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Consistency of numerical methods for ODEs

In the previous course note we provided an overview of numerical methods to solve an initial value problem
for the system of ODEs 

dy

dt
= f(y, t)

y(0) = y0

(1)

In particular, we discussed linear multistep methods (LMM), Runge-Kutta methods (RK), and backward
differentiation formulas (BFD) methods. All these methods can be written in the general form (see [1, p.
24])

q∑
j=0

αjuk+j = ∆tΦf (uk+q, . . . ,uk, tk,∆t), (2)

where Φf is an iteration function that depends on f (right hand side of Eq. (1)), tk, ∆t and the approximate
solution uk at different time steps. Equation (2) has only one unknown, i.e., uk+q (numerical solution at
time tk+q, which can be computed from (2) either implicitly or explicitly given {uk+q−1, . . . ,uk} (numerical
solution at previous time steps).

In (2) we set αq = 1 to avoid non-uniqueness of the set of coefficients {αj}, e.g., when we multiply (2) by
a nonzero constant. The iteration function Φf satisfies the following conditions

Φ0(uk+q, . . . ,uk, tk,∆t) = 0, (3)

∥Φf (zk+q, . . . ,zk, tk,∆t)−Φf (uk+q, . . . ,uk, tk,∆t)∥ ≤M

q∑
j=0

∥uk+j − zk+j∥ . (4)

The second condition follows from the assumption that f is Lipshitz continuous. Let us show how to write
a few well-known schemes in the form (2).

• Crank-Nicolson (AM1 or implicit RK2):

The Crank-Nicolson scheme corresponds to q = 1 (one step), with α1 = 1, α0 = −1 and iteration
function given by

Φf (uk,uk+1, tk,∆t) =
1

2
[f(uk, tk) + f(uk+1, tk +∆t)] . (5)

• Heun (explicit RK2):

Here we have again q = 1 (one step), α1 = 1, α0 = −1 and iteration function given by

Φf (uk, tk,∆t) =
1

2
[f(uk, tk) + f(uk +∆tf(uk, tk), tk +∆t)] . (6)

• Adams-Bashforth 2:

Here we have q = 2 (two-steps), α2 = 1, α1 = −1, α0 = 0

Φf (uk+1,uk, tk,∆t) =
1

2
[3f(un+1, tk +∆t)− f(uk, tk)] . (7)

Clearly, if f is Lipschitz continuous then the iteration functions (5)-(7) satisfy condition (4) for some
M ≥ 0. Moreover, as easily seen, they all satisfy condition (3).
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Local truncation error and consistency

The local truncation error of a numerical scheme is the error arising from the scheme when we perform one
step forward from an exact initial condition, i.e., an initial condition defined by the analytical solution of
the ODE system (1). In other words, it is the error that we make when we substitute the exact solution
into the scheme.

Let y(t) be the analytical solution of (1), and denote by yk = y(tk). The local truncation error of the
scheme (2), denoted as τk+q, is defined as

q∑
j=0

αjyk+j = ∆tΦf (yk+q, . . . ,yk, tk,∆t) + ∆tτk+q, (8)

i.e.,

τk+q =
1

∆t

q∑
j=0

αjyk+j −Φf (yk+q, . . . ,yk, tk,∆t), (local truncation error) (9)

The global truncation error of a numerical scheme that undergoes multiple iterations, say N within a
certain time interval [0, T ], is defined as

∥τ∥ = max
k=1,...,N

∥τk+q∥ . (10)

Definition 1 (Consistency). Let τk+q be the local truncation error of the scheme (2). If

lim
∆t→0

∥τk+q∥ = 0 (11)

then we say that the numerical scheme (2) is consistent. If ∥τk+q∥ goes to zero as ∆tp then we say that
the numerical scheme is consistent with order p.

Stated in simple terms, a consistent numerical scheme is a scheme that converges to the ODE (1) (to some
order in ∆t) when we send ∆t to zero. As we will see, this is not alone sufficient to guarantee that the
numerical solution we obtain by iterating the scheme (i.e., uk), converges to the solution to (1), i.e.,

lim
∆t→0

∥uk − yk∥ = 0 for all k = 0, . . . , N (convergence). (12)

In order for uk to converge to yk = y(tk) as ∆t → 0 the scheme must to be consistent and zero-stable.

Remark: In equations (11)-(12) ∥ · ∥ denotes any norm in Rn. Since all norms are equivalent in Rn (see
Appendix A, in course note 2) we have that consistency in one norm implies consistency in any other norm.
Also, the order of consistency does not depend on the norm that is used. Let us consider a few examples
in which we show how to calculate the local truncation error and the order of consistency.

