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Absolute stability of numerical methods for ODEs

We have seen in previous lecture notes that if a method is zero-stable then for all ∆t smaller than some
∆t∗

∥y(tk)− uk∥1 ≤ MTeMLT ∥τ (∆t)∥1 for all k = 0, 1, . . . , N (1)

where ∥τ (∆t)∥1 is the global truncation error of the scheme1. Equation (1) bounds the error between the
analytical solution of the initial value problem

dy

dt
= f(y, t)

y(0) = y0

(4)

evaluated at tk and the numerical solution of (4) computed with the scheme
q∑

j=0

αjuk+j = ∆tΦf (uk+q, . . . ,uk, tk,∆t),

given {u0, . . . ,uq−1}

(5)

If we send ∆t to zero we have that ∥τ (∆t)∥1 in (1) goes to zero (by consistency) and therefore we can make
the error between the analytical solution y(tk) and the numerical solution uk as small as we like.

However, for finite ∆t it is possible that the errors due to truncation and finite machine precision propagate
form one iteration to then next, and eventually build up in a way that drives the numerical solution away
from the exact solution.

A prototype problem for absolute stability analysis

To study the way local errors accumulate in time and eventually yield instabilities it is convenient to
consider a prototype ODE system that has a well-defined time-asymptotic state. Of course, the simplest
system we can think of is a linear system2 of the form

dy

dt
= By

y(0) = y0

(6)

where B is a matrix with eigenvalues {λ1, . . . , λn} having strictly negative real part, i.e.,

Re(λi) < 0 for all i = 1, . . . , n. (7)

1Recall that all norms in a finite-dimensional vector space are equivalent. Hence, we can replace the 1-norm in (1) with
any other (equivalent) norm. Also, note that the bound at the right hand side of (1) has an amplification factor

C = MTeMLT (2)

that can be very big. For instance, if T = 10 (integration period), L = 2 (Lipschitz constant of f in (4)), and M = 1 (norm
of the matrix A defined in the course note 4, Lemma 1) then we obtain

C = 10e20 ≃ 4.851× 109. (3)

2A numerical method which cannot handle satisfactorily the linear system (6) shall not be considered a good method.
Moreover, there is ample computational evidence that methods with ample absolute stability regions (see, e.g., Figure 1)
outperform those with small regions.
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Hereafter, we also assume that the matrix B is diagonalizable. This simplifies the mathematical derivations
and it does not change the conclusions of the analysis, meaning that the same results can obtained for
non-diagonalizable matrices using a slightly more involved analysis3. As is well known, if the matrix B is
diagonalizable then there exists an invertible matrix P such that

B = PΛP−1, (8)

where

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 (diagonal matrix of eigenvalues), (9)

and

P =


v11...
vn1

 · · ·

v1n...
vnn


 (matrix of eigenvectors). (10)

With the representation (8) available, we can write the analytical solution to (6) as

y(t) = P etΛP−1y0, (11)

where

etΛ =

e
tλ1 · · · 0
...

. . .
...

0 · · · etλn

 . (12)

The assumption Re(λi) < 0 implies that
lim
t→∞

∥y(t)∥ = 0. (13)

Note that the matrix P allows us to fully decouple the system of ODEs (6). In fact, a substitution of (8)
into (6) yields 

dq

dt
= Λq

q(0) = q0

(14)

where
q(t) = P−1y(t), q0 = P−1y0.

The matrix Λ is diagonal, and therefore the system of ODEs (14) is fully decoupled (meaning that we can
solve each ODE independently of the others). On the other hand, if the matrix B is not diagonalizable
then the system (14) can be written as q̇ = Jq, where J is the Jordan form of B. In this case the system
is not decoupled since J is not fully diagonal. Note also that, in general, the matrix of eigenvectors P is
complex, i.e., q(t) can be a complex vector.

Next, we study under which conditions the numerical solution {uk} produced by the scheme (5) applied
the linear ODE (6) decays to zero as tk goes to infinity.

