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Bifurcations in n-dimensional nonlinear dynamical systems

Consider the n-dimensional nonlinear dynamical system

dx

dt
= f(x, µ) (1)

where µ is a real parameter which we are allowed to vary1. In this course note we study bifurcations of the
flow generated by (1) as we vary the parameter µ. Such bifurcations can be defined as topological changes
in the flow corresponding to different µ, and they can be grouped into two broad classes

• Local bifurcations: these bifurcations involve a small portion of the phase space. Examples of local
bifurcations are bifurcation of equilibria, e.g., zero-eigenvalue bifurcations (saddle-node, transcritical,
subcritical/supercritical pitchfork), Hopf bifurcations, Bogdanov-Takens bifurcation, etc.

• Non-local bifurcations: these bifurcations usually involve large portions of the phase space. Ex-
amples of non-local/global bifurcations are homoclinic and heteroclinic bifurcations (see Figure 1),
saddle-node bifurcation of cycles, etc.

Generally speaking, bifurcations are related to the notion of structural stability of a dynamical system.
Roughly speaking, if the qualitative behavior of the system remains more or less the same for all vector
fields nearby a particular f(x, µ) then the system (1) (or the vector field f(x, µ)) is said to be structurally
stable. Mathematically, we can define structural stability as follows.

Definition 1 (Structural stability). A continuously differentiable vector field f is said to be structurally
stable if there exists ϵ > 0 such that for all continuously differentiable g that are “close enough” to f , i.e.,

∥f − g∥ < ϵ (2)

we have that the flows generated by f and g are topologically equivalent, i.e., there exists a homeomorphism
which maps trajectories of ẋ = f(x) onto trajectories of ẋ = g(x) and preserves their orientation by time.

Note that this definition relies on finely detailed information about the structure of flows generated by
nonlinear dynamical systems, which is often very hard to obtain, especially in high dimensions. However,
in two-dimensions things are more manageable due to topological constraints on 2D flows such the Poincaré-
Bendixson theorem. Indeed, in 1962 Mauŕıcio Peixoto proved the following Theorem, which completely
characterizes structural stability in 2D systems.

Theorem 1 (Peixoto - Structural stability for planar systems). Let f(x, µ) be a continuously differentiable
field on a compact subset U of the phase plane. Then f is structurally stable if and only if: (i) the number
of fixed points and cycles in U is finite and each is hyperbolic2; (ii) there are no trajectories connecting
saddle points (see Figure 1 for a counterexample); iii) the nonwandering set in U3 consists of periodic
orbits and fixed points alone.

According to Theorem 1, planar systems with non-hyperbolic fixed points are not structurally stable.
Unfortunately, no generalization of Peixoto’s theorem is available in higher dimensions (even in three
dimensions). The reason is that the definition of structural stability relies on finely detailed information
about the structure of flow and its perturbations, which is not generally available. This is one of the reason

1More generally, the dynamical system (1) can depend on multiple parameters

µ = (µ1, . . . , µM ).
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Figure 1: Examples of homoclinic and heteroclinic bifurcations in two-dimensional dynamical systems. An
example of a two-dimensional system that yields the heteroclinic bifurcation shown above is ẋ1 = x21 − 1,
ẋ2 = −x2x1 + µ(x21 − 1).
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Figure 2: Bifurcation diagrams corresponding to a saddle-node bifurcation and a supercritical pitchfork
bifurcation in a two-dimensional dynamical system. The stability properties of each of the fixed points can
change as µ is varied. For instance, a stable node can turn into a stable spiral as µ is varied.

why attempts to construct a systematic bifurcation theory for general nonlinear dynamical systems led
to difficult technical questions. Of course, we can just focus our analysis on specific types bifurcations of
dynamical systems, e.g., local bifurcations of equilibria. In this case, there is a rather systematic theory
that allows us to obtain with rigorous quantitative results.
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Local bifurcations of equilibria

As is well known, the fixed points (equilibria) of the system (1) are solution of the algebraic equation

f(x, µ) = 0. (3)

By using the implicit function theorem, it is immediate to conclude that as the parameter µ varies, the
fixed points x∗(µ) are described by smooth functions of µ, except at points (x∗, µ∗) where the Jacobian
Jf (x, µ) is not invertible, i.e., it has at least one zero eigenvalue.

Theorem 2 (Implicit function theorem). Let f(x, µ) be continuously differentiable in a neighborhood of
a fixed point (x∗, µ∗), i.e., a point such that f(x∗, µ∗) = 0. If the Jacobian matrix

Jf (x
∗, µ∗) =


∂f1(x

∗, µ∗)

∂x1
· · · ∂f1(x

∗, µ∗)

∂xn
...

