
AM 213B Prof. Daniele Venturi

Numerical methods to solve boundary value problems for ODEs

In this note we provide a brief overview of the most common numerical methods to approximate the
solution of a boundary value problem for an ODE or a system of ODEs. In particular,

• Shooting method;

• Methods based on finite-differences or collocation;

• Methods based on weighted residuals (Galerkin and least squares).

When applying these methods to a boundary value problem, we will always assume that the problem has
at least one solution1.

Shooting method. The shooting method is a method for solving a boundary value problem by reducing
it an to initial value problem which is then solved multiple times until the boundary condition is met. To
describe the method let us first consider the following two-point boundary value problem for a second-order
nonlinear ODE with Dirichlet boundary conditions

d2y

dt2
= f

(
dy

dt
, y, t

)
t ∈ [0, T]

y(0) = α

y(T) = β

(1)

We have seen in previous lecture that this problem can have an infinite number of solutions (e.g., the
pendulum problem). The shooting method replaces the boundary condition y(T) = β in (1) with the
initial condition dy(0)/dt = v, for an unknown “slope” v, and attempts to find v by using an iterative
root-finding algorithm or an optimization method so that the quantity

E(v) = y(T ; v)− β (2)

(or E(v)2 in the case of optimization) is equal to zero2. In equation (2) y(T ; v) represents the solution
(flow) to the initial value problem 

dy

dt
= z

dz

dt
= f (z, y, t)

y(0) = α

z(0) = v

(4)

at time T . The notation y(T ; v) we used in (2) emphasizes that the solution of (4) depends on v. Recall,
in fact, that if the right hand side of the system (4), i.e., (z, f(y, z, t)) is of class Ck then the solution
(y(t;α, v), z(t;α, v)) is of class Ck in the initial condition (α, v). This implies the following lemma.

Lemma 1. If the initial value problem (4) is well-posed then the error function (2) is at least continuous
in v. Moreover, if f is of class Ck then the error function (2) is of class Ck (differentiable k times with
continuous derivative).

In Figure 1 we provide a sketch of the shooting method.

1Recall that a boundary value problem can have a unique solution, an infinite number of solution or no solution at all.
2Note that the shooting method is essentially a control problem of the form

min
v∈R
|y(T ; v)− β| subject to (4). (3)

Page 1

AM 213B Prof. Daniele Venturi

Figure 1: Sketch of the shooting method to solve the two-point boundary value problem (1). Basically, we
look for the slope v of the solution at initial time (“shoot” with elevation v), so that we “hit” the target
y(T) = β at time t = T .

With the error function (2) available, we can construct an iterative procedure that generates a sequence of
slopes {v0, v1, v2, . . .} with the property

lim
k→∞

E (vk) = 0 (rootfinding methods). (5)

To generate a sequence {vk} satisfying (5) we can use any rootfinding method for scalar equations, such
as the bisection method, the secant method or the Newton’s method. Note that the function E(v) is not
explicitly known, but it is certainly continuous (or smoother depending on the regularity of f), and it can
be sampled at any point v we like. To this end, we just need to integrate (4) forward in time up to t = T
for the initial condition z(0) = v and then evaluate (2). Let us briefly describe three rootfinding methods
we can use to generate a sequence {v0, v1, v2, . . .} with the property (5). These methods are sketched in
Figure 2

• Bisection method: Given any two initial guesses v0 and v1 we solve the initial value problem (4)
to obtain

E(v0) = y(T ; v0)− β, and E(v1) = y(T ; v1)− β. (6)

If the sign of the product E(v0)E(v1) is strictly positive, then we cannot claim that there exists a
zero v∗ of the function E(v) in the interval [v0, v1] (although there maybe actually one). On the other
hand, if the sign of the product E(v0)E(v1) is strictly negative then there exists a point v∗ within the
interval [v0, v1] such that E(v∗) = 0. To find v∗ we split the interval [v0, v1] in half (hence the name
“bisection method”), and evaluate E(v) at v2 = (v1 + v0)/2. At this point we proceed as before, i.e.,
if E(v0)E(v2) > 0 then we forget about the interval [v0, v2] and split [v2, v1] in half, evaluate E(v)
at (v2 + v1)/2 and so on so forth. On the other hand, if E(v0)E(v2) < 0 then we forget about the
interval [v2, v1] and split [v0, v2] in half, evaluate E(v) at (v2 + v0)/2, etc. The bisection procedure
until either the function value E(vk) or the difference between two subsequent iterates |vk+1− vk| or
both is smaller than a prescribed tolerance. For more details on the bisection method see [2, §6.2.1].
Convergence of the bisection method is, on average, linear with the interation number.

• Secant method: Similarly to the bisection method, we start with two initial guesses v0 and v1

(hopefully close enough to the zero v∗ we are interested in), and evaluate E(v0) and E(v1). Then we

Page 2

AM 213B Prof. Daniele Venturi

construct the line passing through (v0, E(v0)) and (v1, E(v1)) and extrapolate such a line onto the x
axis (see Figure 2). By doing this iteratively, we obtain the sequence (see [2, p. 254]

vk+1 = vk −
vk − vk−1

E(vk)− E(vk−1)
E(vk) k = 1, 2, . . . (7)

The convergence order of the secant method is (
√

5 + 1)/2.

