf(x) is usually
constructed on a evenly-spaced grid defined in a neighborhood of xk. Of course, xk can also be (and it
usually is) a grid point.

First-order finite differences. The simplest finite-difference formulas are based on piecewise linear
interpolation of f in a neighborhood of a point xk. With reference to Figure 8(a), the derivative of f at the
grid point xk can be approximated by two different first-order polynomials, i.e., the line interpolating the
points {(xk, f(xk)), (xk+1, f(xk+1)} (line 2), and the line interpolating {(xk−1, f(xk−1)), (xk, f(xk)} (line
1). This gives us two different approximations of the derivative df/dx at xk, namely

df(xk)

dx
≃f(xk +∆x)− f(xk)

∆x
(forward), (40)

df(xk)

dx
≃f(xk)− f(xk −∆x)

∆x
(backward). (41)
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(a) (b)

Figure 8: Interpolating polynomials for first-order (a) and second-order (b) finite-difference approximations
of the derivatives of f(x).

The attributes “forward” and “backward” refer to the location of the points we are using to approximate
the derivative at xj . In the case of forward finite-difference formula we are using the function value at
xk+1 = xk +∆x which is “to the right” (hence “forward”) relative to xk.

Clearly, both forward and backward finite difference formulas converge to the derivative f ′(xk) as ∆x → 0.
At which rate in ∆x? Assuming that f ∈ C2([a, b]) we can expand the numerator at the right hand side
of (40)-(41) in a Taylor series to obtain

f(xk +∆x)− f(xk) =f ′(xk)∆x+
1

2
f ′′(ξ1)(∆x)2, (42)

f(xk)− f(xk −∆x) =f ′(xk)∆x− 1

2
f ′′(ξ2)(∆x)2, (43)

where ξ1 ∈ [xk, xk + ∆x] and ξ2 ∈ [xk − ∆x, xk]. Substituting these expressions back into (40)-(41)
yields ∣∣∣∣df(xk)dx

− f(xk +∆x)− f(xk)

∆x

∣∣∣∣ =1

2

∣∣f ′′(ξ1)
∣∣∆x, (44)∣∣∣∣df(xk)dx

− f(xk)− f(xk −∆x)

∆x

∣∣∣∣ =1

2

∣∣f ′′(ξ2)
∣∣∆x. (45)

Hence, both finite-difference approximations (40)-(41) are first-order in ∆x, meaning that the error in the
approximation goes to zero linearly in ∆x as we send ∆x to zero. Higher-order finite-difference formulas are
obtained similarly by approximating f(x) locally with an interpolating polynomial of higher degree.

Second-order finite differences. We approximate f(x) locally using an interpolating polynomial of
degree two. With reference to Figure 8(b) we have the Lagrangian interpolation formula4

Π2f(x) =f(xj−1)lj−1(x) + f(xj)lj(x) + f(xj+1)lj+1(x)

=f(xj−1)
(x− xj)(x− xj+1)

2∆x2
− f(xj)

(x− xj)(x− xj+1)

∆x2
+ f(xj+1)

(x− xj−1)(x− xj)

2∆x2
. (47)

4We have, for example

lj−1(x) =
(x− xj)

(xj−1 − xj)︸ ︷︷ ︸
−∆x

(x− xj+1)

(xj−1 − xj+1)︸ ︷︷ ︸
−2∆x

=
(x− xj)(x− xj+1)

2∆x2
. (46)
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At this point we differentiate Π2f(x) to obtain

dΠ2f(x)

dx
=
f(xj−1)

2∆x2
(2x− xj − xj+1)−

f(xj)

∆x2
(2x− xj−1 − xj+1) +

f(xj+1)

2∆x2
(2x− xj−1 − xj) . (48)

Depending on where we evaluate dΠ2f(x)/dx, we have different differentiation formulas. Specifically5,

f ′(xj) ≃
dΠ2f(xj)

dx
=
f(xj+1)− f(xj−1)

2∆x
(centered), (50)

f ′(xj−1) ≃
dΠ2f(xj−1)

dx
=
−3f(xj−1) + 4f(xj)− f(xj+1)

