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Review of probability theory

Can you predict where a leaf falling from a tree will land? Will there be clouds above Santa Cruz tomorrow
at noon? Being scientists, we know that there are physical laws and models we could integrate in time
which may provide an answer to such questions. For the falling leaf, we have the equations of fluid
mechanics coupled with the equations describing the leaf mechanics (fluid-structure interaction). For the
weather forecast in Santa Cruz, we have a quite complicated (usually data-driven) model for dynamics of
the atmosphere. However, even if we firmly believe that our equations truthfully represent physical reality,
i.e., that there is no model uncertainty, we still have some problem when making inferences on the two
systems mentioned above. In the case of the leaf falling from the tree, we do not know the exact shape of
the leaf, nor the distribution of mass within the leaf, nor whether there is a tiny wind gust pushing the leaf
in a direction we did not expect, or having it flipping in a way we did not anticipate. We can of course try
to control some of these uncertainties, e.g., by designing a sterilized experiment in which we are reasonably
sure that there is no wind gust and we know “exactly” the geometry, mechanics, and mass distribution of
the leaf. Would the result of such an experiment be useful to make inferences about the behavior of the
falling leaf in real world? Perhaps not.

Alternatively, we could study the system for which we have available equations and physical laws using
techniques that allow us to account for uncertainties in the initial condition, boundary conditions, forcing
terms, geometry,and physical parameters.

The most common approach to study uncertainty propagation, and perhaps the first one that was ever
developed, is random sampling. In this approach we basically study the response of the system, e.g., the
trajectory of the leaf and where it lands, corresponding to randomly sampled realizations of the uncertain
parameters and stochastic processes driving the system. Such parameters and processes can be modeled
as random variables, random functions or random fields. Computing the solution to such stochastic models
by sampling involves solving the ODE/PDE system many times, so that a sufficiently large ensemble
of solutions is available to compute statistics such as mean, standard deviations, and even probability
distribution functions. There are many different types of sampling methods that were developed for this
purpose. For instance, Monte Carlo methods and their variants (quasi-MC, multi-level MC, etc.), sparse
grids, probabilistic collocation methods, etc. Sampling method are often classified as non-intrusive. This
means that we do not need to modify the equations of our model to perform uncertainty analysis, but
simply sample them many times for different conditions.

Another approach to compute the statistics of a given model problem (set of equations describing a physical
system, neural network, etc) in the presence of uncertainties is to represent to output of the model relative to
a set of stochastic basis functions, e.g., multivariate polynomials of random variables with given probability
distributions. This approach is known as polynomial chaos (PC) [23], and has many different variants
(generalized PC, multi-element PC). The method allows us to compute the solution to a model problem with
a small number of random variables and often exhibits exponential convergence rate. Polynomial chaos and
related methods based on series expansions of the model problem are often classified as intrusive methods.
The adjective “intrusive” emphasizes the fact that the equations of motion to propagate uncertainty are
problem-dependent and require an ad-hoc derivation and corresponding coding.

A third class of methods relies on transforming the model problem from the state space to probability
space and solve for the probability density function of the solution. An example of such transformation
is the Liouville equation (linear hyperbolic PDE) for the probability density function of the solution of a
nonlinear dynamical system evolving from a random initial state. Another example is the Fokker-Plank
equation governing the PDF of the state of a nonlinear dynamical system driven by random (white) noise.
In the context of partial differential equations (infinite-dimensional dynamical systems), the PDF equations
corresponding to the solution of nonlinear PDEs evolving from random initial states are functional differ-
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ential equations [20, 18, 2]. Probability density function methods can also be used also to model and study
neural nets (neural nets are essentially discrete dynamical systems [21]). Moreover, all Bayesian inference
approaches, e.g., Gaussian regression, probabilistic graphical models, and data assimilation techniques,
heavily rely probability density function methods.

PDF methods are also very attractive for systems with unknown governing equations (if such equations
even exist!), or systems for which governing equations can be discovered only “locally” and in an ap-
proximate form. Examples of such systems are mathematical models of brain, large random networks
of interacting individuals, the mechanical behavior random heterogeneous materials, disease propagation,
stock market models. In all these cases it not straightforward to derive a computational model that accu-
rately describes the system in all its features, and can be used to accurately forecast quantities of interest.
Recent advances in data-driven modeling and artificial intelligence, open the possibility to discover model
and equations from data. Of course, dealing with model uncertainty on the top of uncertainty in operating
conditions, parameters, forcing terms, etc., opens a whole new dimension to the problem of modeling and
prediction.

It also raises deep philosophical questions regarding the appropriateness of the mathematics we are using
to build our models, and therefore the validity of our computations.

Probability space

There is a well-developed mathematical theory that allows us to describe randomness in the world we
live in, or at least the way we perceive it. Such theory is known as probability theory [15]. The proper
mathematical foundations of probability theory are quite abstract and technical, as they involve rather
advanced concepts of measure theory [9]. However, for our purposes it possible to avoid most technicalities
and have a version of probability theory that allows for computation, and can be digested by the most
(including myself). Let me describe hereafter the basic ingredients of such theory.

To formally describe the outcome of an “experiment” from a mathematical viewpoint it is convenient to
define the probability space (Ω,F , P ) which consists of the following items:

• Ω (sample space): the set of all possible outcomes of the experiment

• F (event space): set of events, en event being a set defined as union or intersection of elements in
the sample space.

• P (probability measure): this function assigns each event in F a probability, which is a number
between 0 and 1.

Example 1: Suppose the experiment is rolling a fair dice with 6 faces once. In this case we can define the
sample space as

Ω = {1, 2, 3, 4, 5, 6} (sample space). (1)

The definition of the event space depends on what we are interested in. In particular, we may be interested
in the following events:

F = {∅,Ω, {1, 3, 5}︸ ︷︷ ︸
odd

, {2, 4, 6}︸ ︷︷ ︸
even

}. (2)

These events can be phrased as: “rolling the dice produces no number” (event ∅); “rolling the dice returns
any number between 1 and 6” (event Ω); “rolling the dice gives an even number” (event {2, 4, 6}), “rolling
the dice returns an odd number” (event {1, 3, 5}). Clearly, we can assign probabilities to these events
as:

P (∅) = 0, P (Ω) = 1, P ({1, 3, 5}) =
1

2
, P ({2, 4, 6}) =

1

2
. (3)
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Note that in this case assigning probabilities is rather straightforward as we can imagine the process of
rolling a dice, and its outcome quite easily. In a similar way, we can assign, e.g., the probability of winning
various prizes in the Powerball or the Mega-Millions (assuming the lottery is fair). A rather different story
is when we are asked to assign probabilities to complex processes influenced by many variables, e.g., where
the leaf falling from a tree is going to land.

Example 2: Let (θ(ω), r(ω)) be the polar coordinated identifying where the leaf falling off a tree is going to
land. Suppose that r = 0 identifies the center of the tree. Clearly (θ(ω), r(ω)) is a vector with two random
components. In this case, the outcome of the experiment are realizations of two real random variables
(coordinates (θ(ω), r(ω)) of the leaf after it lands). We can define the following set of events (distance from
the tree):

F = {∅,Ω, {ω : r(ω) ≤ 1}︸ ︷︷ ︸
event 1

, {ω : 1 < r(ω) ≤ 2}︸ ︷︷ ︸
event 2

, {ω : r(ω) > 2}︸ ︷︷ ︸
event 3

}. (4)

At this point we need to assign probabilities1 to each event in (4), which can be done, e.g., by running a
very complicated fluid dynamics model (repeated simulations), or by observing many many leaves falling
off a tree.

Example 3: Consider an infinite (uncountable) collection of continuous functions X(t;ω) (stochastic pro-
cess) defined in the temporal interval [0, T ]. Let the sample space Ω be the collection of such functions
and consider the event space F

F = {∅,Ω, {ω : X(t;ω) < 1}︸ ︷︷ ︸
event 1

, {ω : X(t;ω) ≥ 1}︸ ︷︷ ︸
event 2

}. (5)

In other words, here we are interested in two events only, namely whether the stochastic process X(t, ω) is
(for all t ∈ [0, T ]) strictly smaller than one, or larger or equal to one. We can assign a probability to each
event in F , e.g., as

P (∅) = 0, P (Ω) = 1, P ({ω : X(t;ω) < 1}) = a, P ({ω : X(t;ω) ≥ 1}) = 1− a, (6)

where a ∈ [0, 1]. Again, the way a is computed depends on the statistical characterization of the process
X(t;ω). In other words, the calculation leading to P ({ω : X(t;ω) < 1}) may involve quite a lot of
operations. Alternatively, the probability of an event E ∈ F can be estimated using a frequency approach,
i.e., P (E) ' nE/n, where nE is the number E occurs over n trials.

σ-algebra. As we shall see hereafter, in order to perform set operations and corresponding operations on
probabilities we need to make sure that F has the structure of a σ-algebra on Ω. A σ-algebra on Ω is a
collection of subsets of Ω that is closed under complement, countable unions, and countable intersections.
In other words,

A,B ∈ F ⇒


A ∩B ∈ F
A ∪B ∈ F
Ac, Bc ∈ F (complement of A and B, i.e., Ac = Ω \A)

(7)

From this conditions it also follows that ∅,Ω ∈ F . Moreover, if {Ai}∞i=1 ∈ F then

∞⋃
i=1

Ai ∈ F ,
∞⋂
i=1

Ai ∈ F (countable union and intersection). (8)

1For a thorough discussion on the meaning of probability and how to assign probabilities see [15, Chapters 1-3].
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Examples of σ-algebras:

• Consider the sample space Ω = {a, b, c}. The power set of Ω, i.e., the combination of all possible
elements of Ω (including the empty set), is a σ-algebra.

2Ω = {∅, a, b, c, {a, b}, {a, c}, {b, c}, {a, b, c}︸ ︷︷ ︸
Ω

} (power set). (9)

The cardinality of the power set, i.e., the number of elements of the set 2Ω is equal to 2#Ω (where #
denotes the number of elements of a set). In the specific case of (9) we have #Ω = 3, and therefore
#2Ω = 23 = 8.

• If the sample space Ω is countably infinite (i.e., the elements of Ω can be put in a correspondence
with N) then the power set 2Ω is isomorphic to R, i.e., it is an uncountable set.

• If the sample space Ω is uncountably infinite, e.g., Ω = [0, 1] then any σ-algebra F on Ω can be
represented as a sub-algebra of the power set 2Ω (Stone’s representation theorem [9]). This is why
the σ-algebra F on an uncountably infinite sample space Ω is often written as a subset of the power
set 2Ω, i.e., F ⊆ 2Ω.

• The σ-algebra on Ω = R is the σ-algebra of the collection of all open subsets of R. Such σ-algebra
necessarily contains all open sets, all closes sets, and all (countable) unions and intersections of open
and closed sets. Such σ-algebra is a sub-algebra of the power set 2Ω.

