AM 213B Prof. Daniele Venturi

Absolute stability of numerical methods for ODEs
We have seen in previous lecture notes that if a method is zero-stable then'
ly(te) — ugl, < MTeMET || 7(AL)|], forall k=0,1,...,N (1)

where 7(At) is the global truncation error of the scheme?. Equation (1) bounds the error between the
analytical solution of the initial value problem

dy
E = f(yvt) (4)
y(0) = yo

evaluated at t; and the numerical solution of (4) computed with the scheme

q
Z QjUE4; = At<I>f(uk+q, e, U, tk, At),
=0 (5)

given {ug,...,ug—1}

If we send At to zero we have that || 7(At)]| in (1) goes to zero (by consistency) and therefore we can make
the error between the analytical solution y(tx) and the numerical solution uy as small as we like (modulus
errors due to finite machine precision).

However, for finite At it is possible that the errors due to truncation and finite machine precision propagate
form one iteration to then next, and eventually build up in a way that drives the numerical solution away
from the exact solution. Such “unstable” dynamics is still going to have an error that is bounded by the
right hand side of (1) within the integration period T' (if the numerical method is zero-stable).

Prototype problem for absolute stability analysis. To study the way local errors accumulate in
time and eventually yield instabilities it is convenient to consider a prototype ODE system that has a
well-defined time-asymptotic state. Of course, the simplest system we can think of is a linear system?® of

the form
dy

dt (6)
y(0) = yo
where B is a matrix with eigenvalues {\1,...,\,} having strictly negative real part, i.e.,
Re(Ai) <0 foralli=1,...,n. (7)

1Recall that all norms in a finite-dimensional vector space are equivalent. Hence we can replace the 1-norm in (1) with any
other (equivalent) norm.
?Note that the bound at the right hand side of (1) has an amplification factor

C = MTMT (2)

that can be very big. For instance, if T'= 10 (integration period), L = 2 (Lipschitz constant of f in (4)), and M = 1 (norm
of the matrix A defined in the course note 4, Lemma 1) then we obtain

C =10e*° ~ 4.851 x 10°. (3)

3 A numerical method which cannot handle satisfactorily the linear system (6) shall not be considered a good method.
Moreover, there is ample computational evidence that methods with ample absolute stability regions (see, e.g., Figure 1)
outperform those with small regions.
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Hereafter, we also assume that the matrix B is diagonalizable. This simplifies the mathematical derivations
and it does not change the conclusions of the analysis, meaning that the same results can obtained for non-
diagonalizable matrices using a more involved analysis. As is well known, if the matrix B is diagonalizable
then there exists an invertible matrix P such that

B =PAP, (8)
where -
A1 0
A= - (diagonal matrix of eigenvalues), (9)
0 An
and -
U1t Vln
P = S R (matrix of eigenvectors). (10)
Unl | Unn

With the representation (8) available, we can write the analytical solution to (6) as

y(t) = Pe'* P~ lyy, (11)
where
et 0
= : (12)
0 ethn
The assumption Re();) < 0 implies that
Jim [ly(8)[| = 0. (13)
—o0

Note that the matrix P allows us to fully decouple the system of ODEs (6). In fact, a substitution of (8)
into (6) yields

dq
dt (14)
q(0) = qo

where
at) =P 'y(t), g =P 'y
The matrix A is diagonal, and therefore the system of ODEs (14) is fully decoupled (meaning that we can

solve each ODE independently of the others). Note also that, in general, the matrix of eigenvectors P is
complex, i.e., q(t) can be a complex vector.

Remark: If We drop the assumption that B is diagonalizable, then we have that B is similar to a block-
diagonal Jordan matrix J. Everything we have said so far still holds, with the only difference that matrix
A is replaced by a block-diagonal matrix J. In this case the system (14) is not fully decoupled.

Next, we study under which conditions the numerical solution {uy} produced by the scheme (5) applied
the linear ODE (6) decays to zero as t goes to infinity.

Definition 1 (Absolute stability). The numerical method (5) is said to be absolutely stable if when applied
to the linear system (6) generates a numerical solution {uy} that decays to zero as t; goes to infinity, i.e.,

lim [y =0 (15)
k—o0
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As we shall see hereafter, for any given matrix B, the absolute stability condition may be satisfied for
some At but not for others.

