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Tensor methods for deterministic and stochastic PDEs

We have seen how to propagate uncertainty in PDE models involving random initial conditions, random
parameters, random boundary conditions or random forcing terms. Specifically, we disussed PDF methods
(Hopf equation and Lundgren-Monin-Novikov hierarchies), polynomial chaos methods (gPC, ME-gPC),
and sampling methods (MC, qMC, PCM, ME-PCM, and sparse grids). In this lecture note we discuss
another method that relies upon orthogonal tensor expansions to compute the solution of stochastic PDEs.
The same theory can be used to compute the numerical solution of high-dimensional PDEs such as the
Liouville equation or the Fokker-Plank equation.

Dynamically orthogonal (DO) tensor methods for stochastic PDEs

The dynamically orthogonal field equation method for SPDEs was pioneered by Sapsis and Lermusiaux in
[14], and it is essentially a tensor method for linear or nonlinear PDEs in a separable Hilbert space [7, 6].
To describe DO, suppose we are interested in computing the solution to an initial/boundary value problem
for a stochastic PDE of the form 

∂u(x, t;ω)

∂t
= Gω(u(x, t;ω)),

u(x, 0;ω) = u0(x;ω),
(1)

where x ∈ V ⊆ Rd (V is the spatial domain d ≥ 1), and Gω is a random nonlinear operator which may
take into account random forcing terms, random parameters or random boundary conditions. A simple
example of Gω(u(x, t;ω)) could be1

Gω (u(x, t;ω) = ∇ · [κ(x;ω)∇u(x, t;ω)] , κ(x;ω) > 0, (2)

in Rd. We look for a representation of the solution to (1) of the form

u(x, t;ω) = E{u(x, t;ω)}+
∞∑
k=1

ûk(x, t)Yk(t;ω), (3)

where {û1(x, t), û2(x, t), · · · } are deterministic spatio-temporal modes, while {Y1(t;ω), Y2(t;ω), . . .} are
random temporal modes. Note the time redundancy in both the space-time modes ûk(x, t) and the ran-
dom modes Yk(t;ω). The theoretical justification of the series expansion (3) relies on a tensor product
representation of the Hilbert space L2(V × T × Ω) (T is the temporal domain and Ω is the sample space)
as

L2(V × T × Ω) = L2(V × T )⊗ L2(T × Ω). (4)

The expansion (3) includes time-dependent gPC [9] as a sub-case.

Properties of the modes ûk(x, t) and Yk(t;ω). The random temporal modes Yk(t;ω) are clearly zero
mean. In fact, by applying the expectation operator to (3) we obtain

∞∑
k=1

ûk(x, t)E{Yk(t;ω)} = 0 ⇒ E{Yk(t;ω)} = 0. (5)

1The PDE (1)-(2) describes heat conduction in a heterogeneous medium with random thermal conductivity κ(x;ω).

Page 1



AM 238 Prof. Daniele Venturi

We also assume that the space-time modes ûk(x, t) satisfy the gauge2 conditions〈
ûk(x, t),

∂ûj(x, t)

∂t

〉
L2(V )

=

∫
V
ûk(x, t)

∂ûj(x, t)

∂t
dx = 0 for all t ≥ 0 and all j, k ≥ 1. (6)

These conditions are called dynamically orthogonal (DO) conditions. The reason is that if the set of modes
{ûk(x, t)} is initially orthonormal, i.e.,

〈ûk(x, 0), ûj(x, 0)〉L2(V ) = δkj . (7)

then it stays orthonormal in time. In fact, for all t ≥ 0 we have

∂

∂t
〈ûk(x, t), ûj(x, t)〉L2(V ) =

〈
∂ûk(x, t)

∂t
, ûj(x, t)

〉
L2(V )

+

〈
ûk(x, t),

∂ûj(x, t)

∂t

〉
L2(V )

= 0 for all i, j ≥ 1.