Probability measure. The probability function

P : F → [0, 1] (10)

assigns to each event A in the σ-algebra F a number P (A) ∈ [0, 1]. In other words, P (A) measures the
likelihood that A occurs. The probability function P satisfies the properties of a measure (hence the name
probability measure2):

1. P (∅) = 0.

2. P (Ω) = 1.

3. For all countable collections of disjoint sets Ai ∈ F

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai). (11)

4. For all A,B ∈ F ,
P (A ∪B) = P (A) + P (B)− P (A ∩B). (12)

From these properties it follows that of the event B ∈ F is a subset of A ∈ F then A = B ∪ (Bc ∩ A),
which implies that (note that B and Bc ∩A are disjoint)

P (A) = P (B) + P (Bc ∩A) ≥ P (B). (13)

2In real analysis, the pair (Ω,F) is called measurable space [9]. The elements of F , i.e., the events, are called measurable
sets. The triple (Ω,F , P ) is called probability space, which is essentially a measurable space in which we define a probability
measure.
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Frequency interpretation of the probability measure: Suppose that in an experiment the event A shows up
nA times out of n trials. If we define the empirical distribution

µn(A) =
nA
n

(14)

then
P (A) = lim

n→∞
µn(A). (15)

Random variables

Let (Ω,F , P ) be a probability space. A real-valued random variable X(ω) is a measurable map from the
sample space Ω into R, i.e.,

X : Ω→ R. (16)

The distribution function of the random variable X(ω) is defined as

F (x) = P ({ω : X(ω) ≤ x}︸ ︷︷ ︸
event

) x ∈ R. (17)

The distribution function represents the measure of the set (event) {ω ∈ Ω : X(ω) ≤ x}, i.e., the probability
that X(ω) is smaller than a given real number x. By using the properties of the probability measure P it
is straightforward to conclude that:

1. F (−∞) = 0,

2. F (∞) = 1,

3. F (x) is non-decreasing, i.e., x1 < x2 ⇒ F (x1) ≤ F (x2),

4. P ({ω : X(ω) > x}) = 1− F (x),

5. F (x) is continuous from the right, i.e.,

lim
ε→0+

F (x+ ε) = F (x), (18)

6. F (x) is not continuous from the left (for discrete random variables),

7. P ({ω : a < X(ω) ≤ b}) = F (b)− F (a)

8. P ({ω : a ≤ X(ω) ≤ b}) = F (b)− lim
ε→0+

F (a+ ε).

The proof of 1.-8. can be found in [15, Chapter 4].

If F (x) is continuous in x then we say that the random variable X(ω) is continuous. If F (x) is a staircase
function then the random variable X(ω) is discrete. F (x) is discontinuous and not staircase, then we say
that X(omega) is mixed.

Frequency interpretation of the distribution function F (x): Suppose we perform an experiment n-times
and observe n realization of the random variable X(ω), say {X(ω1), . . . , X(ωn)}. Let us place all these
numbers on the x axis of a Cartesian plane, and form a staircase function, where each step at X(ωi) has
height 1/n. Then the staircase function Fn(x) converges to F (x) in the limit n→∞.
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Probability density function. The probability density function (PDF) p(x) of the random variable
X(ω) is (technically speaking) the Radon–Nikodym derivative3 (assuming it exists) of the probability
measure P . The existence of the Radon–Nikodym derivative allows us to write the cumulative distribution
function (17) as

F (x) =

∫ x

−∞
p(y)dy. (21)

Equivalently p(x) can be interpreted as the (weak) derivative of F (x), i.e.,

p(x) =
dF (x)

dx
. (22)

By taking the limit of Lebesgue-integrable Dirac delta sequences, we can make sense of Radon–Nikodym
PDFs converging to Dirac deltas. This is useful when dealing with the PDF of deterministic (non-random)
variables, or discrete random variables. For example,

p(x) = δ(x− a) (PDF of the random variable X(ω) = a for all ω ∈ Ω), (23)

and

p(x) =
N∑
i=1

piδ(x− xi) (PDF of a discrete random variable with range {x1, . . . , xn}). (24)

In particular, the PDF of a fair dice with 6 faces is

p(x) =
1

6

6∑
i=1

δ(x− i). (25)

By using the properties of the cumulative distribution function F (x) it is straightforward to derive the
following properties for the PDF

p(x) ≥ 0 (positivity),

∫ ∞
−∞

p(x)dx = 1 (normalization). (26)

Other properties are

P ({ω : x1 < X(ω) ≤ x2}) =

∫ x2

x1

p(x)dx, P ({ω : x < X(ω) ≤ x+ dx}) = p(x)dx (27)

Frequency interpretation of PDFs: Suppose we sample the random variable X(ω) n times and find that
n∆x samples fall between x and x + ∆x. By using equation (27), and the frequency interpretation of
probability we conclude that

p(x)∆x ' n∆x

n
⇒ p(x) ' 1

∆x

n∆x

n
. (28)

3A probability measure P on the measurable space (Ω,F) is said to be absolutely continuous with respect to another
measure ν if for all events E ∈ F such that P (E) = 0 we have ν(E) = 0. In other words, P is absolutely continuous with
respect to ν if all impossible events (measured relative to P ) are also impossible relative to ν. This is denoted as ν � P .
Consider, in particular, the Lebesgue measure dν = dx. The Radon-Nikodym theorem says that if P is absolutely continuous
with respect to the Lebesgue measure, then there exists a unique function p(x) such that

P (E) =

∫
E

p(x)dx. (19)

Setting the event E in (19) as
E = {w : X(ω) ≤ x} ∈ F (20)

yields equation (21).
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n = 103 n = 106

Figure 1: Estimation of the PDF of a Gaussian random variable (first row) and a uniform random variable
(second row) using the frequency approach, i.e., formula (28), and the kernel density estimate discussed in
[4] (red line) . We plot results for a different number of samples n.

Hence, by dividing the support of the random variable X(ω) into bins and counting the number of samples
within each bin allows us to estimate the PDF of X(ω) in a rather straightforward way. This is at the basis
of the Monte-Carlo estimation method for random variables. There are of course more effective methods
to estimate the PDF of one random variable from data (see, e.g., [4]). In figure 1 we estimate the PDF of a
Gaussian random variable using frequency approach, i.e., equation (28), and the kernel density estimation
method discussed in [4].

Examples of one-dimensional PDFs:

• Gaussian (continuous):

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R. (29)

• Uniform (continuous):

p(x) =
1

b− a
, x ∈ [a, b]. (30)
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• Binomial (discrete):

p(x) =
n∑
i=0

(
n

i

)
pi(1− p)n−iδ(x− i), p ∈]0, 1[, x ≥ 0. (31)

• Poisson (discrete):

p(x) = e−λ
∞∑
k=0

λk

k!
δ(x− k), λ ∈]0,∞[, x ≥ 0. (32)

Functions of one random variable. In this section we discuss how to compute the probability density
function of a random variable Y (ω) defined as a deterministic nonlinear function of another random variable
X(ω). To this end, let (Ω,F , P ) be a probability space,

g : R→ R (33)

a deterministic function,
X,Y : Ω→ R (34)

random variables. Suppose we are given the PDF pX(x) of X(ω), and that

Y (ω) = g(X(ω)) (35)

for all ω ∈ Ω. What is PDF Y (ω)? Since X and Y are defined on the same probability space we have

FY (y) = P ({ω : Y (ω) ≤ y}) = P ({ω : g(X(ω)) ≤ y}) . (36)

Therefore, to determine the distribution function FY (y) we just need to measure the set

By = {ω : g(X(ω)) ≤ y} (37)

for each y in the set of g(R(X)) (where R(X) denotes the range of the random variable X). The set
By is shown in Figure 2 (in yellow) for a prototype function g(x) and a specific value of y. Clearly, the
distribution function FY (y) must be defined case-by-case. With reference to Figure 2 we have

FY (y) = FX(x1(y)) + 1− FX(x2(y)), (38)

where x1(y) and x2(y) are the branches of the inverse function g−1(y). The function (38) represents the
distribution function of Y in terms of cumulative distribution function of X, which we know.

With the cumulative distribution function of Y available, it is straightforward to compute the PDF of Y ,
by taking the (weak) derivative of FY (y). This is formalized in the following theorem

Theorem 1. Let X be a random variable with PDF pX(x), g ∈ C1(R) a continuously differentiable
function. Then the PDF of Y = g(X) is given by

pY (y) =
r∑
i=1

pX(xi(y))

|g′ (xi(y))|
, (39)

where xi(y) (i = 1, . . . , r) are the real roots of the equation g(x) = y, and g′ (xi(y)) is assumed to be
non-zero4.

4If g′ (xi(y)) = 0 then formula (39) does not apply, and we need to resort to a different method. For example we can
use the distribution function approach outlined in Figure 2, i.e., we could measure sets depending on y with the probability
measure P and connect such set to the distribution function of X.
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Figure 2: Sketch of the set By defined in equation (37) (yellow lines). The random variable X is compactly
supported in [a, b]. The distribution function of the random variable Y (ω) = g(X(ω)) evaluated at y is the
measure of the set By = A ∪B (union of the two yellow lines), i.e., FY (y) = FX(x1(y)) + 1− FX(x2(y)).

Proof. We prove the theorem using Fourier transforms5. Let

φY (a) =

∫ ∞
−∞

eiaypY (y)dy =

∫ ∞
−∞

eiag(x)pX(x)dx. (40)

Taking the inverse Fourier transform yields

pY (y) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eia(g(x)−y)pX(x)dxda. (41)

Next, recall that

δ (g(x)− y) =
1

2π

∫ ∞
−∞

eia(g(x)−y)da. (42)

Substituting (42) into (41) yields (see also [10])

pY (y) =

∫ ∞
−∞

δ (g(x)− y) pX(x)dx. (43)

At this point we use the well-known identity6

δ (g(x)− y) =

r∑
i=1

δ (x− xi(y))

|g′ (xi(y))|
, (44)

where xi(y) are the real roots of the y = g(x) for each y ∈ R. A substitution of (44) into (43) yields (39).
This completes the proof.

5The Fourier transform of a the probability density function pX(x) is known as characteristic function of the random
variable X(ω) (see Eq. (90)).

6The identity (44) if and only if g′(xi(y)) 6= 0.
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Examples of probability density mappings: Let X be a random variable with probability density function
pX(x). In the following examples we derive the PDF of Y = g(X) for a few prototype g(x).

• Consider the random variable Y (ω) = X(ω)2. The mapping y = g(x) = x2 between the random
variables X and Y can be inverted (with real roots) for all y ≥ 0. This yields

x1(y) =
√
y, x2(y) = −√y y ≥ 0. (45)

By using Theorem 1 we immediately obtain

pY (y) =
1

2
√
y

[pX(
√
y) + pX(−√y)] . (46)

For instance, if pX(x) is Gaussian , i.e.,

pX(x) =
1√
2π
e−x

2/2 (47)

then

pY (y) =
e−y/2√

2πy
(χ2-distribution). (48)

Similarly, if X is uniformly distributed in [−1, 1] then7

pY (y) =
1

2
√
y

for all 0 ≤ y ≤ 1. (49)

• Consider the random variable Y (ω) = etX(ω), where t ≥ 0 is a real parameter. The mapping
y = g(x) = etx can be inverted (with unique solution) for all y > 0 as

x =
log(y)

t
y > 0. (50)

The derivative of g(x) is g′(x) = tetx. Therefore

pY (y) =
1

ty
pX

(
log(y)

t

)
y > 0. (51)

Application to dynamical systems. Let us briefly discuss two applications of the PDF mapping
technique to simple one-dimensional dynamical systems.

