
AM 238 Prof. Daniele Venturi

Deep learning with stochastic neural networks

It has been recently shown that new insights on deep learning can be obtained by regarding the process
of training a deep neural network as a discretization of an optimal control problem involving nonlinear
differential equations [5, 4, 8]. One attractive feature of this formulation is that it allows to use tools from
dynamical system theory to study deep learning from a rigorous mathematical perspective [12, 9, 14]. For
instance, it has been recently shown that by idealizing deep residual networks (ResNet) as continuous-time
dynamical systems it is possible to derive sufficient conditions for universal approximation in Lp, which can
be understood as an approximation theory built on flow maps generated by dynamical systems [13].

In this note we present a formulation deep neural networks obtained by applying simple probabilistic tools
to discrete dynamical systems. Specifically, we consider two types of neural network models:

• Neural networks perturbed by additive random noise;

• Neural networks with random weights and biases.

Modeling neural networks as discrete stochastic dynamical systems. Let us begin by modeling
the input-output map of a neural network as a discrete dynamical system (see Figure 1)

X1 = F0(X0,w0) + ξ0 Xn+1 = F (Xn,wn) + ξn, (1)

Here the index n labels a specific layer in the network, X0 ∈ Rd is the input, Xn ∈ RN (n = 1, . . . , L
represents output of the n-th layer, and {ξ0, . . . , ξL−1} is set of statistically independent random vectors,
or more generally a vector-valued Markov process. We allow the initial state X0 to be random as well,
which can be directly connected to a data set in a training algorithm. A neural networks of the form (1)
is called recurrent, to emphasize the fact that the mapping

F (Xn,wn) = ϕ(WnXn + bn) wn = {Wn, bn}, (2)

between one layer and the next has the same functional form. In (2) ϕ : RN 7→ RN is the activation
function of the network, Wn is a N ×N weight matrix and bn ∈ RN is a bias vector.

In a supervised learning setting, the degrees of freedom

w = {w0, . . . ,wL−1}, (3)

are determined by optimizing a suitable performance metric depending on the network output. For instance,
if we are interested in using the network depicted in Figure 1 to approximate a multivariate function
g(x) ∈ L2([0, 1]d) then we can identify the degrees of freedom (3) by minimizing, e.g., the non-convex
functional

{α,w} = argmin
α,w

‖g(x)−α · E [XL|X0 = x]‖2L2([0,1]d) , (4)

where α are the output weights, and E [XL|X0 = x] conditional expectation of XL given X0 = x. In this
setting, it is clear that the process of training a neural network is basically an optimal control problem
(the controls being the weights and biases) of a discrete stochastic differential equation.

A different stochastic neural network model can be defined by randomizing weights and biases [6, 21]. In
this setting we have

Xn+1 = ϕ(Wn(ω)Xn + bn(ω)), (5)

where Wn(ω) are random weight matrices and bn(ω) are random bias vectors. We shall assume that Wn

and bn corresponding to different layers are statistically independent.

Page 1

AM 238 Prof. Daniele Venturi

Figure 1: Sketch of the stochastic neural network model (1). Note that the transfer function F is the same
in every layer (except the first one). This implies that the random vectors {X1, . . . ,XL} all have the same
dimension.

By adding random noise to the output of each neural network layer, or by randomizing weights and biases,
we are essentially adding an infinite number of degrees of freedom to our system. This allows us to
rethink the process of training the neural network from a probabilistic perspective. For instance, random
noise allows us to approximately encode secret messages in fully trained deterministic neural networks by
selecting an appropriate transition probability for the noise process.

Composition and transfer operators

Let us now derive the composition and transfer operators associated with the neural network models (1) and
(5), which map, respectively, the conditional expectation E {u(XL)|Xn = x} and pn(x) (the probability
density of Xn) forward and backward across the network. To this end, we assume that {ξ0, . . . , ξL−1} in
(1) are independent random vectors. Similarly, we assume that the random matrices {W0, . . . ,WL−1} and
the random vectors {b0, . . . , bL−1} in (5) are statistically independent. These assumptions imply that the
sequences of vectors {X0,X1,X2, . . . ,XL} generated by either (1) or (5) are discrete Markov processes1.
Therefore, the joint probability density function (PDF) of the random vectors {X0, . . . ,XL}, i.e., joint
PDF of the state of the entire neural network, can be factored2 as

p(x0, . . . ,xL) = pL|L−1(xL|xL−1)pL−1|L−2(xL−1|xL−2) · · · p1|0(x1|x0)p0(x0). (6)

By using the identity

p(xk+1,xk) = pk+1|k(xk+1|xk)pk(xk) = pk|k+1(xk|xk+1)pk+1(xk+1) (7)

1The independence assumption assumption of the random noise vector {ξ0, . . . , ξL−1} or the random weights and biases
{W1, . . . ,W1} and {b1, . . . , bm} is not necessary for the process {X0,X1,X2, . . . ,XL} to be Markov. Such assumption just
simplifies the expression of the transition density p(xi+1|xi).

2In equation (6) we used the shorthand notation pi|j(x|y) to denote the conditional probability density function of the
random vector Xi given Xj = xj . With this notation we have that the conditional probability density of Xi given Xi = y is
pi|i(x|y) = δ(x− y), where δ(·) is the Dirac delta function.

Page 2

AM 238 Prof. Daniele Venturi

we see that the chain of transition probabilities (6) can be reverted, yielding

p(x0, . . . ,xL) = p0|1(x0|x1)p1|2(x1|x2) · · · pL−1|L(xL−1|xL)pL(xL). (8)

From these expression, it follows that

pn|q(x|y) =

∫
pn|j(x|z)pj|q(z|y)dz, (9)

for all indices n, j and q in {0, . . . , L}, excluding n = j = q (see footnote 2). The transition probability
equation (9) is known as discrete Chapman-Kolmogorov equation and it allows us to define the transfer
operator mapping the PDF pn(xn) into pn+1(xn+1), together with the composition operator for the con-
ditional expectation E{u(xL)|Xn = xn}. As we shall will see hereafter, the discrete composition and
transfer operators are adjoint to one another.