. . .
...

∂fn(x
∗, µ∗)

∂x1
· · · ∂fn(x

∗, µ∗)

∂xn

 (4)

is nonsingular (invertible) then there exists a neighborhood B of µ∗ (i.e., an interval that includes µ∗) in
which the zero level set of f(x, µ) can be represented as a graph of a smooth function x∗(µ), i.e.,

f(x∗(µ), µ) = 0 for all µ ∈ B. (5)

The function x∗(µ) is continuously differentiable with respect to µ in B, and it interpolates (x∗, µ∗).
Moreover4,

dx∗(µ∗)

dµ
= −J−1

f (x∗, µ∗)
∂f(x∗, µ∗)

∂µ
. (8)

Broadly speaking, the implicit function theorem asserts that if Jf (x
∗, µ∗) is invertible (no-zero eigenvalues)

then the graph of each function x∗(µ) is a smooth branch of equilibria of (1) (see Figure 2). On the other,
hand if Jf (x

∗, µ∗) is not invertible at some point (x∗, µ∗) then several branches of equilibria may intersect
there. In this case, (x∗, µ∗) could be a bifurcation point.

In Figure 2 we sketch the bifurcation diagrams corresponding to two rather common bifurcations, i.e., a
saddle-node bifurcation and a pitchfork bifurcation in two dimensions. Both these bifurcations are called
zero eigenvalue bifurcations, because they are characterized by a single real eigenvalue of the Jacobian
matrix crossing the imaginary axis as the parameter µ is varied.

Hereafter we study two types of local bifurcations of equilibria depending on one real parameter µ:

1) Zero-eigenvalue bifurcations: These bifurcations are characterized by a single real eigenvalue
crossing the imaginary axis as µ is varied (see Figure 3). Examples of zero-eigenvalue bifurcations:

• Saddle-node bifurcation,

• Transcritical bifurcation,

• Supercritical/Subcritical pitchfork bifurcation,

• (. . . ).

2) Hopf bifurcations: These bifurcations are characterized by a pair of complex conjugate eigenval-
ues crossing the imaginary axis as µ is varied (see Figure 8). There are two main kinds of Hopf
bifurcations:
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Figure 3: Zero eigenvalue bifurcations are characterized by a single real eigenvalue crossing the imaginary
axis as the parameter µ is varied. Shown is a sketch of the eigenvalues λj(µ) of the Jacobain matrix
Jf (x

∗(µ), µ) evaluated at the fixed point x∗(µ). As µ is varied the eigenvalues move from the red dots to
the black dots. At µ = µ∗ one real eigenvalue crosses the imaginary axis.

• Supercritical Hopf bifurcation,

• Subcritical Hopf bifurcation.

Extended system. To study bifurcations of equilibria it is sometimes convenient to write the parametric
dependence in (1) in terms of an additional ODE as

dx

dt
= f(x, µ)

dµ

dt
= 0

(9)

This is called extended system. By using the normal form theorem and the local center manifold theorem
(see the course note 5) applied to the extended system (9), it is possible two write the local behavior of
the system at any bifurcation point. The normal form of the system at the bifurcation point depends on
the particular bifurcation.

Zero-eigenvalue bifurcations

Zero eigenvalue bifurcations are characterized by a single real eigenvalue λi(µ) of the Jacobian matrix
Jf (x

∗(µ), µ) crossing the imaginary axis with non-zero “velocity” dλi/dµ as the parameter µ is varied (see
Figure 3). Let us begin our analysis of zero-eigenvalue bifurcations by considering two-dimensional systems
of the form ẋ1 = f1(x1, x2, µ)

ẋ2 = f2(x1, x2, µ)
(10)

In this case, zero-eigenvalue bifurcations have a clear geometric interpretation.

Theorem 3 (Zero-eigenvalue bifurcations in two-dimensional systems). Zero-eigenvalue bifurcations in
two-dimensional systems (10) occur at points where the nullclines of the system are either tangent to each
other, or at points5 where one of the gradients ∇f1 or ∇f2 is zero.
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Figure 4: Graphical illustration of Theorem 3 for saddle-node and pitchfork bifurcations. The bifurcations
occurs at locations where the nullclines are tangent. This makes the Jacobian matrix of the the vector
field not invertible, i.e., the Jacobian has one zero eigenvalue.