• Consider the following Cauchy problem for one ODE evolving from a random initial state
dx

dt
= f(x)

x(0) = X(ω)
(52)

We know from AM 214 that if f is continuously differentiable in x then the system generates a
smooth flow map x(t) = x(t,X(ω)) (differentiable in X) that takes any initial state X(ω) (at t = 0)
and maps it to the corresponding solution at time t. Given the PDF of the initial condition pX(x)
we can compute the PDF of x(t) as

p(x, t) =

∫ ∞
−∞

δ (x− x(t, y)) pX(y)dy. (53)

7Recall that a uniform PDF in [−1, 1] is pX(x) = 1/2 for all x ∈ [−1, 1].
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A convenient way to actually compute such PDF is by sampling, i.e., compute sample paths of x(t)
corresponding to samples of X(ω). However, if the flow map is available analytically then we can
also compute (53) analytically. To this end, consider the system

dx

dt
= x2

x(0) = X(ω)
(54)

We known that the analytical solution (flow map) is

x(t,X) =
X(ω)

1− tX(ω)
. (55)

Suppose that X(ω) is uniformly distributed in [−1, 0] so that the flow map exists for all t ≥ 0 (no
blow-up). What is then the PDF of x(t,X) at each fixed time t? Clearly, we can invert

g(x) =
x

1− tx
= y (56)

uniquely for each t ≥ 0 (x ≤ 0) as

x(1 + ty) = y ⇒ x(y) =
y

1 + ty
. (57)

The first derivative of (56) with respect to x evaluated at the unique root x(y) = y/(1 + ty) is

g′(x) =
1

(1− tx(y))2
= (1 + ty)2. (58)

At this point we use Theorem 1 to conclude that the PDF of the solution to the ODE (54) at each
fixed time t is

p(x, t) =
1

(1 + tx)2
pX

(
x

1 + tx

)
. (59)

In particular, if pX is the PDF of a uniform random variable in [−1, 0] then the support of p(x, t) is
defined by the condition

−1 ≤ x

1 + tx
≤ 0 ⇒ − 1

(1 + t)
≤ x ≤ 0. (60)

Hence, as t goes to infinity the support of p(x, t) shrinks to 0 and p(x, t) converges to a Dirac delta
function at x = 0. Note that for each fixed t we have that the normalization condition of the PDF
p(x, t) is satisfied. In fact,∫ ∞

−∞
p(x, t)dx =

∫ 0

−1/(1+t)

1

(1 + tx)2
1︸︷︷︸

pX( x
1+tx)

dx = 1. (61)

• Next, consider the linear decay problem 
dx

dt
= ξ(ω)x

x(0) = 1
(62)

where ξ(ω) is a random variable with known probability density pξ(x). The analytical solution to
(62) is

x(t, ξ(ω)) = etξ(ω). (63)
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By using equation (51), we immediately conclude that the probability density of the solution to (62)
is

p(x, t) =
1

tx
pX

(
log(x)

t

)
x > 0. (64)

For instance, if pX is a uniform PDF in [−2, 0] then the support of p(x, t) is defined by

−2t ≤ log(x) ≤ 0 ⇒ e−2t ≤ x ≤ 1. (65)

At t = 0 the PDF of the solution is supported only at one point, i.e., x = 1. Indeed,

p(x, 0) = δ(x− 1) (deterministic initial condition). (66)

For t > 0 the PDF of the solution to (62) is8

p(x, t) =
1

2tx
for e−2t ≤ x ≤ 1. (68)

Data-driven identification of the PDF of the initial state. What is the probability density of the
initial state p(x, 0) that generates an envelope of trajectories that is as close as possible to a measured quan-
tity of interest h(x(t))? This is an inverse problem that can be solved by minimizing a performance metric,
i.e., a dissimilarity measure between the measurements at various times and the envelope of trajectories,
over the parameters representing the initial probability density function.

Liouville equation. The PDF of the solution to the Cauchy problem (52) satisfies the following linear
hyperbolic conservation law (see Appendix A of the present course note)

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) = 0, p(x, 0) = pX(x). (69)

This equation is known as Liouville equation. It is straightforward to show by using the method of
characteristics that (59) is the solution of Liouville equation (69) for f(x) = x2, i.e., for the dynamical
system (54). In Appendix A, we prove that the joint probability density function of the phase space
variables of any n-dimensional nonlinear dynamical system

dx

dt
= f(x), x(0) = X(ω) (70)

evolving from a random initial state satisfies X(ω) satisfies the Liouville equation

∂p(x, t)

∂t
+∇ · (f(x)p(x, t)) = 0. (71)

To solve (71) one could propagate characteristic curves from the support of random initial state p(x, 0), or
use more sophisticated methods, e.g., numerical tensor methods [7, 8] or physics-informed neural network
techniques [16].

Sampling from arbitrary one-dimensional PDFs. Let X(ω) be a uniform random variable in [0, 1].
We would like to find a mapping g(X) such that the (continuous) random variable Y (ω) = g(X) has a

8Note that the PDF (68) integrates to one. In fact∫ ∞
−∞

p(x, t)dx =

∫ 1

e−2t

1

tx

1

2︸︷︷︸
pX

(
log(x)

t

)
dx = 1. (67)
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desired probability density pY (y). With such mapping g available we can transform each sample of X(ω)
to a sample of the PDF pY , hence constructing a sampler for Y (ω). As we shall see hereafter, if we denote
by FY (y) the cumulative distribution of the continuous random variable Y (the random variable we are
interested in sampling) then the mapping g is simply the inverse of FY , i.e., Y (ω) = F−1

Y (X(ω)).

Lemma 1. Let X(ω) be a uniform random variable in [0, 1]. Consider a second random variable Y (ω)
with PDF pY and cumulative distribution function

FY (y) =

∫ y

−∞
pY (x)dx (72)

The random variable Y = F−1
Y (X) has cumulative distribution function FY (y).

Proof. Suppose that FY is invertible. Let us show that the random variable F−1
Y (X) has indeed cumulative

distribution function FY (y). By definition,

FY (y) = P ({ω : Y (ω) ≤ y})
= P

(
{ω : F−1

Y (X(ω)) ≤ y}
)

= P ({ω : X(ω) ≤ FY (y)}) (FY invertible and nondecreasing)

= FX(FY (y))

= FY (y). (73)

In fact, since X(ω) is uniform in [0, 1] we have FX(x) = x for all x ∈ [0, 1].

Expectation, moments and cumulants. Let (Ω,F , P ) be a probability space, X : Ω → R a random
variable with cumulative distribution function FX(x) and PDF pX(x). For any function g(X) we define
the expectation of g(X) as 9

E {g(X)} =

∫ ∞
−∞

g(x)dFX(x) =

∫ ∞
−∞

g(x)pX(x)dx. (75)

Clearly, if Y (ω) = g(X(ω)) is a random variable with PDF pY (y), we can equivalently express the expec-
tation as

E {g(X)} = E {Y } =

∫ ∞
−∞

ydFY (y) =

∫ ∞
−∞

ypY (y)dy. (76)

In particular, if we set g(X) = Xk then E
{
Xk
}

are called moments10 of the random variable X

E
{
Xk
}

=

∫ ∞
−∞

xkdFX(x) =

∫ ∞
−∞

xkpX(x)dx. (77)

9We do not need to assume the existence of the PDF to define the expectation operator. In fact, a more general expression
for (75) is

E {g(X(ω))} =

∫
Ω

g(X(ω))dP (ω). (74)

10There are random variables for which moments do not exist. An example is the Cauchy random variable. Random
variables with compactly supported range have all moments. For such compactly supported random variables it is always
possible to reconstruct the PDF pX from the knowledge of its moments or cumulants. In other words, the so-called moment
problem has a unique solution for compactly supported PDFs.

Page 13



AM 238 Prof. Daniele Venturi

The first few moments of a random variable X are

E {X} =

∫ ∞
−∞

xpX(x)dx (mean), (78)

E
{
X2
}

=

∫ ∞
−∞

x2pX(x)dx (second-order moment), (79)

E
{
X3
}

=

∫ ∞
−∞

x3pX(x)dx (third-order moment). (80)

The moments of random variable are the coefficients of the power series expansion of the so-called moment
generating function

M(a) = E
{
eaX(ω)

}
(81)

In fact,

M(a) = M(0) +
dM(0)

da︸ ︷︷ ︸
E{X}

a+
1

2

d2M(0)

da2︸ ︷︷ ︸
E{X2}

a2 + · · · . (82)

In general,

E
{
Xk
}

=
dkM(0)

dak
. (83)

A function related to the moment generating function is the cumulant generating function

Ψ(a) = log(M(a)). (84)

The coefficients of the power series expansion of Ψ(a) are called cumulants of the random variableX(ω)

Ψ(a) = Ψ(0) +
dΨ(0)

da︸ ︷︷ ︸
E{X}

a+
1

2

d2Ψ(0)

da2︸ ︷︷ ︸
E{X2}−E{X}2

a2 + · · · (85)

The cumulants of a random variable X are often denotes as
〈
Xk
〉
c
. For example, we have

〈X〉c =E {X} , (86)〈
X2
〉
c

=E
{
X2
}
− E {X}2 , (87)〈

X3
〉
c

=E
{
X3
}
− 3E {X}E

{
X2
}

+ 2E {X}3 , (88)

· · ·

The quantity 〈
X2
〉
c

= E
{
X2
}
− E {X}2 , (89)

is the variance of the random variable X. Finally, we define the the characteristic function of the random
variable X(ω) as

φ(a) = E
{
eiaX(ω)

}
(90)

where i is the imaginary unit. We have seen this function already, i.e., in the proof of Theorem 1. The
characteristic function is the Fourier transform of the probability density function p(x). It is straightforward
to show that

E
{
Xk
}

=
1

ik
dkφ(0)

dak
. (91)
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By expanding the complex exponential function in a power series, and using the definition of cumulants
we obtain the following cumulant expansion of φ(a) (see, e.g., [12])

φ(a) = exp

 ∞∑
j=1

〈
Xj
〉
c

(ia)j

j!

 . (92)

Example: The characteristic function of a Gaussian random variable with mean µ and variance σ2 is

φ(a) = eiµa−σ
2a2/2. (93)

This expression can be derived by the taking the Fourier transform of (29), or by using (92). In fact, for
Gaussian random variables we have that only the first two cumulants are non-zero, i.e.,

〈X〉c =E {X} = µ, (94)〈
X2
〉
c

=E
{
X2
}
− E {X}2 = σ2, (95)〈

Xk
〉
c

=0 for all k ≥ 3. (96)

Substituting these expressions into (92) yields (93).

Random vectors

Let (Ω,F , P ) be a probability space. A real-valued random vector X(ω) = (X1(ω), . . . , Xn(ω)) is a
measurable map from Ω into Rn, i.e.,

X : Ω→ Rn. (97)

Each component Xi(ω) of the random vector X(ω) is a real-valued random variable. The distribution
function of the random vector X(ω) is defined as

F (x1, . . . , xn) = P ({ω : X1(ω) ≤ x1} ∩ · · · ∩ {ω : Xn(ω) ≤ xn}︸ ︷︷ ︸
element of F (event) defined as intersection of events

). (98)

As before, if P is absolutely continuous with respect to the Lebesgue measure dx1 · · · dxn then there exists
a (Lebesgue integrable) probability density function11 p(x1, . . . , xn) such that

F (x1, . . . , xn) =

∫ x1

−∞
· · ·
∫ xn

−∞
p(y1, . . . , yn)dy1 · · · dyn. (99)

Equivalently, we can express p(x1, . . . , xn) as a (weak) derivative of F (x1, . . . , xn) as

p(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn
. (100)

The multivariate distribution function F and associated probability density function p satisfy similar
properties as the properties we have seen for one one random variable (see [15] for details).