Transfer operator. Let us denote by pq(x) the PDF of Xq, i.e., the output of the q-th neural network
layer. We first define the operator that maps pq(x) into pn(x). By integrating the joint probability density
of Xn and Xq, i.e., pn|q(x|y)pq(y) with respect to y we immediately obtain

pn(x) =

∫
pn|q(x|y)pq(y)dy. (10)

At this point, it is convenient to define the operator

N (n, q)f(x) =

∫
pn|q(x|y)f(y)dy. (11)

N (n, q) is known as transfer operator [3]. From a mathematical viewpoint N (n, q) is an integral operator
with kernel pn|q(x,y), i.e., the transition density integrated “from the right”. It follows from the Chapman-
Kolmogorov identity (9) that the set of integral operators {N (n, q)} forms a group. Namely,

N (n, q) = N (n, j)N (j, q), N (j, j) = I, ∀n, j, q ∈ {0, . . . , L}. (12)

The operator N allows us to map the one-layer PDF, e.g., the PDF of Xq, either forward or backward
across the neural network (see Figure 2). As an example, consider a network with four layers with states
X0 (input), X1, X2, X3, and X4 (output). Then Eq. (11) implies that,

p2(x) = N (2, 1)N (1, 0)︸ ︷︷ ︸
N (2,0)

p0(x) = N (2, 3)N (3, 4)︸ ︷︷ ︸
N (2,4)

p4(x).

In summary, we have
pn(x) = N (n, q)pq(x) ∀n, q ∈ {0, . . . , L}, (13)

where

N (n, q)pq(x) =

∫
pn|q(x|y)pq(y)dy. (14)

We emphasize that modeling PDF dynamics via neural networks has been studied extensively in machine
learning, e.g., in the theory of normalizing flows for density estimation or variational inference [17, 10,
18].

Composition operator For any measurable deterministic function u(x), the conditional expectation of
u(Xj) given Xn = x is defined as

E {u(Xj)|Xn = x} =

∫
u(y)pj|n(y|x)dy. (15)

Page 3

AM 238 Prof. Daniele Venturi

A substitution of (9) into (15) yields

E {u(Xj)|Xn = x} =

∫
E {u(Xj)|Xq = y} pq|n(y|x)dy, (16)

which holds for all j, n, q ∈ {0, . . . , L− 1}. At this point we define the integral operator

M(n, q)f(x) =

∫
f(y)pq|n(y|x)dy, (17)

which is known as composition [3] or “stochastic Koopman” [19, 23] operator. Thanks to the Chapman-
Kolmogorov identity (9), the set of operators {M(q, j)} forms a group, i.e.,

M(n, q) =M(n, j)M(j, q), M(j, j) = I, ∀n, j, q ∈ {0, . . . , L}. (18)

Equation (18) allows us to map the conditional expectation (15) of any measurable phase space function
u(Xj) forward or backward through the network. As an example, consider again a neural network with
four layers and states {X0, . . . ,X4}. We have

E{u(Xj)|X2 = x} =M(2, 3)M(3, 4)E{u(Xj)|X4 = x}
=M(2, 1)M(1, 0)E{u(Xj)|X0 = x}. (19)

Equation (19) holds for every j ∈ {0, .., 4}. Of particular interest in machine-learning context is the
conditional expectation of u(XL) (network output) given X0 = x, which can be computed as

E{u(XL)|X0 = x} =M(0, L)u(x),

=M(0, 1)M(1, 2) · · ·M(L− 1, L)u(x), (20)

i.e., by propagating u(x) = E{u(XL)|XL = x} backward through the neural network using single layer
operators M(i− 1, i). Similarly, we can compute, e.g., E{u(X0)|XL = x} as

E{u(X0)|XL = x} =M(L, 0)u(x). (21)

For subsequent analysis, it is convenient to define

qn(x) = E{u(XL)|XL−n = x}. (22)

In this way, if E{u(XL)|Xn = x} is propagated backward through the network byM(n−1, n), then qn(x)
is propagated forward by the operator

G(n, q) =M(L− n,L− q). (23)

In fact, equations (22)-(23) allow us to write (20) in the equivalent form

qL(x) =G(L,L− 1)qL−1(x)

=G(L,L− 1) · · · G(1, 0)q0(x), (24)

i.e., as a forward propagation problem (see Figure 2). Note that we can write (24) (or (20)) explicitly in
terms of iterated integrals involving single layer transition densities as

qL(x) =

∫
u(y)p0|L(y|x)dy

=

∫
u(y)

(∫
· · ·
∫
pL|L−1(y|xL−1) · · · p2|1(x2|x1)p1|0(x1|x)dxL−1 · · · dx1

)
dy. (25)

Page 4

AM 238 Prof. Daniele Venturi

Figure 2: Sketch of the forward/backward integration process for probability density functions (PDFs)
and conditional expectations. The transfer operator N (n+ 1, n) maps the PDF pn(x) of the state Xn into
pn+1(x) forward through the neural network. On the other hand, the composition operator M maps the
conditional expectation E [u(XL)|Xn+1 = x] backwards to E [u(XL)|Xn = x]. By defining the operator
G(n,m) =M(L − n,L −m) we can transform the backward propagation problem for E [u(XL)|Xn = x]
into a forward propagation problem for qn(x) = E [u(XL)|XL−n = x].

Relation between composition and transfer operators. The integral operatorsM and N defined in
(17) and (11) involve the same kernel function, i.e., the multi-layer transition probability density pq|n(x,y).
In particular, we noticed that M(n, q) integrates pq|n “from the left”, while N (q, n) integrates it “from
the right”. It is easy to show that M(n, q) and N (q, n) are adjoint to each other relative to the standard
inner product in L2 (see [3] for the continuous-time case). In fact,

E{u(Xk)} =

∫
E{u(Xk)|Xq = x}pq(x)dx

=

∫
[M(q, j)E{u(Xk)|Xj = x}] pq(x)dx

=

∫
E{u(Xk)|Xj = x}N (j, q)pq(x)dx. (26)

Therefore
M(q, j)∗ = N (j, q) ∀q, j ∈ {0, . . . , L}, (27)

whereM(q, j)∗ denotes the operator adjoint ofM(q, j) with respect to the L2 inner product. By invoking
the definition (23), we can also write (27) as

G(L− q, L− j)∗ = N (j, q), ∀j, q ∈ {0, . . . , L}. (28)

In Appendix A we show that if the cumulative distribution function of each random vector ξn in the
noise process has partial derivatives that are Lipschitz in R(ξn) (range of ξn), then the composition and
transfer operators defined in Eqs. (17) and 11 are bounded in L2 (see Proposition 0.9 and Proposition
0.10). Moreover, is possible to choose the probability density of ξn such that the single layer composition
and transfer operators become strict contractions.