2∆x
(forward), (51)

f ′(xj+1) ≃
dΠ2f(xj+1)

dx
=
3f(xj+1)− 4f(xj) + f(xj−1)

2∆x
(backward). (52)

Let us now prove that the centered finite difference formula (50) is indeed second-order accurate in ∆x as
∆x → 0. To this end, we need to show that∣∣∣∣f ′(xj)−

f(xj+1)− f(xj−1)

2∆x

∣∣∣∣ = O
(
(∆x)2

)
. (53)

To this end, we expand f(xj+1) and f(xj−1) to third-order in ∆x in a neighborhood of xj . This yields

f(xj+1) =f(xj) + f ′(xj)∆x+
f ′′(xj)

2
(∆x)2 +

f ′′′(ξ1)

6
(∆x)3, (54)

f(xj−1) =f(xj)− f ′(xj)∆x+
f ′′(xj)

2
(∆x)2 − f ′′′(ξ2)

6
(∆x)3, (55)

where ξ1 ∈ [xj , xk+1] and ξ2 ∈ [xj−1, xj ]. Subtracting (55) from (54) yields

f(xj+1)− f(xj−1)

2∆x
=

1

2∆x

[
2f ′(xj)∆x+

(∆x)3

6

(
f ′′′(ξ1) + f ′′′(ξ2)

)]
=f ′(xj) +

(∆x)2

12

(
f ′′′(ξ1) + f ′′′(ξ2)

)
. (56)

Therefore, ∣∣∣∣f ′(xj)−
f(xj+1)− f(xj−1)

2∆x

∣∣∣∣ = (∆x)2

12

∣∣f ′′′(ξ1) + f ′′′(ξ2)
∣∣ , (57)

which goes to zero quadratically in ∆x. Note also that as we send ∆x to 0, both ξ1 and ξ2 converge to xj
(from above and below, respectively). Next, we compute an approximation of the second derivative of f .
This is achieved by differentiating dΠ2f(x)/dx in (48) once more with respect to x. This yields

d2Π2f(x)

dx2
=
f(xj−1)− 2f(xj) + f(xj+1)

∆x2
for all x ∈ [xj−1, xj+1]. (58)

5To prove (50), we substitute x = xj into (48). This yields

dΠ2f(xj)

dx
=
f(xj−1)

2∆x2
(2xj − xj − xj+1)−

f(xj)

∆x2
(2xj − xj−1 − xj+1) +

f(xj+1)

2∆x2
(2xj − xj−1 − xj)

=
f(xj−1)

2∆x2
(−∆x)− f(xj)

∆x2
(∆x−∆x) +

f(xj+1)

2∆x2
(∆x)

=− f(xj−1)

2∆x
+

f(xj+1)

2∆x
. (49)
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Using Taylor series it is straightforward to show that (58) approximates f ′′(xj) to second-order in ∆x,
i.e., ∣∣∣∣f ′′(xj)−

f(xj−1)− 2f(xj) + f(xj+1)

∆x2

∣∣∣∣ = O((∆x)2). (59)

In fact, by summing up the Taylor series

f(xj+1) =f(xj) + f ′(xj)∆x+
f ′′(xj)

2
(∆x)2 +

f ′′′(xj)

6
(∆x)3 +

f ′′′′(ξ1)

24
(∆x)4, (60)

f(xj−1) =f(xj)− f ′(xj)∆x+
f ′′(xj)

2
(∆x)2 − f ′′′(xj)

6
(∆x)3 +

f ′′′′(ξ2)

24
(∆x)4, (61)

where ξ1 ∈ [xj , xk+1] and ξ2 ∈ [xj−1, xj ], we obtain

f(xj+1) + f(xj−1)− 2f(xj) = f ′′(xj)(∆x)2 +
(f ′′′′(ξ1) + f ′′′′(ξ2))

24
(∆x)4. (62)

This implies that ∣∣∣∣f ′′(xj)−
f(xj−1)− 2f(xj) + f(xj+1)

∆x2

∣∣∣∣ = (∆x)2

24

∣∣f ′′′′(ξ1) + f ′′′′(ξ2)
∣∣ , (63)

which goes to zero quadratically in ∆x as ∆x → 0.

