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Boundary value problems for ODEs

A boundary value problem (BVP) for an ODE is a problem in which we set conditions on the solution to
the ODE at different values of the independent variable. Such conditions can be on the solution itself, on
the derivatives of the solution, or more general conditions involving nonlinear functions of the solution.
Perhaps, the simplest boundary value problem for an ODE is1

d2u(x)

dx2
= f(x) x ∈ [0, 1]

u(0) = α

u(1) = β

(2)

in which we set conditions on the value of the solution at x = 0 and x = 1. Such conditions are called
Dirichlet boundary conditions. The general solution to (2) can be written as

u(x) = c1 + c2x+

∫ x

0
F (s)ds where F (s) =

∫ s

0
f(y)dy. (3)

By using integration by parts∫ x

0
F (s)ds = [sF (s)ds]s=x

s=0 −
∫ x

0
sf(s)ds =

∫ x

0
(x− s)f(s)ds. (4)

Substituting this expression into (3) yields

u(x) = c1 + c2x+

∫ x

0
(x− s)f(s)ds. (5)

At this point we enforce the boundary conditions to obtain

α = c1 β = c1 + c2 +

∫ 1

0
(1− s)f(s)ds, (6)

which gives the following unique solution to (2)

u(x) = α+ x

(
β − α−

∫ 1

0
(1− s)f(s)ds

)
+

∫ x

0
(x− s)f(s)ds. (7)

Lemma 1. For every f ∈ C0([0, 1]) there exists a unique solution u ∈ C2([0, 1]) to the boundary value
problem (2). Moreover, if f ∈ Ck([0, 1]) then u ∈ Ck+2([0, 1]).

Green functions and maximum principle. The solution (7) corresponding to zero Dirichlet conditions
(α = β = 0) can be conveniently written as

u(x) =

∫ 1

0
G(x, s)f(s)ds, (8)

i.e., in terms of an integral operator with appropriate kernel G(x, s). As we shall see hereafter G(x, s) is
the Green function of the problem.

1From a physical viewpoint, the BVP (2) defines a steady state heat conduction problem in a one-dimensional slab with
uniform conductivity, heat generation, and fixed temperature conditions at the boundary. In fact (2) can be derived from the
Fourier equation [1]

∂u

∂t
=

λ

ρcp
∇2u+

1

λ
f(x). (1)
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Figure 1: Green function G(s, x) defined in equations (9)-(10).

Setting α = β = 0 in (7) yields

u(x) =− x

∫ 1

0
(1− s)f(s)ds+

∫ x

0
(x− s)f(s)ds

=

∫ x

0
[(x− s)− x(1− s)] f(s)ds− x

∫ 1

x
(1− s)f(s)ds

=

∫ x

0
s(x− 1)f(s)ds+

∫ 1

x
x(s− 1)f(s)ds

=

∫ 1

0
G(x, s)f(s)ds, (9)

where we defined

G(x, s) =

s(1− x) 0 ≤ s ≤ x

x(1− s) x ≤ s ≤ 1
(Green function). (10)

The Green function G(x, s) is the kernel of the integral operator (9), and it represents the “response” of
the system corresponding to any forcing function f(x). The Green function satisfies (in a distributional
sense, and for all s ∈ [0, 1]) the boundary value problem

d2G(x, s)

dx2
= δ(x− s)

G(0, s) = 0

G(1, s) = 0

(11)

With the Green function available, it is straightforward to obtain the following bound for (9)

∥u∥∞ ≤ 1

8
∥f∥∞ (maximum principle), (12)

where ∥·∥∞ here denotes the uniform norm of a function, i.e.,

∥u∥∞ = max
x∈[0,1]

|u(x)| , ∥f∥∞ = max
x∈[0,1]

|f(x)| . (13)

The inequality (12), states that the solution of the boundary value problem (2) with homogeneous Dirichlet
conditions (α = β = 0) is always smaller that 1/8 of the maximum value of f(x) in the domain [0, 1]. To
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Figure 2: Evaluation of the integral appearing in (14).

prove (12) we observe that

|u(x)| ≤
∫ 1

0
|G(x, s)| |f(s)| ds ≤ ∥f∥∞

∫ 1

0
|G(x, s)| ds. (14)

The Green function G(x, s) is always negative, and for each fixed it is the union of two triangular functions
joining at the point (x, x(1, x)) (see Figure 2). Therefore,∫ 1

0
|G(x, s)| ds = x

x(1− x)

2
+ (1− x)

x(1− x)

2
=

x(1− x)

2
. (15)

Substituting this result into (14) yiels

|u(x)| ≤ ∥f∥∞
x(1− x)

2
. (16)

Finally, by taking the maximum over all x ∈ [0, 1] we obtain2

max
x∈[0,1]

|u(x)| ≤ ∥f∥∞ max
x∈[0,1]

x(1− x)

2
=

1

8
∥f∥∞ (18)

which coincides with (12).