• Consistency of Euler-Forward: The Euler forward scheme

uk+1 = uk +∆tf(uk, tk) (13)

is consistent with order one. To this end, suppose we have available the analytical solution y(t) to
(1), and denote by

yk+1 = y(tk+1). (14)

A substitution of this expression into (13) yields

yk+1 = yk +∆tf(yk, tk) + ∆tτk+1, (15)
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Figure 1: Geometric meaning of the local truncation error (LTE) for the Euler forward scheme. The LTE
represents is the difference (divided by ∆t) between the analytical solution at time tk+1, i.e., ytk+1, and
the numerical solution uk+1 obtained by applying the Euler scheme to the “exact” initial condition yk.

i.e.,

τk+1 =
yk+1 − yk

∆t
− f(yk, tk). (16)

By expanding yk+1 = y(tk+1) in a Taylor series (in time) we obtain1

yk+1 = yk +∆t
dy(tk)

dt
+

∆t2

2

d2y(ξk)

dt2︸ ︷︷ ︸
remainder

, ξk ∈ [tk, tk+1]
n. (17)

In this equation, y(ξk) denotes a vector with components

y(ξk) =


y1(ξ1k)
y2(ξ2k)

...
yn(ξnk)

 . (18)

Substituting the series (17) into the expression (16) and computing the norm yields

∥τk+1∥ =
∆t

2

∥∥∥∥d2y(ξk)dt2

∥∥∥∥ . (19)

Hence, the Euler forward method is consistent with order one. In Figure 1 we show the geometric
meaning of the local truncation error for the Euler forward method.

• Consistency of Crank-Nicolson: The Crank-Nicolson scheme

uk+1 = uk +
∆t

2
[f(uk, tk) + f(uk+1, tk+1)] (20)

is consistent with order two. To show this, let us substitute of the analytical solution of (1), denoted
as yk = y(tk), into (20) to obtain the local truncation error

τk+1 =
yk+1 − yk

∆t
+

1

2
[f(yk, tk) + f(yk+1, tk+1)] . (21)

1Equation (17) represents simultaneously n different Taylor series, one for each yj(tk + ∆t), j = 1, . . . , n. This yields
a remainder for each series in which the second derivative d2yj/dt

2 is evaluated at some point ξjk within the time interval
[tk, tk+1]. If we use a vector notation, this yields a vector ξk representing a point in the hyper-cube [tk, tk+1]

n.
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Next, we expand f(yk+1, tk+1) in a Taylor series

f(yk+1, tk+1) = f(yk, tk) + ∆t
df(y(t), t)

dt

∣∣∣∣
t=tk

+
∆t2

2

d2f(y(t), t)

dt2

∣∣∣∣
t=tk

+ · · · . (22)

Similarly, expand yk+1 in a Taylor series

yk+1 = yk +∆t
dy(tk)

dt
+

∆t2

2

d2y(tk)

dt2
+

∆t3

6

d3y(tk)

dt3
+ · · · . (23)

A substution of (22)-(23) into (21) yields2 after simple algebraic simplifications

∥τk+1∥ =
2

3
∆t2

∥∥∥∥d3y(tk)dt3

∥∥∥∥+ o(∆t2) (24)

for any vector norm ∥ · ∥. Equation (24) shows that the local truncation error ∥τk+1∥ goes to zero as
∆t2 and therefore the Crank-Nicolson method is consistent with order two.

General conditions for consistency

We have seen in previous section that the calculation of the local truncation error can be effectively carried
out for any given numerical scheme by using Taylor series. Next, we derive a set conditions guaranteeing
that the local truncation method of any numerical scheme of the form (2) goes to zero as ∆t → 0. To this
end, let us expand yk+j = y(tk + j∆t) in equation (9) in a first-order Taylor series

yk+j = yk + j∆t
dy(tk)

dt
+ · · · . (25)

Substituting (25) into (9) yields

τk+q =
yk

∆t

q∑
j=0

αj +
dy(tk)

dt

q∑
j=0

jαj −Φf (yk+q, . . . ,yk, tk,∆t) + · · · . (26)

In the limit ∆t → 0 we have that yk+j → yk for all j = 0, . . . , q. Assuming that yk is arbitrary, the
previous equation yields the consistency conditions

1.

q∑
j=0

αj = 0, (27)

2.
Φf (yk, . . . ,yk, tk, 0)

q∑
j=0

jαj

= f(yk, tk). (28)

At this point it is convenient to define the first characteristic polynomial associated with the numerical
method (2)

ρ(z) =

q∑
j=0

αjz
j (first characteristic polynomial). (29)

2To derive (24) we recall that

d2y

dt2
=

df(y, t)

dt

d3y

dt3
=

d2f(y, t)

dt2
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By using ρ we can write the consistency conditions in a more compact form as

1. ρ(1) = 0, (30)

2.
Φf (yk, . . . ,yk, tk, 0)

ρ′(1)
= f(yk, tk), (31)

where ρ′(z) = dρ(z)/ds.