Example: Let us compute the second-order finite-difference approximation of the first and second derivative
of the periodic function

f(x) = esin(2x) x ∈ [0, 2π]. (64)

To this end, we construct an evenly-spaced grid in [0, 2π] and use the centered finite-difference formulas
(50) and (58) with periodic conditions

f(xn+1) = f(x1), f(x−1) = f(xn). (65)

In Figure 9 we plot the errors

e1(n) = max
j=0,...,n

∣∣∣∣f ′(xj)−
f(xj+1)− f(xj−1)

2∆x

∣∣∣∣ , (66)

e2(n) = max
j=0,...,n

∣∣∣∣f ′′(xj)−
f(xj−1)− 2f(xj) + f(xj+1)

∆x2

∣∣∣∣ . (67)

relative to the exact derivatives

f ′(xj) = 2 cos(2xj)e
sin(2xj), f ′′(xj) = 4

[
cos2(2xj)− sin(2xj)

]
esin(2xj). (68)

versus n (number of points in [0, 2π] in a log-log scale. Clearly, the errors (66)-(67) decay with n as 1/n2.
To see this, consider the sequence

e(n) =
κ

n2
, (69)

which obviously goes to zero as n−2. Taking the logarithm of (69) yields

log(e) = log(κ)− 2 log(n). (70)

Hence if the plot of log(e) versus log(n) is line with slope −2 then e(n) decays as 1/n2.

Page 12



AM 213B Prof. Daniele Venturi

0 1 2 3 4 5 6

-10

-5

0

5

10
1

10
2

10
3

10
4

10
-6

10
-4

10
-2

10
0

10
2

Slope -2

n = 30 n = 100

0 1 2 3 4 5 6

-10

-5

0

5

0 1 2 3 4 5 6

-10

-5

0

5

Figure 9: Approximation of the first and the second derivative of the f(x) defined in (64) using second-
order centered finite differences (equations (50) and (58)). We also plot the errors (66)-(67) in a log-log
scale. It is seen that the errors decay quadratically with n, i.e., they go to zero quadratically as ∆x = 2π/n
goes to zero. We also plot the finite-difference approximation of the derivatives f ′(x) and f ′′(x) we obtain
for n = 30 and n = 100 (black circles).

Higher-order finite differences.

By using finite-difference stencils with an increasing number of points it is possible to derive higher order
finite-difference formulas. In Table 1 we summarize the coefficients for centered and forward finite-difference
approximations of derivatives up to order four. The coefficients of the backward finite difference formulas
for odd derivatives are the opposite of the forward ones, while the coefficients for even derivatives are the
same (see Table 2). As an example, the fourth-order centered, forward, and backward finite difference
approximations of the second derivative of f at xj are

f ′′(xj) ≃
−f(xj−2) + 16f(xj−1)− 30f(xj) + 16f(xj+1)− f(xj+2)

12∆x2
(centered)

(71)

f ′′(xj) ≃
45f(xj)− 154f(xj+1) + 214f(xj+2)− 156f(xj+3) + 61f(xj+4)− 10f(xj+5)

12∆x2
(forward),

(72)
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Figure 10: Five-point stencil for the fourth-order finite difference approximation of the derivatives of f(x).

f ′′(xj) ≃
45f(xj)− 154f(xj−1) + 214f(xj−2)− 156f(xj−3) + 61f(xj−4)− 10f(xj−5)

12∆x2
(backward).

(73)

These formulas are obtained by first interpolating the function f(x) locally with a fourth order polynomial
(see Figure 10) and then by approximating the derivatives of f by the derivatives of Π4f(x) (evaluated at
various points).

