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Fourier spectral methods

In this course note we discuss Fourier spectral methods for initial/boundary value problems defined in
spatial domains with periodic boundary conditions. This subject is discussed extensively, e.g., in [1, §2
and §3].

Trigonometric approximation theory

Let us begin by studying the properties of continuous and discrete Fourier series expansions. For the sake
of simplicity, we consider functions of only one variable u(x) defined on x ∈ [0, 2π]. The classical Fourier
series of a periodic function u ∈ L2([0, 2π]) is given as

u(x) = a0 +
∞∑
k=1

ak sin(kx) +
∞∑
k=1

bk cos(kx). (1)

By using the Euler’s formulas

sin(kx) =
eikx − e−ikx

2i
, cos(kx) =

eikx + e−ikx

2
, (2)

we can write (1) as1

u(x) =
∞∑

n=−∞
cne

inx cn ∈ C, (4)

where expansion coefficients are given by

cp =
1

2π

∫ 2π

0
u(x)e−ipxdx, p ∈ Z. (5)

The decay rate of cp depends exclusively on the regularity of u(x) in [0, 2π]. From the point of view of
approximation theory, it is important to understand how well a truncated series expansion of the form

uN (x) =
N∑

k=−N

cke
ikx (6)

approximates the function u(x). The truncated Fourier series (6) can be seen as the projection of (4) onto
the 2N + 1 dimensional space

BN = span
{
eikx : |k| ≤ N

}
. (7)

By taking the L2 and L∞ norm of the difference between (4) and (6) we obtain

∥u− uN∥2L2([0,2π]) =
∑

|n|>N

|cn|2, (8)

∥u− uN∥L∞([0,2π]) ≤
∑

|n|>N

|cn|. (9)

Therefore, ∑
|n|≤∞

|cn|2 < ∞ ⇒ ∥u− uN∥2L2([0,2π]) → 0 as n → ∞, (10)

1If the function u is periodic in [0, L] then the Fourier series can be written as

u(x) =

∞∑
n=−∞

cne
2πinx/L. (3)
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and ∑
|n|≤∞

|cn| < ∞ ⇒ ∥u− uN∥L∞([0,2π]) → 0 as n → ∞. (11)

This can be phrased as follows: if u ∈ L2 (or L∞) then the Fourier series (6) converges in L2 (or L∞) as
N → ∞. The decay rate of the errors (8) and (9) depends on the decay rate of the Fourier coefficients ck.
The following theorem characterizes such decay rate.

Theorem 1 (Decay rate of Fourier coefficients). If u(x) and its (s− 1) derivatives are continuous in
[0, 2π], and the s derivative is in L2([0, 2π]) then

|un| ∼ n−s. (12)

Theorem 1 implies that the rate of decay of the errors (8) and (9) depends on the smoothness of the
function u(x). This property is known as spectral convergence. If u(x) is infinitely smooth with all
derivatives periodic then the Fourier coefficients decay faster than any algebraic function of n. Hereafter
we provide rigorous convergence results for the Fourier series (6).

Theorem 2 (Spectral convergence of Fourier series in L2). For any periodic function2 u(x) ∈
Hs([0, 2π]) there exists a positive constant C independent of N such that

∥u(x)− uN (x)∥L2([0,2π]) ≤ CN−s

∥∥∥∥dsudxs

∥∥∥∥
L2([0,2π]

. (14)

Theorem 3 (Spectral convergence of Fourier series in L∞). Let u(x) be a periodic function in
Cs([0, 2π]) (space of continuously differentiable functions up to degree s). Then there exists a positive
constant C independent of N such that

∥u(x)− uN (x)∥L∞([0,2π]) ≤ CN−s+1/2

∥∥∥∥dsudxs

∥∥∥∥
L2([0,2π]

. (15)

Remark: If u(x) is analytic then the upper bounds in (14) and (15) go to zero exponentially fast with N ,
i.e., the convergence rate of the Fourier series is exponential (see [1, p.36]).