Definition 1 (Absolute stability). The numerical method (5) is said to be absolutely stable if when applied
to the linear system (6) generates a numerical solution {uk} that decays to zero as tk goes to infinity, i.e.,

lim
k→∞

∥uk∥ = 0 (15)

3If we drop the assumption that B is diagonalizable, then we have that B is similar to a block-diagonal Jordan matrix J .
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Absolute stability analysis of elementary one-step methods

For a given matrix B with eigenvalues {λ1, . . . , λn} the absolute stability condition may be satisfied for
some ∆t but not for others. Let us provide a few simple examples of absolute stability analysis for
elementary one-step methods.

• Euler forward: Let us approximate the numerical solution of (6) using the Euler forward scheme

uk+1 = uk +∆tBuk. (16)

By using the similarity transformation P we can decouple this scheme exactly as we did for the
system (6). To this end, note that

uk+1 = uk +∆tPΛP−1uk ⇔ P−1uk+1︸ ︷︷ ︸
wk+1

= P−1uk︸ ︷︷ ︸
wk

+∆tΛP−1uk︸ ︷︷ ︸
wk

(17)

which, upon definition of4

wk = P−1uk (18)

can be written component by component as

wj
k+1 = wj

k +∆tλjw
j
k = (1 +∆tλj)w

j
k = (1 +∆tλj)

k+1wj
0 j = 1, . . . , n. (19)

By taking the modulus we obtain ∣∣∣wj
k+1

∣∣∣ = |1 + ∆tλj |k+1
∣∣∣wj

0

∣∣∣ . (20)

Hence, a necessary and sufficient condition for absolute stability of the Euler forward method is

|1 + ∆tλj | < 1. (21)

This condition defines a region of the complex plane, called the region of absolute stability in which
the Euler forward scheme is absolutely stable (see Figure 1). The region of absolute stability imposes
conditions on ∆t for a given set of eigenvalues {λ1, . . . , λn}. Such conditions are sketched in Figure
1 and derived analytically hereafter. To this end, note that

|1 + ∆tλj |2 = [Re (1 + ∆tλj)]
2 + [Im (1 + ∆tλj)]

2

= [1 + ∆tRe(λj)]
2 +∆t2 Im(λj)

2

=1 +∆t2
[
Re(λj)

2 + Im(λj)
2
]
+ 2∆tRe(λj)

=1 +∆t2 |λj |2 + 2∆tRe(λj). (22)

Clearly,
|1 + ∆tλj |2 ≤ 1 ⇔ ∆t |λj |2 + 2Re(λj) < 0, (23)

i.e.,

0 < ∆t < max
j=1,...,n

(
−2Re(λj)

|λj |2

)
. (24)

Hence the Euler forward method is conditionally absolutely stable, the condition being ∆t smaller
than the maximum of −2Re(λj)/ |λj |2.

4Note that the vector wk defined in equation (18) has, in general, complex entries. In fact the matrix of eigenvectors P is
complex if the eigenvalues are complex.
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Figure 1: Region of absolute stability of the Euler forward method (shaded disk excluding the boundary).
The largest ∆t that guarantees absolute stability of the Euler Forward method is the one that re-scales the
eigenvalues of the matrix B and brings them all within the disk (excluding the boundary). In the figure
we sketch the re-scaling of one eigenvalue λ by a factor ∆t that brings it exactly at the boundary of the
circle.