• Newton method: To determine a zero of (2) with the Newton method, we need an initial guess v0,
the corresponding E(v0) and also E′(v0), i.e., the first derivative of the error function (2) evaluated
at v0. This allows us to initialize the iterative formula [2, p. 255]

vk+1 = vk −
E(vk)

E′(vk)
(8)

The first derivative of E(v) is usually not available, but it can be estimated numerically based on
samples of v that are sufficiently close, e.g., by using a finite-difference formula. A better (more
accurate) approach relies on deriving an evolution equation for dy(t; v)/dv, solve such such equation,
and evaluate the solution at final time to obtain

E′(v) =
dy(T ; v)

dt
. (9)

The evolution equation for dy(t; v)/dv can be determined by differentiating (4) with respect to v.
This yields the linear initial value problem

d2η

dt2
=
∂f

∂y′
dη

dt
+
∂f

∂y
η

η(0; v) = 0

dη(0; v)

dt
= 1

(10)

where

η(t; v) =
dy(t; v)

dv
. (11)

Note, in fact, that if differentiate the ODE in (1) with respect to v we obtain

d2y

dt2
= f

(
dy

dt
, y, t

)
⇒ d2

dt2

(
dy

dv

)
=
∂f

∂y′
d

dt

(
dy

dv

)
+
∂f

∂y

dy

dv
. (12)

The system (10) depends on the solution of (4), i.e., and it can be solved only if the solution to (4)
is available3. In summary, to solve (1) with the Newton method we proceed as follows:

1. Choose v0.

2. Solve the initial value problem

3If the ODE is linear then (10) can be solved independently of (4).

Page 3

AM 213B Prof. Daniele Venturi

bisection method secant method Newton’s method

Figure 2: Sketch of the most common rootfinding methods applied to equation (2).



d2y

dt2
= f

(
dy

dt
, y, t

)
y(0; v) = α

dy(0; v)

dt
= v

d2η

dt2
=
∂f

∂y′
dη

dt
+
∂f

∂y
η

η(0; v) = 0

dη(0; v)

dt
= 1

(13)

3. Evaluate y(T ; v0) and η(T ; v) = dy(T ; v)/dv.

4. Update the initial guess v0 as

v1 = v0 −
y(T ; v0)− β
η(T ; v0)

. (14)

5. Go to point 2. and repeat the calculation with the updated initial condition dy/dt(0; v) = v1.

Example (pendulum equations): Consider the two-point boundary value problem for the pendulum
equation 

d2θ

dt2
= − sin(θ)

θ(0) = α

θ(T) = β

(15)

The system of equations (13) corresponding to the pendulum BVP (15) is

Page 4

AM 213B Prof. Daniele Venturi



d2θ

dt2
= − sin(θ)

θ(0) = α

dθ(0)

dt
= vk

d2η

dt2
= cos(θ)η

η(0; v) = 0

dη(0; v)

dt
= 1

(16)

By solving this system and updating vk according to

vk+1 = vk −
y(T ; vk)− β
η(T ; vk)

, (17)

for a properly chosen v0, we eventually converge to one of the solutions of (15).

Remark (Optimization methods): A different class of techniques that can be used in the shooting method
relies on optimization. In the optimization setting, we seek for a minimizer of the function

C (v) = (y(T ; v)− β)2 , (18)

at or nearby C(v) = 0. For example, we can use a descent method [2, p. 305] to minimize (18), e.g. the
classical gradient descent scheme

vv+1 = vk − γkC ′(vk), (19)

where

γk =

∣∣∣∣ vk − vk−1

C ′(vk)− C ′(vk−1)

∣∣∣∣ , C ′(vk) = 2E(vk)E′(vk). (20)

The function C ′(vk) is not known analytically, but needs to be evaluated as in the Newtown’s method. In
particular, each step of gradient descent requires the evaluation of both E(vk) and E′(vk).

It can be shown that the shooting method can be very sensitive to the coice of initial condition v0. Indeed
the set of initial conditions for which the method converges is often concentrated in a small neighborhood
of the exact solution.

Shooting method for higher-order ODEs and system of ODEs. A two-point boundary value
problem for a system of n-dimensional ODEs can be written in the abstract form

dy

dt
= f (y, t) t ∈ [0, T]

g(y(0),y(T)) = 0

(21)

where g ∈ Rn is, in general, a nonlinear function. Every two point boundary value problem we considered
so far can be written in this form, upon definition of appropriate phase variables and boundary function g.
To show this, let us provide an example of a boundary value problem involving a fourth-order ODE.

Page 5

AM 213B Prof. Daniele Venturi

Figure 3: Sketch of the fully clamped Euler-Bernoulli beam modeled by the two-point boundary value
problem (21).