Proof. Let us recall that the nullclines of a two-dimensional system are defined to be the zero level sets of
f1(x1, x2, µ) and f1(x1, x2, µ), i.e.,

f1(x1, x2, µ) = 0 (ẋ1 = 0 nullcline), f2(x1, x2, µ) = 0 (ẋ2 = 0 nullcline). (11)

We also know that the gradients

∇f1 =

(
∂f1
∂x1

,
∂f1
∂x2

)
, ∇f2 =

(
∂f2
∂x1

,
∂f2
∂x2

)
(12)

are orthogonal to each level set of f1 and f2, respectively. In particular, they are orthogonal to the zero
level sets of f1 and f2. The Jacobian matrix of (10) can be written as

Jf =


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

[
∇f1
∇f2

]
. (13)

At this point we notice that if the vector ∇f1 is a scalar multiple of the vector ∇f2, i.e., if ∇f1 and ∇f2
are parallel then the Jacobian (13) Jf is rank one. Therefore det(Jf ) = 0, implying that there exists
a zero eigenvalue with algebraic multiplicity one or two. Similarly, if ∇f1 = 0 or/and ∇f2 = 0 then
det(Jf ) = 0.

In Figure 4 we provide a graphical illustration of Theorem 3 for saddle-node and pitchfork bifurcations.
It is important to emphasize that the tangency condition of the nullclines mentioned in Theorem 3 is not
necessary nor sufficient for a bifurcation to occur. In fact, ∇f1 and ∇f2 can be parallel at some fixed point
and yet not generate any bifurcation.

Example: The nonlinear dynamical systemẋ1 = x1x2 − x21 − x1

ẋ2 = x2 − x21 − µ
(14)

undergoes a saddle-node bifurcation at µ∗ = 1.25, and a transcritical bifurcation at µ∗ = 1. In Figure 5 we
show the phase portraits of (14) as µ is varied within the range [0.9, 1.35]. The Jacobian of (14) is

Page 5



AM 224 Prof. Daniele Venturi

µ = 1.35 µ = 1.25 µ = 1.15

µ = 1.1 µ = 1 µ = 0.9

Figure 5: Phase portraits of the system (14) for different µ. For µ = 1.25 the system undergoes a saddle
node bifurcation at xA = (0.5, 1.5). Note that for µ = 1.25 the nullclines ẋ1 = 0 and ẋ2 = 0 are tangent at
xA. For µ = 1 the system undergoes a second zero-eigenvalue bifurcation at x∗

B = (0, 1). Such bifurcation
is a transcritical bifurcation where two fixed points “exchange stability”. At both bifurcation points there
is a single real eigenvalue of the Jacobian crossing the imaginary axis with non-zero velocity .

Jf (x1, x2) =

[
x2 − 2x1 − 1 x1

−2x1 1

]
(15)

For µ∗
A = 5/4 the system undergoes a saddle-node bifurcation at the fixed point

x∗
A =

(
1

2
,
3

2

)
. (16)

Evaluating the Jacobian (15) at (x∗
A, µ

∗
A) yields

Jf (x
∗
A) =

1

2

[
−1 1
−2 2

]
. (17)

Hence, the two nullclines ẋ1 = 0 and ẋ2 = 0 are tangent at x∗
A. Note, in fact, that that the rows of Jf (x

∗
B)

(which represent the gradients of f1 and f2) are linearly dependent. The eigenvalues of (17) are

λ1 =
1

2
λ2 = 0. (18)

As seen in Figure 5, as we decrease µ we have that the parabola representing the level set ẋ2 = 0 translates
downward, and the fixed point x∗

A splits into two (hyperbolic) fixed points. As we keep reducing µ, one
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Figure 6: Normal form of two-dimensional saddle-node and supercritical pitchfork bifurcations. In these
plots we assume that the bifurcation point is characterized by center (c variable) and stable (s variable)
manifolds.

of the two fixed points that came out of the saddle node bifurcation heads towards the fixed point fixed
point x∗(µ) = (0, µ). The Jacobian at x∗(µ) is

Jf (x
∗(µ)) =

[
µ− 1 0
0 1

]
(19)

and has eigenvalues
λ1(µ) = µ− 1 λ2(µ) = 1. (20)

As seen in Figure 5, at µ = µ∗
B = 1 the fixed point x∗(µ) = (0, µ) collides with one of the two fixed

point that came out of the saddle-node bifurcation. This yields another zero-eigenvalue bifurcation, i.e., a
transcritical bifurcation. Note that at the transcritical bifurcation point

x∗
B = (0, 1) µ∗

B = 1 (21)

the nullcline ẋ1 = 0 intersects itself, and therefore the gradient ∇f1 is zero at x∗
B = (0, 1), consistently

with Theorem 3. The eigenvalues of Jf (x
∗
B) are (λ1, λ2) = (0, 1).
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Normal forms at zero-eigenvalue bifurcations

The normal form a dynamical system at zero eigenvalue bifurcations can be computed using the normal
form theorem and the local center manifold theorem applied to the extended system (87) at the bifurcation
point. The main steps are:

• Write the extended dynamical system (87) at bifurcation point (x∗, µ∗) via the simple change of
coordinates η = x(t)− x∗, r = µ− µ∗.