• Euler backward: Let us approximate the numerical solution of (6) using the Euler backward scheme

uk+1 = uk +∆tBuk+1. (25)

By using the similarity transformation defined by P we decouple this scheme exactly as we did for
the ODE system (6) and for the Euler forward method. To this end, substitute (18) into (25) to
obtain

wk+1 −∆tΛwk+1 = wk. (26)

By writing (26) component by component we obtain

(1−∆tλj)w
j
k+1 = wj

k ⇒ wj
k+1 =

1

(1−∆tλj)
k+1

wj
0. (27)

Therefore, the Euler backward method is absolutely stable if and only if for all j = 1, . . . , n we have

1

|1−∆tλj |
< 1 i.e. |1−∆tλj | > 1. (28)

The inequality |1− z| > 1 with z ∈ C defines the region outside a unit circle centered at 1 (see Figure
2). In terms of restrictions on ∆t, a substitution of (22) into (28) yields

∆t
(
∆t |λj |2 − 2Re(λj)

)
︸ ︷︷ ︸

>0

> 0 ⇔ ∆t > 0 (29)

Since this condition is satisfied by any ∆t > 0 we say that Euler Backward is unconditionally abso-
lutely stable.

• Crank-Nicolson: Let us approximate the numerical solution of (6) using the Crank-Nicolson scheme

uk+1 = uk +
∆t

2
[Buk+1 +Buk] . (30)

As before, we decouple this scheme by using the similarity transformation defined by P . This yields,

wk+1 −
∆t

2
Λwk+1 = wk +

∆t

2
Λwk, (31)
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Figure 2: Region of absolute stability of the Euler backward method (shaded area outside the unit disk
centered at z = 1 excluding the boundary of the disk). The Euler backward method is unconditionally
absolutely stable (A-stable) since any eigenvalue with negative real part is in the region of absolute stability.

which can be written component by component as

(
1− ∆tλj

2

)
wj
k+1 =

(
1 +

∆tλj

2

)
wj
k ⇒ wj

k+1 =

∣∣∣∣∣1 +
∆tλj

2

1− ∆tλj

2

∣∣∣∣∣
k+1

wj
0. (32)

Hence, the Crank-Nicolson method is absolutely stable if and only if∣∣∣∣1 + ∆tλj

2

∣∣∣∣ < ∣∣∣∣1− ∆tλj

2

∣∣∣∣ ⇔ Re(λj∆t) < 0. (33)

The last condition follows from the following simple calculation. Set z = ∆tλj/2. Then we have5

|1 + z|2 < |1− z|2 ⇔ 1 + 2Re(z) + |z|2 < 1− 2Re(z) + |z|2 ⇔ Re(z) < 0. (34)

Since Re(λj) < 0 we conclude from (33) that the Crank-Nicolson method is absolutely stable for all
∆t > 0. In other words it is unconditionally absolutely stable. The region of absolute stability of the
Crank-Nicolson method is sketched in Figure 3

• Heun method: Let us approximate the numerical solution of (6) using the Heun method

uk+1 = uk +
∆t

2
[B (uk +∆tBuk) +Buk] = uk +∆tBuk +

∆t2

2
B2uk. (35)

As before, we decouple the scheme by using the similarity transformation defined by P to obtain

wk+1 = wk +∆tΛwk +
∆t2

2
Λ2wk. (36)

This can be written component by component as

wj
k+1 =

(
1 + ∆tλj +

∆t2λ2
j

2

)k+1

wj
0, (37)

5Recall that for any z ∈ C we have:

|1 + z|2 =(1 + z)(1 + z∗) = 1 + (z + z∗) + zz∗ = 1 + 2Re(z) + |z|2 ,

|1− z|2 =(1− z)(1− z∗) = 1− (z + z∗) + zz∗ = 1− 2Re(z) + |z|2 .
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Figure 3: Region of absolute stability of the Crank-Nicolson method (shaded area representing half of
the complex plane). The Crank-Nicolson method is unconditionally absolutely stable (A-stable) since any
eigenvalue with negative real part is in the region of absolute stability.