General form of two-point boundary value problems for ODEs. A two-point boundary value
problem for a system of n-dimensional nonlinear (normal) ODEs can always be written in the general
form 

dy

dt
= f (y, t) t ∈ [0, T ]

g(y(0),y(T )) = 0

(19)

where g ∈ Rn is nonlinear function.

2The maximum of the function x(x− 1)/2 is 1/8 and it is attained at x = 1/2 (see Figure 2), i.e., we have

max
x∈[0,1]

∫ 1

0

|G(x, s)| ds = max
x∈[0,1]

x(1− x)

2
=

1

8
. (17)

.
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Existence and uniqueness of solutions. There is no general theory that guarantees existence and
uniqueness of the solution to the two-point boundary value problem (19). And for good reasons! The
solution may not be unique or may not exist at all. However, detailed analysis can often be provided
for particular problems with particular boundary conditions. For instance, it is rather easy to show that
boundary value problems for second-order linear ordinary differential equations with Dirichlet boundary
conditions have unique solutions. This is summarized in the following theorem.

Theorem 1. Let A be a n×n matrix. There exists a unique solution to the two-point eigenvalue problem
d2y

dt2
= Ay t ∈ [0, T ]

y(0) = α

y(T ) = β

(20)

The proof of this theorem is given in Appendix A. Various generalizations to other types of second-order
linear ODEs, e.g.,

d2y

dt2
= Ay +B

dy

dt
+ f(t) (21)

or higher-order ODEs are possible. In any case, the study of existence and uniqueness of the solution to a
particular type of two-point boundary value problem must be carried out on an individual basis. In fact,
as we shall see hereafter, if we consider other types of boundary conditions, or if the ODE is nonlinear
problems then the BVP can have infinite solutions or no solution at all!

Ill-posed linear boundary value problems

If we replace the Dirichlet boundary conditions in (2) with two Neumann boundary conditions (i.e., we
set the value of the derivative of u(x) at x = 0 and x = 1 instead of the value of the function) then the
problem can have either no solution or an infinite number of solutions. To show this, let us consider the
BVP3 

d2u(x)

dx2
= f(x) x ∈ [0, 1]

du(0)

dx
= α

du(1)

dx
= β

(22)

By integrating the ODE once, we obtain

du(x)

dx
= c1 +

∫ x

0
f(s)ds (23)

which shows that the derivative of u depends only on one arbitrary constant of integration. Clearly, we do
not have enough degrees of freedom to satisfy (in general) both boundary conditions in (22). By enforcing
du(0)/dx = α we obtain c1 = α, i.e.,

du(x)

dx
= α+

∫ x

0
f(s)ds. (24)

3The Boundary value problem defined in equation (2) describes the temperature propagation (by pure heat condition)
within a homogeneous one-dimensional slab of width one subject to uniform Neumann boundary conditions, uniform thermal
conductivity, and heat generation that depends on x.
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If we now try to enforce du(1)/dx = β in (24) we obtain the equation

β − α =

∫ 1

0
f(s)ds. (25)

If f(x) satisfies (25) then the problem (22) has an infinite number of solutions. In fact, by integrating (24)
we see that there exits a one-parameter family of solutions (with parameter c2) of the form

u(x) = c2 + αx+

∫ x

0

(∫ y

0
f(s)ds

)
dy. (26)

Clearly, the solution (26) satisfies (22) for all c2 ∈ R, provided (25) holds. On the other hand, if f(x) does
not satisfy (25) then the boundary value problem (22) has no solution.

Example: Let us provide another example of a linear BVP with no solution. To this end, consider

d2y

dt2
+ y = 0, y(0) = 0, y(π) = 1. (27)

The flow generated by the corresponding first-order system

dv1
dt

= v2,
dv2
dt

= −v1 (28)

is a center. There are in principle infinite trajectories that start from v1(0) = y(0) = 0 and end at 1.
None of them though makes the trip exactly in t = π time units. Indeed the general solution of the ODE
ÿ + y = 0 is (27) is

y(t) = c1 cos(t) + c2 sin(t). (29)

Setting y(0) = 0 yields c1 = 0. Setting y(π) = 1 yields c1 = 1, which is incompatible with c1 = 0.