Pseudo-spectral methods

In this section we briefly describe how to compute numerical derivatives using pseudo-spectral methods.
The main idea is the same as finite differences, i.e., approximate the derivative of f(x) by the derivative of
a polynomial interpolant. Differently from finite differences though, where the polynomial is constructed
locally (usually at evenly-spaced grid points), pseudo-spectral methods utilize global interpolating polyno-
mials at Gauss or Gauss-Lobatto nodes {x0, . . . , xn}. Such polynomials have the Lagrangian form

Πnf(x) =
n∑

j=0

f(xj)lj(x). (74)

Differentiating Πnf(x) with respect to x yields

dΠnf(x)

dx
=

n∑
j=0

f(xj)
lj(x)

dx
. (75)

We approximate the derivative of f at xp (p = 0, . . . , n) by the derivative of Πnf(x) at xp, i.e.,

f ′(xp) ≃
n∑

j=0

D
(1)
pj f(xj). (76)

The matrix D(1) with entries

D
(1)
pj =

dlj(xp)

dx
(77)

is called first-order pseudo-spectral differentiation matrix. In Appendix A we provide explicit formulas for

D
(1)
ij in the case of Gauss-Chebyshev-Lobatto nodes (equation (108)), and for Gauss-Legendre-Lobatto and

Gauss-Legendre nodes (equations (119)-(108)). Regarding the accuracy of pseudo-spectral derivatives, the
following theorem holds for Gauss-Legendre points (see [[1, p. 115]).
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Centered finite differences

Derivative Order -3 -2 -1 0 1 2 3

first
derivative

2 -1/2 0 1/2

4 1/12 -2/3 0 2/3 -1/12

6 -1/60 3/20 3/4 0 3/4 -3/20 1/60

second
derivative

2 1 -2 1

4 -1/12 4/3 -5/2 4/3 -1/12

6 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90

third
derivative

2 -1/2 1 0 1 1/2

4 1/8 -1 13/8 0 -13/8 1 -1/8

fourth
derivative

2 1 -4 6 -4 1

4 -1/6 2 -13/2 28/3 -13/2 2 -1/6

Forward finite differences

Derivative Order 0 1 2 3 4 5 6 7

first
derivative

1 -1 1

2 -3/2 2 -1/2

3 -11/6 3 -3/2 1/3

4 -25/12 4 -3 4/3 -1/4

second
derivative

1 1 -2 1

2 2 -5 4 -1

4 15/4 -77/6 107/6 -13 61/12 -5/6

third
derivative

1 -1 3 -3 1

2 -5/2 9 -12 7 -3/2

4 -49/8 29 -461/8 62 -307/8 13 -15/8

fourth
derivative

1 1 -4 -6 -4 1

2 3 -14 26 -24 11 -2

4 28/3 -111/2 142 -1219/6 176 -185/2 82/3 -7/2

Table 1: Coefficients for centered and forward finite-difference approximations.
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Backward finite differences

Derivative Order -7 -6 -5 -4 -3 -2 -1 0

first
derivative

1 -1 1

2 -1/2 -2 3/2

3 -1/3 3/2 -3 11/6

4 1/4 -4/3 3 -4 25/12

second
derivative

1 1 -2 1

2 -1 4 -5 2

4 -5/6 61/12 -13 107/6 -77/6 15/4

third
derivative

1 -1 3 -3 1

2 3/2 -7 12 -9 5/2

4 15/8 -13 307/8 -62 461/8 -29 49/8

fourth
derivative

1 1 -4 -6 -4 1

2 -2 11 -24 26 -14 3

4 -7/2 82/3 -185/2 176 -1219/6 142 -111/2 28/3

Table 2: Coefficients for backward finite-difference approximation. There is a whole class of ODE solvers
known as BDF (backward differentiation formulas) methods that are based on backward finite-differences.

Theorem 6. Let {x0, . . . , xn} be Gauss-Legendre points in [−1, 1] (see Table 3). For any f(x) ∈ Hs([−1, 1])
(Sobolev space) with s ≥ 1 and every q ∈ [0, s] there exists a positive constant C independent of n such
that

∥f −Πnf∥Hs([−1,1]) ≤ Cn2q−s+1/2 ∥f∥Hq([−1,1]) . (78)

The norm at the left and right hand side of (78) is defined as

∥f∥2Hq([−1,1]) =

∫ 1

−1

(
f2(x) +

q∑
k=1

[
dkf(x)

dxk

]2)
dx. (79)

Such a norm involves derivatives of f . If we measure the distance between f and Πnf in the Sobolev
norm we are actually measuring how well Πnf is approximating f , and how well the derivatives of Πnf(x)
up to order s are approximating the corresponding derivatives of f(x). Theorem (6) establishes spectral
convergence of the derivatives of Πnf to the derivatives of f(x) (see the commentary after Theorem 5). A
remarkable corollary of Theorem 6 is that if f is of class C∞ then the error goes to zero exponentially fast
with n. This means that the pseudo-spectral method approximates the function and its derivatives with
order infinity if the function f is of class C∞.