Example (Euler-Bernoulli beam equations): An example of a boundary value problem in the form (21)
is the equation describing the displacement of a fully clamped Euler-Bernoulli beam subject to a load
q(x) 

EI
d4y

dx4
= q(x)

y(0) = 0

y(L) = 0

dy(0)

dx
= 0

dy(L)

dx
= 0

(22)

Here, E is the modulus of elasticity4 of the beam, and I is the flexural moment of inertia. For a square
section of thickness h and width b (see Figure 3) we have

I =
bh3

12
. (23)

Upon definition of

z0(x) = y(x), z1(x) =
dz0(x)

dx
z2(x) =

dz1(x)

dx
, z3(x) =

dz2(x)

dx
(24)

we can rewrite (22) as

dz3

dx
=
q(x)

EI
,

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z0(L) = 0

z1(0) = 0

z1(L) = 0

(25)

4For stainless steel we have E ' 200 GPa.

Page 6

AM 213B Prof. Daniele Venturi

i.e., as a system of four first-order ODEs with four simple boundary condition conditions involving z0 and
z1 at x = 0 and x = L. To solve (25) with the shooting method, e.g., by using Newton’s iterations, we
proceed as follows. We first replace the boundary value problem with the initial value problem

dz3

dx
=
q(x)

EI
,

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z1(0) = 0

z2(0) = v1

z3(0) = v2

(26)

depending on two unknown parameters v1 and v2. To determine these parameters, we define the vector-
valued error function

E(v) =

[
z0(T ;v)− 0
z1(T ;v)− 0

]
, v =

[
v1

v2

]
. (27)

Clearly, the dependence of z0(T ;v) and z1(T ;v) on v is affine (flow map generated by a linear system
driven by q(x)). This allows us to avoid Newton’s iterations and solve the linear system

E(v) = 0 (28)

for v. Note that z0(T ;v) and z1(T ;v) involve integrals of q(x), and therefore the solution to (28) is not
the trivial vector v = 0.

More generally, if the system is nonlinear, then we can use Newton’s iterations to compute the solution to
the problem. To this end, suppose we are given a boundary value problem for a fourth-order system of the
form 

dz3

dx
= f(z2, z1, z0),

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z0(L) = 0

z1(0) = 0

z1(L) = 0

(29)

We rewrite this system as an initial value problem with unknown v1 and v2

dz3

dx
= f(z2, z1, z0),

dz2

dx
= z3(x),

dz1

dx
= z2(x),

dz0

dx
= z1(x)

z0(0) = 0

z1(0) = 0

z2(0) = v1

z3(0) = v2

(30)

Given an initial guess v0 =
[
v01 v02

]T
we construct the sequence of iterates {v1,v2, . . .} satisfying

vk+1 = vk − J−1(vk)E(vk), (31)

Page 7

AM 213B Prof. Daniele Venturi

where J(vk) is the Jacobian of the error function (27)

J(v) =


∂E1(v)

∂v1

∂E1(v)

∂v2

∂E2(v)

∂v1

∂E2(v)

∂v2

 (32)

evaluated at vk. As before, it is possible to derive evolution equations for the components of the Jaco-
bian.

Example (Euler-Bernoulli beam equations in the framework of Newton’s iterations): The Jacobian of the
error function (27) for the Euler-Bernoulli beam model (26) has the form

J(v) =


∂z0(L;v)

∂v1

∂z0(L;v)

∂v2

∂z1(L;v)

∂v1

∂z1(L;v)

∂v2

 . (33)

As shown hereafter, J(v) does not depend on v. This means that with just one Newton’s iteration we can
compute the correct initial condition for the system, and therefore solve the problem with the shooting
method. The evolution equations for the components of the Jacobian (33) are obtained by differentiating
the system (26) with respect to v1 and v2. This yields

d

dx

∂z3

∂vi
= 0 and

d

dx

∂zj
∂vi

=
∂zj+1

∂vi
j = 0, 1, 2 i = 1, 2, (34)

with initial conditions
∂z3

∂v1
= 0,

∂z3

∂v2
= 1,

∂z2

∂v1
= 1,

∂z2

∂v2
= 0, (35)

and
∂z1

∂v1
= 0,

∂z1

∂v2
= 0,

∂z0

∂v1
= 0,

∂z0

∂v2
= 0. (36)

Clearly, the solution to the system (34)-(36) does not depend on v and therefore the Jacobian (33) does
not depend on v. This is just another way to say that we can solve the shooting problem for the linear
Euler-Bernoulli beam by just one Newton iteration as

v1 = v0 − J−1E(v0), (37)

where v0 is any initial guess, E(v0) is defined in (27) and J is the Jacobian (33).