• Expand the system at the bifurcation point as

η̇ = Jf (x
∗, µ∗)η + g(η, µ∗), (22)

where Jf (x
∗, µ∗) is the Jacobian at (x∗, µ∗) and g represents the residual of the Taylor series. The

spectral decomposition of Jf (x
∗, µ∗) yields stable (V c), unstable (V u), and center (V c) subspaces,

and corresponding phase variables (see the course note 5).

• Compute the local center manifold of the extended system at the bifurcation point, and write the
system in a normal form in the neighborhood of (η, r) = (0, 0).

In Appendix A we provide two examples of calculation of normal forms in two-dimensional dynamical
systems using this procedure. Specifically, we study a transcritical and a saddle-node bifurcation. The
examples in Appendix A clearly demonstrate that by using local center manifolds analysis applied to
the normal form of the extended dynamical system at the bifurcation point it is possible to characterize
the zero-eigenvalue bifurcation in terms of a decoupled system that involves the center manifold and the
stable/unstable manifolds. The bifurcation process develops entirely on the center manifold of the extended
system. The dynamics on the stable/unstable manifolds is trivial. In Figure 6 we sketch the flow defined by
the normal form of a two-dimensional dynamical systems that undergoes a saddle-node and supercritical
pitchfork bifurcations.

The results obtained for the two-dimensional systems in Appendix A can be generalized to n-dimensional
dynamical systems. For example, the normal form of a supercritical pitchfork bifurcation in a n-dimensional
system is 

ċ = cr − c3 (center manifold)

ṡ = Bs (stable subspace)

u̇ = Cu (unstable subspace)

(23)

where B has eigenvalues with negative real part, and C has eigenvalues with positive real part.

In Figure 7 we provide an example of a thermal-fluid system that undergoes a supercritical pitchfork
bifurcation at the onset of convective instability. The bifurcation diagram is computed numerically, and
the type of bifurcation is identified using Sotomayor’s Theorem 6.

Sotomayor’s theorems

Is it possible to identify which type of zero-eigenvalue bifurcation takes place in an n-dimensional system
without computing the normal form? The answer is yes, and the procedure is given in the following
theorems due to Jorge Sotomayor6.

Before we formulate to the theorems, recall that the left eigenvector of a square matrix A is a row vector
such that wA = λw. Taking the transpose, we see that a left eigenvector of A is a right eigenvector v of
the matrix transpose AT , i.e., ATv = λv where v = wT .

6J. Sotomayor, “Generic one-parameter families of vector fields on two-dimensional manifolds”, Publications mathématiques
de l’I.H.É.S., 43 (1974), pp. 5-46.
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Figure 7: Onset of convective instability in a square cavity heated from below and cooled from above
(isothermal horizontal walls), and adiabatic sidewalls. This fluid system transitions from a state of no-
motion to a one-roll stable convection pattern via a supercritical pitchfork bifurcation. The bifurcation
parameter is the Rayleigh number Ra = gβL3∆T/(να). Here g is gravity, β is the isobaric compressibility
of the fluid, L is the side length of the cavity, ∆T is the temperature difference between the horizontal
walls, nu is the kinematic viscosity and α is the thermal diffusivity of the fluid.

Theorem 4 (Saddle-node bifurcations). Suppose that the system (1) has a fixed point (x∗, µ∗) satisfying
the following conditions

a) Jf (x
∗, µ∗) has a simple eigenvalue 0 with right eigenvector v and left eigenvectorw, and k eigenvalues

with negative real part,

b)
n∑

i=1

wi
∂fi(x

∗, µ∗)

∂µ
̸= 0,

c)
n∑

i=1

wi

 n∑
l,p=1

∂2fi(x
∗, µ∗)

∂xl∂xp
vlvp

 ̸= 0.