(8)
This implies that

〈ûk(x, t), ûj(x, t)〉L2(V ) = 〈ûk(x, 0), ûj(x, 0)〉L2(V ) = δkj , (9)

i.e., space time modes ûk(x, t) that are orthogonal at t = 0 remain orthogonal at later times. For this
reason we shall call ûk(x, t) dynamically orthogonal modes.

DO propagator. At this point we have all elements to derive a coupled system of equations for the DO
modes ûj(x, t), the stochastic modes Yt(t;ω) and the mean field

u(x, t) = E{u(x, t;ω} (10)

appearing in (3). To this end, we first substitute a truncated expansion of the form (3), i.e.,

uM (x, t;ω) = u(x, t) +

M∑
k=1

ûk(x, t)Yk(t;ω), (11)

into the SPDE (1) to obtain

∂u(x, t)

∂t
+

M∑
k=1

(
∂ûk(x, t)

∂t
Yk(t;ω) + ûk(x, t)

dYk(t;ω)

dt

)
= Gω (uM (x, t;ω)) +RM (x, t;ω). (12)

Then we impose that the residual RM (x, t;ω) is orthogonal to

SM = span {û1(x, t), . . . , ûM (x, t)} and ZM = span {Y1(t;ω), . . . , YM (t;ω)} (13)

relative to the inner products 〈·〉L2(V ) (see Eq. (6)) and E{·}. This gives the 2M + 1 conditions

0 =E {RM (x, t;ω)} , (14)

0 =E {RM (x, t;ω)Yk(t;ω)} k = 1, . . . ,M, (15)

0 = 〈RM (x, t;ω)ûk(x, t)〉L2(V ) k = 1, . . . ,M (16)

which are sufficient to identify a set of equation for the mean field u(x, t), the DO modes {ûk(x, t)},
and the stochastic modes {Yk(t;ω)}. By taking the expectation of (12) and taking into account (14) we
obtain

∂u

∂t
= E {Gω (uM )} (evolution equation for the mean field). (17)

2In physics, choosing a gauge denotes a mathematical procedure for coping with redundant degrees of freedom in field
variables. In the case of the series expansion (3), t is the redundant degree of freedom. We also emphasize that the inner
product (6) can be generalized to include, e.g., a weight function µ(x) (weighted L2

µ(V ) space), or spatial derivatives of ûk(x, t)
(Sobolev space Hs(V )).
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Next, we project (12) onto ûp(x, t) and take (16) into account to obtain〈
∂u

∂t
, ûp

〉
L2(V )

+
M∑
k=1

〈
∂ûk
∂t

, ûp

〉
L2(V )︸ ︷︷ ︸

=0

Yk +
M∑
k=1

〈ûkûp〉L2(V )︸ ︷︷ ︸
=δkp

dYk
dt

= 〈Gω (uM ) ûp〉L2(V ) , (18)

where we assumed that the DO modes {ûk(x, t)} are orthonormal at t = 0 and therefore at all t (see Eq.
(9)). Equation (18) can be written as

dYp
dt

= 〈[Gω (uM )− E{Gω (uM )}] ûp〉L2(V ) . (19)

Finally we project (12) onto Yp(t;ω) and take (16) into account to obtain

E
{
∂u

∂t
Yp

}
︸ ︷︷ ︸

=0

+

M∑
k=1

∂ûk
∂t

E {YkYp}︸ ︷︷ ︸
Σkp(t)

+

M∑
k=1

ûkE
{
dYk
dt

Yp

}
= E {Gω (uM )Yp} . (20)

Note that
Σkp(t) = E {Yk(t;ω)Yp(t;ω)} (21)

is the covariance function of the random process Yk(t;ω) and Yp(t;ω). By using (19) we can write the last
terms at the right hand side of (20) as3

E
{
dYk
dt

Yp

}
= E

{
〈Gω(uM )ûk〉L2(V ) Yp

}
. (23)