Figure 4: Region of absolute stability of the Heun method (shaded area). The largest ∆t that guarantees
absolute stability of the Heun method is the one that re-scales the eigenvalues of the matrix B and brings
them all within the shaded area sketched in the Figure (excluding the boundary). In the figure we sketch
the re-scaling of one eigenvalue λ by a factor ∆t that brings it exactly at the boundary of the area. Note
that the region of absolute stability of the Heun method is larger than the one of Euler forward, and
therefore allows for slightly larger ∆t (if the eigenvalues of the matrix B are complex).

which yields the absolute stability condition∣∣∣∣∣1 + ∆tλj +
∆t2λ2

j

2

∣∣∣∣∣ < 1 for all j = 1, . . . , n. (38)

The region of absolute stability of the Heun method is sketched in Figure 4. The boundary of stability
region is the one level set of the real-valued function

b(z) =

∣∣∣∣1 + z +
z2

2

∣∣∣∣ z ∈ C. (39)

Similarly to the Euler forward method, the Heun method is conditionally absolutely stable.

At this point we provide a more rigorous definition of unconditional absolute stability. To this end, let

C− = {z ∈ C : Re(z) < 0}. (40)

Definition 2 (A-stability). Let R be the region of absolute stability of the numerical method (5). We say
that the method is A-stable if

R ∩ C− = C− (41)
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In other words, if the R includes C− then the method is A-stable (or unconditionally absolutely stable).

Clearly, Euler backward and Crank-Nicolson methods are both A-stable, while Euler forward and Heun
methods are all conditionally stable. More generally, one can prove that

Theorem 1. There is no explicit A-stable numerical method.

Hence, all explicit methods are conditionally absolutely stable. On the other hand, implicit methods can
be A-stable (e.g., Crank-Nicolson, implicit midpoint, and all Gauss-Legendre implicit RK methods) or,
conditionally stable (e.g., BDF methods with three or more steps, or Adams-Moulton methods with two
or more steps). As we shall see hereafter, there is no A-stable implicit linear multistep method of order
greater than 2 (second Dahlquist barrier).

Absolute stability analysis of linear multistep methods

Consider a general linear q-step method applied to the linear ODE system (6)

q∑
j=0

αjuk+j = ∆t

q∑
j=0

βjBuk+j . (42)

We decouple the system by using the similarity transformation P defined in (8). To this end, define

wk = P−1uk, (43)

and substitute it into (42) to obtain

q∑
j=0

αjwk+j = ∆t

q∑
j=0

βjΛwk+j , (44)

where Λ is the diagonal matrix (9). It is convenient to write (44) component by component as

q∑
j=0

(αj −∆tλmβj)︸ ︷︷ ︸
cj

wm
k+j = 0 m = 1, . . . , n. (45)

At this point we follow the same mathematical technique we used in the proof of Theorem 2 in the course
note 4 (i.e., root condition implies zero-stability). To this end, we define6

zm
k =


wm
k

wm
k+1
...

wm
k+q−1

 , C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−c0/cq −c1/cq −c2/cq · · · −cq−1/cq

 . (46)

and write (45) as a recurrence (for a complex vector)

zm
k+1 = Czm

k . (47)

The matrix C is the companion matrix of the characteristic polynomial

π(z) = ρ(z)− λj∆tσ(z) (stability polynomial), (48)

6Note that the vectors zm
k and the matrix A have (in general) complex entries.

Page 7



AM 213B Prof. Daniele Venturi

where

ρ(z) =

q∑
j=0

αjz
j (first characteristic polynomial), (49)

σ(z) =

q∑
j=0

βjz
j (second characteristic polynomial). (50)

The recurrence (47) can be easily solved to obtain

zm
k+1 = Ck+1zm

0 . (51)

Clearly, a necessary and sufficient condition for ∥zm
k ∥ → 0 as k → ∞ is that the matrix C is a contraction.

This happens if and only if the eigenvalues of C, i.e., the roots of the polynomial (48), are within the unit
disk (excluding the boundary). We summarize these results as follows:

Theorem 2. The linear multistep method (42) is absolutely stable if and only if the roots of the stability
polynomial (48) are within the unit disk (excluding the boundary of the disk).