Page 5

AM 238 Prof. Daniele Venturi

Conditional transition density

We have seen that the composition and the transfer operators M and N defined in Eqs. (17) and (11),
allow us to push forward and backward conditional expectations and probability densities across the entire
neural network. Moreover such operators are adjoint to one another (see equation (27)) [3, 22, 2], and
also have the same kernel, i.e., the transition density pn|q(xn|xq). In this section, we determine an explicit
expression for such transition density. To this end, we fist derive analytical formulas for the one-layer
transition density pn+1|n(xn+1|xn) for various types of neural network models. The multi-layer transition
density pn|q(xn|xq) is then obtained by composing one-layer transition densities as follows

pn|q(xn|xq) =

∫
· · ·
∫
pn|n−1(xn|xn−1) · · · pq+1|q(xq+1|xq)dxn−1 · · · dxq+1. (29)

Neural network with additive noise. Let us first consider the neural network model

Xn+1 = F (Xn,wn) + ξn, (30)

where {ξ0, ξ1, . . .} is a discrete (vector-valued) Markov process indexed by “n”. By (30), Xn+1 is the sum
of two independent random vectors3, i.e., F (Xn,wn) and ξn. Given any measurable function h(x) we
clearly have

E {h(Xn+1)} =

∫
h(x)pn+1(x)dx

=

∫ ∫
h(F (x,wn) + ξ)pn(x)ρn(ξ)dxdξ

=

∫ ∫
h(y)) ρn(x− F (y,wn))︸ ︷︷ ︸

pn+1|n(x|y)

pn(x)dydx, (31)

where ρn(x) denotes the probability density of the random vector ξn. Therefore, the one-layer transition
density for the neural network model (30) is4

pn+1|n(xn+1|xn) = ρn(xn+1 − F (xn,wn)). (34)

Note that such transition density depends on the PDF of the random noise ρn, the neural activation
function F , and the neural network weights wn.

Neural network with random weights and random biases. Next, consider the recurrent neural
network model

Xn+1 = ϕ(Wn(ω)Xn + bn(ω)), (35)

3Recall that Xn and ξn are statistically independent random vectors. Hence, F (Xn,wn) and ξn are statistically indepen-
dent random vectors.

4Equation (34) can be derived in a more general setting by recalling the conditional probability identity

pn+1|n(xn+1|xn) =

∫
pXn+1|Xn,ξn(xn+1|xn,z)ρn(z)dz. (32)

The conditional density of Xn+1 given Xn = xn and ξn = z, i.e., pXn+1|Xn,ξn(xn+1|xn,z), can be immediately computed
by using (30) as

pXn+1|Xn,ξn(xn+1|xn,z) = δ(xn+1 − F (xn,wn)− z), (33)

where δ(x) is the multivariate Dirac delta function. Substituting (33) into (32), and integrating over z yields (34).

Page 6

AM 238 Prof. Daniele Venturi

where Wn(ω) are random weight matrices and bn(ω) are random bias vectors. The PDF of Xn+1 given
Xn = xn, i.e., the conditional density we are interested in, can be obtained first by computing the PDF of
the random vector

Zn(ω) = Wn(ω)Xn + bn(ω), (36)

i.e., a linear mapping between independent random variables, and then computing the PDF of Xn+1 =
ϕ(Zn), where ϕ is the (invertible) activation function. By using the methods we have seen in chapter 1,
it is rather straightforward to obtain and expression for the conditional density of Xn+1 given Xn = xn
for specific probability distributions of Wn(ω) (random matrix ensembles) and bn.

General neural networks. The transition density of a general neural network of the form

Xn+1 = H(Xn,wn, ξn), (37)

where {ξ0, . . . , ξL−1} are statistically independent and do not depend on {Xj} can be written as (see, e.g.,
[7])

p(xn+1|xn) =

∫
δ (xn+1 −H(xn,wn, ξn))︸ ︷︷ ︸

p(xn+1|xn,ξn)

p(ξn)dξn. (38)

Remark: The transition density (34) associated with the neural network model (30) can be computed
explicitly once we choose a probability model for ξn ∈ RN . For instance, if we assume that {ξ0, ξ1, . . . , }
are i.i.d. Gaussian random vectors with PDF

ρn(ξ) =
1

(2π)N/2
e−ξ

T ξ/2 for all n = 0, . . . , L (39)

then we can explicitly write the one-layer transition density (34) as

pn+1|n(xn+1|xn) =
1

(2π)N/2
exp

[
− [xn+1 − F (xn,wn)]T [xn+1 − F (xn,wn)]

2

]
. (40)

In Appendix A we provide an analytical example of transition density for a neural network with two layers
(one neuron per layer), tanh(·) activation function, and uniformly distributed random noise.

The zero noise limit An important question is what happens to the neural network as we send the
amplitude of the noise to zero. To answer this question consider the system (30) and the introduce the
parameter ε ≥ 0, i.e.,

Xn+1 = F (Xn,wn) + εξn, (41)

We are interested in studying the orbits of this system as ε → 0. To this end, we assume the ξn to be
independent random vectors each having the same density ρ(x). This implies that for all n = 0, . . . , L− 1,
the PDF of εξn is

εξn ∼
1

ε
ρn

(x
ε

)
. (42)

It is shown in [11, Proposition 10.6.1] that the operator N (n+ 1, n) defined in (11)

pn+1(x) =N (n+ 1, n)pn(x)

=

∫
1

ε
ρn

(
x− F (z,wn)

ε

)
pn(z)dz (43)

Page 7

AM 238 Prof. Daniele Venturi

converges in norm to the Frobenious-Perron operator corresponding to F (Xn,wn) as ε → 0. Indeed, in
the limit ε→ 0 we have, formally

lim
ε→0

pn|n+1 (xn+1|xn) = lim
ε→0

∫
1

ε
ρn

(
xn+1 − F (xn,wn)

ε

)
= δ (xn+1 − F (xn,wn)) . (44)

Substituting this expression into (11), one gets,

pn+1(x) = N (n+ 1, n)pn(x) =

∫
δ
(
x− F (z,wn)

)
pn(z)dz. (45)

Similarly, a substitution into equation (24) yields

qn+1(x) = G(n+ 1, n)qn(x) = qn (F (x,wL−n−1)) , (46)

i.e, the familiar function composition representation of neural network mappings

qn+1 = q0

(
F
(
F (· · ·F (x,wL−n) · · · ,wL−1),wL

))
. (47)

Training over weights versus training over noise

By adding random noise to the output of each layer in a neural network we are essentially adding an infinite
number of degrees of freedom to our system. This allows us to rethink the process of training the neural
network from a probabilistic perspective. In particular, instead of optimizing a performance metric5 relative
to the neural network weights w = {w0,w1, . . . ,wL−1} for fixed noise, we can now optimize the transition
density6 pn+1|n(xn+1|xn). Clearly, such transition density is connected to the neural network weights,
e.g., by equation (34). Hence, if we prescribe the PDF of the random noise, i.e., ρn(·) in (34), then the
transition density pn+1|n is uniquely determined by the functional form of the activation function F , and by
the weights wn. On the other hand, we can optimize ρn (probability density of the random noise ξn) while
keeping the weights wn fixed. As we shall see hereafter, this process opens the possibility approximately
encode and decode secret messages in a fully trained neural network using random noise.