Frequency interpretation of the joint PDF: Suppose we observe realizations of a random vector X(ω) with
only two components, i.e., X1(ω) and X2(ω). By using (98)-(99), we have

P ({ω : x1 ≤ X1(ω) ≤ x1 + ∆x1} ∩ {ω : x2 ≤ X2(ω) ≤ x2 + ∆x2}) ' p(x1, x2)∆x1∆x2. (101)

11As before, the probability density function p(x1, . . . , xn) is the Radon-Nikodym derivative of the probability measure P
relative to the Lebesgue measure dx1 · · · dxn.
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Let us partition the tensor product space R2 with an evenly-spaced grid of width ∆x1 (along x1) and ∆x2

(along x2). Suppose we observe n realizations of the random vector X(ω) = (X1(ω), X2(ω)), and suppose
that nA < n instances satisfy the condition

{x1 ≤ X1(ω) ≤ x1 + ∆x1} and {x2 ≤ X2(ω) ≤ x2 + ∆x2}. (102)

Then from (101) we obtain the PDF estimate

p(x1, x2) ' 1

∆x1∆x2

nA
n
. (103)

More efficient and accurate methods to estimate the PDF from data are based on kernels [4] (see Figure
4)

Marginal probability density and marginal distribution. Let X(ω) = (X1(ω), X2(ω)) be a random
vector with joint distribution function function F (x1, x2). The distribution of the random variable X1(ω)
can be obtained from F (x1, x2) simply by sending x2 to infinity, i.e.,

F (x1) = lim
x2→∞

F (x1, x2). (104)

In fact,

lim
x2→∞

F (x1, x2) = P ({ω : X1(ω) ≤ x1} ∩ {ω : X2(ω) ≤ ∞}) = P ({ω : X1(ω) ≤ x1}) = F (x1). (105)

We can write the last equation in terms of PDFs as

lim
x2→∞

∫ x1

−∞

∫ x2

−∞
p(y1, y2)dy1dy2 =

∫ x1

−∞
p(y1)dy1. (106)

Since x1 is arbitrary, it follows from (106) that

p(x1) =

∫ ∞
−∞

p(x1, x2)dx2 (marginalization rule). (107)

Moreover, we have F (∞,∞) = 1, i.e.,∫ ∞
−∞

∫ ∞
−∞

p(x1, x2)dx1dx2 = 1 (normalization condition). (108)

It is straightforward to extend these formulas to distribution functions and PDFs in more than two vari-
ables. For example, if X(ω) = (X1(ω), X2(ω), X3(ω), X4(ω)) is a four-dimensional random vector with
distribution function F (x1, . . . , x4) and PDF p(x1, . . . , x4), then we can obtain the joint distribution func-
tion and the joint PDF of X2 and X3, respectively, as

F (x2, x3) = F (∞, x2, x3,∞), p(x2, x3) =

∫ ∞
−∞

∫ ∞
−∞

p(x1, x2, x3, x4)dx1dx4. (109)

Example (Gaussian distribution): Consider the multivariate Gaussian PDF

p(x1, . . . , xn) =
1√

(2π)n det(Σ)
e−(x−µ)TΣ−1(x−µ)/2, (110)
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where

xT =
[
x1 . . . xn

]
, (111)

µT =
[
E {X1} . . . E {Xn}

]
(mean), (112)

Σij =E {XiXj} − E {Xi}E {Xj} (covariance matrix). (113)

It is straightforward to show that all marginal PDF and distribution functions are still Gaussians of the
form (110).

Independence. Let (Ω,F , P ) be a probability space. Two events A ∈ F and B ∈ F are said to be
independent if the probability of their intersection (that means the probability that both events A and B
happen) equals the product of their probabilities, i.e.,

A,B ∈ F independent ⇔ P (A ∩B) = P (A)P (B). (114)

Consider now a random vector X(ω) = (X1(ω), X2(ω)) with components X1(ω) and X2(ω). We say that
the random variables X1(ω) and X2(ω) are statistically independent if

P ({ω : X1(ω) ≤ x1}︸ ︷︷ ︸
event A

∩{ω : X2(ω) ≤ x2}︸ ︷︷ ︸
event B

) = P ({ω : X1(ω) ≤ x1})P ({ω : X2(ω) ≤ x2}), (115)

for all x1, x2 ∈ R. Equation (115) can be written in terms of the cumulative distribution function as

F (x1, x2) = F (x1)F (x2). (116)

This also implies that the joint PDF of X1 and X2 (if it exists) is simply the product of the PDF of X1

and the PDF of X2, i.e.,
p(x1, x2) = p(x1)p(x2). (117)

These formulas can be generalized to n independent random variables as

F (x1, . . . , xn) = F (x1) · · ·F (xn), p(x1, . . . , xn) = p(x1) · · · p(xn). (118)

Examples:

• Jointly uniform random vector. Let X be a n-dimensional random vector with zero-mean i.i.d.
(independent identically distributed) uniform components in [-1,1]. The joint PDF of X is

p(x1, . . . , xn) =


1

2n
(x1, . . . , xn) ∈ [−1, 1]n

0 otherwise
(119)

• Jointly normal random vector. Let X be a n-dimensional random vector with zero-mean i.i.d.
Gaussian components with variance equal to one. The joint PDF of X is

p(x1, . . . , xn) =
1

(2π)n/2
e−x

Tx/2 x ∈ Rn. (120)

Clearly, from equation (110) we see that Gaussian random variables are independent if and only if

E {XiXj} = E {Xi}E{Xj} for i 6= j. (121)

In general, if (121) is satisfied then we say that Xi and Xj are uncorrelated. Lack of correlation
is a much weaker statement than independence, yet sufficient to claim independence for Gaussian
random variables.
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Conditional distribution function and conditional PDF. Conditional probability is a measure of the
probability of an event A occurring, given that another event B has already occurred. Suppose that the
two aforementioned events belong to the σ-algebra F of a probability space (Ω,F , P ). Then the probability
of A under the condition B is defined as12

P (A|B) =
P (A ∩B)

P (B)
. (122)

Note that the conditional probability is non-zero if A and B are intersecting. Also note that if B is a
subset of A then P (A|B) = 1.

Clearly, if A and B are independent events then by equation (114) we have that P (A ∩ B) = P (A)P (B).
This implies that if A and B are independent then P (A|B) = P (A). In other words, B has no effect
whatsoever on the probability of A occurring. Moreover, P (A ∩B) ≤ P (B) and therefore we always have
that P (A|B) ≤ 1.

In the context of random vectors with multiple components, we may be interested in determining the
conditional probability of an event involving one component, given that another event involving another
component has already occurred. This yields the concept of conditional distribution function and condi-
tional probability density. Let us first clarify these concepts for a random vector with only two components
X(ω) = (X1(ω), X2(ω)). By using the definition of the cumulative distribution function (98) we obtain
(see [15, Ch. 7])

F (x1|x2) =
F (x1, x2)

F (x2)
⇔ F (x1, x2) = F (x1|x2)F (x2). (123)

The determination of the conditional density of X1(ω) assuming X2(ω) = x2, i.e., a specific value of X2(ω)
is of particular interest. This density cannot be derived directly from (122) because, in general, the event
X2(ω) = x2 has zero probability. However, one can make sense of such conditional probability by taking
a suitable limit. Specifically, consider

P ({X1(ω) ≤ x1} ∩ {x2 < X2(ω) ≤ x2 + ∆x2}) = F (x1, x2 + ∆x2)− F (x1, x2) (124)

and
P ({x2 < X2(ω) ≤ x2 + ∆x2}) = F (x2 + ∆x2)− F (x2). (125)

In (124) it is understood that F (x1, x2) is the joint distribution function of (X1, X2), while in (125) F (x2)
denotes the distribution function of X2 alone. Clearly, for small ∆x2

F (x1, x2 + ∆x2)− F (x1, x2) ' ∆x2

∫ x1

−∞
p(y1, x2)dy1, (126)

and
F (x2 + ∆x2)− F (x2) ' p(x2)∆x2. (127)

By differentiating (123) with respect to x1, and taking into account (126)-(127) yields the conditional
PDF

p(x1|X2 = x2) =

∆x2
∂

∂x1

∫ x1

−∞
p(y1, x2)dy1

∆x2p(x2)
, (128)

12An example of conditional probability could be the following:

• Event A: “Daniele’s team scores a goal”.

• Event B: “Daniele takes a shot at the goal”.

The conditional probability P (A|B), i.e., the probability that Daniele’s team scores a goal, conditional to Daniele taking a
shot equals the probability that Daniele takes a shot and scores a goal, divided by the probability that Daniele takes a shot.
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Figure 3: Point clouds representing the joint PDF of the phase variables x1(t) and x3(t) of the Kraichnan-
Orzag system at different times, i.e., p(x3, x1, t). Shown is the procedure to compute the conditional PDF
p(x3|x1, t) and the corresponding conditional mean E{X3|X1 = x1}.

i.e.,

p(x1|X2 = x2) =
p(x1, x2)

p(x2)
(conditional PDF). (129)

In summary, to compute the conditional PDF, p(x1|X2 = x2) we literally take a section of the joint
p(x1, x2) for some fixed value of x2 and then rescale the function we obtain by the number p(x2), i.e., the
one-dimensional PDF of p(x) of X2(ω) evaluated at x = x2. This procedure is illustrated in Figure 3 for a
PDF represented in terms of a point cloud.

Equation (129) can be written as

p(x1, x2) = p(x1|x2)p(x2) = p(x2|x1)p(x1) (130)

which yields the identities

p(x2) =

∫ ∞
−∞

p(x2|x1)p(x1)dx1, p(x1) =

∫ ∞
−∞

p(x1|x2)p(x2)dx2. (131)

The conditional probability density rule can be generalized to multiple random variables. For instance, if
p(x1, x2, x3, x4) denotes the joint PDF of four random variables then

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4). (132)

Moreover, conditional probability densities satisfy the marginalization rule. For instance

p(x1, x3|x4, x5) =

∫ ∞
−∞

p(x1, x2, x3|x4, x5)dx2. (133)

This property follows directly from the definition of conditional probability density (129).
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Expectation, joint moments, and joint cumulants. Let X(ω) = (X1(ω), . . . , Xn(ω)) be a random
vector defined on the probability space (Ω,F , P ). For any measurable function g(X1, . . . , Xn) we define
the expectation13 as

E {g(X1, . . . , Xn)} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xn)p(x1, . . . , xn)dx1 · · · dxn. (135)

In particular, if g(X1, . . . , Xn) = Xk1
1 · · ·Xkn

n then

E
{
Xk1

1 · · ·X
kn
n

}
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

xk1
1 · · ·x

kn
n p(x1, . . . , xn)dx1 · · · dxn (joint moments) (136)

The correlation matrix14 and the covariance matrix are defined as (see, e.g., (110))

E {XiXj} =

∫ ∞
−∞

∫ ∞
−∞

xixjp(xi, xj)dxidxj (correlation matrix), (138)

E {(Xi − µi)(Xj − µj)} = E {XiXj} − µiµj (covariance matrix). (139)

where µi = E {Xi} (mean of Xi).