Finite difference methods for BVP. To solve a two-point boundary value problem with finite difference
methods we simply discretize its solution on a grid and replace the derivatives appearing in the ODE and
the boundary conditions with appropriate finite-difference formulas. To illustrate this process let us first
consider the simple prototype problem

d2y(x)

dx2
= f(x) x ∈ [0, 1]

y(0) = α

y(1) = β

(38)

Page 8

AM 213B Prof. Daniele Venturi

Let {x0, . . . , xN+1} be N + 2 evenly-spaced grid points in the interval [0, 1], i.e.,

xj = j∆x, ∆x =
1

N + 1
, j = 0, . . . , N + 1. (39)

We approximate the second derivative d2y/dx2 in (38), e.g., by using the second-order finite difference
formula

d2y(xj)

dx2
' yj−1 − 2yj + yj+1

∆x2
, uj = u(xj). (40)

A substitution of (40) into (38) yields the system of equations5
uj−1 − 2uj + uj+1

∆x2
= fj j = 1, . . . , N

u0 = α

uN+1 = β

(41)

where we defined fj = f(xj). The system (41) can be written compactly as

D2
FDu = f , (42)

where

D2
FD =

1

∆x2



−2 1 0 0 · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 1 −2 1
0 · · · · · · · · · 0 1 −2


, u =



u1

u2

u3
...
...

uN−1

uN


, f =



f1 − α/∆x2

f2

f3
...
...

fN−1

fN − β/∆x2


. (43)

The differentiation matrix D2
FD corresponding to the second-order finite difference approximation is tridi-

agonal, diagonally dominant and negative definite. In fact, the eigenvalues of D2
FD are

λk =
2

∆x2
(cos(kπ∆x)− 1) . (44)

Clearly, λk < 0 for all k = 1, . . . , N . This implies that matrix D2
FD is invertible6 and therefore the system

(42) has a unique solution.

Remark: To prove that (44) are indeed the eigenvalues of D2
FD, consider the eigenvalue problem

D2
FDu = λu, (45)

i.e.,
uj−1 − 2uj + uj+1

∆x2
= λuj ⇒ uj+1 = (2 + ∆x2λ)uj − uj−1 with u0 = uN+1 = 0 (46)

Setting 2Q = (2 + ∆x2λ) and rescaling all equations so that u1 = 1 yields
u0 = 0

u1 = 1

uj+1 = 2Quj − uj−1

(47)

5In equation (41) uj represents the numerical approximation of yj = y(xj).
6Recall that the determinant of a matrix is the product of the eigenvalues.

Page 9

AM 213B Prof. Daniele Venturi

Equation (47) is the three-term recurrence relation satisfied by the Chebyshev polynomials of the second
kind Uj(Q) in the variable Q. Setting uj+1 = Uj(Q) and using the boundary condition uN+1 = 0 we have
that UN (Q) = 0. Hence, Q must be a root of the N -th degree Chebyshev polynomial of the second kind.
Such roots are

Qk = cos

(
kπ

N + 1

)
= cos (kπ∆x) , k = 1 . . . , N (48)

Recalling that 2Qk = (2 + ∆x2λk) yields

λk =
2

∆x2
(cos (kπ∆x)− 1) . (49)

• Convergence Analysis: We now perform the convergence analysis of the finite difference approx-
imation (42). To this end, we need to show that the error between the analytical solution of (38)
and the numerical solution goes to zero as we send ∆x to zero, i.e., as we consider more and more
evenly-spaced grid points in the interval [0, 1]. Let yj = y(xj) and uj be, respectively, the analytical
solution and the finite-differences solution of (38). We define the error

e = y − u, (50)

where

y =


y1

y2
...
yN

 , u =


u1

u2
...
uN

 . (51)

By applying D2
FD to e we obtain

D2
FDe = τ , (52)

where

τj =
yj−1 − 2yj + 2yj+1

∆x2
− fj j = 1, . . . , N (53)

is the local truncation error (LTE) associated with the finite-difference approximation under consid-
eration7. At this point we recall that the matrix D2

FD is symmetric and invertible. This allows us to
express the error e in equation (52) explicitly in terms of the truncation error τ as

e =
(
D2

FD

)−1
τ . (55)

By taking the 2-norm of this expression we obtain

‖e‖2 ≤
∥∥∥(D2

FD

)−1
∥∥∥

2
‖τ‖2 , (56)

where the matrix 2-norm
∥∥∥(D2

FD

)−1
∥∥∥

2
induced by the vector 2-norm coincides with the largest sin-

gular value of the matrix
(
D2

FD

)−1
. Recall that the inverse of a symmetric matrix is symmetric.

This implies that the square root of the singular values of
(
D2

FD

)−1
matrix coincide with the absolute

7By using Taylor series we obtain

τj =
yj−1 − 2yj + yj+1

∆x2
− fj

=
d2y(xj)

dx2
− fj +

∆x2

12

d4y(xj)

dx4
+ · · ·

=
∆x2

12

d4y(xj)

dx4
+ · · · . (54)

Therefore the local truncation error goes to zero as ∆x2.

Page 10

AM 213B Prof. Daniele Venturi

values of the eigenvalues8 of
(
D2

FD

)−1
. Moreover the eigenvalues of the inverse matrix are the inverses

of the eigenvalues of the matrix. This proves the following equality∥∥∥(D2
FD

)−1
∥∥∥

2
= max

k=1,...,N

∣∣∣∣ 1

λk

∣∣∣∣ =
1

min
k=1,...,N

|λk|
, (58)

where λk are the eigenvalues of D2
FD. By using equation (44) we see that

min
k=1,...,N

|λk| = |λ1| =
2

∆x2
|cos(π∆x)− 1| . (59)