A substitution of (23) into (20) yields

M∑
k=1

∂ûk
∂t

Σkp(t) = E {Gω (uM )Yp} −
M∑
k=1

〈E {Gω (uM )Yp} ûk〉L2(V ) ûk. (24)

In summary, the DO propagator can be written as [14, 5] (for p = 1, . . . ,M)

∂u

∂t
= E {Gω (uM )} ,

dYp
dt

= 〈[Gω (uM )− E{Gω (uM )}] ûp〉L2(V ) ,

M∑
k=1

∂ûk
∂t

Σkp(t) = E {Gω (uM )Yp} −
M∑
k=1

〈E {Gω (uM )Yp} ûk〉L2(V ) ûk.

(25)

The initial and boundary conditions for this PDE system are obtained by projection (see [14]). Clearly,
the evolution equations for the DO modes ûk in (25) have some issues if the covariance matrix Σkp of
the stochastic modes is singular. This happens, for example when a random mode Yk has zero energy,
e.g., when we add a mode during integration to increase accuracy. In this case, the system (25) becomes
algebraic-differential (covariance matrix singular). This requires special numerical techniques for temporal
integration. One can overcome this problem by considering pseudo-inverse matrix operations [1]. More
rigorously, it can be shown that is possible to rewrite the system (25) in fully equivalent form that does not
require covariance matrix inversion, and solve such a system using operator splitting (see, e.g., [6]).

3Note that
E {E {Gω(uM )}Yp} = E {Gω(uM )}E {Yp} = 0. (22)
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Figure 1: Construction of functional tensor train (FTT). Shown is the sequence of hierarchical Schmidt
decomposition for a function in four variables.

An advantage of (25) over, e.g., polynomial chaos is that the stochastic modes are evolving with time in a
way that depends on the PDE. Moreover, it can be shown that the DO equations (25) satisfy an optimality
(variational) principle similar to the one satisfied by the Karhunen-Loève expansion (see [7]), which implies
that we can obtain accurate stochastic solutions of (1) using a series expansion (11) with a relatively small
number of modes M .

In a parallel research effort, T. Hou and collaborators developed an alternative version of DO on bi-
orthogonal (BO) expansions [3, 4]. Bi-orthogonality essentially represents a different gauge condition,
which yields a propagator, i.e., a coupled system of equations for the modes ûk and Yk that differs from
(25)(see [3, 4] for details). The correspondence between DO and BO was investigated in [5, 7].

Dynamically orthogonal tensor methods for high-dimensional deterministic PDE

In this section we generalize the series expansion (3) to compute the numerical solution of a high-
dimensional deterministic PDE of the form

∂u(x, t)

∂t
= G(u(x, t)), u(x, 0) = u0(x), (26)

where u : V × [0, T ] → R is a (time-dependent) scalar field in d variables defined on the domain V ⊆ Rd
and G is a nonlinear operator which may depend on the spatial variables, and may incorporate boundary
conditions.

The PDE (26) may be a Liouville equation, a Fokker-Planck equation, or an approximation of the Hopf
characteristic functional equation we have seen in Chapter 2.

Functional tensor train (FTT). Let V ⊆ Rd be a Cartesian product of d real intervals Vi = [ai, bi]

V =
d

×
i=1

Vi, (27)

µ a finite product measure on V

µ(x) =

d∏
i=1

µi(xi), (28)

and
H = L2

µ(V ) (29)

Page 4



AM 238 Prof. Daniele Venturi

the standard weighted Hilbert space4 of square–integrable functions on V . It was shown in [12, 2, 8] that
any function u(x) ∈ H can be represented as

u(x) =

∞∑
α1,...,αd−1=1

ψ1(1;x1;α1)ψ2(α1;x2;α2) · · ·ψd(αd−1;xd; 1), (30)

where ψi(αi−1;xi;αi) are matrices of functions depending only on the variable xi. Such functions are
computed by solving a hierarchical sequence of eigenvalue problems that is similar to the Karhunen-Loève
eigenvalue problem.