Encoding secret messages in neural networks using random noise. An interesting question is
whether random noise added to the output of each layer in the neural network can enhance features of the
output, or allow us to encode/decode secret signals in the network. The interaction between random noise
and the nonlinear dynamics modeled by the network can yield indeed many surprising results. For example,
in stochastic resonance [16, 20] it is well known that random noise added to a properly tuned bi-stable
system can induce a peak in the Fourier power spectrum of the output, hence effectively amplifying the
signal. Similarly, random noise added to a neural network can have remarkable effects. In particular, it
allows us to re-purpose (to some extent) a previously trained network by hiding a secret signal in it, which
can be approximately encoded and decoded by using random noise. To this end, it is sufficient to optimize

5In a supervised learning setting the neural network weights are usually determined by minimizing a dissimilarity measure
between the output of the network and a target function. Such measure may be an entropy measure, the Wasserstein distance,
the Kullback–Leibler divergence, or other measures defined by classical Lp norms.

6In a deterministic setting, the transition density for a neural network model of the form Xn+1 = F (Xn,wn) is simply

pn+1|n(xn+1|xn) = δ (xn+1 − F (xn,wn)) , (48)

where δ(·) is the Dirac delta function. Such density does not have any degree of freedom other than wn. On the other hand,
in a stochastic setting we are free to choose the PDF of ξn. For a neural network model of the form Xn+1 = F (Xn,wn) + ξn
the transition density has the form

pn+1|n(xn+1|xn) = ρn (xn+1 − F (xn,wn)) , (49)

where ρn(ξ) is the PDF of ξn. We are clearly free to choose the functional form of ρn.

Page 8

AM 238 Prof. Daniele Venturi

the PDF of the noise appropriately, and then train the conditional expectation of the output over such
PDF.

To describe the method, suppose that we are given a fully trained deterministic neural network with only
two layers, and weights chosen to represent an input-output map defined on some domain Ω ⊆ Rd. In the
absence of noise we can write the output of the neural network as

q2(x) = αTF (F0(x,w0),w1) (50)

where {α,w0,w1} can be optimized to minimize the distance between q2(x) and a given target function
f(x) (x ∈ Ω) . Injecting noise ξ0 in the output of the first layer yields the input-output map

h2(x) = αT
∫
F (y + F0(x,w0),w1)ρ0 (y) dy, (51)

where {α,w1,w0} here are fixed, and ρ0 is the PDF of ξ0. Equation (51) resembles a Fredholm integral
equation of the first kind. In fact, it can be written as

h2(x) =

∫
κ2(x,y)ρ0 (y) dy, (52)

where
κ2(x,y) = αTF (y + F0(x,w0),w1). (53)

However, differently from standard Fredholm equations of the first kind, here we have x ∈ Ω ⊆ Rd while
y ∈ RN , i.e., the integral operator with kernel κ2 maps functions in N variables into functions in d variables.
We are interested in finding a PDF ρ0(y) that solves (51) for a given function h2(x). In other words, we are
re-purposing the neural network (50) with output q2(x) ' f(x) to approximate now a different function
h2(x) ' v(x), without modifying the weights {α,w1,w0} but rather simply adding noise ξ0 and averaging
the output over the PDF ρ0 of the noise (Eq. (52)). Equation (52) is unfortunately ill-posed in the space
of probability distributions. In other words, for a given kernel κ2 and a given target q2 there is (in general)
no PDF ρ0 that satisfies (52) exactly. However, one can proceed by optimization. For instance, ρ0 can be
determined by solving the constrained least squares problem7

ρ0 = argmin
ρ

∥∥∥∥h2(x)−
∫
κ2(x,y)ρ(y)dy

∥∥∥∥
L2(Ω)

subject to ‖ρ‖L1(RN) = 1 ρ ≥ 0. (54)

7The optimization problem (54) is a quadratic program with linear constraints if we represent ρ0 in the span of a basis
made of positive functions, e.g., Gaussian kernels [1].

Page 9

AM 238 Prof. Daniele Venturi

Appendix A: Functional setting

Let (S,F ,P) be a probability space. Consider the neural network model (see Figure 1)

X1 = F0(X0,w0) + ξ0 Xn+1 = F (Xn,wn) + ξn n = 1, . . . , L− 1, (55)

where {ξ0, . . . , ξL−1} is a discrete (vector-valued) Markov process. Suppose we are interested in using
the model (55) to approximate a multivariate function f(x). This is usually done by taking a linear
combination of the network output, e.g., Eq. (4). In this setting, the neural network can be thought of
as a process of constructing an adaptive basis by function composition. Here we consider the case where
the function we are approximating is defined on a compact subset Ω0 of Rd. This means that the input
vector of the neural network, i.e. X0, is and element of Ω0. We assume that the following conditions are
satisfied

1. X0 ∈ Ω0 ⊆ Rd (Ω compact), Xn ∈ RN for n = 1, . . . , L− 1;

2. The image of F0 and F is the hyper-cube [−1, 1]N .

For example, if F in (55) is of the form

F (x,w) = tanh(Wx+ b) w = {W , b}, (56)

then conditions 1. and 2. imply that W0 ∈MN×d(R) and Wn ∈MN×N (R) for n = 1, . . . L− 1, while the
biases are bn ∈ MN×1(R) for n = 0, . . . L − 1. The random vectors {ξ0, . . . , ξL−1} added to the output
of each layer make {X1, . . . ,XK} a discrete Markov process (each Xi is a random vector). The range of
Xn+1 depends essentially on the range of ξn, as the image of F is the hyper-cube [−1, 1]N (see condition
2. above). Let us define8

Ωn+1 =[−1, 1]N + R(ξn)

={c ∈ RN : c = a+ b a ∈ [−1, 1]N , b ∈ R(ξn)}, (58)

where R(ξn) denotes the range of the random vector ξn, i.e.,

R(ξn) = {ξn(ω) ∈ RN : ω ∈ S}. (59)

Clearly, the range of the random vector Xn+1 is a subset9 of Ωn+1, i.e., R(Xn+1) ⊆ Ωn+1. This implies
the following lemma.

Lemma 0.1. Let λ(Ωn+1) the Lebesgue measure of the set (58). The Lebesgue measure of the range of
Xn+1 satisfies

λ(R(Xn+1)) ≤ λ(Ωn+1). (60)

Proof. The proof follows from the inclusion R(Xn+1) ⊆ Ωn+1.