Remark: We say that two random variables Xi(ω) and Xj(ω) are uncorrelated if

E {XiXj} = E {Xi}E {Xj} . (140)

Independent random variables are always uncorrelated. In fact, let p(xi, xj) be the joint PDF of Xi and
Xj . We know that if Xi and Xj are independent then p(xi, xj) can be factorized as

p(xi, xj) = p(xi)p(xj). (141)

A substitution of (141) into (138) immediately yields (140).

We define the moment generating function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) as

m(a1, . . . , an) = E
{
ea1X1+···+anXn} . (142)

13Note that the expectation E{·} is a linear operator from a space of functions, e.g., the space of real-valued functions that
are measurable with respect p(x1, . . . , xn). Also, we do not need to assume the existence of the PDF to define the expectation
operator. In fact, a more general expression for (135) is

E {g(X1, . . . , Xn)} =

∫
Ω

g(X1(ω), . . . , Xn(ω))dP (ω). (134)

14Note that (138) follows from (136) using the marginalization property of the PDF. For instance

E {X1X2} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

x1x2p(x1, . . . , xn)dx1 · · · dxn

=

∫ ∞
−∞

∫ ∞
−∞

x1x2

(∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x1, . . . , xn)dx3 · · · dxn
)
dx1dx2

=

∫ ∞
−∞

∫ ∞
−∞

x1x2p(x1, x2)dx1dx2. (137)

.
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It is straightforward to show that

∂m(0, . . . , 0)

∂ai
=E{Xi}, (143)

∂2m(0, . . . , 0)

∂aj∂ai
=E{XiXj} (144)

∂3m(0, . . . , 0)

∂aj∂ai∂ak
=E{XiXjXk},

· · · (145)

Hence, the partial derivatives of the moment generating function evaluated at zero represent the joint
moments of the components of random vector X. Clearly, if m(a1, . . . , an) admits a convergent power
series expansion at 0 then all joint moments exist.

The cumulant generating function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) is defined as

Ψ(a1, . . . , an) = log(m((a1, . . . , an))). (146)

It is straightfoward to show that

∂Ψ(0, . . . , 0)

∂ai
=E{Xi}, (147)

∂2Ψ(0, . . . , 0)

∂aj∂ai
=E{XiXj} − E{Xi}E{Xj}, (148)

∂3Ψ(0, . . . , 0)

∂aj∂ai∂ak
=E{XiXjXk} − E{Xi}E{XjXk} − E{Xj}E{XiXk} − E{Xk}E{XiXj}

+ 2E{Xi}E{Xj}E{Xk},
· · ·

The quantities at the right hand side are known as joint cumulants of the random variables (X1, . . . , Xn).
The cumulants are often denoted as 〈XiXj · · · 〉c (see, e.g., [12])

〈Xi · · · 〉c =E{Xi},
〈XiXj · · · 〉c =E{XiXj} − E{Xi}E{Xj}, (149)

· · ·.

The characteristic function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) is defined as

φ(a1, . . . , an) = E
{
ei(a1X1+···+anXn)

}
. (150)

Note that the characteristic function is the Fourier transform of the joint probability density function
p(x1, . . . , xn) and therefore it essentially carries the same information. The joint moments of X can be
computed as

E
{
Xk1

1 · · ·X
kn
n

}
=

1

ik1+···+kn
∂k1+···+knφ(0, . . . , 0)

∂k1a1 · · · ∂knan
. (151)

It is interesting to notice that the marginalization operation we have seen for the PDF, e.g.,

p(x1) =

∫ ∞
−∞

p(x1, x2, . . . , xn)dx2 · · · dxn (152)
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turns out to be simplified quite substantially in Fourier space. Indeed

φ(a1) = φ(a1, 0, . . . , 0) = E
{
eia1X1+i0X2···+i0Xn} . (153)

By using the well known series expansion of the complex exponential, it is possible to show that (see, e.g.,
[12])

φ(a1, a2, . . . , an) = exp

 ∞∑
ν1,...,νn=0

〈Xν1
1 · · ·X

νn
n 〉c

n∏
k=1

(iak)
νk

νk!

 (154)

where the series at the exponent excludes the case ν1 = · · · = νn = 0. For example,

φ(a1, a2) = φ(a1)φ(a2) exp

 ∞∑
j,k=1

〈
Xj

1X
k
2

〉
c

(ia1)j(ia2)k

j!k!

 , (155)

where we used (92). Clearly, if X1 and X2 are independent we have
〈
Xj

1X
k
2

〉
c

= 0 for all i and j and

therefore (155) reduces to
φ(a1, a2) = φ(a1)φ(a2). (156)

Clearly, this equation is the Fourier transform of the PDF p(x1, x2) = p(x1)p(x2), and shows that if X1

and X2 are independent both the joint PDF and the joint characteristic function can be factorized as a
product of one-dimensional functions.

Conditional expectation. Let X(ω) and Y (ω) be two random vectors defined on the probability space
(Ω,F , P ). The conditional mean of u(X(ω)) (u is an arbitrary measurable function) assuming Y (ω) = y
is defined as15

E{g(X)|Y = y} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x)p(x|y)dx, (157)

where

p(x|y) =
p(x,y)

p(y)
(158)

is the conditional probability density of X(ω) given Y (ω) = y. Note that the E{g(X)|Y = y} is a
function of y. The conditional mean defined in equation (157) allows us to write the conditional moments
of a random variable or a random vector, given information on another random vector. For example, the
conditional mean and conditional correlation of X given Y (ω) = y are defined as

E{Xi|Y = y} =

∫ ∞
−∞

xip(xi|y)dxi, (159)

E{XiXj |Y = y} =

∫ ∞
−∞

∫ ∞
−∞

xixjp(xi, xj |y)dxidxj . (160)

The conditional mean of a system with two random variables is visualized in Figure 3.

By combining (158), (157) and (135) we see that

E{g(X)} =

∫ ∞
−∞
· · ·
∫ ∞
−∞

E{g(X)|Y = y}p(y)dy. (161)

In this sense, E{g(X)|Y = y} can be interpreted as a random variable, i.e., a scalar function of the random
variable Y which, if averaged over p(y), yuelds exactly E{g(X)}.

15The conditional mean in equation (157) is often written as E{g(X)|Y }.
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Joint PDF of m functions of n random variables. Let X(ω) = (X1(ω), . . . , Xn(ω)) be a random
vector with joint probability density function p(x1, . . . , xn). Define

Y1 = g1(X1, . . . , Xn)
...

Ym = gm(X1, . . . , Xn)

(162)

What is the joint probability density function of the random vector Y = (Y1, . . . , Ym)? Note that m can
be smaller, equal or larger than n. These cases need to be handled differently.

• If n = m and {g1, . . . , gm} are distinct functions we proceed as in Theorem 2 below.

• If m < n and {g1, . . . , gm} are distinct functions we can add m − n equations to complement the
system so that we have n independent equations in n variables:

Y1 = g1(X1, . . . , Xn)
...

Ym = gm(X1, . . . , Xn)

Ym+1 = Xm+1

...

Yn = Xn

(163)

Once the joint PDF of Y1, . . . , Yn is known (using Theorem 2 below) then we can marginalize it with
respect to (ym+1, . . . , yn) to obtain p(y1, . . . , ym) as

p(y1, . . . , ym) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(y1, . . . , ym, ym+1, . . . yn)dym+1 · · · dyn. (164)

• If we have more equations than variables (i.e. m > n) then the computation of the joint PDF of
(Y1, . . . , Ym) is not as straightforward as above. Consider for example the mapping Y1(ω) = X(ω) and
Y2(ω) = X2(ω). Here we have two functions of the same random variable. Note also that Y2 = Y 2

1 .
It can be shown that the joint PDF of Y1 = X and Y2 = X2 is

p(y1, y2) = pX(y1)δ(y2 − y2
1), (165)

where pX is the PDF of X and δ(·) is the Dirac delta function.

Theorem 2. Let xk(y) (k = 1, . . . , r) be the zeros of the nonlinear system of equations y = g(x) defined
in (162) (for n = m) or in (163) (for m < n). The joint PDF of Y1, . . . , Yn is given by

pY (y) =

r∑
i=1

pX(xi(y))

|J(xi(y))|
, (166)

where J is the Jacobian determinant16 associated with the mapping g(x) evaluated at xi(y) (assumed
non-zero).

16In (166) it is assumed that

J(xi(y)) = det

[
∂g(x)

∂x

]
x=xi(y)

6= 0. (167)
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n = 104 n = 106

Figure 4: Estimation of the joint PDF of the random variables Y1 = X1 and Y2 = 2 sin(2X1 +X2) where
X1 and X2 and independent Gaussians with zero mean and variance one. We show the results we obtain
with the frequency approach, i.e., formula (103) and the 2D kernel density estimation method discussed in
[4] (transparent surface plot). We plot results for a different number of samples n.

The proof of this theorem is provided in [15, Chapter 8].

Example: Consider the mapping
Y1 = X2

1 Y2 = X1 +X2. (168)

Suppose we know the joint PDF of X1 and X2. What’s the joint PDF of Y1 and Y2? The following mapping
from (X1, X2) to (Y1, Y2) can be inverted as{

y1 = x2
1

y2 = x1 + x2

⇒

{
x1 = ±√y1

x2 = y2 ∓
√
y1

. (169)

The Jacobian determinant of (169) is easily obtained as

J(x1, x2) = det

[
2x1 0
1 1

]
= 2x1. (170)

Hence, by applying Theorem 2, we obtain the following joint PDF of Y1 and Y2 is

pY (y1, y2) =
1

2
√
y

[pX(
√
y1, y2 −

√
y1) + pX(−√y1, y2 +

√
y1)] y1 ≥ 0. (171)

Example: Consider the mapping

Y1(ω) = X1 Y2(ω) = 2 sin (2X1(ω) +X2(ω)) , (172)

where X1 and X2 and independent Gaussians with zero mean and variance one. In Figure 4 we estimate
the joint PDF of Y1 and Y2 using the frequency approach approach, i.e., formula (103), and the 2D kernel
density estimation method discussed in [4].