Remark: Note that as n increases we are considering interpolating polynomials of higher and higher
degree. This is in contrast with finite differences, where we select the polynomial degree that interpolates
the function f(x) locally and then we send ∆x i.e., (b− a)/n to zero.

Pseudo-spectral differentiation in arbitrary intervals. We have seen in Appendix A that Gauss-
Chebyshev and Gauss-Legendre nodes are defined in [−1, 1]. How do we differentiate a function f defined
in an interval [a, b] using pseudo-spectral methods? To answer this question, consider the linear transfor-
mation

x =
(b− a)

2
η +

a+ b

2
η ∈ [−1, 1]. (80)
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The inverse of (80) is

η =
2

(b− a)

(
x− a+ b

2

)
x ∈ [a, b]. (81)

By using (80) we can write f(x) in terms of η as

f(x) = f̂

(
2

(b− a)

(
x− a+ b

2

))
, (82)

where f̂(η) represents is f(x) written in coordinates η, i.e.,

f(x) = f(η(x)) = f̂(η) = f̂(η(x)). (83)

This implies that
df

dx
=

df̂

dη

dη

dx
=

2

(b− a)

df̂

dη
. (84)

This means that, in practice, if we are interested in differentiating f(x) at Gauss nodes in [a, b] we just
need to evaluate f(x) at the nodes

xj =
(b− a)

2
ηj +

a+ b

2
ηj ∈ [−1, 1]. (85)

where {η0, . . . , ηn} are standard Gauss-Legendre or Gauss-Chebyshev nodes. This yields the column

f =
[
f(x0) f(x1) . . . f(xn).

]T
(86)

A multiplication of f by the re-scaled differentiation matrix

D(1)
x =

2

b− a
D(1). (87)

yields the desired pseudo-spectral derivative at {x0, . . . , xn}. Here, D(1) is the differentiation matrix
defined (108) for Gauss-Chebyshev-Lobatto nodes, and in (119)-(108) for Gauss-Legendre-Lobatto and
Gauss-Legendre nodes. Similarly, for second-order differentiation matrices we have

d2f

dx2
=

d2f̂

dη2

(
dη

dx

)2

=

[
2

b− a

]2 d2f̂
dη2

⇒ D(2)
x =

4

(b− a)2
D(2). (88)

Example: To demonstrate the effectiveness of pseudo-spectral differentiation methods, consider again the
function (64), i.e.,

f(x) = esin(2x) x ∈ [0, 2π], (89)

together with its analytical derivatives

f ′(x) = 2 cos(2x)esin(2x), f ′′(x) = 4
[
cos2(2x)− sin(2x)

]
esin(2x). (90)

We approximate f ′ and f ′′ at Gauss-Chebyshev-Lobatto (GCL) nodes using pseudo-spectral differentiation.
To this end, we first construct the vector

f =
[
f(x0) f(x1) . . . f(xn)

]T
(91)

and then apply first- and second-order GCL differentiation matrices D
(1)
x and D

(2)
x to obtain the approx-

imation of the derivatives at the GCL nodes. The matrices D
(1)
x and D

(2)
x are rescaled versions (in the
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Figure 11: Approximation of the first and the second derivative of the function f(x) defined in (89) using
the Gauss-Chebyshev-Lobatto (GCL) pseudo-spectral method. We plot the pointwise errors (93) versus n
(number of GCL points). It is seen that the errors decay exponentially fast with the number of points n.
Remarkably, with n = 60 GCL points we get the same error as with second-order finite differences with
about n = 10000 points (see Figure 9).

sense of (87)-(88)) of the matrices defined in (108) and (110), respectively. In this particular example since
(b− a) = 2π we have