Absolute stability analysis of elementary one-step methods. Let us provide a few simple examples
of absolute stability analysis for well-known one-step methods.

e Euler forward: Let us approximate the numerical solution of (6) using the Euler forward scheme
U1 = up + AtBuy. (16)

By using the similarity transformation P we can decouple this scheme exactly as we did for the
system (6). To this end, note that

Ukl = U + AtPAP_luk & P_lukJrl = P_luk +AtA P_l’u,k (17)
—_— —— ——
W41 Wi Wy

which, upon definition of*
wg = Piluk (18)

can be written component by component as
wi = w + At jw] = (1+ At w), = (1+ At\) g j=1,...,n (19)
By taking the modulus we obtain
’wiﬂ‘ = |1+At)\j|k+1‘wg‘. (20)
Hence, a necessary and sufficient condition for absolute stability of the Euler forward method is
114+ At;| < 1. (21)

This condition defines a region of the complex plane, called the region of absolute stability in which
the Euler forward scheme is absolutely stable (see Figure 1). The region of absolute stability imposes
conditions on At for a given set of eigenvalues {A1,...,\,}. Such conditions are sketched in Figure
1 and derived analytically hereafter. To this end, note that

11+ At\; ]2 =[Re (1 + At\)]* + [Im (1 4 AtA)))
=1+ AtRe(\)))* + At2Tm(),)?
=1+ At? [Re(\;)? + Im();)?] + 2At Re();)

=1+ A2 |\j)? + 2At Re())). (22)
Clearly,
1+ AN2P<1 & At|A]* +2Re())) <0, (23)
ie.,
2Re();
0 < At < max —i;) . (24)
j=1...m A4

Hence the Euler forward method is conditionally absolutely stable, the condition being At smaller
than the maximum of —2Re();)/ |\;[%.

4Note that the vector wy defined in equation (18) has, in general, complex entries. In fact the matrix of eigenvectors P is
complex if the eigenvalues are complex.

Page 3



AM 213B Prof. Daniele Venturi

In@ ‘
FLRN
N |eatl-4
y
Yz N
/ A
;
2 \ -1 y 0 Rc(l)
AN - 7

Figure 1: Region of absolute stability of the Euler forward method (shaded unit circle excluding the
boundary). The largest At that guarantees absolute stability of the Euler Forward method is the one
that re-scales the eigenvalues of the matrix B and brings them all within the unit circle (excluding the
boundary). In the figure we sketch the re-scaling of one eigenvalue A by a factor At that brings it exactly
at the boundary of the circle.

o FEuler backward: Let us approximate the numerical solution of (6) using the Euler backward scheme
Uyl = Up + AtBuyy. (25)

By using the similarity transformation defined by P we decouple this scheme exactly as we did for
the ODE system (6) and for the Euler forward method. To this end, substitute (18) into (25) to
obtain

W1 — AtAwkH = Wig. (26)

By writing (26) component by component we obtain

1

—(1 T A wy. (27)

(I=At ) wi  =w), = wj,, =
Therefore, the Euler backward method is absolutely stable if and only if for all j = 1,...,n we have

1
—— <1 ie |1—At\; 1. 2
T Aby| <1 ie | tA;| > (28)

The inequality |1 — z| > 1 with z € C defines the region outside a unit circle centered at 1 (see Figure
2). In terms of restrictions on At, a substitution of (22) into (28) yields

At (At N2 - 2Re(Aj)) >0 & At>0 (29)

>0

Since this condition is satisfied by any At > 0 we say that Euler Backward is unconditionally abso-
lutely stable.

e Crank-Nicolson: Let us approximate the numerical solution of (6) using the Crank-Nicolson scheme

At
Up41 = Uk + o5 [Buyy1 + Buyg]. (30)

As before, we decouple this scheme by using the similarity transformation defined by P. This yields,

At At
Wp41 — 7Awk+1 = Wy, + 7Awk, (31)
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Figure 2: Region of absolute stability of the Euler backward method (shaded area outside the unit circle
centered at z = 1 excluding the boundary of the circle). The Euler backward method is unconditionally
absolutely stable (A-stable) since any eigenvalue with negative real part is in the region of absolute stability.

