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Stability and convergence of numerical methods for ODEs

Consider the initial value problem for a system of ODEs
dy

dt
= f(y, t)

y(0) = y0

(1)

and the perturbed problem 
dz

dt
= f(z, t) + δ(t)

z(0) = y0 + δ0

(2)

where δ(t) is an integrable function and δ0 ∈ Rn. Note that we replaced y(t) with z(t) in (2) to emphasize
the fact that the solutions to (1) and (2) are (in general) different.

Definition 1 (Stability of the Cauchy problem (see [1, 3])). The Cauchy problem (1) is said to be stable
within the time interval [0, T ] if for any perturbations δ0 and δ(t) such that1

‖δ0‖ ≤ ε, and ‖δ(t)‖ ≤ ε for all t ∈ [0, T ] (3)

we have that
‖z(t)− y(t)‖ ≤ Cε, for all t ∈ [0, T ], (4)

where C is a finite constant that does not depend on ε.

Based on this definition, the Cauchy problem (1) is “stable” if the difference between the solutions of (1)
and (2) is bounded in [0, T ] after we introduce a small perturbation δ0 in the initial condition y0 and a
perturbation δ(t) in f(y, t). The definition of stability also implies that the difference between the solutions
of (1) and (2) goes to zero as ε→ 0. In fact, from (4) it follows that

lim
ε→0
‖z(t)− y(t)‖ ≤ C lim

ε→0
ε = 0. (5)

The constant C appearing in (4) may not be small. This is consistent with the fact that a small perturba-
tions in the Cauchy problem (1) can introduce large perturbations in its solution.

Hereafter we show that any well-posed initial value problem (1) is stable, i.e., robust to perturbations in
the limit of small perturbations.

Theorem 1. Let D ⊆ Rn be an open set, y0 ∈ D. If f(y, t) is Lipschitz continuous in D and δ(t) is
integrable then the initial value problem (1) is stable.

Proof. We need to show that for any δ0 and δ(t) the difference between the solutions of (1) and (2) is
bounded in some time interval [0, T ] and that the difference goes to zero as we send ε to zero. First of all,
we notice that if D is open and ε is small enough then the initial condition (y0 + δ0) is in D. If f(y, t) is
Lipschitz continuous

‖f(z, t)− f(y, t)‖ ≤ L ‖z − y‖ ∀z,y ∈ D, (6)

1Note that in (3) we are bounding δ0 and δ(t) with the same constant ε. Such a constant coincides with the radius of the
largest ball centered at zero in Rn that includes both δ0 and δ(t) (for all t ∈ [0, T ]).
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and δ(t) is integrable, then we have existence and uniqueness of the solution to both problems (1) and (2).
Such problems can be equivalently written as

y(t) =y0 +

∫ t

0
f(y(s), s)ds (7)

z(t) =y0 + δ0 +

∫ t

0
f(z(s), s)ds+

∫ t

0
δ(s)ds (8)

for all t ∈ [0, T ], where T is is the smallest “exit time”, i.e., the time in which either y(t) or z(t) get out
of D. Subtracting (7) from (8) and taking the norm yields

‖z(t)− y(t)‖ =

∥∥∥∥δ0 +

∫ t

0
[f(z(s), s)− f(y(s), s)] ds+

∫ t

0
δ(s)ds

∥∥∥∥
≤‖δ0‖+

∫ t

0
‖f(z(s), s)− f(y(s), s)‖ ds+

∫ t

0
‖δ(s)‖ ds

≤(1 + t)ε+ L

∫ t

0
‖z(s)− y(s)‖ ds (9)

where we used the triangle inequality, the inequalities (3), and the definition of Lipschitz continuity (6).
At this point we use Grönwall’s inequality2 to conclude that

‖z(t)− y(t)‖ ≤(1 + t)etLε

≤ (1 + T )eTL︸ ︷︷ ︸
C

ε. (13)

This proves that the Cauchy problem (1) is stable. Note that the constant C appearing in (13) does not
depend on ε and it can be very big, depending on the Lipschitz constant L and the integration time T
(integration time).