D(1)
x =

1

π
D(1), D(2)

x =
1

π2
D(2). (92)

In Figure 11 we plot the errors

e1(n) = max
j=0,...,n

∣∣∣f ′(xj)− [D(1)
x f ]j

∣∣∣ , e2(n) = max
j=0,...,n

∣∣∣f ′′(xj)− [D(2)
x f ]j

∣∣∣ (93)

versus the number of GCL points in a semi-logarithmic scale. Clearly, the pseudo-spectral approximation
converges exponentially fast. This is expected, since the function (89) is infinitely differentiable. Remark-
ably, with n = 60 GCL points we get the same error as with second-order finite differences using n = 10000
points (compare Figure 9 and Figure 11)!
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Appendix A: Pseudo-spectral interpolation and differentiation

In this appendix we briefly review pseudo-spectral interpolation and differentiation rules based on the
Chebyshev and Legendre orthogonal polynomials. These methods are thoroughly described in [1, p. 66-
114].

Gauss-Chebyshev Lobatto (GCL) interpolation and differentiation

Consider the trigonometric form of the Chebyshev polynomials of the first kind6

Tk(x) = cos(k arccos(x)) x ∈ [−1, 1] (trigonometric representation). (97)

It can be shown that set {T0(x), T1(x), . . . , } satisfies the three-term recurrence relation

T0(x) = 1,

T1(x) = x,

Tk+1(x) = 2xTk(x)− Tk−1(x).

(98)

and the orthogonality conditions∫ 1

−1
Tk(x)Tj(x)

1√
1− x2︸ ︷︷ ︸
µ(x)

dx = δkj ∥Tk∥2L2
µ
. (99)

The first few Chebyshev polynomials are given by

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x T4(x) = 8x4 − 8x2 + 1, . . . . (100)

The Gauss-Chebyshev-Lobatto nodes are defined to be the zeros of the polynomial

Qn+1(x) = (1− x2)
dTn(x)

dx
, (101)

i.e., they include x0 = −1, xn = 1 and all maxima and minima of the Chebyshev polynomial Tn(x). By
differentiating (97) with respect to x we obtain

dTn(x)

dx
=

sin(n arccos(x))√
1− x2

. (102)

Hence Qn+1(x) = 0 implies that

xj = − cos

(
jπ

n

)
j = 0, . . . , n (Gauss-Chebyshev-Lobatto points). (103)

These points are obtained by dividing half unit circle in evenly-spaced parts and projecting them onto the
x-axis (see Figure 3). Note also that Chebyshev grid points are nested for n = 2, 4, 8, . . ., 2s. It can be
shown that the Lagrange characteristic polynomials associated with the Gauss-Chebyshev-Lobatto (GCL)
nodes are

lj(x) =
(−1)n+j+1(1− x2)

djn2(x− xj)

dTn(x)

dx
=

(−1)n+j+1
√

(1− x2)

djn2(x− xj)
sin(n arccos(x)), (104)

6Note that (97) are indeed polynomials. For example,

cos(arccos(x)) =x, (94)

cos(2 arccos(x)) =2 (cos(arccos(x)))2 − 1 = 2x2 − 1, (95)

cos(3 arccos(x)) =4 (cos(arccos(x)))3 − 3 cos(arccos(x)) = 4x3 − 3x. (96)
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where xj is given in (103) and

d0 = dn = 2 d1 = d2 = · · · = dn−1 = 1. (105)

For any function f(x) defined in [−1, 1] we have the following Lagrangian interpolant

Πnf(x) =

n∑
k=0

f(xk)lk(x), x ∈ [−1, 1]. (106)

At this point we can differentiate the interpolant (106) and evaluate the derivative at the CGL points (103)
to obtain

dΠnf(x)

dx

∣∣∣∣
x=xj

=
n∑

k=0

f(xk)
dlk(x)

dx

∣∣∣∣
x=xj

=

n∑
k=0

D
(1)
jk f(xk), (107)

where D
(1)
jk is the first-order differentiation matrix

D
(1)
ij =



−2n2 + 1

6
i = j = 0

di
dj

(−1)i+j

xi − xj
i ̸= j

− xi
2(1− xi)2

i = j (not 0 or n)