which can be written component by component as

k41
At AL ; 14 A%
== =1+ 7w, = Wy = Y wp.- (32)
)
Hence, the Crank-Nicolson method is absolutely stable if and only if
At At
‘1 + 1l < ‘1 - —21 & Re()\At) <O0. (33)

The last condition follows from the following simple calculation. Set z = At\;/2. Then we have®
1422 <1—2z° < 1+42Re(z)+]z/><1—2Re(z)+]z]> < Re(z)<0. (34)

Since Re()\;) < 0 we conclude from (33) that the Crank-Nicolson method is absolutely stable for all
At > 0. In other words it is unconditionally absolutely stable. The region of absolute stability of the
Crank-Nicolson method is sketched in Figure 3

e Heun: Let us approximate the numerical solution of (6) using the Heun method

At At?
w1 = wi + - [B (wy + AtBuyg) + Buy] = uy, + AtBuy, + TBQUI@- (35)

As before, we decouple the scheme by using the similarity transformation defined by P to obtain

A2,
Wit1 = Wi, + AtAwy + TA wy. (36)

This can be written component by component as

w) = (1+AtAj+ 5 9) wy, (37)

Recall that for any z € C we have:
N+zP=1+2)1+2) =1+ (24 2") 4 22" =1+ 2Re(z) + |2
N—z2P=(1—-2)(1-2")=1—(24+2")+ 22" =1—2Re(2) + |2|*.

)
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Figure 3: Region of absolute stability of the Crank-Nicolson method (shaded area representing half of
the complex plane). The Crank-Nicolson method is unconditionally absolutely stable (A-stable) since any
eigenvalue with negative real part is in the region of absolute stability.
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Figure 4: Region of absolute stability of the Heun method (shaded area). The largest At that guarantees
absolute stability of the Heun method is the one that re-scales the eigenvalues of the matrix B and brings
them all within the shaded area sketched in the Figure (excluding the boundary). In the figure we sketch
the re-scaling of one eigenvalue A by a factor At that brings it exactly at the boundary of the area. Note
that the region of absolute stability of the Heun method is larger than the one of Euler forward, and
therefore allows for slightly larger At (if the eigenvalues of the matrix B are complex).

which yields the absolute stability condition

2\2

L+ At + —5

<1 forallj=1,...,n. (38)

The region of absolute stability of the Heun method is sketched in Figure 4. The boundary of stability
region is the one level set of the real-valued function
2

b@%:h+z+2 zeC. (39)

Similarly to the Euler forward method, the Heun method is conditionally absolutely stable.
At this point we provide a more rigorous definition of unconditional absolute stability. To this end, let
C™ ={z € C:Re(z) <0}. (40)

Definition 2 (A-stability). Let R be the region of absolute stability of the numerical method (5). We say
that the method is A-stable if
RNC™ =C" (41)

In other words, if the R includes C~ then the method is A-stable (or unconditionally absolutely stable).
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Clearly, Euler backward and Crank-Nicolson methods are both A-stable, while Euler forward and Heun
methods are all conditionally stable. More generally, one can prove that

Theorem 1. There is no explicit A-stable numerical method.

This theorem states that all explicit methods are conditionally absolutely stable. On the other hand,
implicit methods can be A-stable (e.g., Crank-Nicolson) or conditionally stable (e.g., BDF methods with
three or more steps, or Adams-Moulton methods with two or more steps). As we shall see hereafter, there
is in fact no A-stable implicit linear multistep method of order greater than 2.

Absolute stability analysis of linear multistep methods. Consider a general linear g-step method
applied to the linear ODE system (6)

q q
Zajukﬂ- = AtZ/BjBuk+j- (42)

j=0 7=0

We decouple the system by using the similarity transformation P defined in (8). To this end, define

Wi = P_luk7 (43)
and substitute it into (42) to obtain
q q
D ajwiyy =AY BijAwyy, (44)
=0 =0

where A is the diagonal matrix (9). It is convenient to write (44) component by component as

q
D (o = AtApB)wil ;=0  m=1,...,n. (45)
g
=0 c;
At this point we follow the same mathematical technique we used in the proof of Theorem 2 in the course
note 4 (i.e., root condition implies zero-stability). To this end, we define®

