
AM 213B Prof. Daniele Venturi

Overview of numerical methods for ODEs

In this course note we provide a brief overview of common numerical methods to approximate the solution
of the initial value problem (IVP)

dy

dt
= f(y, t)

y(0) = y0

(1)

where y(t) = [y1(t) · · · yn(t)]T is a (column) vector of phase variables, f : D× [0, T] → Rn, D is a subset of
Rn, and T is the integration period. We have seen in AM 214 that if f(y, t) is Lipschitz continuous in an
open set D ⊆ Rn then the IVP (1) well-posed in D, i.e., the solution exists and is unique for all y0 ∈ D,
at least for some time τ > 0. The initial value problem (1) can be written as

y(t) = y(0) +

∫ t

0
f(y(s), s)ds, (2)

i.e., as an integral equation for y(t).

Picard iteration method. The Picard iteration method is rarely used in practice to compute numerical
solutions to ODEs, but rather to prove existence and uniqueness of solutions to ODEs. Picard’s method
is essentially a fixed point iteration in which the solution y(t) is approximated within some time interval
[0, t1] by the sequence of functions

y[0](t) → y[1](t) → · · · → y[k](t) → · · · t ∈ [0, t1] (3)

generated by equation (2), i.e.,

y[k+1](t) = y0 +

∫ t

0
f
(
y[k](s), s

)
ds, k = 0, 1, 2, . . . , t ∈ [0, t1]. (4)

Setting y[0](t) = y0 in (4) yields y[1](t). With y[1](t) available we can compute y[2](t), etc. A necessary
and sufficient condition for convergence of the sequence of functions y[k](t) is that the nonlinear operator
at the right-hand-side of (4), i.e.,

N(y)(t) = y0 +

∫ t

0
f (y(s), s) ds (5)

is a contraction1 (Banach fixed point theorem). This statement essentially sets an upper bound on t1
(integration time) that depends on the Lipschitz constant of f . The larger the Lipschitz constant, the
smaller t1. In other words, Picard iterations converge if and only only if t1 is chosen small enough, where
“how small” depends on the Lipschitz constant of f . Clearly, once y(t) has been computed to the desired
accuracy in [0, t1], we can then use y(t1) as initial condition for the next Picard iterations, i.e.,

y[k+1](t) = y(t1) +

∫ t

t1

f
(
y[k](s), s

)
ds t ∈ [t1, t2]. (8)

The Picard iteration method is not practical as it involves the evaluation of a integral at each iteration k.
Moreover, the integral has “t” as one of the endpoints.

1Let X be a function space with norm ∥ · ∥X . An operator N : X 7→ X is called a (strict) contraction if∥∥∥N (
y[k]

)
−N

(
y[j]

)∥∥∥
X

<
∥∥∥y[k] − y[j]

∥∥∥
X

(6)

In the case of (5) we have∥∥∥N (
y[k]

)
−N

(
y[j]

)
(t)

∥∥∥
X

≤
∥∥∥∥∫ t1

0

[
f
(
y[k](s), s

)
− f

(
y[j](s), s

)]
ds

∥∥∥∥
X

. (7)

Page 1

AM 213B Prof. Daniele Venturi

Elementary numerical methods

Let us partition the time interval [0, T] into an evenly-spaced grid with N time instants

t0 = 0, tN = T, ti+1 = ti +∆t i = 0, . . . , N − 1, (9)

where ∆t = T/N .

By using the semi-group property satisfied by the solution of ODE (1) we can write (2) within each time
interval [tk, tk+1] as

y(tk+1) = y(tk) +

∫ tk+1

tk

f (y(s), s) ds. (10)

This formulation is quite convenient for developing numerical methods for ODEs based on quadrature
formulas, i.e., numerical approximations of the one-dimensional temporal integral appearing at the right
hand side of (10).

Euler and Crank-Nicolson methods

These are basic numerical schemes that can be obtained by approximating the integral at the right hand
side of equation (10) by using the rectangle rule or the trapezoidal rule (see Figure 1). Specifically,∫ tk+1

tk

f (y(s), s) ds ≃ ∆tf (y(tk), tk) , (11)∫ tk+1

tk

f (y(s), s) ds ≃ ∆tf (y(tk+1), tk+1) , (12)∫ tk+1

tk

f (y(s), s) ds ≃ ∆t

2
[f (y(tk), tk) + f (y(tk+1), tk+1)] . (13)

Note that all these approximations are obtained via interpolatory quadratures, i.e., by replacing f (y(s), s)
with a polynomial in [tk, tk+1] and then integrating the polynomial. In particular, in (11) and (12) we use
constant polynomials while in (13) we use a linear polynomial. A substitution of (11)-(13) into (10) yields,
respectively, the following numerical schemes

uk+1 = uk +∆tf (uk, tk) Euler forward method (explicit), (14)

uk+1 = uk +∆tf (uk+1, tk+1) Euler backward method (implicit), (15)

uk+1 = uk +
∆t

2
[f (uk, tk) + f (uk+1, tk+1)] Crank-Nicolson method (implicit). (16)

In these methods uk represents an approximation of the exact solution y(tk). In Figure 2 we sketch the
difference between the analytical solution of (2) evaluated on a temporal grid, i.e., {y(t0),y(t1), . . .} and
the numerical solution uk obtained by iterating any of the schemes (14)-(16) (as a matter of fact any
numerical scheme).