Alternative methods to compute the joint PDF of functions of random vectors. There are
alternative equivalent methods to compute the joint PDF (Y1, . . . , Ym), given the joint PDF (Y1, . . . , Yn),
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e.g., methods based on the Dirac delta function [10] or methods based on the joint characteristic function.
With reference to the previous example we have the joint characteristic function

φY (a1, a2) =

∫ ∞
−∞

∫ ∞
−∞

eia1x2
1+ia2(x1+x2)p(x1, x2)dx1dx2. (173)

Clearly, if φY (a1, a2) can be computed then we can simply inverse Fourier transform it to obtain the joint
PDF of (Y1, Y2). By using Dirac delta functions we can represent directly the joint PDF of the random
variable

Y (ω) = g(X1(ω), . . . , Xn(ω)), (174)

as

p(y) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

δ(y − g(x1, . . . , xn))p(x1, . . . , xn)dx1 · · · dxn (175)

=
1

2π

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia(y−g(x1,...,xn))p(x1, . . . , xn)dx1 · · · dxnda. (176)

Example: Let Y1 = X and Y2 = X2 (two functions of one random variable). What is the joint PDF of Y1

and Y2? The mapping (162) yields a Jacobian determinant that is zero, and therefore the mapping it is
not invertible. This implies that theorem (2) cannot be applied. However, using the characteristic function
approach we obtain

φ(a1, a2) =

∫ ∞
−∞

eia1x+ia2x2
pX(x)dx. (177)

Taking the inverse Fourier transform yields,

p(y1, y2) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

eia1(x−y1)+ia2(x2−y2)pX(x)dxda1da2

=
1

2π

∫ ∞
−∞

δ(x− y1)eia1(x2−y2)pX(x)dxda2

=δ(y2
1 − y2)pX(y1). (178)

Remark: If (X1, . . . , Xn) are independent random variables and (g1, . . . , gn) are n functions from R into R,
then Y1 = g1(X1), . . ., Yn = gn(Xn) are independent random variables. It is straightforward to prove this
statement using the Dirac delta function representation (or the characteristic function) of PDF mapping
[10]. To this end, let

Yi(ω) = gi(Xi(ω)). (179)

We have

p(y1, . . . , yn) =

∫ ∞
−∞

n∏
j=1

δ(yj − gj(xj))p(x1, . . . , xn)dx1 · · · dxn

=
n∏
j=1

∫ ∞
−∞

δ(yj − gj(xj))p(xj)dxj

=p(y1) · · · p(yn). (180)
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Remark: The PDF of the sum of independent random variables is the convolution the PDF of each variable.
For example, let

Y = X1 +X2 +X3 (181)

be the sum of three independent random variables X1, X2 and X3, with PDFs p1(x1), p2(x2) and p3(x3)
respectively. By using (175) we obtain

p(y) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ(y − x1 − x2 − x3)p(x1, x2, x3)dx1dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

δ(x1 − y + x2 + x3)p1(x1)p2(x2)p3(x3)dx1dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

p1(x2 + x3 − y)p2(x2)p3(x3)dx2dx3

=

∫ ∞
−∞

∫ ∞
−∞

p1(x1 − y)p2(x1 − x3)p3(x3)dx1dx3. (182)

In the last equality we considered the mapping x1 = x2 + x3 as a coordinate change from x1 to x2 with
parameter x3. Note that the process of computing the PDF of the sum of independent random variables
can be also seen as a hierarchical process in which we proceed with two variables at a time To this end,
we first compute the PDF of Z = X2 +X3 as

pZ(z) =

∫ ∞
−∞

p2(z − x3)p3(x3)dx3. (183)

Clearly, Z is independent of X1 and therefore the PDF of Y = Z +X1 is

pY (y) =

∫ ∞
−∞

p1(y − x1)pZ(x1)dx1. (184)

A substitution of (183) into (184) yields (182).

Lebesgue spaces of random variables. The expectation operator E{·} is a linear integral operator
over a probability measure. Such an operator can be used to define norms and eventually inner products
in spaces of random variables. For example,

E {|X|q} =

∫
Ω
|X(ω)|qdP (ω) q ∈ N (185)

is essentially a weighted q norm. The space of random variables satisfying E {|X|q} < ∞ is denoted as
Lq(Ω,F , P ), in analogy with the classical Lebesgue space for functions. The case q = 2 is of particu-
lar importance as it has the structure of a Hilbert space. Specifically, for any two random variables in
L2(Ω,F , P ) we have the inner product

E {XY } =

∫
Ω
X(ω)Y (ω)dP (ω) (186)

and the norm

E
{
X2
}

=

∫
Ω
X(ω)2dP (ω). (187)

The inner product (186) allows us to define orthogonal random variables. Specifically, X(ω) and Y (ω) are
orthogonal in L2(Ω,F , P ) if they are uncorrelated, i.e., E {XY } = 0. Also, X(ω) and Y (ω) are orthonormal
if they are orthogonal and have norm equal to one, i.e., E

{
X2
}

= E
{
Y 2
}

= 1.
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Application to dynamical systems

Consider the following linear dynamical system{
ẋ(t) + ξ(ω)x(t) = 0
x(0) = x0(ω)

(188)

where ξ(ω) and x0(ω) are independent random variables. Specifically ξ(ω) is uniformly distributed in [0, 1],
while x0(ω) is Gaussian random variable with mean zero and variance one. As is well-known, the analytical
solution of (188) is

x(t;ω) = x0(ω)e−tξ(ω). (189)

Let us compute the mean, the second-order moment and the auto-correlation function of the solution
x(t;ω), i.e., E{x(t;ω)}, E{x(t;ω)2}, and E{x(t;ω)x(t′ω)} versus time. We have

E {x(t;ω)} =
1√
2π

∫ ∞
−∞

x0e
−x2

0/2dx0

∫ 1

0
e−tξdξ = 0, (190)

E
{
x(t;ω)2

}
=

1√
2π

∫ ∞
−∞

x2
0e
−x2

0/2dx0

∫ 1

0
e−2tξdξ =

1

2t

(
1− e−2t

)
, (191)

E
{
x(t;ω)x(t′;ω)

}
=

1√
2π

∫ ∞
−∞

x2
0e
−x2

0/2dx0

∫ 1

0
e−(t+t′)ξdξ =

1

t+ t′

(
1− e−(t+t′)

)
. (192)

The one-time probability density function of x(t;ω) can be easily computed by using the Dirac delta
function approach [10]. Indeed,

p(x, t) =
1√
2π

∫ ∞
−∞

∫ 1

0
δ
(
x− x0e

−ξt
)
e−x

2
0/2dx0dξ

=
1√
2π

∫ ∞
−∞

∫ 1

0

δ
(
x0 − xeξt

)
e−ξt

e−x
2
0/2dx0dξ (193)

=
1√
2π

∫ 1

0
eξt−(xeξt)2/2dξ. (194)

Now consider the change of variables

u =
xeξt√

2
⇒ dξ =

√
2

ξt
e−ξtdu. (195)

A substitution of (195) into (194) yields

p(x, t) =
1

ξt
√
π

∫ xet/
√

2

x/
√

2
e−u

2
du (196)

=
1

ξt
√
π

[
erf

(
xet√

2

)
− erf

(
x√
2

)]
. (197)

Liouville equation approach: We can transform the linear system (188) involving one random variable at
the right hand side to an equivalent 2D linear system evolving from a random initial state (an no random
variables at the right hand side). To this end, we notice that

ẋ(t) + yx(t) = 0
ẏ(t) = 0
x(0) = x0(ω)
y(0) = ξ(ω)

(198)
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is completely equivalent to (188). In this setting, we can derive a linear transport equation for the joint
PDF of x(t;ω) and y(t;ω), i.e., x(t;ω) and ξ(ω). Such PDF equation takes the form

∂p(x, y, t)

∂t
+

∂

∂x
(xyp(x, y, t)) +

∂

∂y
(xyp(x, y, t)) = 0

p(x, y, 0) = px0(x)pξ(y)
(199)

It can be verified by a direct substitution that the solution the initial value problem (199) is

p(x, y, t) =
1√
2π
eyt−(xeyt)2/2. y ∈ [0, 1], x ∈ R. (200)

Note that the joint PDF (200) was already obtained in equation (194), right before marginalizing with
respect to ξ.

Data-driven identification of random dynamical systems. A system with random parameters
and/or random initial states generates an envelope of trajectories that depends on the joint PDF of the
random variables driving the system. It is possible to identify such joint PDF from data, e.g., by minimizing
a performance metric, i.e., a dissimilarity measure (e.g., a Wasserstein norm) between the measurements
of a quantity of interest at various times and the envelope of trajectories, over the degrees of freedom
representing the joint probability density function. of the random variables. In this way, we are essentially
trying to reduce model uncertainty by shrinking a continuous trajectory tube generated by a random
dynamical system of the form 

dx(t)

dt
= f(x(t);ω)

x(0) = x0(ω)

(201)

around measurements of some phase space function h(x(t)). Note that f(x(t);ω) is a random vector field
and x0(ω) is a random initial state. We will shall see hereafter that f(x(t);ω) can be represented in a
Karhunen-Loève expansion

fi(x(t);ω) =
∞∑
k=1

ξki (ω)θki (x) i = 1, . . . , n (202)

where ξki (ω) are uncorrelated random variables and θki (x) are orthonormal basis functions. Other represen-
tations of fi(x(t); ξ(ω)) can be built, e.g., using tensor expansions in weighted L2 spaces, e.g., functional
tensor train [7, 3, 14]. The minimization procedure discussed above essentially identifies the degrees of
freedom of the joint probability density function of x0(ω) and ξ(ω), i.e., p(x0, ξ), either in the form
of a sampler, e.g., using Wasserstein generative neural networks [1], or the actual multivariate function
p(x0, ξ).

Random processes and random fields

Let Ω,F , P ) be a probability space. A real valued stochastic process in the time interval [0, T ] is a
mapping

X : Ω× [0, T ]→ R. (203)

The process can be continuous in time (e.g., Brownian motion) discontinuous in time (e.g., telegra-
pher’s random process), or time-discrete, e.g., represented by a sequence of random variables X(tj ;ω)
j = 1, . . . , n.
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Remark: The notion of continuity we know for real valued functions can be generalized substantially when
dealing with stochastic processes. We have, for example,

• Continuity in probability:

lim
s→t

P ({ω : |X(t;ω)−X(s;ω)| > ε}) = 0 for all ε > 0. (204)

• Mean-square continuity:
lim
s→t

E{|X(t;ω)−X(s;ω)|2} = 0. (205)

• Continuity in distribution:

lim
s→t

F (x, s) = F (x, t) (F (x, t) distribution function of X(t;ω). (206)

Continuity in mean-square ⇒ continuity in probability ⇒ continuity in distribution.

Continuity in probability follows from mean-square continuity17 thanks to the Markov’s inequality

P ({ω : |X(t;ω)−X(s;ω)| > ε}) ≤ 1

ε2
E{|X(t;ω)−X(s;ω)|2} ∀t, s ∈ [0, T ]. (208)

Other properties of X(t;ω) very much depend on the way we characterize the process, i.e., the set of rules
and specifications that allow us to fully characterize the process. Clearly, X(t;ω) is a random variable for
each fixed t. This means that X(t;ω) admits a distribution function

F (x, t) = P ({ω : X(t;ω) ≤ x}) , (209)

and eventually a probability density function

p(x, t) =
dF (x, t)

dx
. (210)

With F (x, t) or p(x, t) available we can compute the statistical moments at time t, e.g.,

E
{
X(t;ω)k

}
=

∫ ∞
−∞

xkp(x, t)dx, k ∈ N. (211)

The PDF p(x, t), however, provides very limited statistical information about the process X(t;ω). In fact,
it does not allow us to compute any joint statistics at different times, for example the autocorrelation
function

E{X(t;ω)X(s;ω)} =

∫ ∞
−∞

x1x2p(x1, x2, t1, t2)dx1dx2, (212)

where p(x1, x2, t1, t2) is the joint probability density function of the random variables X(t1;ω) and X(t2;ω)
(t1 and t2 here can vary in [0, T ]). A straightforward generalization of this line of thinking leads us to
construct the joint PDF of {X(t1;ω), . . . , X(tn;ω)} for an increasing number of distinct time instants

17Mean square continuity also implies that the mean process E{X(t;ω)} is continuous in t. In fact, using the inequality
|E{X}|2 ≤ E{X2} we obtain

|E{X(t;ω)−X(s;ω)}| ≤
√

E{|X(t;ω)−X(s;ω)|2}. (207)

Similarly, if the process is mean-square continuous then the auto-correlation function E{X(t;ω)X(s;ω)} continuous in both s
and t.
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ti ∈ [0, T ]. Similarly, we can construct the joint characteristic function of the random process X(t;ω) at
distinct time instants (t1, . . . , tn) as

φ(a1, . . . , an; t1, . . . , tn) = E
{
eia1X(t1;ω)+···+ianX(tn;ω)

}
. (213)

This expression can be obtained (at least formally) from the so-called Hopf characteristic functional [20, 11]
associated with the stochastic process X(t;ω), i.e.,

Φ([θ(t)]) = E
{

exp

(∫ T

0
X(τ ;ω)θ(τ)dτ

)}
, (214)

where θ(t) is a deterministic test function which we are free to choose. For example, if we pick

θ(t) =
n∑
i=1

aiδ(t− ti), (215)

and substitute it into (214) then we obtain (213). The Hopf functional18 (214) provides full statistical
information about the stochastic process X(t;ω), including all joint statistical moments, all multi-time
PDFs, etc. For instance, the functional derivatives of Φ evaluated at θ = 0 coincide with the statistical
moments (see, e.g. [18])

δqΦ([θ])

δθ(t)q

∣∣∣∣
θ=0

=
1

iq
E{X(t;ω)q}, δq+pΦ([θ])

δθ(t)qδθ(s)p

∣∣∣∣
θ=0

=
1

iq+p
E{X(t;ω)qX(s;ω)p}. (216)

In [11] the Hopf functional is determined for various types of stochastic processes.