Discrete trigonometric expansion

To construct the Fourier series (6) we need to evaluate 2N + 1 projection coefficients

cn =
1

2π

∫ 2π

0
u(x)e−inxdx. (16)

In general, these integrals cannot be computed analytically. However, one can resorts to numerical quadra-
ture to evaluate such integrals. Quadrature formulas differ based on the position of the grid points, and
the choice of an even or odd number of points.

2In Theorem 2, Hs([0, 2π]) denotes the periodic Sobolev space of degree s, i.e., a function space of periodic functions with
norm

∥g∥2Hs([0,2π]) =

∫ 2π

0

[
g(x)2 +

s∑
q=1

(
dqg(x)

dxq

)]
dx. (13)
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The even expansion. Define the following evenly-spaced grid with an even number N of points

xj =
2πj

N
j = 0, . . . , N − 1. (17)

Approximating the integral (16) with the trapezoidal rule yields the following expression for the Fourier
coefficient cn

cn ≃ 1

N

N−1∑
k=0

u(xj)e
−inxj . (18)

How good is this approximation? It turns out that the trapezoidal rule on the grid (17) allows us to
integrate exactly any trigonometric polynomial einx for |n| < N , i.e., the quadrature formula

1

2π

∫ 2π

0
einxdx =

1

N

N−1∑
j=0

einxj is exact for all |n| < N , (19)

The proof of (19) is given in [1, Theorem 2.5]. Note that (19) implies that by using the trapezoidal rule
with N points we can integrate exactly a Fourier series with 2N − 1 modes, i.e., a Fourier series of the
form

uN−1(x) =
∑

|k|≤N−1

c̃ke
ikx. (20)

Next, consider the Fourier series

uN/2(x) =
∑

|n|≤N/2

c̃ne
inx c̃n =

1

Ndn

N−1∑
j=0

u(xj)e
−inxj (21)

where

dn =

{
2 |n| = N/2

1 |n| < N/2
(22)

Note that3

c̃N/2 = c̃−N/2. (24)

which yields exactly N degrees of freedom for the Fourier modes c̃n (as many as the number of grid points),
and justifies the scaling factor dN/2 = d−N/2 = 2.

The expression (21) suggests the following representation of the Fourier series

uN/2(x) =

N−1∑
j=0

u(xj)gj(x) where gj(x) =
∑

|n|≤N/2

1

Ndn
ein(x−xj). (25)

It can be shown that gj can be written as

gj(x) =
1

N

sin

(
N

x− xj
2

)
tan

(
x− xj

2

) . (26)

3To prove (24), substitute n = N/2 in (21) to obtain

c̃N/2 =
1

2N

N−1∑
j=0

u(xj)e
−iπj c̃−N/2 =

1

2N

N−1∑
j=0

u(xj)e
iπj . (23)

Clearly eiπj = e−iπj for all j, and therefore c̃N/2 = c̃−N/2.
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Figure 1: Basis functions for the trigonometric interpolant corresponding to the even expansion (a) (Eq.
(26)), and the odd expansion (b) (Eq. (36)). In both cases we set N = 4.

It is easy to show that gj(x) is a cardinal basis for the space of trigonometric functions with frequencies
between −N/2 and N/2. In other words, we have4

gj(xk) = δkj . (28)

In Figure 1(a) we show the trigonometric basis {g0, . . . , gN−1(x)} for N = 4.

The discrete Fourier series (25) has the form of a Lagrangian interpolant, and it as convergence prop-
erties very similar to those of the continuous Fourier series approximation. In particular,the discrete
approximation is pointwise convergent for C1([0, 2π]) functions and is convergent in L2 provided only that
u(x) ∈ L2([0, 2π]). For example, we have the following convergence result.

Theorem 4 (Spectral convergence of discrete Fourier series in L2). For any periodic function
u(x) ∈ Hs([0, 2π]) there exists a positive constant C independent of N such that

∥u(x)− uN (x)∥L2([0,2π]) ≤ CN−s

∥∥∥∥dsudxs

∥∥∥∥
L2([0,2π]

. (29)

where uN (x) is defined in (25).