Remark: If we replace the initial value problem (1) by a numerical scheme we introduce errors that can
accumulate in time. Such errors can be considered as perturbations in the ODE (1). Just think about
representing the discrete numerical solution uk in terms of some local interpolant z(t) (differentiable in
time) and substituting it into (1). This yields an ODE in the form (2). If the initial value problem (1) is not
stable, i.e., robust to small perturbations, then there is no hope for any numerical method to approximate
the solution.

Stability and zero-stability of numerical methods for ODEs. The concept of stability we discussed
in previous section for continuous-time dynamical systems can be extended to discrete-time dynamical

2The Grönwall’s inequality (see [3, Lemma 11.1]) can be stated as follows. Let u(t), g(t) and p(t) such that

u(t) ≤ g(t) +

∫ t

0

p(s)u(s)ds. (10)

If g(t) is non-decreasing and p(s) is strictly positive then

u(t) ≤ g(t) exp

[∫ t

0

p(s)u(s)ds

]
. (11)

In the case of equation (9) we have

u(t) = ‖z(t)− y(t)‖ , g(t) = (1 + t)ε, p(s) = L. (12)
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systems, i.e., to numerical schemes aiming at computing the approximate solution of the initial value
problem (1). we have seen that such schemes can be written in the general form3


q∑
j=0

αjuk+j = ∆tΦf (uk+q, . . . ,uk, tk,∆t),

given {u0, . . . ,uq−1}

(14)

where Φf is some iteration function. By taking a perturbation of the initial condition u0 and a “time-
dependent” perturbation of Φf in (14) we obtain

q∑
j=0

αjzk+j = ∆t [Φf (zk+q, . . . ,zk, tk,∆t) + δk+q] ,

given {z0 = u0 + δ0, . . . ,zq−1 = uq−1 + δq−1}

(15)

where {δ0, . . . , δk+q, . . .} is a sequence of vectors in Rn bounded by some constant ε, i.e.,

‖δj‖ ≤ ε for all j = 0, 1, . . .. (16)

The perturbations δj can arise, e.g., because of round-off or truncation errors when performing float-
ing point operations using double precision arithmetic. Clearly, the orbits generated by (14) and (15),
i.e.,

{u0, . . . ,uN} and {z0, . . . ,zN} (17)

are (in general) different. For any given iteration function Φf and any given ∆t we can provide a definition
of stability for the numerical scheme (14) that closely resembles Definition 1 for continuous time dynamical
systems. To this end, let T be the period of integration, and N be the number of time steps, i.e.,

∆t∗ =
T

N
(18)

Of particular interest when performing convergence analysis, is the behavior of the scheme for small ∆t,
i.e., for all ∆t smaller than ∆t∗.

Definition 2 (Zero-stability). We say that the numerical scheme (14) is zero-stable if there exists a ∆t∗ > 0
such that for all ∆t ≤ ∆t∗ and for any perturbations δj (j = 0, . . . , N) such that

‖δk‖ ≤ ε, for all j = 0, . . . , N (19)

we have that
‖zk − uk‖ ≤ Cε, for all j = 0, . . . , N , (20)

where uk and zk are defined by (14) and (15), and C is a finite constant that does not depend on ε4.

The definition “zero-stability” follows from the fact that we require ‖zk − uk‖ ≤ Cε for all ∆t ≤ ∆t∗, and
in particular for ∆t→ 0. Hence the “zero” part in “zero-stability” refers to the stability of the scheme in
the limit ∆t→ 0.

• Zero stability is a property of the numerical scheme, not of the ODE system (1). We have seen, in
fact, that a well-posed Cauchy problem is always stable.

3In (14) we set αq = 1 to remove the non-uniqueness of αj and βj due to possible rescaling by a constant.
4The constant C in (20) may depend also on T , ∆t or other constants, but it cannot depend on k or ε.
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• Numerical methods that are not zero-stable have no hope to reliably approximate the solution of (1).
In fact, even if the method is consistent, i.e., if the truncation error goes to zero as ∆t→ 0, we have
that perturbations due to finite-arithmetic may rapidly propagate in schemes that are not zero-stable,
and therefore generate instabilities. In other words, consistent schemes that are not zero-stable may
not converge as ∆t→ 0. For example, the numerical scheme in equation (32) hereafter is consistent
but not zero stable. Another example of a consistent scheme that is not zero stable is discussed in
[2, p. 32].