Then there is a smooth curve of equilibrium points of (1) passing through (x∗, µ∗). Depending on the
signs of the expressions in b) and c), there are no equilibrium points of (1) near x∗ when µ < µ∗ (or when
µ > µ∗), and there are two fixed points points of (1) near x∗ when µ > µ∗ (or when µ < µ∗). The two fixed
points are hyperbolic and have stable manifolds of dimensions k and k + 1 respectively; i.e., the system
(1) undergoes a saddle-node bifurcation at the equilibrium point x∗ as the parameter µ passes through the
bifurcation value µ = µ∗.
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Example: Let us apply Theorem 4 to the systemẋ1 = x2

ẋ2 = x2 − x21 − µ
(24)

As discussed in Appendix A, the Jacobian of (24) at (x∗, µ∗) = (0, 0)

Jf (0, 0) =

[
0 1
0 1

]
(25)

has one zero eigenvalue λ1 = 0 and one positive eigenvalue λ2 = 1. The left and right eigenvectors
corresponding to the zero eigenvalue are, respectively

v =

[
1
0

]
, w =

[
−1
1

]
. (26)

Let us now check if conditions b) and c) in Theorem 4 are satisfied.

b)

2∑
i=1

wi
∂fi(0, 0)

∂µ
= 0− 1 = −1 ̸= 0, (27)

c)
2∑

i=1

wi

 2∑
l,p=1

∂2fi(0, 0)

∂xl∂xp
vlvp

 = −2 ̸= 0. (28)

Hence, the system (24) undergoes a saddle node bifurcation at (x∗, µ∗) = (0, 0). Note that in this case we
have k = 0 eigenvalues with negative real part at the bigurcation point. Therefore, based on the theorem,
after the saddle node bifurcation takes place we have one fixed point with one eigenvalue of negative real
part (in this case a saddle node), and one fixed point with eigenvalues with positive real parts (unstable
node or unstable spiral).

Theorem 5 (Transcritical bifurcations). Suppose that the system (1) has a fixed point (x∗, µ∗) for which
the following conditions are satisfied:

a) Jf (x
∗, µ∗) has a simple eigenvalue 0 with right eigenvector v and left eigenvector w,

b)

n∑
i=1

wi
∂fi(x

∗, µ∗)

∂µ
= 0, c)

n∑
i=1

wi

[
n∑

l=1

∂fi(x
∗, µ∗)

∂µ∂xl
vl

]
̸= 0, d)

n∑
i=1

wi

 n∑
l,p=1

∂2fi(x
∗, µ∗)

∂xl∂xp
vlvp

 ̸= 0.

Then the system (1) undergoes a transcritical bifurcation at the equilibrium point x∗ as the parameter µ
varies through the bifurcation value µ∗.

Example: Let us apply Theorem 5 to the systemẋ1 = x2

ẋ2 = −x2 + µx1 − x21

(29)

As discussed in Appendix A, the Jacobian of (29) at (x∗, µ∗) = (0, 0)

Jf (0, 0) =

[
0 1
0 1

]
(30)
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has one zero eigenvalue λ1 = 0 and one negative eigenvalue λ2 = −1 The left and right eigenvectors
corresponding to λ1 = 0 are, respectively

v =

[
1
0

]
, w =

[
−1
1

]
. (31)

Let us now check if conditions b), c) and d) in Theorem 5 are satisfied.

b)

n∑
i=1

wi
∂fi(0, 0)

∂µ
= 0, (32)

c)
n∑

i=1

wi

[
2∑

l=1

∂2fi(0, 0)

∂µ∂xl
vl

]
= 1 ̸= 0, (33)

d)
n∑

i=1

wi

 2∑
l,p=1

∂2fi(x
∗, µ∗)

∂xl∂xp
vlvp

 = −1 ̸= 0. (34)

Hence, (29) undergoes a transcritical bifurcation at (x∗, µ∗) = (0, 0).

Theorem 6 (Pitchfork bifurcations). Suppose that the system (1) has a fixed point (x∗, µ∗) for which the
following conditions are satisfied:

a) Jf (x
∗, µ∗) has a simple eigenvalue 0 with right eigenvector v and left eigenvector w.

b)

n∑
i=1

wi
∂fi(x

∗, µ∗)

∂µ
= 0, c)

n∑
i=1

wi

[
n∑

l=1

∂fi(x
∗, µ∗)

∂µ∂xl
vl

]
̸= 0,

d)
n∑

i=1

wi

 n∑
l,p=1

∂2fi(x
∗, µ∗)

∂xl∂xp
vlvp

 = 0, e)
n∑

i=1

wi

 n∑
l,p,q=1

∂3fi(x
∗, µ∗)

∂xl∂xp∂xq
vlvpvq

 ̸= 0.

Then the system (1) undergoes a pitchfork bifurcation at the equilibrium point x∗ as the parameter µ
varies through the bifurcation value µ∗.

Theorem 6 was used to identify the pitchfork bifurcation in the high-dimensional nonlinear dynamical
system discussed in Figure 7.