Moreover, for sufficiently small ∆x we can expand (59) in a Taylor series to obtain

|λ1| =
2

∆x2

∣∣∣∣1− π2∆x2

2
+
π4∆x4

24
· · · − 1

∣∣∣∣ = π2

∣∣∣∣1− π2

12
∆x2 + · · ·

∣∣∣∣ . (60)

Therefore, in the limit ∆x→ 0 we have

‖e‖2 ≤
1

π2
‖τ‖2 =

∆x2

12π2

√√√√ N∑
k=1

[
d4y(xk)

dx4

]2

=
∆x3/2

12π2

√√√√ N∑
k=1

∆x

[
d2f(xk)

dx2

]2

, (61)

where we used equation (54) for the 2-norm of the local truncation error. Note that the quantity
under the square root at the right hand side of (61) converges to the integral of the square of the
second derivative of f(x) in the limit N →∞, i.e.,

lim
N→∞

N∑
k=1

∆x

[
d2f(xk)

dx2

]2

=

∫ 1

0

[
d2f(x)

dx2

]2

dx. (62)

Assuming that such an integral is finite, i.e., that the second derivative of f is square integrable in
[0, 1], we conclude that the second-order finite difference approximation (41) of the boundary value
problem (38) is convergent with order 3/2 in ∆x. Similarly, in the uniform norm we obtain

‖e‖∞ ≤ ‖e‖2 ≤
1

π2
‖τ‖2 ≤

√
N ‖τ‖∞ '

√
N

12π2(N + 1)2

∥∥∥∥d2f(x)

dx2

∥∥∥∥
∞
. (63)

Clearly, in the limit N →∞ we have that ‖e‖∞ goes to zero as 1/N3/2.

Remark (Neumann boundary conditions): Consider the boundary value problem

d2y(x)

dx2
= f(x) x ∈ [0, 1]

dy(0)

dx
= α

y(1) = β

(64)

How do we impose the Neumann boundary condition dy(0)/dx = α in a finite difference setting? The
simplest way is to use forward finite differences, e.g.,

dy(0)

dx
' −3y0 + 4y1 − y2

2∆x
= α. (65)

8Recall that for any symmetric matrix

‖A‖2 = max
j

√
λj(ATA) = max

j

√
λj(A2) = max |λj(A)| . (57)

Page 11

AM 213B Prof. Daniele Venturi

In this way, we can write the fully discrete finite difference system as

1

∆x2



−3∆x/2 2∆x −∆x/2 0 · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
... 1 −2 1
0 · · · · · · · · · 0 1 −2





u0

u1

u2
...
...

uN−1

uN


=



α
f1

f2
...
...

fN−1

fN − β/∆x2


. (66)

Remark (nonlinear BVP): Consider the nonlinear boundary value problem

d2y(x)

dx2
= f

(
dy

dx
, y, x

)
x ∈ [0, 1]

y(0) = α

y(1) = β

(67)

A second-order finite difference approximation of (67) is
uj−1 − 2uj + uj+1

∆x2
= f

(
uj+1 − uj−1

2∆x
, uj , xj

)
j = 1, . . . , N

u0 = α

uN+1 = β

(68)

This is a system of N nonlinear equations in N unknowns {u1, . . . uN} which can be solved, e.g., with the
Newton’s method.

We conclude this section by emphasizing that we could have used also higher-order finite difference formulas
to solve the problem (67) or (38). For instance, we could have used a fourth-order formula based on a stencil
with 5 points, with forward and backward representation at the left and the right boundary, respectively,
to accommodate Dirichlet or Neumann boundary conditions.

Method of weighted residuals for BVP. The method of weighted residuals for BVP is based on the
so-called weak (or variational) formulation of the problem. To describe the method, consider the following
prototype boundary value problem

− d

dx

(
a(x)

dy(x)

dx

)
+ b(x)(x) = f(x) x ∈ [0, 1]

y(0) = 0

y(1) = 0

(69)

where a(x) is a strictly positive function, i.e., a(x) > 0 for all x ∈ [0, 1]. Multiply the differential equation
in (69) by a test function v(x) and integrate over [0, 1] to obtain

−
∫ 1

0

d

dx

(
a(x)

dy(x)

dx

)
v(x)dx+

∫ 1

0
b(x)y(x)v(x)dx =

∫ 1

0
f(x)v(x)dx. (70)

Page 12

AM 213B Prof. Daniele Venturi

By integrating the first term by parts and assuming that v(x) satisfies the boundary condition in (69) we
obtain ∫ 1

0
a(x)

dy(x)

dx

dv(x)

dx
dx+

∫ 1

0
b(x)y(x)v(x)dx =

∫ 1

0
f(x)v(x)dx. (71)

Clearly, if y(x) is of class C2([0, 1]) and it satisfies (69) (strong solution) then y(x) is also a solution to the
following weak formulation of the BVP:

Find y ∈ H1
0 ([0, 1]) such that (71) is satisfied for all v ∈ H1

0 ([0, 1]). HereH1
0 ([0, 1]) denotes the Sobolev space

square integrable functions vanishing at x = 0 and x = 1, with square integrable first-order derivatives,
i.e.,

H1
0 ([0, 1]) = {v ∈ L2([0, 1]) such that

dv

dx
∈ L2([0, 1]) and v(0) = v(1) = 0}. (72)

Note that the weak formulation (71) involves only the first derivative of y(x). Therefore a weak solution to
the BVP (69), i.e., a solution to (71), may not actually satisfy (69). This means that the weak formulation
of a BVP might have a solution even when the strong formulation does not.