Page 2

AM 213B Prof. Daniele Venturi

Euler forward Euler backward Crank-Nicolson

Figure 1: Elementary approximation of the integral

∫ ti+1

ti

f(y(s), s)ds in equation (10) leading to Euler

forward, Euler backward, and Crank-Nicolson methods.

Figure 2: Analytical solution y(t) of the ODE (2) evaluated on a temporal grid {t0, t1, . . .}, i.e., yi = y(ti),
and numerical solution ui obtained by iterating any of the schemes (14)-(16). Here we assume that the
initial condition used for the numerical scheme is exact, i.e. we set u0 = y0.

Both Euler and Crank-Nicolson methods are one-step methods. This means that the approximate solution
at time tk+1, i.e., uk+1, can be computed based on the solution (or its approximation) at time tk. The
Euler forward method allows us to compute uk+1 explicitly, given uk and f(uk, tk). On the other hand,
the Euler backward and Crank-Nicolson are implicit methods. This is because the approximate solution
at time tk+1, i.e., uk+1, cannot be computed explicitly based on uk, but it requires solving a nonlinear
(algebraic) equation. Specifically, for the Euler backward method we need to solve

uk+1 = G(uk+1) where G(uk+1) = uk +∆tf(uk+1, tk+1). (17)

Nonlinear equations of this form can be solved numerically using iterative methods (fixed point iterations)
such as the Newton’s method (provided f is of class C1). Upon definition of

F (uk+1) = uk+1 −G(uk+1) (18)

we can write (17) as
F (uk+1) = 0, ⇔ uk+1 is a zero of F . (19)

Equivalently, we can say that uk+1 is a fixed point of the map G defined in (17).

Newton’s method for nonlinear systems. To solve the nonlinear system of equations (19) one can
use Newton’s method or any other iterative root finding method. As is well known, the Newton’s method

Page 3

AM 213B Prof. Daniele Venturi

generates a sequence of vectors u
[j]
k+1 (j = 0, 1, . . .) converging to uk+1 under rather mild assumptions (see

Theorem 1 below, and [4, Ch. 7]). The Newton’s method for nonlinear systems can be written as2[
I − JG

(
u
[j]
k+1

)]
︸ ︷︷ ︸

matrix

(
u
[j+1]
k+1 − u

[j]
k+1

)
︸ ︷︷ ︸

vector

= G
(
u
[j]
k+1

)
− u

[j]
k+1︸ ︷︷ ︸

vector

j = 0, 1, . . . , (22)

where JG

(
u
[j]
k+1

)
is the Jacobian matrix of G defined in equation (17), evaluated at u

[j]
k+1. Equation (22)

allows us to compute u
[j+1]
k+1 given u

[j]
k+1 by solving a linear system. In practice, it is convenient to set the

initial guess u
[0]
k+1 for Newton’s iteration as u

[0]
k+1 = uk, i.e., the numerical solution at previous time step.

For ∆t sufficiently small the matrix at the left hand side of (22) is a perturbation of the identity (the
norm of JG goes to zero linearly in ∆t), and therefore I −JG is always invertible for sufficiently small ∆t.
Indeed, I − JG is diagonally dominant for small ∆t. More rigorously, we have the following convergence
result (see [4, Theorem 7.1]).

Theorem 1 (Convergence of Newton’s method). Let F (x) in equation (18) be of class C1 in a convex
open set D ⊆ Rn that contains a zero of F , i.e., a point x∗ ∈ D such that F (x∗) = 0. If JF (x) is invertible
at x∗ (it always is for sufficiently small ∆t), and JF (x) is Lipschitz continuous in a neighborhood of x∗,
i.e.,

∥JF (x)− JF (y)∥ ≤ L ∥x− y∥ (23)

then there exists a neighborhood of x∗ such that for any initial guess x[0] within such a neighborhood we
have that the sequence x[k] generated by

JF

(
x[k]
)(

x[k+1] − x[k]
)
= −F

(
x[k]
)

(24)

converges to x∗ with order 2. In other words, there exists m ∈ N such that∥∥∥x[k+1] − x∗
∥∥∥ ≤ C

∥∥∥x[k] − x∗
∥∥∥2 for all k ≥ m. (25)

In equation (23) the norm at the left-hand-side is any matrix norm compatible with the vector norm at
the right hand side (see Appendix A).