Remark: To fully characterize a stochastic process it is not necessary to identify or provide the Hopf
functional. A stochastic process can be defined in many different ways, some of which are not even explicit.
However, if the Hopf characteristic functional is available, then the process is fully specified, perhaps in
the most compact possible way (see [13] for applications of Hopf functional methods to turbulence).

Gaussian processes. The Hopf characteristic functional for a Gaussian process is (see, e.g., [11])

Φ([θ(t)]) = E
{

exp

(
i

∫ T

0
µ(τ)θ(τ)−

∫ T

0

∫ T

0
C(τ, s)θ(τ)θ(s)dτds

)}
, (217)

where

µ(t) = E{X(t;ω)} (mean), (218)

C(t, s) = E{X(t;ω)X(s;ω)} − µ(t)µ(s) (covariance function). (219)

Higher order moments can be computed using functional differentiation (e.g., (216)), or by noticing that
the joint characteristic function the random process X(t;ω) at an arbitrary number of distinct time instants
is

φ(a1, . . . , an; t1, . . . , tn) = exp

i n∑
k=1

akµ(tk)−
n∑

k,j=1

C(tk, tj)akaj

 . (220)

18Recall that a functional is a mapping from a certain space of functions (or distributions) into the real line or the complex
plane. The Hopf functional is a complex-valued nonlinear functional into C.
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Figure 5: Samples of zero-mean Gaussian process with covariance function (222) and σ = 1. We show
samples corresponding to different values of the Hurst parameter h.

Sampling Gaussian processes: To sample a Gaussian process with mean µ(t) and covariance function C(s, t)
it is sufficient to construct a temporal grid in [0, T ] and then sample a Gaussian random vector with mean
µi = µ(ti), and covariance matrix with entries C(tk, tj). To this end, it is sufficient to recall that if X(ω)
is a zero-mean Gaussian random vector (column vector) with independent entries of variance one, and
C = RRT is the Cholesky decomposition of the covariance matrix19 C, then Y = RX is a zero-mean
Gaussian random vector with covariance C. In fact,

E{Y (ω)Y T (ω)} = E{RX(ω)XT (ω)RT } = RE{X(ω)XT (ω)}︸ ︷︷ ︸
(identity matrix)

RT = C. (221)

In figure 5 we plot a few samples of a Gaussian random process with zero mean and covariance func-
tion

C(s, t) =
σ

2

(
|s|2h + |t|2h − |s− t|2h

)
, (222)

where 0 < h < 1 is the so-called Hurst parameter. A Gaussian process with covariance function (222) is
called fractional Brownian motion.

Gaussian random fields: The procedure we used to sample of Gaussian stochastic process with covariance
C(s, t) (e.g., (222)) can be extended to Gaussian random fields [17], i.e., random functions defined of a
domain V ⊆ Rd. For example, we could sample a zero-mean Gaussian random field X(x;ω) defined on
the square domain V = [0, 1]× [0, 1] with covariance function

C(x,y) =
σ

2

(
‖x‖2h2 + ‖y‖2h2 − ‖x− y‖

2h
2

)
, (223)

to this end we first construct the covariance matrix C(xi,xj) and then use the procedure we used before,
i.e.: i) sample a zero-mean i.i.d. Gaussian random variable with variance one at each spatial location xi,
and ii) multiply the sample of the random vector constructed in this way by the matrix R obtained by the
Cholesky decomposition of the autocovariance function (223). In Figure 6 we provide a few samples of a
zero mean Gaussian random field with covariance (223).

19The entries of the covariance matrix C are C(ti, tj), where C(t, s) is the covariance function of the random process.
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h = 0.7 h = 0.4

Figure 6: Samples of zero-mean Gaussian random field with covariance function (223) and σ = 1. We show
samples corresponding to different values of the Hurst parameter h.

Discrete Markov processes. Consider a discrete set of distinct temporal time instant, say {t1, . . . , tn}
and a time-discrete random process which is essentially a collection of random variables

Xi(ω) = X(ti;ω), (224)

or a collection of random vectors
Xi(ω) = X(ti;ω). (225)

The random process (224) can be defined in many different ways, for example as a recurrence rela-
tion20

Xi+1(ω) = h(Xi(ω)) + ξi(ω), (226)

where ξi(ω) are random variables and X0(ω) is random as well. Similarly, we can define a vector valued
discrete process as

Xi+1(ω) = h(Xi(ω)) + ξi(ω), (227)

Note that the structure of (227) is the same as a recurrent neural network perturbed by noise [21].

Disregarding how we generate the sequence of random variables X0, . . . , Xn, in (226), we can characterize
the statistics of the process Xi in terms of the joint PDF (assuming it exists) p(xn, . . . , x0). By using the
definition of conditional probability density we have

p(xn, . . . , x1, x0) = p(xn|xn−1, . . . , x1, x0)p(xn−1, . . . , x0). (228)

If the system is memoryless (or Markovian), we have that the conditional PDF of Xn given the entire
history of Xi equals p(xn|xn−1), i.e.,

p(xn|xn−1, . . . , x1, x0) = p(xn|xn−1). (229)

In other words, the PDF of Xn(ω) conditional to any set of variables {Xj(ω)} with j < n equals to
p(xn|xn−1), i.e., it depends only on the value of Xn−1(ω). By applying (229) recursively we obtain

p(xn, xn−1, . . . , x1, x0) = p(xn|xn−1)p(xn−1|xn−2) · · · p(x1|x0)p(x0). (230)

20The discrete process (226) is also called autoregressive process.
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Hence, the process is fully specified by the transition density p(xk+1|xk). Denoting by pξk the PDF of
ξk in (226), and assuming that {ξ1, . . . , ξn−1} are statistically independent we have that the transition
probability defined by the Markov chain (226) is

p(xk+1|xk) = pξk(xx+1 − F (xk)). (231)

Remark: More general auto-regressive random vector processes of the form (227) are the discussed in the
book [5]. For example, vector auto-regressive moving-average (VARMA) processes, integrated VARMA
(VARIMA) processes, etc.

Markov Chain Monte Carlo (MCMC). Markov Chain Monte Carlo (MCMC) refers to a class of
methods that allow us to sample high-dimensional probability density functions [6]. In MCMC we construct
a discrete Markov process that has a stationary PDF that coincides with the distribution of interest, i.e.,
the PDF we’d like to sample from. Hence, simulations of the Markov chain21 provide samples of the
high-dimensional PDF we are interested in, once a transient, i.e., the so-called burn-in phase of the chain,
is completed. There are several MCMC algorithms to sample from high-dimensional PDFs. Perhaps the
simplest ones are the Gibbs sampling and the Metropolis-Hastings algorithms. Let us briefly describe the
Gibbs sampling method. To this end, suppose you are given a three-dimensional PDF p(x1, x2, x3) and
that the conditional PDFs p(x1|x2, x3), p(x2|x1, x3) and p(x3|x1, x2) are all available22. To sample from
p(x1, x2, x3) we proceed as follows:

1. Initialize x2 = x
(i)
2 and x3 = x

(i)
3 . Here x

(i)
2 and x

(i)
3 are two real numbers. The superscript “i” is an

integer number that labels the discrete Markov process

Xi(ω) =
[
x

(i)
1 (ω) x

(i)
2 (ω) x

(i)
3 (ω)

]
i ∈ N. (232)

2. Sample a new x
(i+1)
1 from the one-dimensional conditional PDF p

(
x1|x(i)

2 , x
(i)
3

)
.

3. With the sample x
(i+1)
1 available, sample a new x

(i+1)
2 from the one-dimensional conditional PDF

p
(
x2|x(i+1)

1 , x
(i)
3

)
.

4. With the sample x
(i+1)
2 available, sample a new x

(i+1)
3 from the one-dimensional conditional PDF

p
(
x3|x(i+1)

1 , x
(i+1)
2

)
.

5. Update x
(i)
j ← x

(i+1)
j for j = 1, 2, 3 and go back to point 2.

This algorithm allows us to compute Xi+1 from Xi by sampling known one-dimensional conditional tran-
sition densities. To sample from such arbitrary one-dimensional transition densities we can use different
methods. If the inverse cumulative distribution of each conditional PDF is known, then we have seen
that it is sufficient to sample a uniform PDF and then map such sample using the inverse cumulative dis-
tribution function. Alternatively, we can determine the mapping between uniform random variables and
conditionally distributed random variables using polynomial chaos expansions. The mapping Xi → Xi+1

defines a random walk in R3. The stationary distribution of such random walk coincides with p(x1, x2, x3).

21Simulations of a Markov chain are usually performed with the Monte Carlo method, hence the name Markov Chain Monte
Carlo.

22Recall that to compute the conditional PDF p(x1|x2, x3) we literally set x2 and x3 in p(x1, x2, x3) equal to some number,
say x2 = x∗2 and x3 = x∗3 and then normalize the one-dimensional function p(x1, x

∗
2, x
∗
3) so that the integral with respect to x1

equals one.
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In other words, after the burn-in phase is completed, i.e., for sufficiently large i, we have that Xi(ω) are
samples of the joint PDF p(x1, x2, x3).

Karhunen-Loève expansion. Let X(t;ω) be a zero-mean square-integrable stochastic process defined on
the probability space (Ω,F , P ). “Square-integrable” means that X(t;ω) has finite second order moment,
i.e.,

E
{∫ T

0
X(t;ω)2dt

}
<∞. (233)

By using the properties of L2(Ω,F , P ) spaces (probability spaces of square integrable random variables),
it can be shown that X(t;ω) admits a series expansion

X(t;ω) =
∞∑
k=1

√
λkξk(ω)ψk(t), (234)

where {ξ1(ω), ξ2(ω), . . .} is a set of uncorrelated, i.e., orthonormal, random variables satisfying

E {ξi(ω)ξj(ω)} = δij , (235)

and {ψ1(t), ψ2(t), . . .} are orthonormal (in L2([0, T ])) temporal modes∫ T

0
ψi(t)ψj(t)dt = δij . (236)

By using the orthogonality properties (235)-(236), we obtain the so-called dispersion relations23

ξk(ω) =
1√
λk

∫ T

0
X(t;ω)ψk(t)dt, (238)

ψk(t) =
1√
λk

E{ξk(ω)X(t;ω)}. (239)

A substitution of (238) into (239) yields the eigenvalue problem

(240)∫ T

0
C(t, s)ψk(s)ds = λ2

kψk(t). (241)

where
C(t, s) = E {X(t;ω)X(s;ω)} (242)

is the autocorrelation function of the process. In other words, the KL temporal modes are are eigenfunctions
of the the auto-correlation function of the process. Since C(t, s) is a Mercer’s kernel (continuous symmetric
non-negative definite kernel) we have that {ψk(t)} is a complete orthonormal basis of L2([0, T ]).