This theorem confirms that the approximation errors of the continuous expansion and the discrete expansion
are of the same order.

The discrete expansion (25) allows us to easily compute derivatives at the grid points (17) as

duN/2(xp)

dx
=

N−1∑
j=0

u(xj)
dgj(xp)

dx︸ ︷︷ ︸
Dpj

(30)

4To prove (28), we recall that
N(xk − xj)

2
= π(k − j). (27)

which makes the numerator of (28) equal to zero for k ̸= j. Regarding the case k = j expand both the numerator and
denumerator in a Taylor series around x = xj .
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Figure 2: Discrete trigonometric approximation of the function u(x) = [2 + cos(x) sin(3x)]−1 and its deriva-
tive using the even expansion (25)-(26) with N = 10 (left column), and N = 30 (right column).

where Dpj is the Fourier differentiation matrix with entries

Dpj =


(−1)p+j

2 tan

(
xp − xj

2

) p ̸= j

0 p = j

(31)

In Figure 2 we show the discrete trigonometric approximation of the function u(x) = [2 + cos(x) sin(3x)]−1

and its derivative using the even expansion (25)-(26) with N = 10 (left column), and N = 30. In Figure 3
we demonstrate numerically that the L∞ error of the discrete Fourier series decays exponentially fast with
the number of points N . The approximation of higher derivatives follows the exact same route as taken
for the first-order derivative. The entries of the second order differentiation matrix D(2), based on an even
number of grid points, are

D
(2)
pj =

d2gj(xp)

dx2
=


(−1)p+j

2

[
sin

(
xp − xj

2

)]−2

p ̸= j

−N2+2
12 p = j

(32)
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Figure 3: L∞ error of the discrete trigonometric approximation of the function u(x) = [2 + cos(x) sin(3x)]−1

and its derivative using the even expansion (25)-(26) versus the number of evenly-spaced points (17).

The odd expansion. Consider an evenly spaced grid in [0, 2π) with an odd number of points

xj =
2π

N + 1
j j = 0, . . . , N (33)

where N is even. Using the trapezoidal rule we obtain the following expression for the Fourier coefficients
cn in (16)

cn =
1

N + 1

N∑
j=0

u(xj)e
−inxj . (34)

A substitution of cn into the Fourier series yields the following expression

uN/2(x) =
∑

|n|≤N/2

cne
inx =

N∑
j=0

u(xj)
∑

|n|≤N/2

ein(x−xj)

N + 1︸ ︷︷ ︸
hj(x)

. (35)

This can be written as a trigonometric interpolant as

uN/2(x) =

N∑
j=0

u(xj)hj(x), where hj(x) =
1

N + 1

sin

(
N + 1

2
(x− xj)

)
sin

(
x− xj

2

) . (36)

In Figure 1(b) we show the trigonometric basis {h0, . . . , hN (x)} for N = 4. To prove the identity

hj(x) =
1

N + 1

∑
|n|≤N/2

ein(x−xj) =
1

N + 1

sin

(
N + 1

2
(x− xj)

)
sin

(
x− xj

2

) (37)
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let us first recall the definition of Dirichlet kernel5

DN (x) =
N∑

n=−N

eikx = 1 + 2
N∑
k=1

cos(kx) =

sin

[(
N +

1

2

)
x

]
sin
(x
2

) . (40)

Clearly,

hj(x) =
1

N + 1

∑
|n|≤N/2

ein(x−xj) =
1

N + 1
DN/2(x− xj), (41)

which coincides with (36).