Remark: We emphasize that explicit and implicit Euler methods (14)-(15) can be also derived by replacing
dy/dt in (1) with the first-order forward/backward finite-differentiation approximation

dy(tk)

dt
≃y(tk+1)− y(tk)

∆t
= f(y(tk), tk), (26)

dy(tk+1)

dt
≃y(tk+1)− y(tk)

∆t
= f(y(tk+1), tk+1). (27)

2To derive the Newton’s method for nonlinear systems of algebraic equations, consider the Taylor series

F
(
u

[j+1]
k+1

)
= F

(
u

[j]
k+1

)
+ JF

(
u

[j]
k+1

)(
u

[j+1]
k+1 − u

[j]
k+1

)
+ · · · j = 0, 1, (20)

Setting F
(
u

[j+1]
k+1

)
= 0 yields

JF

(
u

[j]
k+1

)(
u

[j+1]
k+1 − u

[j]
k+1

)
= −F

(
u

[j]
k+1

)
j = 0, 1, . . . (21)

which, upon substitution of (18), coincides with the Newton method (22).

Page 4

AM 213B Prof. Daniele Venturi

Figure 3: Approximation of the integral

∫ tk+1

tk

f(y(s), s)ds in (10) leading to midpoint method. Here we

set fk = f(y(tk), tk).

Heun’s method

If we replace uk+1 at the right hand side of (16) with one step of the Euler forward scheme (14) we obtain
the Heun method

uk+1 = uk +
∆t

2
[f (uk, tk) + f (uk +∆tf(uk, tk), tk+1)] Heun method (explicit) (28)

The Heun method is a one-step explicit method that belongs to the class of two-stage explicit Runge-Kutta
methods discussed below.

Midpoint method

We approximate the integral at the right hand side of (10) using the midpoint rule yields∫ tk+1

tk

f(y(s), s)ds ≃ ∆tf

(
y

(
tk +

∆t

2

)
, tk +

∆t

2

)
. (29)

At this point, we approximate y(tk +∆t/2) using the Euler forward method to obtain

y

(
tk +

∆t

2

)
≃ y(tk) +

∆t

2
f(y(tk), tk) (30)

to obtain

uk+1 = uk +∆tf

(
uk +

∆t

2
f(uk, tk), tk +

∆t

2

)
explicit mipoint method (31)

where uk is an approximation of y(tk). The explicit midpoint method is a one-step method that belongs to
the class of two-stage explicit Runge-Kutta methods. Note that the explicit midpoint method is different
from the Heun method (28).

Approximating y(tk +∆t/2) by the average

y

(
tk +

∆t

2

)
≃ y(tk) + y(tk+1)

2
(32)

yields

uk+1 = uk +∆tf

(
uk + uk+1

2
, tk +

∆t

2

)
implicit mipoint method (33)

The implicit midpoint method is a one-step symplectic integrator, i.e., the scheme preserves the Hamiltonian
when applied to Hamiltonian dynamical systems, e.g., pendulum or double-pendulum equations. There is
a vast literature on structure-preserving integration methods for ODEs (see, e.g., [1]).

Page 5

AM 213B Prof. Daniele Venturi

Figure 4: Derivation of the two-step Adams-Bashforth scheme (AB2). We first construct the polynomial
(line) Π1f that interpolates f(y(s), s) at tk−1 and tk. Subsequently, we extrapolate Π1f to [tk, tk+1] and
compute the integral in equation (34).

Figure 5: Derivation of the three-step Adams-Bashforth scheme (AB3). We first construct the polynomial
Π2f that interpolates f(y(s), s) at tk−2, tk−1 and tk. Subsequently, we extrapolate Π2f to [tk, tk+1] and
compute the integral in equation (34).

Adams-Bashforth methods

These are explicit multistep methods constructed by replacing the integral at the right hand side of (10)
with the integral of a polynomial interpolant of f(y(s), s) at {tk, tk−1, · · · tk−q} which is then extrapolated
into [tk, tk+1] to compute the integral. In other words, we introduce the following approximation∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Πqf(y(s), s)ds (34)

where Πqf(y(s), s) is a polynomial of degree q interpolating

{fk,fk−1, . . . ,fk−q} at {tk, tk−1, . . . , tk−q} (35)

where fk = f(y(tk), tk).

It is very convenient to use Lagrangian interpolation to derive the polynomial Πqf . Hereafter we derive
the Adams-Bashforth (AB) methods for q = 0, 1, 2.

• One-step Adams-Bashforth method (AB1):

q = 0 ⇒ Π0f(y(s), s) = fk (36)

Page 6

AM 213B Prof. Daniele Venturi

where fk = f(y(tk), tk). Hence,∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Π0f(y(s), s)ds = ∆tf(y(tk), tk). (37)

This yields
uk+1 = uk +∆tf(uk, tk) AB1 method. (38)

Note that the AB1 method coincides with the Euler forward method.