Hopf bifurcation

So far we studied bifurcations of equilibria characterized by a single real eigenvalue crossing the imaginary
axis as a real parameter µ is varied. We called such bifurcations zero eigenvalue bifurcations, and studied
their properties using center-manifold theory applied to the extended system (87). At the beginning of
this course note we emphasized that local bifurcations of equilibria can occur at any non-hyperbolic fixed
point (see, e.g., Peixoto’s theorem 1 on the structural stability of two-dimensional systems). Hence, it
is natural to ask what happens to an equilibrium point x(µ) if the Jacobian Jf (x

∗(µ), µ) has a pair of
complex conjugate eigenvalues λ1,2(µ) crossing the imaginary axis with nonzero velocity dλ1,2(µ)/dµ ̸= 0
as µ is varied (see Figure 8).

In this case the system undergoes a Hopf bifurcation. Such bifurcation is not characterized by fixed points
merging together or branching out of a fixed point, but rather by a local change of stability that yields
the creation or annihilation of a limit cycle surrounding the fixed point. The normal form theorem gives
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Figure 8: Hopf bifurcations are characterized by a pair of complex conjugate eigenvalues crossing the imag-
inary axis with non-zero velocity. Shown is a sketch of the eigenvalues of the Jacobain matrix Jf (x

∗(µ), µ)
evaluated at the fixed point x∗(µ). As µ is varied the eigenvalues move from the red dots to the black
dots. At µ = µ∗ one we have a pair of imaginary eigenvalues and no other eigenvalue with zero real part.

us all required information about the structure of the local center manifold in a neighborhood of a Hopf
bifurcation point.

Theorem 7 (Hopf bifurcation (1942)). Suppose that the system (1) has a fixed point (x∗, µ∗) at which
the following properties are satisfied:

a) The Jacobian matrix Jf (x
∗, µ∗) has a pair of pure imaginary eigenvalues λ1,2(µ

∗) = ±ωi and no
other eigenvalues with zero real part;

b) The complex conjugate eigenvalues λ1,2(µ) cross the imaginary axis with non-zero “velocity”

dRe [λ1,2(µ
∗)]

dµ
= D ̸= 0. (35)

Then there exists a unique three-dimensional center manifold of the extended system passing through
(x∗, µ∗) and a smooth coordinate system for which the Taylor expansion of degree 3 on the center manifold
is given by Ṙ = rDR+AR3 +O(r2R, rR3, R5)

ϑ̇ = ω + rC +BR2 +O(r2, rR2, R4)
(36)

where

C =
d Im[λ1,2(µ

∗)]

dµ
, (37)

r = µ − µ∗ is the transformed bifurcation parameter (r = 0 corresponds to µ = µ∗), (R,ϑ) are polar
coordinates, D is given in (35), and A and B are constants that depend on the system.

If condition a) in Theorem 7 is satisfied then there exists a smooth curve x∗(µ) representing the location
of the fixed point as a function of µ in a neighborhood of µ∗. The existence of such smooth curve follows
immediately from the implicit function Theorem 2.

The system (36) can be written in local Cartesian coordinates as
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ċ1 = rDc1 − (ω + rC)c2 +Ac1(c
2
1 + c22)−Bc2(c

2
1 + c22) + · · ·

ċ2 = (ω + rC)c1 + rDc2 +Bc1(c
2
1 + c22)−Ac2(c

2
1 + c22) + · · ·

(38)

(see Appendix B for the derivation).

Limit cycles. The normal form (36) appearing in Hopf’s bifurcation Theorem 7 implies that for A ̸= 07

there exists a limit cycle surrounding the fixed point located at R = 0. Note that the fixed point at R = 0
in normal coordinates corresponds to some fixed point x∗(µ) in Cartesian coordinates. In fact, the analysis
of the Hopf bifurcation is performed by setting up a local coordinate system that is constantly sitting at
the fixed point, very much in the same way as in (22).

Setting Ṙ = 0 in (36) yields two equilibrium solutions

R = 0 (fixed point), and R =

√
−rD

A
(limit cycle). (39)

The solution to the second equation at R =
√
−rD/A is easily obtained as

ϑ(t) = ϑ0 +

(
ω + rC − r

BD

A

)
t. (40)

Hence, the Hopf bifurcation yields a limit cycle with radius that grows like the square root of the bifurcation
parameter r. The analysis of the vector field

Ṙ = rDR+AR3 (41)

allows us to study the stability of the limit cycle (see Figure 9). Specifically, we see that

• for A > 0 the limit cycle is unstable and it exists for rD < 0,

• for A < 0 the limit cycle is stable and it exists for rD > 0.

Supercritical and subcritical Hopf bifurcations. Depending on the sign of the parameter A in (36),
(38) and (41) we can have two different types of Hopf bifurcations, namely

• a supercritical Hopf bifurcation for A < 0,

• a subcritical Hopf bifurcation for A > 0.