With the weak formulation (71) available, we look for a finite-dimensional approximation of y(x). To this
end, suppose that y(x) can be accurately represented in a finite-dimensional subspace of VN ⊂ H1

0 ([0, 1]),
i.e.,

yN (x) =

N∑
k=1

akϕk(x), ϕk ∈ H1
0 ([0, 1]). (73)

A substitution of (73) into (71) yields a residual RN (x)∫ 1

0
a(x)

dyN (x)

dx

dv(x)

dx
dx+

∫ 1

0
b(x)yN (x)v(x)dx =

∫ 1

0
f(x)v(x)dx+

∫ 1

0
RN (x)v(x)dx. (74)

Depending on the way we handle the residual we can have different classes of methods:

• Galerkin method: We set the residual orthogonal to the span of {ϕ1, . . . , ϕN}, i.e.,∫ 1

0
RN (x)ϕj(x)dx = 0 j = 1, . . . , N. (75)

This yields a system of N equations in the N unknowns {a1, . . . , aN} (see equation (73)).

• Collocation method: We set the residual RN (x) equal to zero at a set of collocation nodes
{x1, . . . , xN}, i.e.,

RN (xj) = 0 j = 1, . . . , N. (76)

In this way, the differential equation is satisfied exactly at the collocation nodes.

• Least-squares method: We minimize the L2 norm of the residual RN (x) over the parameters
{a1, . . . , aN} in equation (73))

min
a1,...,aN

∫ 1

0
R2

N (x)dx (77)

As an example, let us apply all these methods to the simple BVP (38). To this end, we look for a
representation of the solution in the form

yN (x) = (1− x)α+ xβ +

N∑
k=1

akϕk(x) (78)

where
ϕk(x) = x(1− x)Tk(2x− 1) x ∈ [0, 1] (79)

Page 13

AM 213B Prof. Daniele Venturi

and Tk(x) are, e.g., Chebyshev polynomials of the first kind or Legendre polynomials. The linear functions
(1− x) and x are called boundary modes in finite-element analysis, while ϕk(x) are called interior modes9.
A substitution of (78) into (38) yields

d2yN (x)

dx2
= f(x) +RN (x). (81)

Clearly, the boundary conditions are automatically satisfied by (78)-(79).

Galerkin method. In the Galerkin method we impose that the residual RN (x) is orthogonal (in the
L2 sense) to the span of {ϕ1, . . . , ϕN}. To impose such orthogonality, we first multiply (81) by ϕj(x) and
integrate over [0, 1] to obtain∫ 1

0

d2yN (x)

dx2
ϕj(x)dx =

∫ 1

0
f(x)ϕj(x)dx+

∫ 1

0
RN (x)ϕj(x)dx j = 1, . . . , N. (82)

Setting ∫ 1

0
RN (x)ϕj(x)dx = 0 j = 1, . . . , N (83)

yields the system of equations

−
∫ 1

0

dyN (x)

dx

dϕj(x)

dx
dx =

∫ 1

0
f(x)ϕj(x)dx j = 1, . . . , N. (84)

where we integrated by parts the first term in (82). Substituting (78) and

dyN (x)

dx
= β − α+

b∑
k=1

ak
dϕk(x)

dx
(85)

into (84) yields

−(β − α)

∫ 1

0

dϕj(x)

dx
dx−

N∑
k=1

ak

∫ 1

0

dϕj(x)

dx

dϕk(x)

dx
dx︸ ︷︷ ︸

stiffness matrix Sjk

=

∫ 1

0
f(x)ϕj(x)dx j = 1, . . . , N. (86)

i.e.,
N∑
k=1

Sjkak = −
∫ 1

0
f(x)ϕj(x)dx− (β − α)

∫ 1

0

dϕj(x)

dx
dx j = 1, . . . , N. (87)

Upon definition of

a =

a1
...
aN

 , h =



∫ 1

0
f(x)ϕ1(x)dx

...∫ 1

0
f(x)ϕN (x)dx

 , b = (β − α)



∫ 1

0

dϕ1(x)

dx
dx

...∫ 1

0

dϕN (x)

dx
dx

 , (88)

9In the spectral method the basis fuctions ϕk(x) are chosen to be Lagrange characteristic polynomials at Gauss-Lobatto
nodes in [0, 1]. This yields the following expansion of the solution

yN (x) = ϕ0(x)α+ ϕN+1(x)β +

N∑
k=1

akϕk(x), (80)

where ϕ0(x) and ϕN+1(x) are the boundary modes and ϕk(x) are the interior modes. The integrals in (82) can be computed
using Gauss-Lobatto quadrature.

Page 14

AM 213B Prof. Daniele Venturi

we can write the system (87) in a matrix-vector form as

Sa = −(h+ b) (89)

Inverting the (positive definite) stiffness matrix S yields the solution a = −S−1(f + b) which can be then
substituted back into (78).