8The notation [−1, 1]N denotes a Cartesian product of N one-dimensional domains [−1, 1], i.e.,

[−1, 1]N =
N×

k=1

[−1, 1] = [−1, 1]× [−1, 1]× · · · × [−1, 1]︸ ︷︷ ︸
N times

. (57)

9We emphasize that if we are given a specific form of the activation function F together with suitable bounds on the neural
network weights and biases {W , b} then we can easily identify a domain that is smaller than Ωn, and that still contains
R(Xn). This allows us to construct a tighter bound for λ(R(Xn+1) in Lemma 0.1, which depends on the activation function
and on the bounds we set on neural network weights and biases.

Page 10

AM 238 Prof. Daniele Venturi

The L∞ norm of the random vector ξ is defined as the largest value of r ≥ 0 that yields a nonzero
probability on the event {ω ∈ S : ‖ξ(ω)‖∞ > r} ∈ F , i.e.,

‖ξ‖∞ = sup
r∈R
{P({ω ∈ S : ‖ξ(ω)‖∞ > r}) > 0}. (61)

This definition allows us to bound the Lebesgue measure of Ωn+1 as follows.
Proposition 0.2. The Lebesgue measure of the set Ωn+1 defined in (58) can be bounded as

λ(Ωn+1) ≤
(√

N + ‖ξn‖∞
)N πN/2

Γ(1 +N/2)
, (62)

where N is the number of neurons and Γ(·) is the Gamma function.

Proof. As is well known, the length of the diagonal of the hypercube [−1, 1]N is
√
N . Hence,

√
N + ‖ξn‖∞

is the radius of a ball that encloses all elements of Ωn+1. The Lebesgue measure of such ball is obtained
by multiplying the Lebesgue measure of the unit ball in RN , i.e., πN/2/Γ(1 + N/2) by the scaling factor(√

N + ‖ξn‖∞
)N

.

Lemma 0.3. If R(ξn) is bounded then R(Xn+1) is bounded.

Proof. The image of the activation function F is a bounded set. If R(ξn) is bounded then Ωn+1 in (58) is
bounded. R(Xn+1) ⊆ Ωn+1 and therefore R(Xn+1) is bounded.

Clearly, if {ξ0, . . . , ξL−1} are i.i.d. random variables then there exists a domain V = Ω1 = · · · = ΩL such
that

R(ξn) ⊆ R(Xn+1) ⊆ V ∀n = 0, . . . , L− 1. (63)

In fact, if {ξ0, . . . , ξL−1} are i.i.d. random variables then we have

R(ξ0) = R(ξ1) = · · · = R(ξL−1), (64)

which implies that all of Ωi defined in (58) are the same. If the range of each random vector ξn is a
tensor product of one-dimensional domain, e.g., if the components of ξn are statistically independent, then
V = Ω1 = · · · = ΩL becomes particularly simple, i.e., a hypercube.

Lemma 0.4. Let {ξ0, . . . , ξL−1} be i.i.d. random variables with bounded range and suppose that each
ξk has statistically independent components with range [a, b]. Then all domains {Ω1, . . . ,ΩL} defined in
equation (58) are the same, and they are equivalent to

V =
N

×
k=1

[−1 + a, 1 + b]. (65)

V includes the range of all random vectors Xn (n = 1, . . . , L) and has Lebesgue measure

λ(V) = (2 + b− a)N . (66)

Proof. The proof is trivial and therefore omitted.

Page 11

AM 238 Prof. Daniele Venturi

Remark: It is worth noticing that if each ξk is a uniformly distributed random vector with statistically
independent components in [−1, 1], then for N = 10 (number of neurons) the upper bound in (62) is
3.98× 106 while the exact result (66) gives 1.05× 106. Hence the estimate (62) is quite sharp in the case
of uniform random vectors.

Boundedness of composition and transfer operators

Lemma 0.3 states that if we perturb the output of the n-th layer of a neural network by a random vector
ξn with finite range then we obtain a random vector Xn+1 with finite range. In this hypothesis it is
straightforward to show that that the composition and transfer operators defined in (17) and (11) are
bounded. We have seen that these operators can be written as

M(n, n+ 1)v =

∫
R(Xn+1)

v(y)pn+1|n(y|x)dy, N (n+ 1, n)v =

∫
R(Xn)

pn+1|n(x|y)v(y)dy, (67)

where pn+1|n(y|x) = ρn(y−F (x,wn)) is the conditional transition density ofXn+1 givenXn, and ρn is the
joint PDF of the random vector ξn. The conditional transition density pn+1|n(y|x) is always non-negative,
i.e.,

pn+1|n(y|x) ≥ 0 ∀y ∈ R(Xn+1), ∀x ∈ R(Xn). (68)

Moreover, the conditional density pn+1|n is defined on the set

Bn = {(x,y) ∈ R(Xn)×R(Xn+1) : (y − F (x,wn)) ∈ R(ξn)}. (69)

It is also important to emphasize that y ∈ R(Xn+1) and x ∈ R(Xn). Both R(Xn+1) and R(Xn) depend
on Ω0 (domain of the input), the neural network weights, and the noise amplitude. Thanks to Lemma 0.1,
we have that

Bn ⊆ Ωn × Ωn+1. (70)

The Lebesgue measure of Bn can be calculated as follows.

Lemma 0.5. The Lebesgue measure of the set Bn defined in (69) is equal to the product of the measure
of λ(R(Xn)) and the measure of R(ξn), i.e.,

λ(Bn) = λ(R(Xn))λ(R(ξn)). (71)

Moreover, λ(Bn) is bounded by λ(R(Ωn))λ(R(ξn)), which is independent of the neural network weights.

Proof. Let χn be the indicator function of the set R(ξn), y ∈ R(Xn+1) and x ∈ R(Xn). Then

λ(Bn) =

∫
R(Xn+1)

∫
R(Xn)

χn(y − F (x,wn))dxdy

=λ(R(ξn))

∫
R(Xn)

dx

=λ(R(Xn))λ(R(ξn)). (72)

By using Lemma 0.1 we conclude that λ(Bn) is bounded from above by λ(R(ΩL−m))λ(R(ξn)), which is
independent of the neural network weights.

Page 12

AM 238 Prof. Daniele Venturi

Remark: The result (71) has a straightforward geometrical interpretation in two dimensions. Pick a ruler
of length r = λ(R(ξn)) with endpoints that can leave markings if we slide it on a rectangular table with
side lengths sb = λ(R(Xn+1)) (horizontal side) sh = λ(R(Xn)) (vertical side). Then slide the ruler from
the top to the bottom of the table, while keeping it horizontal, i.e., parallel to the horizontal sides of the
table (see Figure 3). The area of the domain defined by the two curves drawn by the endpoints of the ruler
is always r× sh independently of the way we slide the ruler laterally – provided the ruler never gets out of
the table.