Computation of FTT. In Figure 1 we show the sequence of hierarchical (Schmidt) decompositions to
compute the functional tensor train expansion for a four-dimensional function. The first step is to solve
the eigenvalue problem

λ1ψ1(1;x1;α1) =

∫
V1

K(x1, x
′
1)ψ1(1;x′1;α1)dx′1, (31)

where

K1(x1, x
′
1) =

∫
V2×V3×V4

u(x1, x2, x3, x4)u(x′1, x2, x3, x4)dx2dx3dx4. (32)

The (not-normalized) modes ϕ1(α1;x2, x3, x4) are obtained by projection of u onto the orthonormal modes
ψ1 as

ϕ1(α1;x2, x3, x4) =

∫
V1

u(x1, x2, x3, x4)ψ1(1;x1;α1)dx1. (33)

At this point we perform another Schmidt decomposition by solving the eigenvalue problem

λ2ψ2(α1;x2;α2) =

∫
V2

K2(x2, x
′
2;α1)ψ2(α1;x′2;α2)dx′2, (34)

where

K2(x2, x
′
2;α1) =

∫
V3×V4

ϕ1(α1;x2, x3, x4)ϕ1(α1;x′2, x3, x4)dx3dx4. (35)

Note that the kernel K2 is defined by the orthogonal modes ϕ1 we obtained from the previous decomposi-
tion. We project ϕ1(α1;x2, x3, x4) onto the orthonormal modes ψ2(α1;x′2;α2) to obtain

ϕ2(α2;x3, x4) =

∞∑
α1=1

∫
V2

ϕ1(α1;x2, x3, x4)ψ2(α1;x2;α2)dx2. (36)

Lastly we perform a decomposition the ϕ2(α2;x3, x4), which yields the modes ψ3(α2;x3;α3) and ψ4(α3;x4; 1)
(see Figure 1). The final expansion corresponds to the following sequence of function space decomposi-
tions

H(V1 × V2 × V3 × V4) =[H(V1)⊗H(V2 × V3 × V4)]

[H(V1)⊗ [H(V2)⊗H(V3 × V4)]]

[H(V1)⊗ [H(V2)⊗ [H(V3)⊗H(V4)]]], (37)

where the notation [H(V1)⊗H(V2×V3×V4)] emphasizes the fact that that we diagonalized the expansion
involving the function spaces within the bracket.

In a finite-dimensional setting, such decomposition are essentially generated by a hierarchical sequence of
singular value decompositions corresponding to various flattening of a multi-dimensional array (see Figure

4Note that the Hilbert space H in equation (29) can be equivalently chosen to be a Sobolev space W 2,p (see [7] for details).
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Figure 2: Construction of functional tensor train (FTT). Shown is the sequence of hierarchical Schmidt
decomposition for a function in four variables.

2). By truncating the expansion (30) so that the terms corresponding to the largest eigenvalues in (31),
(34), etc., are retained yields

ur(x) =

r∑
α1,...,αd−1=1

ψ1(1;x1;α1)ψ2(α1;x2;α2) · · ·ψd(αd−1;xd; 1), (38)

where r = (1, r1, . . . , rd−1, 1) is the FTT-rank.

It was shown by Bigoni et al. [2] that the truncated FTT expansion expansion (38) converges optimally (in
r) with respect to the L2

µ(V ) norm. More precisely, for any given function u ∈ L2
µ(V ) the FTT approximant

(38) minimizes the residual ‖u−ur‖L2
µ(V ) relative to independent variations of the functions ψi(αi−1;xi;αi)

on a tensor manifold with constant rank r. It is convenient to write (38) in a more compact form as

ur(x) = Ψ1(x1)Ψ2(x2) · · ·Ψd(xd), (39)

where Ψi(xi) is a ri−1×ri matrix with entries [Ψi(xi)]jk = ψi(j;xi; k). The matrix-valued functions Ψi(xi)
are known as FTT tensor cores. To simplify notation even more we can suppress explicit tensor core
dependence on the spatial variable xi, allowing us to simply write Ψi = Ψi(xi) as the spatial dependence
is indicated by the tensor core subscript. If we discretize the domain V in terms of a grid with N points
in each variable then we can represent (39) as a product of 2D and 3D matrices (see Figure 2).