The first-order derivative of the discrete Fourier series evaluated at the evenly spaced nodes (33) is

duN/2(xp)

dx
=

N∑
j=0

u(xj)
dhj(xp)

dx︸ ︷︷ ︸
Dpj

(42)

where

Dpj =


(−1)p+j

2 sin

(
xp − xj

2

) p ̸= j

0 p = j

(43)

is the first-order differentiation matrix for the odd expansion. Higher order derivatives can be expressed
as

dmuN/2(xp)

dxm
=

N∑
j=0

D
(m)
pj u(xj) (44)

where the m order differentiation matrix D(m) in this case is exactly the product of m first-order differen-
tiation matrices D

D(m) = D · · ·D︸ ︷︷ ︸
m times

. (45)

5To prove (40) we notice that

1 + 2

N∑
k=1

cos(kx) = 1 +

N∑
k=1

(
eikx + e−ikx

)
=

N∑
k=0

(
eix

)k

+

N∑
k=0

(
e−ix

)k

− 1. (38)

Summing up the geometric series yields

N∑
k=0

(
eix

)k

=
eix(N+1) − 1

eix − 1
,

N∑
k=0

(
e−ix

)k

=
e−ix(N+1) − 1

e−ix − 1
. (39)

A substitution of (39) into (38) yields, after some algebra, equation (40).
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Fourier-Galerkin and Fourier-collocation methods

In this section we present Fourier-Galerkin and Fourier-collocation methods for the solution of partial differ-
ential equations. As in the previous chapter we restrict ourselves to one-dimensional problems with periodic
boundary conditions on [0, 2π]. To this end, consider the nonlinear initial/boundary value problem

∂U(x, t)

∂t
= N(U)(x, t) + f(x, t) x ∈ [0, 2π]

U(x, 0) = U0(x)

Periodic B.C.

(46)

where N is a nonlinear operator on U which may also depend on x and t. Examples of the N(U) are

N(U) =



−a(x)
∂U

∂x
(linear advection)

−U
∂U

∂x
+ (2 + cos(x))

∂2U

∂x2
(nonlinear advection/diffusion)

−U
∂U

∂x
− ∂2U

∂x2
− ∂4U

∂x4
(Kuramoto-Sivashinsky operator)

(47)

Fourier-Galerkin method

In the Fourier-Galerkin method, we seek solutions to (46) of the form

uN/2(x, t) =
∑

|n|≤N/2

un(t)e
inx, (48)

where N is even and un(t) are complex-valued functions of time. A substitution of (48) into (46) yields
the residual

RN/2(x, t) =
∂uN/2

∂t
−N(uN/2)− f(x, t). (49)

In the Galerkin method we impose that the residual is orthogonal in the sense of L2([0, 2π]) to the linear
space in which we seek for a solution, i.e.,

BN/2 = span

{
einx : |n| ≤ N

2

}
. (50)

This yields the following system of N + 1 ODEs in the N + 1 coefficients un(t)

〈
RN/2(x, t), e

−inx
〉
=

∫ 2π

0
RN/2(x, t)e

−inxdx = 0 |n| ≤ N

2
. (51)

Example 1: Consider the linear advection-diffusion equation
∂U

∂t
=

∂U

∂x
+

∂2U

∂x2
x ∈ [0, 2π]

U(x, 0) = U0(x)

Periodic B.C.

(52)
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A substitution of (48) into (52) yields the residual

RN/2(x, t) =
∑

|p|≤N/2

(
dup(t)

dt
− ipup(t) + p2up(t)

)
eipx. (53)

Imposing the orthogonality conditions (51) yields∑
|p|≤N/2

(
dup(t)

dt
− ipup(t) + p2up(t)

)∫ 2π

0
ei(p−n)xdx = 0, |n| ≤ N

2
. (54)

The only nonzero integrals are for p = n. This yields the ODE system
dun(t)

dt
= inun(t)− n2un(t)

un(0) =
1

2π

∫ 2π

0
U0(x)e

−inxdx

|n| ≤ N

2
. (55)

Note that the ODE system (55) is linear and decoupled. Hence it can be easily solved analytically as

un(t) = un(0)e
−n2teint. (56)

Example 2: Consider the following advection-diffusion equation

∂U

∂t
= cos(x)

∂U

∂x
+ [2 + sin(x)]

∂2U

∂x2
. (57)