To understand these two bifurcations it is convenient to set D = 1 (complex conjugate eigenvalues are
crossing the imaginary axis from left to right with velocity one as µ increases) and C = 0 in (36). This
yields the simplified system Ṙ = rR+AR3 + · · ·

ϑ̇ = ω +BR2 + · · ·
(42)

The phase portraits of the system (42) are sketched in Figure 10 for different values of µ, and different A.

It is important to emphasize that the direction in which the complex conjugate eigenvalues cross the
imaginary axis during the bifurcation process do not identify the type of Hopf bifurcation. In other words,

7If A = 0 the Taylor expansion in (36) is insufficient to describe the system. This implies that if A = 0 then we need to
add more terms.
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Figure 9: Stable and unstable limit cycles associated with a supercritical and a subcritical Hopf bifurcation
in normal coordinates.
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Figure 10: Supercritical (A < 0) and subcritical (A > 0) Hopf bifurcations on the three dimensional center
manifold mentioned in Theorem 7.

it is possible to have a supercritical Hopf bifurcation with complex conjugate eigenvalues crossing the
imaginary axis from left to right or from right to left. Similarly it is possible to have a subcritical Hopf
bifurcation with complex with complex conjugate eigenvalues crossing the imaginary axis from left to right
or from right to left. This symmetry is due to the fact that the radius of the limit defined by (39) depends
on the product rD, where D represents the velocity (with sign) by which the eigenvalues are crossing the
imaginary axis (see Eq. (35)).
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DNS results for the Navier-Stokes equations
(modulus of the normalized velocity)

Steady flow Periodic flow    Hopf bifurcation

Flow patterns

Figure 11: Transition from steady flow to periodic flow (Von-Karman periodic wake wake past a cylinder)
via a supercritical Hopf bifurcation at Re = 47 in a fluid system. In this application, the bifurcation
parameter is the Reynolds number Re = δU/ν of the flow, which depends on the cylinder diameter δ, the
upstream fluid velocity U , and the kinematic viscosity of the fluid ν.

Supercritical Hopf bifurcations are usually associated with transitions from steady states/equilibria to
periodic states. In Figure 11 we show one of such transition in a high-dimensional fluid system described
by the Navier-Stokes equations (incompressible fluid flow past a circular cylinder).

Hopf bifurcations in two-dimensional systems. For large systems of equations, computation of the
normal form (36) and the cubic coefficient A, which determines the stability of the limit cycle, can be a
substantial undertaking. However, for two-dimensional systems the calculation of A is not too difficult,
and can be done directly by writing the system at the bifurcation point in a canonical form shown below
(Eq. (49)), and then using center manifold theory. To this end, consider the system (10), and suppose
that there exits a fixed point x∗(µ) with Jacobian that has two complex conjugate eigenvalues crossing the
imaginary axis at µ = µ∗ with nonzero velocity. How do we figure out what kind of Hopf bifurcation is
taking place? As we know, this is determined by the value of the parameter A in (36). To determine such
parameter, let us first write the system ẋ1 = f1(x1, x2, µ)

ẋ2 = f2(x1, x2, µ)
(43)

in a normal form. To this end, we first change the coordinates and rewrite the system at the Hopf
bifurcation point (x∗, µ∗) as

dη

dt
= Jf (x

∗(µ∗), µ∗)η + g(η, µ∗), (44)

where
η = X(t,x0)− x∗(µ∗). (45)
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The Jacobian matrix Jf (x
∗(µ∗), µ∗) has a pair of imaginary eigenvalues of the form

λ1,2 = ±ωi, (46)

where ω is a real number (positive or negative). By computing the real Jordan form8 of Jf (x
∗(µ∗), µ∗) and

the corresponding similarity transformation P defined by the real and imaginary parts of one eigenvector
(see Appendix A in the course note 5) we can change the variables as

q = P−1η. (48)

and transform the dynamical system (44) into the standard form
dq1
dt

= ωq2 +H1(q1, q2)

dq2
dt

= −ωq1 +H2(q1, q2)

(49)

where ω can be positive or negative. The coefficient A appearing in (36) can be now expressed in terms of
H1, H2 and ω by the formula9

A =
1

16

[
∂3H1

∂q31
+

∂3H1

∂q1∂q22
+

∂3H2

∂q21∂q2
+

∂3H2

∂q32

]
+

1

16ω

[
∂2H1

∂q1∂q2

(
∂2H1

∂q21
+

∂2H1

∂q22

)
− ∂2H2

∂q1∂q2

(
∂2H2

∂q21
+

∂2H2

∂q22

)
−

∂2H1

∂q21

∂2H2

∂q21
+

∂2H1

∂q22

∂2H2

∂q22

]
, (50)

where all derivatives of H1(q1, q2) and H2(q1, q2) are evaluated at (0, 0).