FTT tensor manifold. It was shown in [15, 8] that the set of truncated tensors (38) (with invertible
covariance matrices of each tensor modes) belongs to a smooth manifold5 Mr, i.e., a manifold in which

we can define a tangent space TurMr at a point ur ∈ Mr. Specifically, let us denote by H
(i)
ri−1×ri

the set of all tensor cores Ψi ∈ Mri−1×ri(L
2
µi(Vi)) with the property that the autocovariance matrices〈

ΨT
i Ψi

〉
i
∈Mri×ri(R) and

〈
ΨiΨ

T
i

〉
i
∈Mri−1×ri−1(R) are invertible for i = 1, . . . , d. The set

Mr = {ur ∈ L2
µ(V ) : ur = Ψ1Ψ2 · · ·Ψd, Ψi ∈ H(i)

ri−1×ri , ∀i = 1, 2, . . . , d}, (40)

consisting of fixed-rank FTT tensors, is a smooth sub-manifold of L2
µ(V ). We represent elements in the

tangent space, TurMr, of Mr at the point ur ∈ Mr as equivalence classes of velocities of continuously
differentiable curves on Mr passing through ur

TurMr =
{
γ′(s)|s=0 : γ ∈ C1 ((−δ, δ),Mr) , γ(0) = ur

}
. (41)

5A manifold is a generalization and abstraction of the notion of a curved surface. In particular, the manifold of the FTT
tensors with fixed rank is a topological function space that admits a tangent space at each point, an inner product defined on
the tangent space, etc.
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Figure 3: Sketch of the tensor manifold Mr and the tangent space TurMr at ur ∈ Mr. The tangent
space is defined as equivalence classes of velocities of continuously differentiable curves γ(s) onMr passing
through ur.

A sketch of Mr and TurMr is provided in Figure 3. Since L2
µ(V ) is an inner product space, for each

u ∈ L2
µ(V ) the tangent space TuL

2
µ(V ) is canonically isomorphic to L2

µ(V ). Moreover, for each ur ∈ Mr

the normal space to Mr at the point ur, denoted by NurMr, consists of all vectors in L2
µ(V ) that are

orthogonal to TurMr with respect to the inner product in L2
µ(V )

NurMr = {w ∈ L2
µ(V ) : 〈w, v〉L2

µ(V ) = 0, ∀v ∈ TurMr}. (42)

Since the tangent space TurMr is closed, for each point ur ∈Mr the space L2
µ(V ) admits a decomposition

into tangential and normal components

L2
µ(V ) = TurMr ⊕NurMr. (43)

We represent elements of the tangent space TurMr as equivalence classes of velocities of curves passing
through the point ur

TurMr =
{
y′(s)|s=0 : y ∈ C1 ((−δ, δ),Mr) , y(0) = ur

}
. (44)

Here C1 ((−δ, δ),Mr) is the space of continuously differentiable functions from the interval (−δ, δ) to the
space of constant rank FTT tensors Mr.

Next, we can now define a projection onto the tangent space of Mr at ur by

Pur : L2
µ(V )→ TurMr

Purv = argmin
vr∈TurMr

‖v − vr‖L2
µ(V ).

(45)

For fixed ur, the map Pur is linear and bounded. Each v ∈ L2
µ(V ) admits a unique representation as

v = vt + vn where vt ∈ TurMr and vn ∈ NurMr (see equation (43)). From this representation it is clear
that Pur is an orthogonal projection onto the tangent space TurMr.