The root condition and zero-stability. The numerical method (14) is said to satisfy the root condition
if all roots of the first characteristic polynomial

ρ(z) =

q∑
j=0

αjz
j (21)

are within the unit circle, and those of modulus one (i.e., the ones on the unit circle) are simple. The follow-
ing fundamental theorem relates zero stability of the numerical method (14) to the root condition.

Theorem 2. The numerical method (14) is zero-stable if and only if it satisfies the root condition.

A detailed proof of this theorem is provided at the end of this note5. Recall that a necessary condition
for consistency is that ρ(1) = 0, i.e., z = 1 is a root of (21). Such a root must be simple in order for the
method to satisfy the root condition. Let us now study zero-stability of all schemes we have considered so
far.

• One-step methods: The most general form of a one-step method is

uk+1 = uk + ∆tΦf (uk+1,uk, tk,∆t). (22)

The characteristic polynomial for this class of methods is

ρ(z) = z − 1 (23)

Clearly, ρ(z) has a simple root at z = 1 and therefore (22) satisfies the root condition. This implies
that all one-step methods are zero-stable. Recall that all Runge-Kutta methods are one-step methods.

• Adams-Bashforth and Adams-Moulton methods: A q-step Adams method can be written in
the general form

uk+q = uk+q−1 + ∆t

q∑
j=0

βjf (uk+j , tk+j) . (24)

For Adams-Bashforth methods (explicit) we have βq = 0; for Adams-Moulton (implicit) βq 6= 0. The
characteristic polynomial associated with (24) is

ρ(z) = zq − zq−1 = zq−1(z − 1). (25)

This polynomial has as a simple root at z = 1 and a root with algebraic multiplicity q − 1 at z = 0.
Therefore it satisfies the root condition. By Theorem (2) we have that all Adams-Bashforth and all
Adams-Moulton methods are zero-stable.

5For whatever reason, none of the books I came across in my career provides concise and direct proof of Theorem 2 in the
general case we are considering here, i.e., for vector-valued ODEs and numerical methods of the form (14). Hence, I decided
to provide my own version of the proof.
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One-step methods Adams methods BDF3

Figure 1: Roots of the characteristic polynomial (21). If all roots are within the unit circle and those
modulus one (i.e., the ones on the unit circle) are simple (i.e., they have algebraic multiplicity one) then
the method is zero-stable. All methods sketched in this figure are zero-stable.

• BDF methods: We know that a q-step BDF method can be written in the form

q∑
j=0

αjuk+j = c∆tf(uk+q, tk+q). (26)

The characteristic polynomial associated with (26) is

ρ(z) = zq + αq−1z
q−1 + · · ·α0. (27)

It can be shown that a q-step BDF method satisfies the root condition and therefore it is zero-stable
if and only if q ≤ 6.

• 2-step midpoint method: The 2-step midpoint method

uk+2 = uk + 2∆tf(uk+1, tk+1) (28)

satisfies the root condition and therefore it is zero-stable. In fact, the characteristic polynomial
associated with (28) is

ρ(z) = z2 − 1. (29)

The roots z = ±1 are both simple and sitting at the boundary of the unit circle in the complex plane.
As we will see, a scheme that satisfies the root condition with simple eigenvalues at boundary of the
unit circle is theoretically zero-stable, but in practical applications it can generate instabilities.

• 2-step LMM method: The following two-step explicit linear multi-step method6

uk+2 − 4uk+1 + 3uk = −2∆tf(uk, tk) (32)

is consistent but not zero-stable. The characteristic polynomial is

ρ(z) = z2 − 4z + 3. (33)

6The method (32) is not a BDF method, and is obtained by approximating dy(tk)/dt with a second-order forward finite
difference formula:

dy(tk)

dt
' −3y(tk) + 4y(tk + 1)− y(tk+2)

2∆t
. (30)

and setting the equality
−3uk + 4uk+1 − uk+2

2∆t
= f(uk, tk). (31)
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Consistency can be checked immediately, since (see course note number 3)

ρ(1) = 0
Φ(uk, tk, 0)

ρ′(z)
= f(uk, tk). (34)

The polynomial (33) has roots z = 1 and z = 3. Therefore the method (32) is not zero-stable.