0 1 0 0
m
Wik 0 0 1. 0
m W41 : . : :
2 = . ) C= : : : : . (46)
- 0 0 0 .- 1
ktq—1 | —co/cqg —ci/cqg —cafcq 0 —cq-1/cq]

and write (45) as a recurrence (for a complex vector)

2y = C2p (47)
The matrix C' is the companion matrix of the characteristic polynomial
7(2) = p(z) — A\jAto(z) (stability polynomial), (48)
where
q .
p(z) = Z a2 (first characteristic polynomial), (49)
=0
q .
o(z) = Z Bjz?  (second characteristic polynomial). (50)
=0

SNote that the vectors zJ* and the matrix A have (in general) complex entries.
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The recurrence (47) can be easily solved to obtain
20 = Crriz, (51)

Clearly, a necessary and sufficient condition for ||z}"|| — 0 as k — oo is that the matrix C' is a contraction.
This happens if and only if the eigenvalues of C), i.e., the roots of the polynomial (48), are within the unit
disk (excluding the boundary). We can summarize these results as follows.

Theorem 2. The linear multistep method (42) is absolutely stable if and only if the roots of the stability
polynomial (48) are within the unit disk (excluding the boundary of the disk).

Note that for At — 0 the polynomial (48) tends to the first characteristic polynomial (49). Hence, in the
limit of small At the condition for absolute stability tends to be the same as the root condition. This
means that there exists a simple root of 7(z), say z*, that approaches 1 for At — 0. This is necessary
for the consistency of the method. However, it should be kept in mind that zero-stability and absolute
stability are different concepts. Indeed there exist convergent methods that are not absolutely stable. Let
us provide an example

e Leapfrog method: Let us study absolute stability of the Leapfrog method
Upr2 = Up + 208 f (U1, k). (52)
The first and second characteristic polynomials associated with the scheme are
p(z) = 2% -1, o(z) = 2z. (53)
This gives us the following stability polynomial (see (48))
m(z) = 2% — 2\ jAtz — 1. (54)

This is a polynomial with (in general) complex coefficients. To find the boundary of the region of
absolute stability we look for all roots of 7(z) with modulus one, that is set”

z=¢", (55)
substitute it into (54) and set the equation to zero

€2i19 -1 ez‘ﬁ —19
2et 2

2 _ONALY —1=0 < NAt= = isin(d) (56)
As shown in Figure 5 the region of absolute stability in this case collapses to the interval [—i,i] on
the imaginary axis. Hence, the leapfrog method is always absolutely unstable. This means that there
is no hope for the method (52) to simulate accurately a linear system that has an attractor at the
origin. The method is convergent through. Therefore as At — 0 the global error becomes smaller
and smaller (see Eq. (1)).

The technique we used to compute the boundary of the absolute stability region of the leapfrog method
can be generalized to arbitrary linear multistep methods. To this end, we just need to look for all roots of
modulus one of the stability polynomial (48), that is plot the set of complex numbers

q
ot79
E aje
_J=0
T q
ij9
> Bjet
Jj=0

. delo,2q]. (57)
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Figure 5: Region of absolute stability of the leapfrog method (52). Note that region of stability in the
case collapses to the interval [—i, ] on the imaginary axis. Hence, the leapfrog method is always absolutely
unstable. In other words, there is no hope for the method (52) to simulate accurately a linear dynamical
system that has an attractor at the origin.
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Figure 6: Boundary of the absolute stability region for various linear multistep methods. For Adams-
Bashforth (AM) and Adams-Moulton (AM) methods, the region of absolute stability is the area inside the
closed curve, while for BDF method is the area outside the curve. Note that the region of absolute stability
of AM methods is larger than that of AB methods.

In Figure 6 we provide a few plots of the boundary of the absolute stability region for a Adams-Bashforth,
Adams-Moulton and BDF methods.

Remark: Tt is important to emphasize that the curves plotted in Figure 6 represent the set of values AAt
for which the stability polynomial (48) has at least one root with modulus one. As is well known, the
roots of a polynomial are continuous functions of the coefficients of the polynomial. In the case of (48)
we have one parameter, i.e., AAt, which multiplies all coefficients of o(z), hence affecting simultaneously
multiple coefficients. To figure out which region of the complex plane is absolutely stable, e.g., the inner
or the outer part of the curve defined in (57), it is sufficient to compute the roots of (48) for AA¢ inside
or outside the region defined by the curve. If such roots are within the unit disk, then the method is
absolutely stable.