An arbitrary element of the tangent space TurMr can be expressed as

u̇r = Ψ̇1Ψ≥2 + · · ·+ Ψ≤i−1Ψ̇iΨ≥i+1 + · · ·+ Ψ≤d−1Ψ̇d, (46)
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Figure 4: Tangent and normal components of G (ur) = ∂ur/∂t at ur. The tensor rank of the solution is
increased at time ti if the norm of the normal component Nur(G(ur)) is larger than a specified threshold
εinc.

where u̇r = ∂ur/∂t and Ψ̇i = ∂Ψi/∂t.

Dynamic tensor approximation of high-dimensional nonlinear PDEs. With the machinery on
FTT tensors available, we can now approximate the solution of (26) on the tensor manifold Mr. To
this end, suppose that the initial condition u0(x) is on the manifold Mr. Clearly, the solution to the
initial/boundary value problem (see Figure 4)

∂ur
∂t

= PurG(ur),

u(x, 0) = u0(x),
(47)

remains on the manifold Mr for all t ≥ 0. Here G is the nonlinear operator on the right hand side of
equation (1). The solution to (47) is known as a dynamic approximation to the solution of (1). To compute
the tangent space projection of the PDE (48) we solve the convex optimization problem

min
v(x,t)∈Tu(x,t)Mr

‖v(x, t)−G(ur(x, t))‖2L2
µ(V ) . (48)

subject to the DO constraints 〈
Ψ̇T
i Ψi

〉
i

= 0ri×ri , i = 1, . . . , d− 1, (49)

which ensures that
〈
ΨT
i (t)Ψi(t)

〉
i

= Iri×ri for all i = 1, . . . , d− 1 and for all t ≥ 0.

DO-TT propagator. It was shown in [8] that under these constraints, the convex minimization problem
(48) admits a unique minimum for vectors in the tangent space (46) satisfying the PDE system

Ψ̇1 =
[〈
G(ur)ΨT

≥2

〉
≥2
−Ψ1

〈
ΨT

1 G(ur)ΨT
≥2

〉
≥1

] 〈
Ψ≥2Ψ

T
≥2

〉−1

≥2
,

Ψ̇k =
[〈

ΨT
≤k−1G(ur)ΨT

≥k+1

〉
≤k−1,≥k+1

−

Ψk

〈
ΨT
≤kG(ur)ΨT

≥k+1

〉
≥1

] 〈
Ψ≥k+1Ψ

T
≥k+1

〉−1

≥k+1
, k = 2, 3, . . . , d− 1,

Ψ̇d =
〈
ΨT
≤d−1G(ur)

〉
≤d−1

.

(50)
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Here, ur(x, t) = Ψ1(t)Ψ2(t) · · ·Ψd(t) ∈Mr and we have introduced the notation

〈Ψ〉≤k =

∫
V1×···×Vk

Ψ(x)dµ1(x1) · · ·µk(xk),

〈Ψ〉≥k =

∫
Vk×···×Vd

Ψ(x)dµk(xk) · · ·µd(xd),

〈Ψ〉≤k−1,≥k+1 =

∫
V1×···×Vk−1×Vk+1×···×Vd

Ψ(x)dµ1(x1) · · ·µk−1(xk−1)µk+1(xk+1) · · ·µd(xd),

(51)

for any matrix Ψ(x) ∈ Mr×s
(
L2
µ (V )

)
. The DO-FTT system (50) involves several inverse covariance

matrices
〈
Ψ≥kΨ

T
≥k

〉−1

≥k
, which can become poorly conditioned in the presence of tensor modes with small

energy (i.e. autocovariance matrices with small singular values). This phenomenon has been shown to
be a result of the fact that the curvature of the tensor manifold at a tensor is inversely proportional to
the smallest singular value present in the tensor [10, section 4]. To overcome the problem of inverting
potentially ill-conditioned covariance matrices a rank-adaptive operator splitting method was proposed in
[6].