• General LMM methods: We have seen in the course note 3 that the maximal order of consistency
of a linear q-step method of the form

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjf(uk+j , tk+1), (35)

is 2q (implicit methods) or 2q − 1 (explicit methods). At this point we notice that such maximal
order LMM methods are, in general, zero-unstable, i.e., they do not satisfy the root-condition (see
[2, §3.4]). It fact the following theorem holds true.

Theorem 3 (First Dahlquist barrier - 1956). There is no zero-stable linear q-step method with
consistency order exceeding q + 1 (q odd) or q + 2 (q even).

Zero-stable linear q-step implicit methods with order q + 2 are called optimal. These methods have
all roots with algebraic multiplicity one sitting on the boundary of the unit circle. This can yields
stability issues.

Convergence. Let T = N∆t be period of integration. We say that the scheme (14) is convergent if the
error (in any norm)

max
k∈0,...,N

‖uk − yk‖ (36)

goes to zero as ∆t→ 0. Here yk = y(tk) represents the analytical solution of the ODE system (1) evaluated
at t = tk, while uk is the numerical solution produced by the scheme (14). If the error decreases as ∆tp

then we say that the scheme converges with order p.

If a numerical scheme is convergent then the order of convergence is the same as the order of consistency
(see the proof of theorem 4 at the end of this note). Indeed the error (36) can be bounded by the norm
of the global truncation error, which goes to zero to some order in ∆t (if the scheme is consistent) The
following fundamental theorem provides necessary and sufficient conditions for convergence of numerical
method for a system of ODEs.

Theorem 4 (Convergence). The numerical method (14) is convergent if and only if is consistent and
zero-stable. In other words,

convergence ⇔ consistency + zero stability. (37)

Moreover, the convergence order coincides with the consistency order.

The proof of this theorem follows exactly the same steps as the proof of theorem 2, and it is briefly
discussed at the end of this note. This theorem has several corollaries. For instance, we have just seen
that all one-step methods are zero-stable and therefore we have that:

Corollary 1. A one-step method is convergent if and only if it is consistent.

This means that in order to prove convergence of a one-step method it is necessary and sufficient to prove
consistency. Hence, in the case of RK methods a necessary and sufficient condition for convergence is

s∑
i=1

bi = 1. (38)
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Corollary 2. Adams methods are convergent if and only if they are consistent.

In fact, we have seen that Adams methods are always zero-stable and therefore consistency implies con-
vergence. Recall that Adams-Bashforth and Adams-Moulton methods are consistent if and only if

q∑
j=0

βj = 1. (39)

Hence, if (39) is satisfied then Adams-Bashforth (βq = 0) or Adams-Moulton (βq 6= 0) methods are
convergent.

Example: The numerical scheme (32) is not convergent. In fact, it is consistent, but not zero-stable.

Estimating the convergence order of a numerical method. To estimate the convergence order of
the scheme (14) numerically it is sufficient to compute the error ‖y(tk)−uk‖ (in any norm) relative to an
analytical solution y(t) for various (sufficiently small) ∆t, and then plot

max
k=1,...,N

‖y(tk)− uk‖

versus ∆t in a logarithmic scale. The slope of the line obtained in this way represents the order of the
method. In fact, suppose that for sufficiently small ∆t we have

max
k=1,...,N

‖y(tk)− uk‖ ' C∆tp. (40)

Taking the logarithm yields

log

(
max

k=1,...,N
‖y(tk)− uk‖

)
' log(C) + p log(∆t) (41)

which represents a line with slope p in a log-log plot. To compute the error, we need of course the
analytical solution to the initial value problem (1), which is not always available. However, it is very easy
to manufacture an ODE with a time-dependent right hand side that has any desired solution y(t). To
this end, choose any continuously differentiable vector y(t) and any Lipschitz continuous function f(y).
Compute the time forcing term

h(t) =
dy(t)

dt
− f(y(t)). (42)