Example: Let us compute the KL expansion of a stochastic process with exponential auto-correlation
function

C(t, s) =
σ2

2τ
e−|t−s|/τ , (243)

23It is straightforward to show that (239) follows form the variational principle

min
ψk

E([ψ1, ψ2, . . .]) = min
ψk

∫ T

0

E

{∣∣∣∣∣X(t;ω)−
∞∑
k=1

√
λkξk(ω)ψk(t)

∣∣∣∣∣
2}

dt. (237)

Page 34



AM 238 Prof. Daniele Venturi

where τ denotes the correlation time. Note that (243) is an element of a Dirac delta sequence. This implies
that

lim
τ→0

σ2

2τ
e−|t−s|/τ = σ2δ(t− s). (244)

The eigenvalue problem (243) with C(t, s) defined in(243) admits the analytical solution24 (see [?])

ψk(t) =
τzk cos(zkt) + sin(zkt)√

1

2

(
τ2z2

k + 1
)
T +

(
τ2z2

k − 1
) sin(2zkT )

4zk
+
τ

2
(1− cos(2zkT ))

, (248)

where zk are solution of the transcendental equation(
z2
k −

1

τ

)
tan(zkT )− 2zk

τ
= 0, (249)

and

λk =
σ2(

z2
kτ

2 + 1
) (250)

are the KL eigenvalues. The KL eigenvalues become smaller and smaller as zk increases. The eigenvalue
decay is more pronounced for larger correlation lengths τ , while for very small correlation lengths the
eigenvalue decay rate is very small, eventually zero for zero correlation length.

For practical purposes, the KL series expansion (234) is usually truncated to a finite number of terms. As
we just discussed, the number of terms is inversely proportional to τ : the smaller τ the larger the number
of terms. The number of terms M in the KL series expansion (234) is usually chosen by thresholding the
relative “energy” of the process as

M∑
k=1

λk

∞∑
k=1

λk

' 0.95. (251)

This implies that the modes we retain in the series capture about 95% of the process “energy”. In Figure
7 we plot samples of the exponentially correlated Gaussian random process

X(t;ω) = sin(t) +
σ

2τ

M∑
k=1

√
λkξk(ω)ψk(t) t ∈ [0, 20], (252)

for τ = 1 and τ = 0.1.
24To compute the analytical solution of the KL eigenvalue problem (241) with exponential covariance (243) let us first

rewrite it as ∫ T

0

e−c|t−s|ψk(s)ds = λ̂kψk(t), c =
1

τ
, λ̂k =

2τ

σ2
λk. (245)

Differentiating with respect to t the equivalent expression∫ t

0

e−c(t−s)ψk(s)ds+

∫ T

t

ec(t−s)ψk(s)ds = λ̂kψk(t) (246)

yields the second-order boundary value problem

d2ψk
dt2

=
c2λ̂k − 2c

λ̂k
ψk(t)

dψk(t)

dt
= cψ(0)

dψk(T )

dt
= cψ(T )

(247)

The solution of the BVP (247) is (248)-(250).

Page 35



AM 238 Prof. Daniele Venturi

τ = 1 τ = 0.1

0 5 10 15 20

-2

-1

0

1

2

0 5 10 15 20

-2

-1

0

1

2

Figure 7: Samples of the exponentially correlated Gaussian random process (252) for different correlation
times τ . The KL The mean of the process is shown in red. The truncation threshold for the number of
terms M is set at 95% of the energy of the process (see Eq. (251)).

Remark: In the case where (241) cannot be solved analytically, we can resort to numerical method for
Fredholm eigenvalue problems, e.g., Finite-difference methods, spectral methods, or Galerkin methods (see
e.g., [19]). Of course it is also possible to define KL expansions of random fields by simply generalizing the
bi-orthogonal series (234) as

X(x;ω) =

∞∑
k=1

√
λkξk(ω)ψk(x). (253)

The computation of the KL expansion follows exactly the same steps as before, i.e., ψk(x) are solutions to
the eigenvalue problem ∫

V
C(x,y)ψk(y)dy = λkψk(x), (254)

where V is some spatial domain.

Remark: To sample realizations of the random process (234) we need to sample the random variables
{ξ1, . . . , xiM}. Such random variables are (by construction) orthonormal (see (235)), i.e., they are uncor-
related and have variance equal to one. Clearly, if {ξ1, . . . , xiM} are jointly Gaussian then we know that
the condition (235) is necessary and sufficient for independence. Hence, in the Gaussian case, sampling
the joint PDF of {ξ1, . . . , xiM} reduces to sampling the PDF of an independent set of one-dimensional
Gaussian random variables with zero mean and variance one. More generally, if we have available the joint
PDF p(ξ1, . . . , xiM ), e.g., by computing (238), then we can sample it using Markov Chain Monte Carlo
(MCMC) methods, e.g., the Metropolis-Hastings algorithm or Gibbs sampling.

Wiener process. The Wiener process is a zero-mean continuous-time random process satisfying the
following conditions:

• The increment X(t+ τ ;ω)−X(t;ω) is a Gaussian random variable with zero mean and variance τ .
In other words, the conditional probability density of X(t+τ ;ω) given X(t;ω), is Gaussian with zero
mean and variance τ .

• The random variables (increments)

X(t1;ω)−X(t0;ω) and X(t3;ω)−X(t2;ω) (255)
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are statistically independent for t0 < t1 ≤ t2 < t3. In other words, the Wiener process is an
independent increment process.

• The process X(t;ω) is continuous with probability one, i.e.,

P
(
{ω : lim

s→t
|X(s;ω)−X(t;ω)|}

)
= 1 for all t ≥ 0. (256)

This means that almost all (except sets of measure zero) sample paths are continuous in the classical
sense, but the process X(t;ω) is nowhere differentiable. Continuity with probability one implies
continuity in probability, and therefore mean square continuity and continuity in distribution.

An very clear description of the Wiener process is provided by Wiener himself in [22, Lecture 1]. The
simplest algorithm to sample a Wiener process leverages the fact that the process has Gaussian distributed
independent increments. Let {tk}k=1,...,n be n distinct time instants

0 = t0 < t1 < . . . < tn. (257)

Then

X(tk;ω) =

k∑
j=1

√
∆tjξj(ω) ∆tj = tj − tj−1, (258)

where {ξj(ω)} are independent random variables with mean zero and variance 1. A closer look at (258),
reveals

X(t1;ω) =
√

∆t1ξ1(ω), (259)

X(t2;ω) =X(t1;ω) +
√

∆t2ξ2(ω) =
√

∆t1ξ1(ω) +
√

∆t2ξ2(ω) (260)

· · ·

Since X(tk;ω) is a superimposition of essentially an infinite number of independent random vairable, it is
rather straightforward to show that the one time PDF of X(t;ω) is

p(x, t) =
1√
2πt

e−x
2/(2t), (261)

i.e., Gaussian. This equation also follows from the conditional PDF identity

p(x, t) =

∫ ∞
∞

p(x, t|y, s)p(y, s)dy t > s, (262)

where p(x, t|y, s) is the transition density25, and p(y, s) is the PDF of X(s;ω). If we set s = 0 then
p(y, 0) = δ(y) and, of course, this yields (261). The auto-correlation function of the Wiener process
is

C(t, s) = min(t, s) (264)

With the autocorrelation function available we can compute a KL expansion of the Wiener process following
the procedure outlined in the previous section. If we consider the time interval [0, 1] this yields the
eigenvalue problem ∫ 1

0
C(t, s)ψk(s) = λkψk(t), (265)

25From the recurrence relation
X(tk+1;ω) = X(tk;ω) +

√
∆tk+1ξk+1(ω) (263)

with ξk+1(ω) Gaussian with zero mean and variance one we see that the conditional PDF p(x, t|y, s) is Gaussian with zero
mean and variance t− s.
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Figure 8: Wiener processes obtained by sampling the Karhunen-Loève expansion (268) with 105 terms on
a temporal grid with 2000 points in [0, 1], and by iterating (258) on the same temporal grid.

the solution of which is

ψk(t) =
√

2 sin

([
k − 1

2

]
πt

)
k = 1, 2, . . . (266)

and

λk =
4

π2 (2k − 1)2 . (267)

Substituting (266) and (267) into (234) yields

X(t;ω) =

∞∑
k=1

2
√

2

π (2k − 1)
ξk(ω) sin

([
k − 1

2

]
πt

)
, (268)

where ξk(ω) are independent Gaussian random variables with zero mean and variance one (they satisfy
(235)). The series expansion in (268) can be eventually truncated to a finite number of terms, depending
on the threshold set on the eigenvalues (267) (which decay as 1/k). In Figure 8 we plot a few samples of
the Wiener process we obtain by sampling (268) with 105 terms on a temporal grid with 2000 points in
[0, 1], and the Wiener process we obtain by iterating (258) on the same temporal grid. Note that if X(t;ω)
is a Wiener process in t ∈ [0, 1] then

√
TX

(
t

T
;ω

)
t ∈ [0, T ] (269)

is a Wiener process in [0, T ]. This expression is obtained by simply changing the variables in the integral
equation (265). The expression (269) shows that features of a Wiener process do not change while zooming
in or out. In other words, the Wiener process is self-similar.

Appendix A: Derivation of the Liouville equation

Consider the nonlinear dynamical system 
dx(t)

dt
= f(x(t))

x(0) = x0(ω)

(270)
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where x0(ω) is a random vector with known joint probability density function p0(x). We know that if f(x)
is continuously differentiable in x then (270) admits a smooth flow x(t,x0(ω)), which is at least continuously
differentiable in x0 . The flow is also continuously differentiable in t, i.e., x(t,x0(ω)) is a diffeomorphism in
t. We are interested in determining an evolution equation for p(x, t), i.e., the probability density function of
x(t,x0) at time t. To this end, consider the characteristic function representation of the PDF p(x, t)

φ(a, t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x(t;x0)p(x0)dx0 =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·xp(x, t)dx (271)

Differentiating with respect to t yields

∂φ(a, t)

∂t
=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · ∂x(t,x0)

∂t
eia·x(t;x0)p(x0)dx0

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · f (x(t,x0)) eia·x(t;x0)p(x0)dx0

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

ia · f (x) eia·xp(x, t)dx

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂x

(
eia·x

)
· f (x) p(x, t)dx

=−
∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x∇ · (f (x) p(x, t)) dx. (integrating by parts) (272)

By using (271) and (272) we obtain∫ ∞
−∞
· · ·
∫ ∞
−∞

eia·x
[
∂p(x, t)

∂t
+∇ · (f (x) p(x, t))

]
dx = 0, for all a ∈ Rn, (273)

which implies that the function between square bracket must be equal to zero for all x and all t, i.e.,

∂p(x, t)

∂t
+∇ · (f (x) p(x, t)) = 0 (Liouville equation). (274)
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