• Two-step Adams-Bashforth method (AB2): Here we have (see Figure 4)

q = 1 ⇒ Π1f(y(s), s) = fklk(s) + fk−1lk−1(s) (39)

where lk(s) and lk−1(s) are Lagrange characteristic polynomials

lk(s) =
s− tk−1

tk − tk−1
, lk−1(s) =

s− tk
tk−1 − tk

. (40)

The interpolant can be explicitly written as

Π1f(y(s), s) = fk
s− tk−1

tk − tk−1
+ fk−1

s− tk
tk−1 − tk

. (41)

The (linear) polynomial Π1f(y(s), s) is constructed in [tk−1, tk] and it can be integrated exactly in
[tk, tk+1] using the trapezoidal rule. To this end, we notice that

Π1f(y(tk), tk) =fk, (42)

Π1f(y(tk+1), tk+1) =fk
tk+1 − tk−1

tk − tk−1
+ fk−1

tk+1 − tk
tk−1 − tk

=2fk − fk−1. (43)

which gives us ∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Π1f(y(s), s)ds =
∆t

2
(3fk − fk−1) . (44)

Substituting this back into (10) yields the scheme

uk+1 = uk +
∆t

2
[3f(uk, tk)− f(uk−1, tk−1)] AB2 method. (45)

• Three-step Adams-Bashforth method (AB3): With reference to Figure 5

q = 2 ⇒ Π2f(y(s), s) = fklk(s) + fk−1lk−1(s) + fk−2lk−2(s), (46)

where lk(s), lk−1(s) and lk−2(s) are Lagrange characteristic polynomials

lk(s) =
s− tk−1

tk − tk−1

s− tk−2

tk − tk−2
, (47)

lk−1(s) =
s− tk

tk−1 − tk

s− tk−2

tk−1 − tk−2
, (48)

lk−2(s) =
s− tk

tk−2 − tk

s− tk−1

tk−2 − tk−1
. (49)

By integrating Π2f(y(s), s) from tk to tk+1 we obtain∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Π2f(y(s), s)ds =
∆t

12
(23fk − 16fk−1 + 5fk−2) . (50)

Substituting this back into (10) yields the scheme

uk+1 = uk +
∆t

12
[23f(uk, tk)− 16f(uk−1, tk−1) + 5f(uk−2, tk−2)] AB3 method. (51)

Page 7

AM 213B Prof. Daniele Venturi

Figure 6: Derivation of the two-step Adams-Moulton scheme (AM2). We first construct the polynomial
Π2f that interpolates f(y(s), s) at tk−1, tk and tk+1. Subsequently, we use Π2f polynomial to approximate
the integral in equation (34).

Higher-order Adams-Bashforth schemes can be obtained similarly. Note that in order to start-up a linear
multistep scheme we need to compute the solution at the intermediate steps using different methods. For
example, we could start-up the AB2 method with one step of the Heun method (to compute u1) and then
carry on the integration using the scheme (45)

Adams-Moulton methods

These are implicit multistep methods in which the time integral at the right hand-side of (10) is approxi-
mated by replacing f(y(s), s) by a polynomial Πqf(y(s), s) of degree q interpolating

{fk+1,fk, . . . ,fk−q+1} at {tk+1, tk−1, . . . , tk−q+1} (52)

The main difference with respect to Adams-Bashforth methods is that there is no extrapolation step, i.e.,
the point (tk+1,fk+1) is included in the interpolation process (see Figure 6). Let us derive the Adams-
Moulton schemes for q = 0, 1, 2.

• One-step Adams-Moulton method (AM0):

q = 0 ⇒ Π0f(y(s), s) = fk+1 (53)

where fk+1 = f(y(tk+1), tk+1). Hence,∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Π0f(y(s), s)ds = ∆tf(y(tk+1), tk+1). (54)

This yields
uk+1 = uk +∆tf(uk+1, tk+1) AM0 method. (55)

Note that the AM0 method coincides with the Euler backward method.

• One-step Adams-Moulton method (AM1):

q = 1 ⇒ Π1f(y(s), s) = fk+1lk+1(s) + fklk(s) (56)

where lk(s) and lk−1(s) are Lagrange characteristic polynomials

lk+1(s) =
s− tk

tk+1 − tk
, lk(s) =

s− tk+1

tk − tk+1
. (57)

Page 8

AM 213B Prof. Daniele Venturi

This yields

Π1f(y(s), s) = fk+1
s− tk

tk+1 − tk
+ fk

s− tk+1

tk − tk+1
. (58)

The (linear) polynomial Π1f(y(s), s) is constructed in [tk, tk+1] and it can be integrated exactly in
the same interval. To this end, we notice that

Π1f(y(tk), tk) =fk, (59)

Π1f(y(tk+1), tk+1) =fk+1 (60)

which imply ∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Π1f(y(s), s)ds =
∆t

2
(fk+1 + fk) . (61)

Substituting this back into (10) yields the scheme

uk+1 = uk +
∆t

2
[f(uk+1, tk+1) + f(uk, tk)] AM1 method (62)

Hence, the AM1 scheme coincides with the Crank-Nicolson scheme.