Then the chosen y(t) is the analytical solution to the initial value problem
dy

dt
= f(y) + h(t)

y(0) = y0

(43)

In this way, for each given ∆t we can solve (43) using the numerical method (14) and compute the error
‖uk − y(tk)‖.
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Proof of Theorem 2. Let us consider the m-th component of the perturbed scheme (14)

q∑
j=0

αjz
m
k+j = ∆t

[
Φm
f (zk+q, . . . ,zk, tk,∆t) + δmq+k

]
. (44)

and the unperturbed one
q∑
j=0

αju
m
k+j = ∆tΦm

f (uk+q, . . . ,uk, tk,∆t). (45)

Subtracting (44) from (44) yields

q∑
j=0

αje
m
k+j = ∆t

[
Φm
f (zk+q, . . . ,zk, tk,∆t)− Φm

f (uk+q, . . . ,uk, tk,∆t) + δmq+k
]
, (46)

where
emk+j = zmk+j − umk+j . (47)

Upon definition of

emk =


emk
emk+1

...
emk+q−1

 , bmk =


0
0
...

Φm
f (zk+q, . . . ,zk, tk,∆t)− Φm

f (uk+q, . . . ,uk, tk,∆t)

 , dmk =


0
0
...

δmq+k

 (48)

we see that we can write (46) in a compact form as as7

emk+1 = Aemk + ∆t (bmk + dmk ) , (49)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αq−1

 . (50)

By using the discrete variation of constant formula (in which we treat ∆t (bmk + dmk ) as a “forcing term”)
we write the formal solution of (49) as

emk+1 = Ak+1em0 + ∆t

k∑
p=0

Ak−p (bmp + dmp
)
, (51)

As we shall see hereafter, the zero-stability of the numerical scheme is essentially determined by the
properties of the matrix A, in particular by the behavior of the matrix powers Ak as k is increased. If
the norm of the matrix powers can be bounded by a constant that is independent of k then zero-stability
follows rather straightforwardly. The properties of the matrix powers Ak are fully determined by the roots
of the first characteristic polynomial (21).

7Recall that αq = 1.
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Lemma 1. Let ‖ · ‖ be any matrix norm compatible with a vector norm. Then
∥∥Ak

∥∥ can be bounded by
a quantity M that does not depend on k, i.e.,∥∥∥Ak

∥∥∥ ≤M for all k ∈ N (52)

if and only if the root condition is satisfied.

Proof. The matrix A in (50) is the transpose of the companion matrix associated with the characteristic
polynomial (21). This means that the eigenvalues of A coincide with the roots of the polynomial (21).
Moreover, companion matrices are non-derogatory, which means that there exists only one eigenvector
corresponding to each eigenvalue λ. Such eigenvector is explicitly obtained as

h =


1
λ
λ2

...
λq−1

 . (53)

The non-derogatory property of A implies that if there exists any eigenvalue with algebraic multiplicity
rj > 1, then the corresponding eigenspace has dimension rj − 1. This means that the matrix A is
diagonalizable (i.e., similar to a diagonal matrix), if and only of all the eigenvalues are simple. If there
exist any eigenvalue with multiplicity larger than one then the matrix A is similar to a (block-diagonal)
Jordan matrix J

A = PJP−1 (54)

where P is the matrix that has the generalized eigenvectors of A columnwise and

J =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jl

 , Ji = λiIri +Bri . (55)

In this equation, Ji denotes the Jordan block corresponding to the eigenvalue λi (which has algebraic
multiplicity ri), Iri is a ri × ri identity matrix and Bri is a ri × ri matrix with ones above the main
diagonal. For instance, if λi has algebraic multiplicity ri = 3 then the geometric multiplicity is 2 and we
have

Ji =

λi 1 0
0 λi 1
0 0 λi

 , I3 =

1 0 0
0 1 0
0 0 1

 , B3 =

0 1 0
0 0 1
0 0 0

 . (56)

The matrix power Ak can be written as
Ak = PJkP−1, (57)

where

Jk =


Jk1 0 · · · 0
0 Jk2 · · · 0
...