We emphasize that the consistency conditions (27)-(28) (or the equivalent ones (30)-(31)) do not provide
any information on the order of consistency, but simply allow us to check whether a numerical scheme is
consistent or not. Let us provide a few examples.

• One-step methods: Consider a general one-step method3 in the form

uk+1 = uk +∆tΦf (uk+1,uk, tk,∆t). (32)

The first characteristic polynomial associated with (32) is

ρ(z) = z − 1. (33)

In fact, the scheme (32) can be written in the form (2) if we set q = 1, α1 = 1 and α0 = −1. By
evaluating ρ(z) and ρ′(z) at z = 1 we obtain

ρ(1) = 0, ρ′(1) = 1 (34)

Hence, (30) is always satisfied. The second condition, i.e. (31), can be written as

Φf (yk,yk, tk, 0) = f(yk, tk) for all yk ∈ Rn. (35)

This condition is clearly satisfied, e.g., by the Crank-Nicolson method (see the iteration function (5)),
by the Euler forward and backward methods, and by the implicit midpoint method. In fact, recall
that the iteration function of the implicit midpoint method is

Φf (uk+1,uk, tk,∆t) = f

(
uk+1 + uk

2
, tk +∆t

)
⇒ Φf (yk,yk, tk, 0) = f(yk, tk). (36)

Regarding Runge-Kutta methods, we recall that their iteration function can be written as

Φf (uk,uk+1, tk,∆t) =

s∑
i=1

biKi Ki = f

uk +∆t

s∑
j=1

aijKj , tk + ci∆t

 (37)

Hence, condition (35) implies that Runge-Kutta methods are consistent if and only if

s∑
i=1

bi = 1. (38)

• Adams methods: The general form of a q-step Adams method is

uk+q = uk+q−1 +∆t

q∑
j=0

βjf(uk+j , tk+j). (39)

3Recall that all Runge-Kutta methods (implicit and explicit) are in the form (32).
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If βq = 0 then the method is explicit (Adams-Bashforth). Otherwise it is implicit (Adams-Moulton).
The first characteristic polynomial and the iteration function of a q-step Adams method are, respec-
tively

ρ(z) = zq − zq−1, Φf (uk+q, . . . ,uk, tk,∆t) =

q∑
j=0

βjf(uk+j , tk + j∆t). (40)

Clearly,
ρ(1) = 0 and ρ′(z) = qzq−1 − (q − 1)zq−2 ⇒ ρ′(1) = 1. (41)

Hence, the first consistency condition (30) is always satisfied. The second condition (31) can be
written as

Φf (yk, . . . ,yk, tk, 0) = f(yk, tk)

q∑
j=0

βj = f(yk, tk), (42)

and it is satisfied for all yk ∈ Rn if and only if

q∑
j=0

βj = 1. (43)

• BDF methods: The general form of a q-step BDF method is

q∑
j=0

αjuk+j = c∆tf(uk+q, tk+q). (44)

where the constant c takes care of the fact that we set αq = 1. Equivalently, we can say that we set
c = βq. For BDF methods we have

ρ(z) =

q∑
j=0

αjz
j , Φf (uk+q, tk,∆t) = cf(uk+q, tk + q∆t). (45)

Therefore the consistency conditions (30)-(31) reduce to

ρ(1) = 0, ρ′(1) = c. (46)

For example, the BDF2 method can be written in the form (44) as

uk+2 −
4

3
uk+1 +

1

3
uk =

2

3
∆tf(uk+2, tk+2), i.e. c =

2

3
. (47)

The first characteristic polynomial is

ρ(z) = z2 − 4

3
z +

1

3
ρ′(z) = 2z − 4

3
. (48)

Clearly, ρ(1) = 0 and ρ′(1) = 2/3 = c, which implies that BDF2 is consistent.