Collocation method. In the collocation method we impose that the residual RN (x) is equal to zero
at N distinct (interior) nodes {x1, . . . , xN}. A substitution of (73) into (69) yields (81). By imposing
RN (xi) = 0 in (81) we obtain

N−1∑
k=2

ak
d2ϕk(xj)

dx2
= f(xj)− α

d2ϕ0(xj)

dx2
− βd

2ϕN+1(xj)

dx2︸ ︷︷ ︸
gj

j = 2, . . . , N − 1 (90)

Upon definition of the differentiation matrix D2
jk = d2ϕk(xj)/dx

2 we can write the linear system (90)
as

D2
Colla = g, (91)

which resembles very much the system (42). Indeed the finite-difference methods is a particular type of
collocation method. Convergence analysis of spectral collocation methods for BVP follows the analysis
we have done for second order finite differences. In particular, the eigenvalues of second-order spectral
collocation matrices are discussed in [4].

Least squares method. Finally, we set up the BVP (38) as a least-squares problem. To this end, we
consider the residual

RN (x) =
N∑
k=1

ak
d2ϕk(x)

dx2
− f(x) (92)

and its L2 norm

‖RN (x)‖2L2([0,1] =

∫ 1

0

(
N∑
k=1

ak
d2ϕk(x)

dx2
− f(x)

)2

dx. (93)

By expanding integrand we see that minimization of (93) is essentially a quadratic programming problem
with two linear constraints (boundary conditions) which can be solved, for example, using high-performance
solvers such as OSQP [3] (https://osqp.org/).

Some results on polynomial approximation theory. Collocation, Galerkin and Least Squares meth-
ods are based on functional series expansions of the form

yN =

N∑
k=0

akϕk(x). (94)

For simplicity we consider x ∈ [−1, 1] (any bounded interval can be rescaled to [−1, 1]). The functions
ϕk(x) here are orthogonal polynomials relative to a weight function w(x), i.e.,∫ 1

−1
ϕk(x)ϕj(x)w(x)dx = δkj ‖ϕk‖2L2

w([−1,1]) . (95)

or Lagrange polynomials associated to a properly chosen set of notes, e.g., zeros of orthogonal polynomials.
Polynomial approximation theory theory is thoroughly discussed in [1, Chapter 6]. Hereafter we briefly
summarize some of the main results.

Page 15

AM 213B Prof. Daniele Venturi

Theorem 1. Let {ϕk(x)} in (94) be a set polynomials orthogonal in [−1, 1] relative to the weight function
w(x). Then for any y(x) ∈ Hp

w([−1, 1]) p ≥ 0, there exists a constant C, independent of N , such that

‖y(x)− yN (x)‖L2
w([−1,1]) ≤ CN

−p ‖y(x)‖Hp
w([−1,1]) (96)

Theorem 1 demonstrates that the error between the function y(x) and the approximation (94) decays
spectrally with the number of basis functions. If the function y(x) is infinitely smooth, then the error decays
exponentially fast with the number of basis functions. Similar results can be obtained the approximation
of the derivatives of y(x) (see [1, Theorem 6.2 and Theorem 6.3]).

The next theorem summarizes the approximation properties of spectral collocation representations, i.e.,
series expansions of the form (94) where ak = y(xk) and ϕk(x) are Lagrangian characteristic polynomials
associated with a set of Gauss or Gauss-Lobatto nodes10 {x0, . . . , xN} in [−1, 1].

Theorem 2. Let ϕk(x) in (94) be Lagrange characteristic polynomials associated with a set of Gauss
or Gauss-Lobatto nodes in [−1, 1]. Suppose that such Gauss or Gauss Lobatto nodes are defined by a
polynomial orthogonal in [−1, 1] relative to the weight function w(x). Then for any y(x) ∈ Hp

w([−1, 1])
p ≥ 1, there exists a constant C, independent of N , such that (96) holds.

Theorem 2 demonstrates that contrary to finite difference methods, the error of spectral collocation methods
does not decay as a fixed power of 1/N but rather as a power that depends on the smoothness of the function
we are approximating. For infinitely differentiable function functions, the error decreases exponentially fast
with N . Hence, spectral collocation methods are, in a certain sense, methods of infinite order when applied
to smooth problems.

Gauss-Chebyshev-Lobatto spectral collocation method for BVP. Let briefly review the main
ingredients of the Gauss-Lobatto Chebyshev expansion, and its usage for boundary value problems. For
more details we refer to [1]. We first recall that the Chebyshev polynomials of the first kind are defined
as

Tk(x) = cos(k arccos(x)) x ∈ [−1, 1] (trigonometric representation). (97)

It can be shown that Tk(x) (like any other orthogonal polynomial) satisfies a three-term recurrence rela-
tion

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

(98)

which gives
T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x T4(x) = 8x4 − 8x2 + 1, (99)

The Gauss-Chebyshev-Lobatto nodes are zeros of the polynomial

QN+1(x) = (1− x2)
dTN (x)

dx
, (100)

i.e., x0 = −1, xN = 1 and all maxima and minima of TN (x). By differentiating (97) with respect to x we
obtain

dTN (x)

dx
=

sin(N arccos(x))√
1− x2

. (101)

Hence QN+1(x) = 0 implies that

xj = cos

(
kπ

N

)
j = 0, . . . , N (Gauss-Chebyshev-Lobatto points). (102)

10Recall that Gauss nodes in [−1, 1] are the zeros of an orthogonal polynomial PN+1(x) of degree N + 1 defined in [−1, 1].
Orthogonality is relative to some weight function w(x). If w(x) = 1 then Pk(x) are Lagrange polynomials. On the other hand,
Gauss-Lobatto nodes are zeros of the polynomial (1− x2)dPN (x)/dx.