• Two-step Adams-Moulton method (AM2):

q = 2 ⇒ Π2f(y(s), s) = fk+1lk+1(s) + fklk(s) + fk−1lk−1(s). (63)

where lk+1(s), lk(s) and lk−1(s) are Lagrange characteristic polynomials

lk+1(s) =
s− tk

tk+1 − tk

s− tk−1

tk+1 − tk−1
, (64)

lk(s) =
s− tk+1

tk − tk+1

s− tk−1

tk − tk−1
, (65)

lk−1(s) =
s− tk+1

tk−1 − tk+1

s− tk
tk−1 − tk

. (66)

By integrating Π2f(y(s), s) from tk to tk+1 we obtain∫ tk+1

tk

f(y(s), s)ds ≃
∫ tk+1

tk

Π2f(y(s), s)ds =
∆t

12
(5fk+1 + 8fk − fk−1) . (67)

Substituting this back into (10) yields the scheme

uk+1 = uk +
∆t

12
[5f(uk+1, tk+1) + 8f(uk, tk)− f(uk−1, tk−1)] AM2 method. (68)

Backward differentiation formulas (BDF) methods

These are implicit multistep methods that perform well for stiff problems. These methods are obtained
by approximating dy(t)/dt in (1) using a backward finite-difference (BFD) formula. These formulas are
obtained by interpolating y(s) at {tk+1, tk, . . . , tk−q+1} with a polynomial of degree q, differentiating the
polynomial and evaluating the derivative at t = tk+1 (see Figure 7). Let us derive the first few BDF
methods.

Page 9

AM 213B Prof. Daniele Venturi

Figure 7: Derivation of the three-step backward differentiation formula (BDF3) method. We first construct
the polynomial Π3f that interpolates y(t) at tk−2, tk−1, tk, and tk+1. Subsequently, approximate the
derivative of y(t) at tk+1 with the derivative of the polynomial Π3y(t) at tk+1.

• One-step BDF method (BDF1):

Π1y(s) = yk+1lk+1(s) + yklk(s) (69)

where the Lagrange characteristic polynomials are given by

lk+1(s) =
s− tk

tk+1 − tk
, lk(s) =

s− tk+1

tk − tk+1
(70)

We approximate the derivative of y(s) at tk+1 with the derivative of the polynomial Π1y(s) at tk+1,
i.e.,

dy(tk+1)

dt
≃ dΠ1y(tk+1)

dt
=

yk+1 − yk

∆t
. (71)

Substituting this approximation into the exact equation

dy(tk+1)

dt
= f(y(tk+1), tk+1) (72)

yields the scheme
uk+1 − uk = ∆tf(uk+1, tk+1). (73)

Note that BDF1 coincides with the Euler backward scheme.

• Two-step BDF method (BDF2):

Π2y(s) = yk+1lk+1(s) + yklk(s) + yk−1lk−1(s) (74)

where the Lagrange characteristic polynomials are given by

lk+1(s) =
s− tk

tk+1 − tk

s− tk−1

tk+1 − tk−1
, (75)

lk(s) =
s− tk+1

tk − tk+1

s− tk−1

tk − tk−1
, (76)

lk−1(s) =
s− tk+1

tk−1 − tk+1

s− tk
tk−1 − tk

. (77)

Page 10

AM 213B Prof. Daniele Venturi

We approximate the derivative of y(s) at tk+1 with the derivative of the polynomial Π1y(s) at tk+1,
i.e.,

dy(tk+1)

dt
≃ dΠ2y(tk+1)

dt
=

3yk+1 − 4yk + yk−1

2∆t
. (78)

Substituting this approximation into the exact equation

dy(tk+1)

dt
= f(y(tk+1), tk+1) (79)

yields the scheme
3

2
uk+1 − 2uk +

1

2
uk−1 = ∆tf(uk+1, tk+1). (80)

• Three-step BDF method (BDF3): By following a similar procedure as in BDF2 it is straight-
forward to show that

11

6
uk+1 − 3uk +

3

2
uk−1 −

1

3
uk−2 = ∆tf(uk+1, tk+1). (81)

Linear multistep methods (LMM)

The general form of a linear multistep method is

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βj f(uk+j , tk+j)︸ ︷︷ ︸
fk+j

. (82)

Note that Adams-Bashforth, Adams-Moulton and BDF methods are all in the form (82). To avoid non-
uniqueness of coefficients due to rescaling we set αq = 1. Clearly, if βq = 0 and then the method is explicit.
On the other hand, if βq ̸= 0 then the method is implicit. Let us provide a few examples.

Example: The AB3 method

uk+3 = uk+2 +
∆t

12
(23fk+2 − 16fk+1 + 5fk) (83)

can be written in the form (82) by setting

α3 = 1 α2 = −1, α1 = 0, α0 = 0,

β3 = 0, β2 =
23

12
, β1 = −16

12
, β0 =

5

12
.