...
. . .

...
0 0 · · · Jkl

 , Jki = (λiIri +Bri)
k (58)

Let us compute Jki for ri = 1 (simple eigenvalue)

Jki = λki . (59)
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On the other hand, for ri = 2, (eigenvalue with algebraic multiplicity 2 and geometric multiplicity 2) we
have have

Ji =λiI2 +B2, (60)

J2
i =(λiI2 +B2)2 = λ2

i I2 + 2λiB2, (61)

...

Jki =(λiI2 +B2)k = λki I2 + kλk−1
i B2, (62)

where we used the fact that Bk
2 = 0 for all k ≥ 2. Similarly, for ri = 3 it can be shown that Bk

3 = 0 for all
k ≥ 3, which yields

Jki = λki I3 + kλk−1
i B3 + kλk−2

i B2
3 k ≥ 3. (63)

By taking the norm of (57) we obtain∥∥∥Ak
∥∥∥ ≤ K ∥∥∥Jk∥∥∥ , K = ‖P ‖

∥∥P−1
∥∥ . (64)

At this point we recall that for any matrix norm compatible with a vector norm and for any block-diagonal
matrix such as J or Jk we have ∥∥∥Jk∥∥∥ = max

{∥∥∥Jk1 ∥∥∥ , . . . ,∥∥∥Jkl ∥∥∥} . (65)

If the eigenvalues of A sitting at the boundary of the unit circle are simple then, by equation (59) we have∥∥∥Jki ∥∥∥ = 1. (66)

On the other hand, if |λi| < 1 (eigenvalue within the unit circle or arbitrary multiplicity) then by equation
(62) or (63) we have that ∥∥∥Jki ∥∥∥→ 0 for k →∞. (67)

Since
∥∥Jki ∥∥ if finite for all k, there exists a finite M such that

∥∥Jki ∥∥ ≤M for all k.

Finally, if there exists a non-simple eigenvalue λi (eigenvalue with algebraic multiplicity larger than one)
at the boundary of the unit circle then we can no longer guarantee that

∥∥Jki ∥∥ is bounded independently of
k. In fact, suppose that the algebraic multiplicity of the eigenvalue λi at the boundary of the unit circle
(i.e., |λi| = 1) is ri = 2. Then by using (62) we see that∥∥∥Jki ∥∥∥

1
= |λi|k + k |λi|k−1 = 1 + k for all k ≥ 2. (68)

In summary, if the root condition is satisfied, i.e., if all the eigenvalues of A are within the unit circle with
the exception of a finite number of simple eigenvalues sitting at the boundary of the unit circle then∥∥∥Ak

∥∥∥ ≤ K ∥∥∥Jk∥∥∥ ≤M for all k ∈ N, (69)

where M > 0 is independent of k. This completes the proof of Lemma 1.

We now have all elements to show that if a scheme satisfies the root condition then it is zero-stable. To
this end, let us take the infinity norm of (51), and use (52) (or (69)) to obtain

∣∣emk+q

∣∣ ≤ ∥∥emk+1

∥∥
∞ ≤M

‖em0 ‖∞ + ∆t
k∑
p=0

∥∥bmp ∥∥∞ + ∆t

k∑
p=0

∥∥dmp ∥∥∞
 . (70)
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By using definition (48) and (47) we see that

n∑
m=1

∥∥bmp ∥∥∞ =
n∑

m=1

∣∣Φm
f (zp+q, . . . ,zp, tp,∆t)− Φm

f (up+q, . . . ,up, tp,∆t)
∣∣

= ‖Φf (zp+q, . . . ,zp, tp,∆t)−Φf (up+q, . . . ,up, tp,∆t)‖1

≤L
q∑
s=0

‖zp+s − up+s‖1

=L

q∑
s=0

n∑
m=1

∣∣zmp+s − ump+s∣∣
=L

q∑
s=0

n∑
m=1

∣∣emp+s∣∣ , (71)

where we assumed that Φf is Lischitz continuous. Next, define

gk+q =
n∑

m=1

∣∣emk+q

∣∣ . (72)