"Recall that the set of complex numbers with modulus one sits on the unit circle in the complex plane and can be represented
in therm of the complex exponential function e* = cos(6) + isin(6).

Page 9



AM 213B Prof. Daniele Venturi

Remark: Zero-unstable linear multistep methods are necessarily absolutely unstable. To show this, we
notice that in the limit At — 0 we have

w(z) = p(z) — AAto(z) — p(z). (58)

If the method is zero-unstable then p(z) has roots outside the unit disk. By continuity of polynomial
roots as a function of At\, we have that for all At\ in a small neighborhood of 0 the polynomial (48) has
roots outside the unit disk. If a method is consistent then the curve (57) passes through the origin (since
p(1) = 0). Recalling that such curve represent the set of points AAt for which at least one root of (48) has
modulus one, we conclude by the continuity of the roots if 7(2) as a function of AAt at AAt = 0 that both
inner and outer regions of the curve are absolutely unstable. This proves the following lemma:

Lemma 1. A zero-unstable consistent linear multistep method is absolutely unstable.

At this point we recall that no explict scheme can be A-stable. This implies, in particular, that there is
no A-stable explicit linear multistep method. What can we say about implicit LMM methods?
Theorem 3 (Second Dahlquist barrier — 1963). There is no A-stable LMM method with order greater
than 2.

Recall that AM2 and BDF3 are both methods of order 3. It is seen in Figure 6 that these methods are in
fact not A-stable.

Absolute stability analysis of Runge-Kutta methods. The absolute stability analysis we performed
for one-step and LMM methods clearly shows that in order to compute the region of absolute stability of
a numerical method it is sufficient to consider only one complex ODE of the form

d

9 _ Aq

dt (59)
q(0) = qo

This ODE can be any in the decoupled system (14) corresponding to an arbitrary eigenvalue A. Let us
discretize (59) with the s-stage RK method

S
Wg+1 = W + At Z b; K, (60)
i=1
where
S
Ky =dwp + MAtY ayK;  i=1,....s. (61)
j=1
At this point it is convenient to define
K, air a2 v Gls by 1
Ky az1 Ay -+ As bo 1
K = ) A= . , b= , h= , (62)
K as1 As2 +++ QAss bs 1

and write (61) in a matrix-vector form as

(I - MAtA)K = uph < K = (I - AtA) ' hawy. (63)
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Figure 7: Boundary of the absolute stability region for various explicit RK methods. The region of stability
is the interior of each closed curve.

Next, substitute expression we derived for K into (60) to obtain
Wit = wy + AtBTK = [1 FAAT (I - AALA) ™! h} Wy (64)
At this point we define the stability function
S(z) =1+ zb" (I —zA) " h, (65)

and iterate (64) to obtain
Wk41 = S()\At)k+1w0. (66)

Hence a necessary and sufficient condition for absolute stability of RK methods is that
[S(AAL)| < 1. (67)
As shown in [1, p. 200], by using the Cramer’s rule we can write the stability function (65) as

B det (I —zA + zhbT)

5(z) = det(I — zA) (68)

Note that, in general S(z) is a rational function, i.e., the ratio between two polynomials in z. In the
particular case of explicit RK methods we have that the matrix A is strictly lower triangular. This yields
det(I — zA) = 1, which results in

S(z) =det (I —2zA+ zhbT) (stability function for explicit RK methods). (69)

In Figure 7 we plot the boundary of the absolute stability region for the explicit RK methods corresponding
to the following Butcher arrays®:

8The boundary of the stability regions are computed as zero-level set of |S(z)| — 1.
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0] 0O 0
111 0 Heun’s method (RK2)
| 1/2 1/2
0 0 0 0
1/21/2 0 0 ,
112 9 0 Kutta’s method (RK3)
| 1/6 2/3 1/6
0 0 0 0 0
1/211/2 0 0 0
/20 0 1/2 0 0 Runge-Kutta’s method (RK4)
1 0 0 1 0
| 1/6 1/3 1/3 1/6
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