• Linear multistep methods (LMMs): We have seen that the general form of a linear q-step
method is

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjf(uk+j , tk+j). (49)

In this case the consistency conditions (30)-(31) can be written, respectively, as

ρ(1) =

q∑
j=0

αj = 0, and

q∑
j=0

(jαj − βj) = 0. (50)
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Order of consistency of general linear multistep methods (LMMs)

We have seen in previous section that there is a simple criterion to check whether a numerical scheme of
the form (2) is consistent or not. The criterion is summarized by the conditions (27)-(28), or the equivalent
ones (30)-(31) involving the first characteristic polynomial of the scheme. The consistency conditions (27)-
(28), however, do not provide any indication on the order of consistency. In this section we derive a theory
that allows us to determine the order of consistency for general linear multistep methods of the form

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjf(uk+j , tk+j). (51)

As we know, this class of methods includes Adams-Bashforth methods, Adams-Moulton methods and BDF
methods. We define the following polynomials associated with (51)

ρ(z) =

q∑
j=0

αjz
j (First characteristic polynomial), (52)

σ(z) =

q∑
j=0

βjz
j (Second characteristic polynomial). (53)

The local truncation error of the linear multistep scheme (51) is

τk+q =
1

∆t

q∑
j=0

αjyk+j −
q∑

j=0

βjf(yk+j , tk+j), (54)

where yk = y(tk) denotes the analytical solution to (1) evaluated at tk. On the other hand, by evaluating
the ODE (1) at tk+j we obtain

f(yk+j , tk+j) =
dy(tk+j)

dt
. (55)

Substituting (55) into (54) yields

τk+q =
1

∆t

q∑
j=0

(
αjyk+j −∆tβj

dy(tk+j)

dt

)
︸ ︷︷ ︸

Ly(tk)

, (56)

where we defined the linear difference operator L as

Ly(s) =
q∑

j=0

(
αjy(s+ j∆t)−∆tβj

dy(s+ j∆t)

dt

)
. (57)

Assuming that y(t) is differentiable with respect to t as many times as we need, we compute the Taylor
series

y(tk + j∆t) =y(tk) + j∆t
dy(tk)

dt
+

(j∆t)2

2

d2y(tk)

dt2
+ · · · (58)

dy(tk + j∆t)

dt
=
dy(tk)

dt
+ j∆t

d2y(tk)

dt2
+

(j∆t)2

2

d3y(tk)

dt3
+ · · · (59)

A substitution of (58)-(59) into (57) yields the following Taylor series

Ly(tk) =
q∑

j=0

αj

(
y(tk) + j∆t

dy(tk)

dt
+ · · ·

)
−∆tβj

(
dy(tk)

dt
+ j∆t

d2y(tk)

dt2
+ · · ·

)

=C0y(tk) + C1∆t
dy(tk)

dt
+ C2∆t2

d2y(tk)

dt2
+ · · · , (60)
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where the coefficients Cp are defined by collecting all terms multiplying ∆tpdky(tk)/dt, i.e.,

C0 =

q∑
j=0

αj = ρ(1) (61)

C1 =

q∑
j=0

(jαj − βj) = ρ′(1)− σ(1) (62)

...

Cs =
1

s!

q∑
j=0

(
jsαj − sjs−1βj

)
s = 2, 3, . . . (63)

Dividing Ly(tk) by ∆t (see (56)) yields the following series expansion of the local truncation error

τk+q =
C0

∆t
y(tk) + C1

dy(tk)

dt
+ C2∆t

d2y(tk)

dt2
+ C3∆t2

d3y(tk)

dt3
· · · . (64)

We have seen that a necessary condition for consistency is that ρ(1) = 0 (see Eq. (30)), and therefore
C0 = 0. For consistency we also need to have C1 = 0 (otherwise the truncation error (64) does not go to
zero as ∆t → 0). Clearly, if for a certain scheme the coefficients C1, . . . , Cp are all zero and Cp+1 ̸= 0 then
we see that the linear multistep method is consistent with order p. In fact, in this case we have (to leading
order in ∆t)

∥τk+q∥ ≤ Cp+1∆tp
∥∥∥∥dp+1y(tk)

dtp+1

∥∥∥∥+O(∆tp+1). (65)

• Order of consistency of AB3: The AB3 scheme can be written as

uk+3 = uk+2 +
∆t

12
(23fk+2 − 16fk+1 + 5fk) . (66)

The characteristic polynomials (52)-(53) associated with (66) are

ρ(z) = z3 − z2 σ(z) =
23

12
z2 − 4

3
z +

5

12
. (67)

By using (61)-(64) we obtain

C0 =ρ(1) = 0 (68)

C1 =ρ′(1)− σ(1) = 1− 23

12
+

16

12
− 5

12
= 0, (69)

C2 =
1

2

[
32 − 22 − 2

(
−16

12
+ 2

23

12

)]
= 0, (70)

C3 =
1

6

[
33 − 23 − 3

(
−16

12
+ 22

23

12

)]
= 0, (71)

C4 =
1

24

[
34 − 24 − 4

(
−16

12
+ 23

23

12

)]
=

9

24
. (72)

Therefore AB3 is consistent with order 3.