Page 16

AM 213B Prof. Daniele Venturi

These points are obtained by dividing half unit circle in evenly spaced parts and projecting them onto
the x-axis. It can be shown that the Lagrange characteristic polynomials associated with the Gauss-
Chebyshev-Lobatto nodes are

ϕj(x) =
(−1)N+j+1(1− x2)

djN2(x− xj)
dTN (x)

dx
=

(−1)N+j+1
√

(1− x2)

djN2(x− xj)
sin(N arccos(x)), (103)

where xj is given in (102) and

d0 = dN = 2 d1 = d2 = · · · = dN−1 = 1. (104)

A substitution of (103) into (94) yields the series expansion11

yN (x) =

N∑
k=0

y(xk)ϕk(x). (105)

At this point we can differentiate (105) with respect to x and evaluate the derivative at x = xj . This yields
the expressions

dyN (xj)

dx
=

N∑
k=0

y(xk)
dϕk(xj)

dx︸ ︷︷ ︸
D1

jk

,
d2yN (xj)

dx2
=

N∑
k=0

y(xk)
d2ϕk(xj)

dx2︸ ︷︷ ︸
D2

jk

, (106)

where D1 and D2 are, respectively, first- and second-order Gauss-Chebyshev-Lobatto differentiation ma-
trices. A direct calculation shows that

D1
ij =



−2N2 + 1

6
i = j = 0

di
dj

(−1)i+j

xi − xj
i 6= j

− xi
2(1− x2

i)
i = j

2N2 + 1

6
i = j = N

(first-order differentiation matrix) (107)

where di are defined in (104), and

D2
ij =



(−1)i+j

di

x2
i + xixj − 2(

1− x2
i

)
(xi − xj)2 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N, j 6= i

−(N2 − 1)(1− x2
i) + 3

3
(
1− x2

i

)2 1 ≤ i = j ≤ N − 1

2(−1)j

3dj

[
(2N2 + 1)(1− xj)− 6

(1− xj)2

]
i = 0, 1 ≤ j ≤ N

2(−1)N+j

3dj

[
(2N2 + 1)(1 + xj)− 6

(1 + xj)
2

]
i = N, 0 ≤ j ≤ N − 1

(N4 − 1)

15
i = j = 0, N

(108)

11Note that the series expansion (105), is the Lagrange interpolant of y(x) through the Gauss-Chebyshev-Lobatto points
(102).

Page 17

AM 213B Prof. Daniele Venturi

The matrix D2 can be also approximated by a product of two matrices D1, i.e.,

D2 'D1D1, (109)

although D2 is obviously more accurate than D1D1.

Example: Chebyshev-Gauss-Lobatto nodes are defined in [−1, 1]. If we are given a VBP on the interval
[a, b] then we can transform it to [−1, 1] by using the following elementary coordinate transformation

x =
b− a

2
z +

b+ a

2
z ∈ [−1, 1]. (110)

This yields the following transformation for the derivatives

y(x) = y

(
b− a

2
z +

b+ a

2

)
⇒ dy

dx
=
dy

dz

dz

dx
=
dy

dz

2

b− a
, (111)

and
d2y

dx2
=
d2y

dz2

(
2

b− a

)2

. (112)

The last equation implies that the differentiation matrix for a function defined in [a, b] is simply a re-
scaled version of the differentiation matrix in [−1, 1], the rescaling factor being some power of 2/(b − a).
Substituting (105) into (69) (mapped from x ∈ [0, 1] to z ∈ [−1, 1] using the simple transformation
z = 2x− 1) and setting the residual equal to zero at the nodes (102) yields the system of equations

2

N∑
k=0

D2
jkuk = f

(
zj + 1

2

)
j = 1, . . . , N − 1

u0 = α

uN = β

(113)

where zj are the Chebyshev-Gauss-Lobatto nodes (102). This system allows us to compute the numerical
solution to the BVP (69) using the Chebyshev-Gauss-Lobatto spectral method.

References

[1] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-dependent problems, volume 21
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge, 2007.

[2] A. Quarteroni, R. Sacco, and F. Salieri. Numerical mathematics. Springer, 2007.

[3] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an operator splitting solver for
quadratic programs. Mathematical Programming Computation, 12(4):637–672, 2020.

[4] J. A. C. Weideman and L. N. Trefethen. The eigenvalues of second-order spectral differentiation
matrices. SIAM Journal on Numerical Analysis, 25(6):1279–1298, 1988.

Page 18