Note that (α3, β3) = (1, 0) (the method is explicit) and

3∑
j=0

βj = 1. (84)

Example: The BDF2 method

uk+2 −
4

3
uk+1 +

1

3
uk =

2

3
∆tfk+2 (85)

can be written in the form (82) by setting

α2 = 1, α1 = −4

3
, α0 =

1

3
, β2 =

2

3
, β1 = 0, β0 = 0. (86)

Page 11

AM 213B Prof. Daniele Venturi

Note that (α2, β2) = (1, 2/3) (the method is implicit) and

2∑
j=0

αj = 0,

2∑
j=0

(βj − jαj) = 0. (87)

As we will see the conditions (84) and (87) guarantee that AB3 and BDF2 are consistent methods, i.e.,
that the truncation error of these methods goes to zero as we send ∆t to zero. Roughly speaking this
means that the numerical schemes (83) and (85) converge to the ODE (1) as ∆t → 0. This is necessary
but not sufficient for the numerical solution generated by the scheme to converge to the analytical solution.
The other element that is needed for convergence is zero-stability. The consistency conditions for a general
linear q-step method are

q∑
j=0

αj = 0,

q∑
j=0

(βj − jαj) = 0. (88)

Remark: The linear multistep methods we have seen (Adams and BDF) rely on a polynomial interpolation
process on an evenly-spaced temporal grid. As we know, polynomial interpolation on evenly spaced grids
is, in general, ill-conditioned and can undergo a severe Runge’s phenomenon depending on the function we
are interpolating. However, the interpolation process of a function with a polynomial of fixed degree, say
q + 1, within a small a time interval (equal to q∆t for a q-step method) is convergent as ∆t goes to zero.
To show this, recall the following error estimate we obtained in course note 1 (equation (23))

∥g −Πqg∥∞ ≤ ∆tq+1

∥∥g(q+1)
∥∥
∞

(q + 1)
, (89)

where g(t) is any function of class Cq+1 in [t−q∆t, t] and Πqg(t) is a polynomial of degree q that interpolates
g(t) at {t, t−∆t, . . . , t− q∆t}. The upper bound in (89) goes to zero as we send ∆t to zero.

Runge-Kutta methods

Runge-Kutta (RK) methods are one-step methods (implicit or explicit) that aim at increasing accuracy by
increasing the number of function evaluations within each time step. The general form of a RK method
with s stages is

uk+1 = uk +∆t

s∑
i=1

biKi (90)

where

Ki = f

uk +∆t

s∑
j=1

aijKj , tk + ci∆t

 . (91)

The coefficients of the RK method are usually collected in a table called Butcher array The matrix elements

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

aij in the Butcher array can be positive or negative, while ci and bi are real numbers in [0, 1]. The coefficients
ci ∈ [0, 1] are sometimes referred to as “nodes” as they identify appropriate time instants between tk and

Page 12

AM 213B Prof. Daniele Venturi

tk+1 in which f is evaluated. On the other hand, bi ∈ [0, 1] are sometimes referred to as “weights” since
they appear in the weighted sum (90).

We will see that consistency of RK methods, i.e., the fact that (90) converges to (1) as ∆t → 0 implies the
following condition

s∑
j=1

bi = 1. (92)

Moreover, it is usually assumed that

ci =
s∑

j=1

aij . (93)

Such a “row-sum condition” is not needed for a consistent method.

If aij = 0 for j ≥ i then each Ki can be computed recursively from the previous ones and the RK method
is explicit. Otherwise the RK method is implicit. Let us provide a few examples of RK methods.

• Euler forward method: The Euler forward method (14) can be seen as a one-step explicit RK
method. The Butcher array corresponding to such explicit RK1 method is

0 0

1

• Heun method: The Heun mehod (28) is a two-stage explicit Runge-Kutta method. The Butcher
array for the Heun method is:

0 0 0
1 1 0

1/2 1/2

This table corresponds to the following RK2 method

uk+1 = uk +
∆t

2
(K1 +K2) , (94)

where

K1 =f (uk, tk) , (95)

K2 =f (uk +∆tf(uk, tk), tk +∆t) . (96)

• Crank-Nicolson method: The Crank-Nicolson (CN) mehod (16) is a two-stage implicit Runge-
Kutta method. The Butcher array corresponding to such method is:

0 0 0
1 1/2 1/2

1/2 1/2

This table corresponds to the following RK2 method

uk+1 = uk +
∆t

2
(K1 +K2) , (97)

where

K1 =f (uk, tk) , (98)

K2 =f

(
uk +

∆t

2
(K1 +K2) , tk+1

)
. (99)

Page 13

AM 213B Prof. Daniele Venturi

From equation (97) we see that

∆t

2
(K1 +K2) = uk+1 − uk. (100)

Substituting this expression into (99) yields

K1 = f (uk, tk) , K2 = f (uk+1, tk+1) . (101)

• Kutta’s method: This method is an explicit 3-stage method corresponding to the Butcher array:

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6

The method can be written as

K1 =f(uk, tk), (102)

K2 =f

(
uk +

∆t

2
K1, tk +

∆t

2

)
, (103)

K3 =f (uk −∆tK1 + 2∆tK2, tk +∆t) , (104)

uk+1 = uk +
∆t

6
(K1 + 4K2 +K3) . (105)