Note that for ∆t → 0 the polynomial (48) tends to the first characteristic polynomial (49). Hence, in the
limit of small ∆t the condition for absolute stability tends to be the same as the root condition. This
means that there exists a simple root of π(z), say z∗, that approaches 1 for ∆t → 0. This is necessary
for the consistency of the method. However, it should be kept in mind that zero-stability and absolute
stability are different concepts. Indeed there exist convergent methods that are not absolutely stable. Let
us provide an example

• Leapfrog method: Let us study absolute stability of the Leapfrog method

uk+2 = uk + 2∆tf(uk+1, tk). (52)

The first and second characteristic polynomials associated with the scheme are

ρ(z) = z2 − 1, σ(z) = 2z. (53)

This gives us the following stability polynomial (see (48))

π(z) = z2 − 2λj∆tz − 1. (54)

This is a polynomial with (in general) complex coefficients. To find the boundary of the region of
absolute stability we look for all roots of π(z) with modulus one, that is set7

z = eiϑ, (55)

substitute it into (54) and set the equation to zero

e2iϑ − 2λj∆teiϑ − 1 = 0 ⇔ λj∆t =
e2iϑ − 1

2eiϑ
=

eiϑ − e−iϑ

2
= i sin(ϑ) (56)

As shown in Figure 5 the region of absolute stability in this case collapses to the interval [−i, i] on
the imaginary axis. Hence, the leapfrog method is unconditional absolutely unstable. This means
that there is no hope for the method (52) to simulate accurately a linear system that has an attractor
at the origin. The method is convergent through. Therefore as ∆t → 0 the global error becomes
smaller and smaller (see Eq. (1)).

7Recall that the set of complex numbers with modulus one sits on the unit circle in the complex plane and can be represented
in therm of the complex exponential function eiθ = cos(θ) + i sin(θ).
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Figure 5: Region of absolute stability of the leapfrog method (52). The region collapses to the interval
[−i, i] on the imaginary axis. Hence, the leapfrog method is convergent but unconditionally absolutely
unstable. In other words, there is no hope for the method (52) to simulate accurately a linear dynamical
system that has an attractor at the origin.

Figure 6: Boundary of the absolute stability region for various linear multistep methods. For Adams-
Bashforth (AM) and Adams-Moulton (AM) methods, the region of absolute stability is the area inside the
closed curve, while for BDF method is the area outside the curve. Note that the region of absolute stability
of AM methods is larger than that of AB methods.

Plotting the absolute stability region of LMMs. The technique we used to compute the boundary
of the absolute stability region of the leapfrog method can be generalized to arbitrary linear multistep
methods. To this end, we just need to look for all roots of modulus one of the stability polynomial (48),
i.e. plot the set of complex numbers8

λj∆t =
ρ
(
eiϑ
)

σ (eiϑ)
=

q∑
j=0

αje
ijϑ

q∑
j=0

βje
ijϑ

, ϑ ∈ [0, 2π]. (57)

In Figure 6 we provide a few plots of the boundary of the absolute stability region for a Adams-Bashforth,
Adams-Moulton and BDF methods.

Remark: It is important to emphasize that the curves plotted in Figure 6 represent the set of values λ∆t

8Equation (57) follows immediately from the condition π(eiθ) = 0, which allows us to identify the set of λ∆t such that the
stability polynomial ρ(z)− λj∆tσ(z) has roots with modulus one.
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for which the stability polynomial (48) has at least one root with modulus one. As is well known, the
roots of a polynomial are continuous functions of the coefficients of the polynomial. In the case of (48)
we have one parameter, i.e., λ∆t, which multiplies all coefficients of σ(z), hence affecting simultaneously
multiple coefficients. To figure out which region of the complex plane is absolutely stable, e.g., the inner
or the outer part of the curve defined in (57), it is sufficient to compute the roots of (48) for λ∆t inside
or outside the region defined by the curve. If such roots are within the unit disk, then the method is
absolutely stable.