A substitution of (48) into (57) yields the residual

RN/2(x, t) =
∑

|p|≤N/2

eipx
[
dup
dt

− eix + e−ix

2
ipup +

(
2 +

eix − e−ix

2i

)
p2up

]
(58)

Projecting the residual onto (50) yields

dun
dt

=− 2n2un +
1

2π

∑
|p|≤N/2

(
ipup

∫ 2π

0

ei(1−n+p)x + ei(−1−n+p)x

2
dx− p2up

∫ 2π

0

ei(1−n+p)x − ei(−1−n+p)x

2i
dx

)

=− 2n2un + i
(n− 1)un−1 + i(n+ 1)un+1

2
− (n− 1)2un−1 − (n+ 1)2un+1

2i
|n| ≤ N

2
. (59)

As before, this system of ODEs is supplemented with the initial condition

un(0) =
1

2π

∫ 2π

0
U0(x)e

−inxdx. (60)

Fourier-collocation method

We can circumvent the need for evaluating the inner products integrals by using quadrature formulas.
This is equivalent to using the interpolating operator (discrete Fourier series) instead of the orthogonal
projection operator, and is called the Fourier–collocation method, or Fourier pseudo-spectral method. To
form the Fourier–collocation method we require that the residual of the PDE vanishes identically on some
set of grid points, e.g., the even grid (17)

xj =
2π

N
j j = 0, . . . , N − 1. (61)
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In the Fourier-collocation method we look for a solution expressed as a trigonometric polynomial via
discrete Fourier series expansion. If we use the even expansion we have

uN/2(x, t) =
N−1∑
j=0

uN/2(xj , t)gj(x), (62)

where gj(x) is the Lagrange interpolation polynomial for an even number of points (see (25)). A substitution
of (62) into (46) yields the residual

RN/2(x, t) =
∂uN/2

∂t
−N(uN/2)− f(x, t). (63)

In the Fourier collocation method we impose that the residual is zero at theN collocation nodes {x0, . . . , xN−1},
i.e.,

RN/2(xj , t) = 0 j = 0, . . . , N − 1 (64)

This yields a system of N ODEs in N unknowns

{uN/2(x0, t), . . . , uN/2(xN−1, t)}. (65)

Example 1: Consider the linear advection-diffusion equation (52). A substitution of (62) into (52) and
collocation at {x0, . . . , xN−1} yields6

uN/2(xp, t)

dt
=

N−1∑
j=0

(
Dpj +D

(2)
pj

)
uN/2(xj , t)

uN/2(xp, 0) = U0(xp)

(67)

where Dpj and D
(2)
pj are the first- and second-order differentiation matrices defined in (31) and (32),

respectively.

Example 2: Consider the advection-diffusion problem (57). By substituting (62) into (57) and setting
the residual RN/2(x, t) to zero at collocation nodes {x0, . . . , xN−1} yields

uN/2(xp, t)

dt
= cos(xp)

N−1∑
j=0

DpjuN/2(xj , t) + (2 + sin(xp))

N−1∑
j=0

D
(2)
pj uN/2(xj , t)

uN/2(xp, 0) = U0(xp)

(68)

Example 3: Consider the highly nonlinear advection problem

∂U

∂t
= eU(x,t)∂U

∂x
. (69)

6To derive (67) we notice that

RN/2(x, t) =

N−1∑
j=1

duN/2(xj , t)

dt
gj(x)−

N−1∑
j=1

uN/2(xj , t)
dgj(x)

dx
−

N−1∑
j=1

uN/2(xj , t)
d2gj(x)

dx2
. (66)

Setting the residual equal to zero at xp (p = 1, . . . , N − 1) and recalling the definition of differentiation matrices (31) and (32)
immediately yields (67).
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The Fourier collocation method for this problem yields the ODE system
uN/2(xp, t)

dt
= euN/2(xp,t)

N−1∑
j=0

DpjuN/2(xj , t)

uN/2(xp, 0) = U0(xp)

(70)

Note that the Fourier-Galerkin system for (69) is much harder to deal with.
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