Numerical application of DO-TT to the Fokker-Planck equation. We have seen in Chapter 2 that
the Fokker–Planck equation describes the evolution of the probability density function (PDF) of the state
vector solving the Itô stochastic differential equation (SDE) [13]

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt. (52)

Here, Xt is the d-dimensional state vector, µ(Xt, t) is the d-dimensional drift, σ(Xt, t) is an d×m matrix
and Wt is an m-dimensional standard Wiener process. The Fokker–Planck equation that corresponds to
(52) has the form 

∂p(x, t)

∂t
= L(x, t)p(x, t),

p(x, 0) = p0(x),

(53)

where p0(x) is the PDF of the initial state X0, L is a second-order linear differential operator defined
as

L(x, t)p(x, t) = −
d∑

k=1

∂

∂xk
(µk(x, t)p(x, t)) +

d∑
k,j=1

∂2

∂xk∂xj
(Dij(x, t)p(x, t)) , (54)

and D(x, t) = σ(x, t)σ(x, t)T/2 is the diffusion tensor. For our numerical demonstration we set

µ(x) = α


sin(x1)

sin(x3)

sin(x4)

sin(x1)

 , σ(x) =
√

2β


g(x2) 0 0 0

0 g(x3) 0 0

0 0 g(x4) 0

0 0 0 g(x1)

 , (55)

where g(x) =
√

1 + k sin(x). With the drift and diffusion matrices chosen in (55) the operator (54) takes
the form

L =− α
(

cos(x1) + sin(x1)
∂

∂x1
+ sin(x3)

∂

∂x2
+ sin(x4)

∂

∂x3
+ sin(x1)

∂

∂x4

)
+ β

(
(1 + k sin(x2))

∂2

∂x2
1

+ (1 + k sin(x3))
∂2

∂x2
2

+ (1 + k sin(x4))
∂2

∂x2
3

+ (1 + k sin(x1))
∂2

∂x2
4

)
.

(56)
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Clearly L is a linear, time-independent separable operator of rank 9, since it can be written as

L =

9∑
i=1

L
(1)
i ⊗ L

(2)
i ⊗ L

(3)
i ⊗ L

(4)
i , (57)

where each L
(j)
i operates on xj only. Specifically, we have

L
(1)
1 = −α cos(x1), L

(1)
2 = −α sin(x1)

∂

∂x1
, L

(2)
3 = −α ∂

∂x2
, L

(3)
3 = sin(x3),

L
(3)
4 = −α ∂

∂x3
, L

(4)
4 = sin(x4), L

(1)
5 = −α sin(x1), L

(4)
5 =

∂

∂x4
,

L
(1)
6 = β

∂2

∂x2
1

, L
(2)
6 = 1 + k sin(x2), L

(2)
7 = β

∂2

∂x2
2

, L
(3)
7 = 1 + k sin(x3),

L
(3)
8 = β

∂2

∂x2
3

, L
(2)
8 = 1 + k sin(x4), L

(4)
9 = β

∂2

∂x2
4

, L
(1)
9 = 1 + k sin(x1),

(58)

and all other unspecified L
(j)
i are identity operators. We set the parameters in (55) as α = 0.1, β = 2.0,

k = 1.0 and solve (53) on the four-dimensional flat torus T4. The initial PDF is set as

p0(x) =
sin(x1) sin(x2) sin(x3) sin(x4) + 1

16π4
. (59)

Note that (59) is a four-dimensional FTT tensor with multilinear rank r =
[
1 2 2 2 1

]
. Upon

normalizing the modes appropriately we obtain the left orthogonalized initial condition required to begin
integration

p0(x) = ψ1(1;x1; 1)ψ2(1;x2; 1)ψ3(1;x3; 1)ψ4(1;x4; 1)
√
λ(1)