Zero-unstable LMMs are necessarily absolutely unstable. To show that zero-unstable LMMs are
unconditionally absolutely unstable, we notice that in the limit ∆t → 0 we have

π(z) = ρ(z)− λ∆tσ(z) → ρ(z). (58)

If the method is zero-unstable then ρ(z) has roots outside the unit disk. By continuity of polynomial
roots as a function of ∆tλ, we have that for all ∆tλ in a small neighborhood of 0 the polynomial (48) has
roots outside the unit disk. If a method is consistent then the curve (57) passes through the origin (since
ρ(1) = 0). Recalling that such curve represent the set of points λ∆t for which at least one root of (48) has
modulus one, we conclude by the continuity of the roots if π(z) as a function of λ∆t at λ∆t = 0 that both
inner and outer regions of the curve are absolutely unstable. This proves the following lemma:

Lemma 1. A zero-unstable consistent linear multistep method is unconditionally absolutely unstable.

At this point we recall that no explict scheme can be A-stable. This implies, in particular, that there is
no A-stable explicit linear multistep method. What can we say about implicit LMM methods?

Theorem 3 (Second Dahlquist barrier). There is no A-stable LMM method with order greater than 2.

Recall that AM2 and BDF3 are both methods of order 3. It is seen in Figure 6 that these methods are in
fact not A-stable.

Absolute stability analysis of Runge-Kutta methods

The absolute stability analysis we performed for one-step and LMM methods clearly shows that in order to
compute the region of absolute stability of a numerical method it is sufficient to consider only one complex
ODE of the form 

dq

dt
= λq

q(0) = q0

(59)

This ODE can be any in the decoupled system (14) corresponding to an arbitrary eigenvalue λ. Let us
discretize (59) with the s-stage RK method

wk+1 = wk +∆t
s∑

i=1

biKi, (60)

where

Ki = λwk + λ∆t
s∑

j=1

aijKj i = 1, . . . , s. (61)

At this point it is convenient to define

K =


K1

K2
...
Ks

 , A =


a11 a12 · · · a1s
a21 a22 · · · a2s
...

...
. . .

...
as1 as2 · · · ass

 , b =


b1
b2
...
bs

 , h =


1
1
...
1

 , (62)
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Figure 7: Boundary of the absolute stability region for various explicit RK methods. The region of stability
is the interior of each closed curve.

and write (61) in a matrix-vector form as

(I − λ∆tA)K = λwkh ⇔ K = (I − λ∆tA)−1hλwk. (63)

Next, substitute expression we derived for K into (60) to obtain

wk+1 = wk +∆tbTK =
[
1 + λ∆tbT (I − λ∆tA)−1 h

]
wk. (64)

At this point we define the stability function

S(z) = 1 + zbT (I − zA)−1 h, (65)

and iterate (64) to obtain
wk+1 = S(λ∆t)k+1w0. (66)

Hence a necessary and sufficient condition for absolute stability of RK methods is that

|S(λ∆t)| < 1. (67)

As shown in [1, p. 200], by using the Cramer’s rule we can write the stability function (65) as

S(z) =
det
(
I − zA+ zhbT

)
det(I − zA)

. (68)

Note that, in general S(z) is a rational function, i.e., the ratio between two polynomials in z. In the
particular case of explicit RK methods we have that the matrix A is strictly lower triangular. This yields
det(I − zA) = 1, which results in

S(z) = det
(
I − zA+ zhbT

)
(stability function for explicit RK methods). (69)

In Figure 7 we plot the boundary of the absolute stability region for the explicit RK methods corresponding
to the following Butcher arrays9:

9The boundary of the stability regions are computed as zero-level set of |S(z)| − 1.
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0 0 0
1 1 0

1/2 1/2

Heun’s method (RK2)

0 0 0 0
1/2 1/2 0 0
1 −1 2 0

1/6 2/3 1/6

Kutta’s method (RK3)

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Runge-Kutta’s method (RK4)
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