Lemma 0.6. If the range of ξn−1 is a bounded subset of RN then the transition density pn+1|n(y|x) is an
element of L1 (R(Xn+1)×R(Xn)).

Proof. Note that ∫
R(Xn+1)

∫
R(Xn)

pn+1|n(y|x)dydx = λ (R(Xn)) ≤ λ(Ωn). (73)

The Lebesgue measure λ(Ωn) can be bounded as (see Proposition 0.2)

λ(Ωn) ≤
(√

N + ‖ξn−1‖∞
)N πN/2

Γ(1 +N/2)
. (74)

Since the range of ξn−1 is bounded by hypothesis we have that there exists a finite real number M > 0
such that ‖ξn−1‖∞ ≤ M . This implies that the integral in (73) is finite, i.e., that the transition kernel
pn+1|n(y|x) is in L1 (R(Xn+1)×R(Xn)).

Theorem 0.7. Let Cξn(x) be the cumulative distribution function ξn. If Cξn(x) is Lipschitz continuous
on R(ξn) and the partial derivatives ∂Cξn/∂xk (k = 1, . . . , N) are Lipschitz continuous in x1, x2, ..., xN ,
respectively, then the joint probability density function of ξn is bounded on R(ξn).

Proof. By using Rademacher’s theorem we have that if Cξn(x) is Lipschitz on R(ξn) then it is differentiable
almost everywhere on R(ξn) (except on a set with zero Lebesgue measure). Therefore the partial derivatives
∂Cξn/∂xk exist almost everywhere on R(ξn). If, in addition, we assume that ∂Cξn/∂xk are Lipschitz
continuous with respect to xk (for all k = 1, . . . , N) then by applying [15, Theorem 9] recursively we
conclude that the joint probability density function of ξn is bounded.

Lemma 0.8. Under the same assumptions of Theorem 0.7 we have that the conditional PDF pn+1|n(y|x) =
ρn(y − F (x,w)) is bounded on R(Xn+1)×R(Xn).

Proof. Theorem 0.7 states that ρn is a bounded function. This implies that the conditional density
pn+1|n(y|x) = ρn(y − F (x,w)) is bounded on R(Xn+1)×R(Xn).

Proposition 0.9. Let R(ξn) and R(ξn−1) be bounded subsets of RN . Then, under the same assumptions
of Theorem 0.7, we have that the composition and the transfer operators defined in (67) are bounded in L2.

Page 13

AM 238 Prof. Daniele Venturi

Proof. Let us first prove thatM(n, n+1) is a bounded linear operator from L2(R(Xn+1)) into L2(R(Xn)).
To this end, note that

‖M(n, n+ 1)v‖2L2(R(Xn)) =

∫
R(Xn)

∣∣∣∣∣
∫

R(Xn+1)
v(y)pn+1|n(y|x)dy

∣∣∣∣∣
2

dx

≤‖v‖2L2(R(Xn+1))

∫
R(Xn)

∫
R(Xn+1)

pn+1|n(y|x)2dydx︸ ︷︷ ︸
Kn

=Kn ‖v‖2L2(R(Xn+1)) . (75)

Clearly, Kn < ∞. In fact, if R(ξn) and R(ξn−1) are bounded then R(Xn+1) and R(Xn) are bounded.
Moreover, thanks to Lemma 0.8 we have that pn+1|n(y|x) is bounded on R(Xn+1)×R(Xn). Hence, Kn

is the integral of the square of a bounded function defined on a bounded domain, and therefore it is finite.
By following the same steps it is straightforward to show that the transfer operator N is a bounded linear
operator. Alternatively, simply recall that N is the adjoint of M, and the adjoint of a bounded linear
operator is bounded. Specifically we have,

‖N (n+ 1, n)p‖2L2(R(Xn+1)) ≤ Kn ‖p‖2L2(R(Xn)) . (76)

Remark: The integrals

Kn =

∫
R(Xn)

∫
R(Xn+1)

pn+1|n(y|x)2dydx (77)

can be computed by noting that
pn+1|n(y|x) = ρn(y − F (x,w)) (78)

is essentially a shift of the PDF ρn by a quantity F (x,w) that depends on x and w (see, e.g., Figure 3).
Such a shift does not influence the integral with respect to y, meaning that the integral of pn+1|n(y|x) or
pn+1|n(y|x)2 with respect to y is the same for all x. Hence, by changing variables we have that the integral
(77) is equivalent to

Kn = λ(R(Xn))

∫
R(ξn)

ρn(x)2dx, (79)

where λ(R(Xn)) is the Lebesgue measure of R(Xn), and R(ξn) is the range of ξn. Note that Kn depends
on the neural net weights only through the Lebesgue measure of R(Xn). Clearly, since the set Ωn includes
R(Xn) we have by Lemma 0.1 that λ(R(Xn)) ≤ λ(Ωn). This implies that

Kn ≤ λ(Ωn)

∫
R(ξn)

ρn(x)2dx. (80)

The upper bound here does not depend on the neural network weights. The following lemma summarizes
all these remarks.

Proposition 0.10. Under the same assumptions of Theorem 0.7, we have that the composition and the
transfer operators defined in (67) can be bounded as

‖M(n, n+ 1)‖2 ≤ Kn, ‖N (n+ 1, n)‖2 ≤ Kn, (81)

where

Kn = λ(R(Xn))

∫
R(ξn)

ρn(x)2dx. (82)

Page 14

AM 238 Prof. Daniele Venturi

Moreover, Kn can be bounded as

Kn ≤ λ(Ωn)

∫
R(ξn)

ρn(x)2dx, (83)

where Ωn is defined in (58) and ρn is the PDF of ξn. The upper bound in (83) does not depend on the
neural network weights and biases.

Under additional assumptions on the PDF ρn(x) it is also possible to bound the integrals at the right hand
side of (82) and (83). Specifically we have the following sharp bound.

Lemma 0.11. Let
sn = inf

x∈R(ξn)
ρn(x), Sn = sup

x∈R(ξn)
ρn(x). (84)

If sn > 0 then under the same assumptions of Theorem 0.7 we have that∫
R(ξn)

ρn(x)2dx ≤ 1

λ(R(ξn))

(Sn + sn)2

4Snsn
. (85)

Proof. First we notice that if the random vector ξn satisfies the assumptions of Theorem 0.7 then the
upper bound Sn is finite. By using the definition (84) we have

(ρn(x)− sn)(Sn − ρn(x)) ≥ 0 for all x ∈ R(ξn). (86)

This implies ∫
R(ξn)

ρn(x)2dx ≤ (Sn + sn)− Snsnλ(R(ξn)), (87)

where we used the fact that the PDF ρn integrates to one over R(ξn). Next, define

Rn =
1

λ(R(ξn))

(Sn + sn)2

4Snsn
. (88)

Clearly,

Rn

(
1− 2Snsn

sn + Sn
λ(R(ξn))

)2

= Rn − (Sn + sn) + Snsnλ(R(ξn)) ≥ 0 (89)

which implies that
(Sn + sn)− Snsnλ(R(ξn)) ≤ Rn. (90)

A substitution of (90) into (87) yields (85).