+ ψ1(1;x1; 2)ψ2(2;x2; 2)ψ3(2;x3; 2)ψ4(2;x4; 1)
√
λ(2),

(60)

where

ψi(1;xi; 1) =
sin(xi)√

π
,

√
λ(1) =

1

16π2
. (61)

All other tensor modes are equal to 1/
√

2π, and
√
λ(2) = 1/(2π2). To obtain a benchmark solution with

which to compare the rank-adaptive FTT solution, we solve the PDE (53) using a Fourier pseudo-spectral
method on the flat torus T4 with 214 = 194481 evenly-spaced points. As before, the operator L is repre-
sented in terms of pseudo-spectral differentiation matrices, and the resulting semi-discrete approximation
(ODE system) is integrated with an explicit fourth-order Runge Kutta method using time step ∆t = 10−4.
The numerical solution we obtained in this way is denoted by pref(x, t). We also solve the Fokker-Planck
using the proposed rank-adaptive FTT method with first-order Lie-Trotter time integrator and normal
vector thresholding. We run three simulations all with time step ∆t = 10−4: one with no rank adaption,
and two with rank-adaptation and normal component thresholds set to εinc = 10−3 and εinc = 10−4. In
Figure 5 we plot three time snapshots of the two-dimensional solution marginal

p(x1, x2, t) =

∫ 2π

0

∫ 2π

0
p(x1, x2, x3, x4, t)dx3dx4 (62)

computed with the rank-adaptive FTT integrator (εinc = 10−4) and the full tensor product pseudo-spectral
method (reference solution). In Figure 6(a) we compare the L2(Ω) errors of the rank-adaptive method
relative to the reference solution. It is seen that as we decrease the threshold the solution becomes more
accurate. In Figure 6(b) we plot the component of Lpr normal to the tensor manifold. Note that in
the rank-adaptive FTT solution with thresholds εinc = 10−3 and εinc = 10−4 the solver performs both
mode addition as well as mode removal. This is documented in Figure 7. The abrupt change in rank
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Figure 5: Time snapshots of marginal PDF pr(x1, x2, t) corresponding to the solution to the Fokker-Planck
equation (53). We plot marginals computed with the rank-adaptive FTT integrator using εinc = 10−4 (top
row) and with the full tensor product Fourier pseudo-spectral method (middle row). We also plot the
pointwise error between the two numerical solutions (bottom row). The initial condition is the FTT tensor
(59).

observed in Figure 7(a)-(c) near time t = 0.4 corresponding to the rank-adaptive solution with threshold
εinc = 10−4 is due to the time step size ∆t being equal to εinc. This can be justified as follows. Recall that
the solution is first order accurate in ∆t and therefore the approximation of the component of Lpr normal
to the tensor manifoldMr is first-order accurate in ∆t. If we set εinc ≤ ∆t, then the rank-adaptive scheme
may overestimate the number of modes needed to achieve accuracy on the order of ∆t. This does not
affect the accuracy of the numerical solution due to the robustness of the Lie-Trotter integrator to over-
approximation [11]. Moreover we notice that the rank-adaptive scheme removes the unnecessary modes
ensure that the tensor rank is not unnecessarily large. In fact, the diffusive nature of the Fokker-Plank
equation on the flat torus T4 yields relaxation to a statistical equilibrium state that depends on the drift
and diffusion coefficients in (53). Such an equilibrium state may be well-approximated by a low-rank FTT
tensor.
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(a) (b)

Figure 6: (a) The L2(Ω) error of the FTT solution pr(x, t) relative to the benchmark solution pref(x, t)
computed with a Fourier pseudo-spectral method on a tensor product grid. (b) Norm of the component
of Lpr normal to the tensor manifold (see Figure 4). Such component is approximated a two-point BDF
formula at each time step.

(a) (b) (c)

Figure 7: Tensor rank r = [1 r1 r2 r3 1] of adaptive FTT solution to the four dimensional Fokker-Planck
equation (53).
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