Ill-posed nonlinear boundary value problems

Next, consider the following nonlinear boundary value problem for a second-order ODE with Dirichlet
conditions 

d2y

dt2
= f

(
dy

dt
, y, t

)
t ∈ [0, T ]

y(0) = α

y(T ) = β

(30)

It is easy to show by a simple example that this problem can have an infinite number of solutions or no
solution at all. To this end, consider the pendulum equations

d2θ

dt2
= − sin(θ)

θ(0) =
π

2

θ(T ) = 0

(31)

where T is the time that it takes to the pendulum to reach the vertical position after swinging from right
to left only once from a zero velocity initial condition. It is clear that there are multiple solutions to
this problem. In Figure 3 we sketch two of such initial velocities, and corresponding trajectories. If we
change the boundary condition θ(0) to θ(0) = π then of course there are no solutions to (32). In fact, the
pendulum wont move from the vertical (unstable) position, and therefore there is no way it can reach the
point θ(T ) = 0.
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Figure 3: Phase portrait of the pendulum equation θ̈ = − sin(θ) and sketch of two solutions (ϑ1 and ϑ2)
of the BVP (32). The third solution technically does not satisfy θ(T ) = 0 but rather θ(T ) = −2π which is
physically equivalent, but mathematically different.

Upon definition of y1 = θ and y2 = dθ/d we can write the boundary value problem (32) in the form (19)
as 

dy1
dt

= y2

dy2
dt

= − sin(y1)

y1(0) =
π

2

y1(T ) = 0

(32)

In this case, the g = (g1, g2) that defines the boundary conditions has components

g1(y(0),y(T )) = y1(0)−
π

2
, g2(y(0),y(T )) = y1(T ). (33)

Appendix A: Proof of Theorem 1

Upon definition of z = dy/dt we can write (20) as

d

dt

[
z
y

]
=

[
0 A
I 0

] [
z
y

]
. (34)

Suppose that A is diagonalizable, and let P and Λ be the matrix of eigenvectors and the diagonal matrix
of eigenvalues of A, i.e.,

A = PΛP−1. (35)

Consider the transformation induced by the invertible block matrix

H =

[
P 0
0 P

]
. (36)

Clearly, [
P 0
0 P

]
︸ ︷︷ ︸

H

[
0 Λ
I 0

]
︸ ︷︷ ︸

C

[
P−1 0
0 P−1

]
︸ ︷︷ ︸

H−1

=

[
0 A
I 0

]
(37)
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By applying H−1 to the system (34) we obtain

d

dt

[
q
p

]
=

[
0 Λ
I 0

]
︸ ︷︷ ︸

C

[
q
p

]
, where

[
q
p

]
=

[
P−1 0
0 P−1

] [
z
y

]
. (38)

The solution to this ODE (treated as initial value problem with unknown q(0)) is[
q(t)
p(t)

]
= etC

[
q(0)

P−1y(0)

]
. (39)

Setting the boundary conditions y(0) = α and y(T ) = β yields[
q(T )
P−1β

]
= eC

[
q(0)
P−1α

]
. (40)

The exponential matrix eC has the following structure

eC =

[
D1 D2

D3 D1

]
, (41)

where D1, D2 and D3 are all diagonal matrices. Moreover, D1 and D3 are invertible. Substituting (41)
into (40) gives [

q(T )
P−1β

]
=

[
D1 D2

D3 D1

] [
q(0)
P−1α

]
. (42)

This equation allows us to determine q(0) uniquely for any given α and β In fact, the second equation in
(42) can be written as

D3q(0) = P−1β −D1P
−1α ⇔ q(0) = D−1

3 P−1 (β −D1α) . (43)

Hence, we proved that for every given α and β there exists unique initial “velocity”

z(0) = Pq(0) = PD−1
3 P−1 (β −D1α) (44)

such that the system (34) integrated forward in time from the initial condition[
z(0)
y(0)

]
=

[
PD−1

3 P−1 (β −D1α)
α

]
(45)

yields the solution to y(T ) = β at time T . By leveraging the existence and uniqueness of solutions to the
initial value problem (39) we conclude that the two-point boundary value problem for the ODE (20) with
Dirichlet boundary conditions has a unique solution.

If we drop the assumption of diagonalizability of A and replace the diagonal matrix Λ with its block
diagonal Jordan form J , then the ODE (20) with Dirichlet boundary conditions still has a unique solution.
In fact, in this case the matrix exponential eC is still a block matrix in the form (41), but with upper
triangular D1, D2 and D3. Moreover, D1 and D3 are invertible. Hence (43) still holds.
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