• Runge-Kutta method (RK4): The most famous RK method is perhaps the one proposed in the
original paper by Runge and Kutta. The scheme is 4-stage explicit and can be written as

K1 =f(uk, tk), (106)

K2 =f

(
uk +

∆t

2
K1, tk +

∆t

2

)
, (107)

K3 =f

(
uk +

∆t

2
K2, tk +

∆t

2

)
, (108)

K4 =f (uk +∆tK3, tk +∆t) , (109)

uk+1 = uk +
∆t

6
(K1 + 2K2 + 2K3 +K4) . (110)

The Butcher array for this scheme is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Page 14

AM 213B Prof. Daniele Venturi

Derivation of explicit RK2 methods. Let us show how to derive an arbitrary explicit two-stage RK
method. To this end, we first write the Butcher array:

0 0 0
c c 0

b1 b2

The RK2 method corresponding to this table can be written explicitly as

uk+1 = uk +∆t(b1K1 + b2K2) (111)

where

K1 = f(uk, tk), K2 = f(uk + c∆tK1, tk + c∆t). (112)

Expand K2 in a Taylor series in ∆t to obtain

K2 =K1 + c∆t

 n∑
j=1

∂f

∂yj
K1j +

∂f

∂t

+ · · ·

=f(uk, tk) + c∆t

 n∑
j=1

∂f(uk, tk)

∂yj
fj(uk, tk) +

∂f(uk, tk)

∂t

+ · · · . (113)

A substitution of this expression into (111) yields

uk+1 = uk +∆t(b1 + b2)f(uk, tk) + b2c(∆t)2

 n∑
j=1

∂f(uk, tk)

∂yj
fj(uk, tk) +

∂f(uk, tk)

∂t

+ · · · . (114)

Next, we expand the solution to the ODE (1) in a Taylor series

y(tk+1) = y(tk) +
dy(tk)

dt
∆t+

(∆t)2

2

d2y(tk)

dt2
+ · · · . (115)

By using (1) and the chain rule we obtain:

dy(tk)

dt
= f(yk, tk),

d2y(tk)

dt2
=

n∑
j=1

∂f(yk, tk)

∂yj
fj(yk, tk) +

∂f(yk, tk)

∂t
. (116)

Assuming that yk = uk and matching the terms multiplying the same powers of ∆t in (114) and (115) we
obtain3

b1 + b2 = 1 and cb2 =
1

2
. (117)

This is a system of 2 equations in 3 unknowns. Thus, there is an infinite number of explicit (and consistent)
RK2 methods. For example, setting

c = 1, b1 = b2 =
1

2
yields the Heun method (28). (118)

On the other hand, setting

c =
1

2
, b1 = 0 b2 = 1 yields the explicit midpoint method (31). (119)

3The condition b1 + b2 = 1 is a consistency condition which guarantees that the scheme (111) converges to the ODE (1) in
the limit ∆t → 0.

Page 15

AM 213B Prof. Daniele Venturi

Derivation of higher order explicit RK methods. By using the Taylor series approach discussed
in previous section, it is possible to derive conditions on the entries of the Butcher array for explicit RK
methods with an arbitrary number of stages. Essentially, one can perform a Taylor series of the RK
method in ∆t and then match it with the Taylor series expansion of the solution up to a given order.
The corresponding equations for the coefficients, e.g., (117) are called stage-order conditions (see, e.g., [2,
§5.9]). For example, it can be shown that the stage-order conditions for a three stage explicit RK method
corresponding to the arbitrary Butcher array

0 0 0 0
c2 a21 0 0
c3 a31 a32 0

b1 b2 b3

are

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b3a32c2 =
1

6

(120)

This system admits one two-parameter family of solutions and two one-parameter families of solutions (see
[2, p. 178]). Hereafter we list a few three-stage explicit RK methods satisfying (120):

0 0 0 0
1/3 1/3 0 0
2/3 0 2/3 0

1/4 0 3/4

Heun’s method

0 0 0 0
8/15 8/15 0 0
2/3 1/4 5/12 0

1/4 0 3/4

Van der Houwen’s/Wray method

0 0 0 0
1/2 1/2 0 0
3/4 0 3/4 0

2/9 1/3 4/9

Ralson’s method

The Taylor series approach rapidly become intractable as the number of stages increases, and so does the
corresponding stage-order conditions. Fortunately, there is a more efficient way to derive conditions such
as (117) using rooted trees (see [2, §5.6]).