2n2 + 1

6
i = j = n

(108)

and xi and di are defined in (103) and (105), respectively. The expression (107) represents the pseudo-
spectral approximation of the derivative f ′(x) evaluated at the CGL nodes (103). Similarly, the second
derivative of f is approximated by

d2Πnf(x)

dx2

∣∣∣∣
x=xj

=
n∑

k=0

f(xk)
d2lk(x)

dx2

∣∣∣∣
x=xj

=
n∑

k=0

D
(2)
jk f(xk), (109)

where D
(1)
jk is the second-order differentiation matrix

D
(2)
ij =



(−1)i+j

dj

x2i + xixj − 2(
1− x2i

)
(xi − xj)

2 1 ≤ i ≤ n− 1, 0 ≤ j ≤ n, j ̸= i

−(n2 − 1)(1− x2i ) + 3

3
(
1− x2i

)2 1 ≤ i = j ≤ n− 1

2(−1)j

3dj

[
(2n2 + 1)(1− xj)− 6

(1− xj)
2

]
i = 0, 1 ≤ j ≤ n

2(−1)n+j

3dj

[
(2n2 + 1)(1 + xj)− 6

(1 + xj)
2

]
i = n, 0 ≤ j ≤ n− 1

(n4 − 1)

15
i = j = {0, n}

(110)
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The matrix D(2) can be also approximated by a product of two matrices D(1), i.e.,

D(2) ≃ D(1)D(1), (111)

although D(2) is obviously more accurate than D(1)D(1).

Appendix B: Gauss-Legendre interpolation and differentiation

The Legendre orthogonal polynomials {L0(x), L1(x), . . . , } are defined in [−1, 1] by iterating the three-term
recurrence relation

L0(x) =1, (112)

L1(x) =x, (113)

Lk+1(x) =
2k + 1

k + 1
xLk(x)−

k

k − 1
Lk−1(x). (114)

This yields, for example

L2(x) =
3

2
x2 − 1

2
, L3(x) =

5

2
x3 − 3

2
x, L4(x) =

35

8
x4 − 15

4
x2 +

3

8
, . . . . (115)

It can be shown that Legendre polynomials satisfy the orthogonality conditions∫ 1

−1
Lk(x)Lj(x)dx = δkj ∥Lk∥2L2([−1,1]) . (116)

where

∥Lk∥2L2([−1,1]) =

∫ 1

−1
L2
k(x)dx =

2

2n+ 1
. (117)

In Table 3 we summarize the definition of the Gauss-Legendre (GL) and Gauss-Legendre-Lobatto (GLL)
interpolation nodes, as well as the corresponding Lagrange characteristic polynomials. The GL and GLL
first-order differentiation matrices, i.e.,

D
(1)
ij =

dlj(xi)

dx
(118)

can be derived analytically as

D
(1)
ij =


L′
n+1(xi)

(xi − xj)L′
n+1(xj)

i ̸= j

xi
(1− xi)2

i = j

(Gauss-Legendre), (119)

D
(1)
ij =



−n(n+ 1)

4
i = j = 0

Ln(xi)

(xi − xj)Ln(xj)
i ̸= j

0 i = j (not 0 or n)
n(n+ 1)

4
i = j = n

(Gauss-Legendre-Lobatto). (120)
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Gauss-Legendre (GL) Gauss-Legendre-Lobatto (GLL)

nodes {x0, . . . , xn} Ln+1(x) = 0 (1− x2)L′
n(x) = 0

Lagrange polynomials li(z) =
Ln+1(z)

(z − zi)L′
n+1(z)

li(z) = − 1

n(n+ 1)

(1− x2)

(x− xi)

L′
n(x)

L′
n(xi)

Table 3: Gauss-Legendre and Gauss-Lobatto-Legendre polynomial interpolation rules.

References

[1] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-dependent problems, volume 21
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge, 2007.

[2] A. Quarteroni, R. Sacco, and F. Salieri. Numerical mathematics. Springer, 2007.

Page 22