Note that gk+q is the 1-norm of the vector zk+q−uk+q (see Eq. (47)). Substituting (71) into the inequality
(70) (summed-up in m) yields

gk+q ≤M

 n∑
m=1

‖em0 ‖∞ + L∆t

k+q∑
s=0

gs + ∆t

k∑
p=0

n∑
m=1

∥∥dmp ∥∥∞


≤Mnε(1 + k∆t) +ML∆t

k+q∑
s=0

gs. (73)

Now we can use the discrete Grönwall lemma (see, e.g., [3, Lemma 11.2]) to conclude that

gk+q ≤ε
(
nM(1 + (k + 1)∆t)eML(k+q+1)∆t

)
≤ ε nM(1 + T )eMLT︸ ︷︷ ︸

C

, (74)

where T ≥ (q + k + 1)∆t is some integration period. Recalling that gk+p is the 1-norm of the vector
zk+q − uk+q (see Eq. (72)) we see that (74) can be written as

‖zk+q − uk+q‖1 ≤ Cε, (75)

for all k such that (q + k + 1)∆t ≤ T . Alternatively, if we set a maximum number of time steps steps
N ≥ k and an integration period T then (75) holds for all k ≤ N and for all ∆t ≤ T/(N + q) = ∆t∗.
This is were the definition of zero-stability kicks in, i.e., conditions (74) and (75) are satisfied for all
∆t ≤ T/(N +q) = ∆t∗. Based on definition (19) we conclude that the root condition implies zero-stability.
The converse statement, i.e., zero-stability implies root condition, is straightforward. Indeed, if the scheme
is zero stable then (20) is satisfied for all ε. This implies that (see Euation 51)∥∥∥∥∥∥Ak+1em0 + ∆t

k∑
p=0

Ak−p (bmp + dmp
)∥∥∥∥∥∥
∞

≤ Cε (76)

Recalling that C must be independent of k, this condition can be satisfied for all ε if and only if
∥∥Ak

∥∥ ≤
M .
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Proof of theorem 4. Let yk = y(tk) be the solution of the ODE (1) evaluated at t = tk. A substitution
of such solution into the scheme (14) yields the truncation error τk+q, hereafter written in a componentwise
form (m = 1, ..., n)

q∑
j=0

αjy
m
k+j = ∆t

(
Φm
f (yk+q, . . . ,yk, tk,∆t) + τmq+k

)
. (77)

Similarly, the numerical solution uk satisfies

q∑
j=0

αju
m
k+j = ∆tΦm

f (uk+q, . . . ,uk, tk,∆t). (78)

Subtracting (78) from (77) yields

q∑
j=0

αje
m
k+j = ∆t

[
Φm
f (yk+q, . . . ,yk, tk,∆t)− Φm

f (uk+q, . . . ,uk, tk,∆t) + τmq+k
]
, (79)

where
emk+j = ymk+j − umk+j . (80)

By following exactly same steps that took as from equation (46) to (75) in the proof of theorem 2 we obtain
the error bound

‖y(tk)− uk‖1 ≤MTeMLT ‖τ (∆t)‖1 , (81)

where the global truncation error ‖τ‖ is a function of ∆t. To obtain (81) we replaced (q + k)∆t with T ,
which implies that (81) holds for all ∆t ≤ T/(N + q) (this is where zero stability comes in) where N any
fixed number larger or equal than (k + q).

Moreover, for ∆t small enough, we have seen that ‖τ‖1 goes to zero as some power of ∆t (otherwise the
method is not consistent). Equation (81) says that the convergence order of the method is the same as the
order of consistency.

To obtain the bound (81) we assumed that the initial condition has no error, and that the numerical
computation of Φf and all arithmetic operations in the schemes are exact. Clearly this is not the case in
practice. It is possible to repeat the proof above, by assuming that all these numerical inaccuracies are
bounded, e.g., as a function of the machine precision ε, and develop a more detailed bound that depends
on ε.
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