• Order of consistency of BDF2: The BDF2 scheme can be written as

uk+2 −
4

3
uk+1 +

1

3
uk =

2

3
∆tfk+2. (73)
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The characteristic polynomials (52)-(53) associated with (66) are

ρ(z) = z2 − 4

3
z +

1

3
σ(z) =

2

3
z2. (74)

By using (61)-(64) we obtain

C0 =ρ(1) = 0 (75)

C1 =ρ′(1)− σ(1) =
2

3
− 2

3
= 0, (76)

C2 =
1

2

[
22 − 12

4

3
− 4

2

3
)

]
= 0, (77)

C3 =
1

3

[
23 − 13

4

3
− 12

2

3
)

]
= −4

9
. (78)

Therefore BDF2 is consistent with order 2.

Maximum order of consistency of LMMs. What is the maximum order of consistency attainable by
a q-step linear multistep method (LMM)? The scheme (51) is fully determined by the 2q + 1 coefficients
(recall that we set αq = 1)

{αq−1, . . . , α0, βq, . . . , β0}. (79)

If the method is consistent with order p then we p+ 1 conditions (see Eq. (64))

C0 = 0, C1 = 0, · · · , Cp = 0. (80)

By setting 2q + 1 = p+ 1 we see that

Theorem 1. The maximum order of consistency attainable by q-step linear method of the form (51) is

p = 2q (implicit LMM methods), p = 2q − 1 (explicit LMM methods) (81)

In particular, for Adams-Bashforth and Adams-Moulton methods we have the following result.

Theorem 2. The maximum order of consistency attainable by a q-step Adams-Bashforth method is p = q.
Similarly, the maximum order of consistency attainable by a q-step Adams-Moulton method is p = q + 1

In fact, the condition αq = −αq−1 automatically guarantees that ρ(1) = C0 = 0. Therefore a q-step
Adams-Bashforth has q free parameters {β0, β1, . . . , βq−1}, which can be chosen to satisfy the conditions
C1 = 0, C2 = 0 up to Cp = 0 (p equations). This implies that a q-step Adams-Bashforth method has
maximal order of consistency p = q.

As we will see in the next course note, Adams-Bashforth and Adams-Moulton methods are all zero-stable,
and therefore p = q and p = q + 1 is actually the convergence order of these methods. On the other hand,
for general LMM methods, it is possible to prove that LMM methods with order of consistency exceeding
p = q + 1 (q odd) or p = q + 2 (q even) are all zero-unstable and therefore not convergent. This result is
known as first Dahlquist barrier for LMM methods.

Order of consistency of RK methods

The order of an RK method (like the order of any other method) can be determined by using a Taylor series
analysis of the local truncation error (see the examples at the beginning of this note). On the other hand, if
we are interested in developing an explicit or implicit RK method with a maximal order of consistency, we
can just expand the RK method in a Taylor series and then try to match as many powers of ∆t as possible
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relative to a power series expansion of the exact solution. We have already seen one of such calculations
when we derived the one-parameter family of explicit two-stage RK methods. Obtaining similar results for
RK methods with a larger number of stages is quite cumbersome4, and also yields surprising results. In
general, it can be shown that:

Theorem 3. An s-stage explicit RK method cannot have order greater than s.

This theorem establishes an upper bound for the maximum order attainable by explicit RK methods.
However, determining the maximum attainable order for a fixed number of stages is not a trivial problem.
Order conditions similar to those derived for LMM methods, i.e., (61)-(63) can be derived for RK methods
using Butcher’s theory. For instance, it can be shown that for the three-stage explicit RK method

0 0 0 0
c2 a21 0 0
c3 a31 a32 0

b1 b2 b3

to be of order 3 the following stage-order conditions need to be satisfied

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b3a32c2 =
1

6

(82)

The solution to this algebraic nonlinear system yields a one two-parameter family of solutions and two
one-parameter families of solutions (see [1, p. 178]). A similar calculation performed on a five-stage explicit
RK method yields a system of order conditions that has no solution (see [1, p. 181]). In other words:

Theorem 4. There exist no five-stage explicit RK method of order 5.

The following table summarizes the maximum order attainable by an explicit RK method with s stages:

order of consistency 1 2 3 4 5 6 7 8

Minimum number of stages 1 2 3 4 6 7 9 11

Regarding implicit RK methods, the highest attainable order is 2s (Gauss-RK methods). Similarly, Gauss-
Radau and Gauss-Lobatto RK methods can attain order of consistency 2s−1 and 2s−2, respectively.
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