Derivation of implicit RK methods. Implicit RK methods are very expensive to implement and
cannot rival explicit RK methods in terms of efficiency (for non-stiff problems). R can be derived from
the integral formulation (10) of the Cauchy problem. In particular, consider a quadrature formula with s

Page 16

AM 213B Prof. Daniele Venturi

nodes in [tk, tk+1] to approximate the integral at the right hand side of (10),∫ tk+1

tk

f(y(s), s)ds ≃ ∆t

s∑
j=1

bjf (y(tk + cj∆t), tk + cj∆t) . (121)

Here, we denoted by bj the quadrature weights and by tk + cj∆t the quadrature nodes. The coefficients
aij of an implicit RK method can be derived based on the weights bj and the nodes cj of the quadrature
formula (121) and appropriated stage-order conditions (see, [2, §5.11] for details). For instance, the implicit
midpoint method can be seen as a one-step implicit RK method based on a 1-point Gauss-Legendre
quadrature rule (i.e., the midpoint of the interval [tk, tk+1]. This method corresponds to the Butcher array
and can attain order 2.

1/2 1/2

1

Similarly, the following (implicit) Gauss-Legendre-RK method with two stages

1/2−
√
3/6 1/4 1/4−

√
3/6

1/2 +
√
3/6 1/4 +

√
3/6 1/4

1/2 1/2

can attain order 4. In general, an implicit s-stage Gauss-RK method can attain order 2s, while Gauss-
Radau-RK and Gauss-Lobatto-RK methods can achieve order 2s− 1 and 2s− 2, respectively.

Page 17

AM 213B Prof. Daniele Venturi

Appendix A: Vector norms and matrix norms

In this appendix we briefly review the most common vector norms in Rn and their equivalence. We also
discuss common matrix norms induced by vector norms.

Vector norms and their equivalence

As is well known, all norms defined in a finite-dimensional vector space (such as Rn) are equivalent. This
means that if we pick two arbitrary norms in Rn, say ∥·∥a and ∥·∥b , then there exist two numbers c1 and
c2 such that

c1 ∥y∥a ≤ ∥y∥b ≤ c2 ∥y∥a for all y ∈ Rn. (122)

The most common norms in Rn are

∥y∥∞ = max
k=1,..,n

|yk| , (123)

∥y∥1 =
n∑

k=1

|yk| , (124)

∥y∥2 =

(
n∑

k=1

|yk|2
)1/2

, (125)

... (126)

∥y∥p =

(
n∑

k=1

|yk|p
)1/p

p ∈ N \ {∞}. (127)

Based on these definitions it is easy to show, e.g., that

∥y∥∞ ≤ ∥y∥1 ≤ n ∥y∥∞ , (128)

∥y∥2 ≤ ∥y∥1 ≤
√
n ∥y∥2 , (129)

∥y∥∞ ≤ ∥y∥2 ≤
√
n ∥y∥∞ . (130)

As an example, if f(y, t) in (1) is Lipschitz continuous in D with respect to the 1-norm, i.e.,

∥f(y1, t)− f(y2, t)∥1 ≤ L1 ∥y1 − y2∥1 for all y1,y2 ∈ D, for all t ≥ 0 (131)

then it is also Lipschitz continuous with respect to the uniform norm. In fact, by using (128) we have

∥f(y1, t)− f(y2, t)∥∞ ≤ L1n︸︷︷︸
L∞

∥y1 − y2∥∞ . (132)

Of course, f(y, t) is also Lipschitz continuous with respect to the 2-norm.

Matrix norms induced by vector norms

Let us define the following matrix norm

∥A∥ = sup
y ̸=0Rn

∥Ay∥
∥y∥

= sup
∥y∥=1

∥Ay∥ . (133)

where the norm at the right hand side is any vector norm. Clearly, ∥A∥ is matrix norm (prove it as
exercise), which satisfies, by definition, the following inequality

∥A∥ ≥ ∥Ay∥
∥y∥

i.e. ∥Ay∥ ≤ ∥A∥ ∥y∥ . (134)

Page 18

AM 213B Prof. Daniele Venturi

It is straightforward to show that

∥A∥∞ = max
i=1,..,n

 n∑
j=1

|Aij |

 , (135)

∥A∥1 = max
j=1,..,n

(
n∑

i=1

|Aij |

)
, (136)

∥A∥2 =
√
λmax (ATA) = σmax(A), (137)

where σmax(A) is the largest singular value of the matrix A. For example,

∥Ay∥∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑

j=1

Aijyj

∣∣∣∣∣∣ ≤ max
i=1,...,n

 n∑
j=1

|Aij | |yj |

 ≤ ∥y∥∞ max
i=1,...,n

 n∑
j=1

|Aij |

 (138)

which implies that

∥Ay∥∞
∥y∥∞

≤ max
i=1,...,n

 n∑
j=1

|Aij |

 for all y ̸= 0Rn , (139)

i.e.,

sup
y ̸=0Rn

∥Ay∥∞
∥y∥∞

= max
i=1,...,n

 n∑
j=1

|Aij |

 = ∥A∥∞ . (140)

References

[1] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving algorithms
for ordinary differential equations. Springer, 2006.

[2] J. D. Lambert. Numerical methods for ordinary differential systems: the initial value problem. Wiley,
1991.

[3] R. LeVeque. Finite difference methods for ordinary and partial differential equations. SIAM, 2007.

[4] A. Quarteroni, R. Sacco, and F. Salieri. Numerical mathematics. Springer, 2007.

Page 19