An example. Let X0 ∈ Ω0 = [−1, 1] and consider

X1 = tanh(X0 + 3) + ξ0, X2 = tanh(2X1 − 1) + ξ1, (91)

where ξ0 and ξ1 are uniform random variables with range R(ξ0) = R(ξ1) = [−2, 2]. In this setting,

R(X1) =[tanh(2)− 2, tanh(4) + 2],

R(X2) =[tanh(2 tanh(2)− 5)− 2, tanh(2 tanh(4) + 3) + 2].

Page 15

AM 238 Prof. Daniele Venturi

Figure 3: Conditional probability density function p1|0(x1|x0) defined in equation (92). The domain
R(X1)×R(X0) is the interior of the rectangle delimited by dashed red lines.

The conditional density of X1 given X0 is given by

p1|0(x1|x0) =


1

4
if |x1 − tanh(x0 + 3)| ≤ 2

0 otherwise
(92)

This function is plotted in Figure 3 together with the domain R(X1) ×R(X0) (interior of the rectangle
delimited by dashed red lines). Clearly, the integral of the conditional PDF (92) is∫

R(X0)

∫
R(X1)

p1|0(x1|x0)dx1dx0 = λ(R(X0)) = 2, (93)

where λ(R(X0)) is the Lebesgue measure of R(X0) = [−1, 1]. The L2 norm of the operators N and M is
bounded by10

K0 =

∫
R(X0)

∫
R(X1)

p1|0(x1|x0)2dx1dx0 =
λ(R(X0))

λ(R(ξ0))
=

1

2
. (96)

Hence, both operators N (1, 0) andM(0, 1) are contractions (Proposition 0.10). On the other hand,

K1 =
λ(R(X1))

λ(R(ξ1))
= 1 +

tan(4)− tan(2)

4
> 1. (97)

Next, define V as in Lemma 0.4, i.e., V = [−3, 3]. Clearly, both R(X0) and R(X1) are subsets of V . If we
integrate the conditional PDF shown in Figure 3 in V × V we obtain∫

V

∫
V
p1|0(x1|x0)2dx1dx0 =

λ(V)

λ(R(ξ0))
=

3

2
. (98)

10For uniformly distributed random variables we have that∫
R(ξn)

ρn(x)2dx =
1

λ(R(ξn))
. (94)

Therefore equation (82) yields

Kn =
λ (R(Xn))

λ (R(ξn))
≤ λ (Ωn)

λ (R(ξn))
. (95)

Depending on the ratio between the Lebesgue measure of R(Xn) and R(ξn) one can have Kn smaller or larger than 1.

Page 16

AM 238 Prof. Daniele Venturi

Random noise can induce contractions

In this section we prove a result on neural networks perturbed by random noise of increasing amplitude
which states that it is possible to make both operators N and M in (67) contractions11 if the noise is
properly chosen. To this end, we begin with the following lemma.
Lemma 0.12. Let

‖ρn‖2L2(R(ξn)) =

∫
R(ξn)

ρn(x)2dx. (99)

If

‖ρn‖2L2(R(ξn)) ≤
κ

λ(Ωn)
0 ≤ κ < 1 (100)

then M(n, n + 1) and N (n + 1, n) are contractions. The condition (100) is independent of the neural
network weights.

Proof. The proof follows from equation (83).

Hereafter we specialize Lemma 0.12 to neural network perturbed by uniformly distributed random noise.

Proposition 0.13. Let {ξ0, . . . , ξL−1} be independent random vectors. Suppose that the components of
each ξn are zero-mean i.i.d. uniform random variables with range [−bn, bn] (bn > 0). If

b0 ≥
1

2

(
λ(Ω0)

κ

)1/N

and bn ≥
bn−1 + 1

κ1/N
n = 1, . . . , L− 1, (101)

where Ω0 is the domain of the neural network input, 0 ≤ κ < 1, and N is the number of neurons in
each layer, then both operators M(n, n + 1) and N (n + 1, n) defined in (67) are contractions for all
n = 0, . . . , L − 1, i.e., their norm can be bounded by a constant Kn ≤ κ, independently of the weights of
the neural network.

Proof. If ξn is uniformly distributed then from (82) we have that

Kn =
λ (R(Xn))

λ (R(ξn))
. (102)

By using Lemma 0.4 we can bound Kn as

Kn ≤
(

1 + bn−1

bn

)N
, (103)

where N is the number of neurons in each layer of the neural network. Therefore, if bn ≥ (bn−1 + 1)/κ1/N

(n = 1, . . . , L− 1) we have that Kn is bounded by a quantity κ smaller than one. Regarding b0, we notice
that

K0 =
λ (R(X0))

λ (R(ξ0))
=

λ(Ω0)

(2b0)N
, (104)

where Ω0 is the domain of the neural network input. Hence, if b0 satisfies (102) then K0 ≤ κ.

11An linear operator is called a contraction if its operator norm is smaller than one.

Page 17

AM 238 Prof. Daniele Venturi

κ = 0.2 κ = 0.2

0 100 200 300 400
10

-1

10
0

10
1

10
2

0 100 200 300 400
10

0

10
2

10
4

10
6

10
8

κ = 10−4 κ = 10−4

0 100 200 300 400
10

-1

10
0

10
1

10
2

0 100 200 300 400
10

0

10
2

10
4

10
6

10
8

Figure 4: Lower bound on the coefficients bn defined in (106) for λ(Ω0) = 1 as a function of the number of
neuronsN and number of layers of the neural network. With such values of bn the operator G(L−n+1, L−n)
is a contraction satisfying ‖G(L− n+ 1, L− n)‖2 ≤ κ. Shown are results for κ = 0.2 and κ = 10−4

(contraction index).

One consequence of Proposition 0.13 is that the L2 norm of the neural network output decays with both
the number of layers and the number of neurons if the noise amplitude from one layer to the next increases
as in (101). For example, if we represent the input-output map as a sequence of conditional expectations
(see (20)), and set u(x) = αTx (linear output) then we have

q0(x) =M(0, 1)M(1, 2) · · ·M(L− 1, L)(αTx). (105)

By iterating the inequalities (101) in Proposition 0.13 we find that

bn ≥
1

2κn/N

(
λ(Ω0)

κ

)1/N

+
n∑
k=1

1

κk/N
n = 0, . . . , L− 1, (106)

In Figure 4 we plot the lower bound at the right hand side of (106) for κ = 0.2 and κ = 10−4 as a function
of the number of neurons (N). With bn given in (106) we have that the operator norms of M(n, n + 1)
and N (n+ 1, n) (n = 0, . . . , L− 1) are bounded exactly by κ (see Lemma 0.12). Hence, by taking the L2

norm of (105), and recalling that ‖M(n, n+ 1)‖2 ≤ κ we obtain

‖q0‖2L2(Ω0) ≤Z
2 ‖α‖22 κ

L, (107)

Page 18

AM 238 Prof. Daniele Venturi

where12

Z2 =
N∑
k=1

∫
R(XL)

x2
kdx and ‖α‖22 =

N∑
k=1

α2
k. (109)

The inequality (107) shows that the 2-norm of the vector of weights α must increase exponentially fast
with the number of layers L if we chose the noise amplitude as in (106). As shown in the following Lemma,
the growth rate of bn that guarantees that both M and N are contractions is linear (asymptotically with
the number of neurons).

Lemma 0.14. Consider a neural network satisfying the hypotheses of Proposition 0.13. Then, in the limit
of an infinite number of neurons (N →∞), the noise amplitude (106) satisfies

lim
N→∞

bn =
1

2
+ n, (110)

independently of the contraction factor κ and the domain Ω0. This means that for a finite number of
neurons the noise amplitude bn that guarantees that ‖M(n, n+ 1)‖ ≤ κ is bounded from below (κ < 1) or
from above (κ > 1) by a function that increases linearly with the number of layers.

Proof. The proof follows by taking the limit of (106) for N →∞.

An example: Set k = 10−4, L = 4 (four layers) and N = 10 neurons per layer. The factor κL in (107) is
10−16. If we are interested in representing a d-dimensional function in the unit cube Ω0 = [0, 1]d then we
have13

λ(Ω0) = 1 Z2 ≤ N 2N (1 + b3)N+2

3
, (112)

where b3 = 3.684 (see Figure 4 for N = 10). Hence, the norm of the output (107) is bounded by

‖qL‖L2(Ω0) ≤C ‖α‖2 C = 10−16

√
10

210(1 + b3)12

3
' 6.17× 10−11. (113)

This means that the 2-norm of the output coefficients α has to be of the order of 1011 to represent, e.g., a
two-dimensional function of norm about one on the square Ω0 = [0, 1]2.

12In equation (107) we used the Cauchy-Schwarz inequality∥∥∥αTx
∥∥∥2

L2(R(XL))
≤ Z2 ‖α‖22 . (108)

13In fact,
N∑
i=1

∫
R(X4)

x2
i dx ≤

N∑
i=1

∫
Ω4

x2
i dx =

N∑
i=1

∫ 1+b3

−1−b3

· · ·
∫ 1+b3

−1−b3︸ ︷︷ ︸
N times

x2
i dx =

2NN(1 + b3)N+2

3
. (111)

Page 19

AM 238 Prof. Daniele Venturi

References

[1] Z. I. Botev, J. F. Grotowski, and D. P. Kroese. Kernel density estimation via diffusion. Ann. Stat.,
38(5):2916–2957, 2010.

[2] C. Brennan and D. Venturi. Data-driven closures for stochastic dynamical systems. J. Comp. Phys.,
372:281–298, 2018.

[3] J. M. Dominy and D. Venturi. Duality and conditional expectations in the Nakajima-Mori-Zwanzig
formulation. J. Math. Phys., 58(8):082701, 2017.

[4] W. E. A proposal on machine learning via dynamical systems. Commun. Math. Stat., 5:1–10, 2017.

[5] W. E, J. Han, and Q. Li. A mean-field optimal control formulation of deep learning. Res. Math. Sci.,
6:1–41, 2019.

[6] L. Gonon, L. Grigoryeva, and J.-P. Ortega. Risk bounds for reservoir computing. JMLR, 21(240):1–61,
2020.

[7] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings F. Radar and Signal Processing, 140(2):107–113, 1993.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pages 770–778, 2016.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, pages
630–645. Springer, 2016.

[10] I. Kobyzev, S. J. D. Prince, and M. A. Brubaker. Normalizing flows: An introduction and review of
current methods. IEEE transactions on pattern analysis and machine intelligence, 43(11):3964–3979,
2020.

[11] A. Lasota and M. C. Mackey. Chaos, fractals and noise: stochastic aspects of dynamics. Springer–
Verlag, second edition, 1994.

[12] Q. Li, L. Chen, C. Tai, and W. E. Maximum principle based algorithms for deep learning. JMLR,
18:1–29, 2018.

[13] Q. Li, T. Lin, and Z. Shen. Deep learning via dynamical systems: An approximation perspective. J.
Eur. Math. Soc., (published online first), 2022.

[14] Y. Lu, Zhong A, Q. Li, and B. Dong. Beyond finite layer neural networks: Bridging deep architectures
and numerical differential equations. arXiv:1710.10121, 2017.

[15] E. Minguzzi. The equality of mixed partial derivatives under weak differentiability conditions. eal
Anal. Exch., 40(1):81–98, 2014/2015.

[16] D. Nozaki, D. J. Mar, P. Grigg, and J. J. Collins. Effects of colored noise on stochastic resonance in
sensory neurons. Phys. Rev. Lett., 82(11):2402–2405, 1999.

[17] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International conference
on machine learning, pages 1530–1538. PMLR, 2015.

[18] E. G. Tabak and E. Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood. Comm.
Math. Sci., 8(1):217–233, 2010.

[19] N. Črnjarić-Žic, S. Maćešić, and I. Mezić. Koopman operator spectrum for random dynamical systems.
J. Nonlinear Sci., 30:2007–2056, 2020.

Page 20

AM 238 Prof. Daniele Venturi

[20] D. Venturi and G. E. Karniadakis. Convolutionless Nakajima-Zwanzig equations for stochastic analysis
in nonlinear dynamical systems. Proc. R. Soc. A, 470(2166):1–20, 2014.

[21] T. Yu, Y. Yang, D. Li, T. Hospedales, and T. Xiang. Simple and effective stochastic neural networks.
In Proc. Innov. Appl. Artif. Intell. Conf., volume 35, pages 3252–3260, 2021.

[22] Y. Zhu, J. M. Dominy, and D. Venturi. On the estimation of the Mori-Zwanzig memory integral. J.
Math. Phys, 59(10):103501, 2018.

[23] Y. Zhu and D. Venturi. Hypoellipticity and the Mori-Zwanzig formulation of stochastic differential
equations. J. Math. Phys., 62:1035051, 2021.

Page 21