Example: The nonlinear dynamical systemẋ1 = 1− (µ+ 1)x1 + x21x2

ẋ2 = µx1 − x21x2

(51)

undergoes a supercritical Hopf bifurcation at x∗ = (1, 2) for µ∗ = 2. To show this, let us first notice that
the system has only one fixed point located at

x∗(µ) = (1, µ), (52)

(see Figure 12). The Jacobian of (51) is

Jf (x, µ) =

[
−(µ+ 1) + 2x1x2 x21

µ− 2x1x2 −x21

]
. (53)

8The real Jordan form of a 2× 2 matrix J with complex conjugate eigenvalues λ1,2 = ±iω is

K =

[
0 ±ω
∓ω 0

]
. (47)

The similarity transformation P that takes the matrix J into the skew symmetric matrix K = PJP−1 has the real and the
imaginary parts of one eigenvector of J as columns.

9The proof of (50) is given in the book by Guckenheimer and Holmes, “Nonlinear oscillations, dynamical systems and
bifurcations of vector fields” at page 154.
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µ = 1.5 µ = 2 µ = 2.5

Figure 12: Phase portraits of the system (51) for different µ. The system undergoes a supercritical Hopf
bifurcation at x∗ = (1, 2) for µ∗ = 2.

Evaluating (53) at the fixed point (52) yields

Jf (x
∗(µ), µ) =

[
µ− 1 1
−µ −1

]
. (54)

The eigenvalues of Jf (x
∗(µ), µ) are

λ1,2(µ) =
(µ− 2)±

√
(µ− 2)2 − 4

2
. (55)

Clearly, at µ∗ = 2 the complex conjugate eigenvalues (55) cross the imaginary axis (from left to right as µ
increases) with nonzero velocity

D =
dRe(λ1,2(µ))

dµ

∣∣∣∣
µ=µ∗

=
1

2
. (56)

Therefore there is Hopf bifurcation at x∗(µ∗) = (1, 2), µ∗ = 2. Which one? Subcritical or supercritical?
To answer this question, we rewrite the system (51) at the fixed point (52). This is achieved by shifting
the phase variables as

η(t) = x(t)− x∗(µ), (57)

i.e.,
η1 = x1 − 1 η2 = x2 − µ, (58)

and expanding the system in the new variables at (1, µ) via Taylor theorem. A substitution of (58) into
(51) yields η̇1 = (µ− 1)η1 + η2 + η21η2 + 2η1η2 + µη21

η̇2 = −µη1 − η2 − η21η2 − 2η1η2 − µη21

(59)

At the bifurcation µ∗ = 2 point we haveη̇1 = η1 + η2 + η21η2 + 2η1η2 + 2η21

η̇2 = −2η1 − η2 − η21η2 − 2η1η2 − 2η21

(60)

This system can be written in the form (45), i.e.,

η̇ = Jf (x
∗(µ∗), µ∗)η + g(η, µ∗), (61)
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where

Jf (x
∗(µ∗), µ∗) =

[
1 1
−2 −1

]
(62)

is the Jacobian (54) evaluated at µ∗ = 2, and

g1(η, µ
∗) = η21η2 + 2η1η2 + 2η21, g2(η, µ

∗) = −η21η2 − 2η1η2 − 2η21. (63)

The real Jordan form of (62) is[
0 −1
1 0

]
=

[
1 0
−1 −1

]
︸ ︷︷ ︸

P

[
1 1
−2 −1

]
︸ ︷︷ ︸
Jf (x∗(µ∗),µ∗)

[
1 0
−1 −1

]
︸ ︷︷ ︸

P−1

. (64)

The matrix P has the real and the imaginary part of one eigenvector of Jf (x
∗(µ∗), µ∗) as columns, and it

defines a transformation between η and new set of variables q as (see equation (48))

q = P−1η, (65)

i.e.,
η1 = q1, η2 = −q1 − q2. (66)

Such a transformation allows us to write the system (61) in the form (49) as
dq1
dt

= −q2 +H1(q1, q2)

dq2
dt

= q1 +H2(q1, q2)

(67)

where
H1(q1, q2) = −q31 − q21q2 − 2q1q2, H2(q1, q2) = q31 + q21q2 + 2q1q2 = −H1(q1, q2). (68)

At this point we can evaluate the coefficient (50). The only nonzero terms are

A =
1

16

[
∂3H1

∂q31
+

∂3H2

∂q21∂q2

]
=

1

16
[−6 + 1] = − 5

16
. (69)

Hence, the fixed point (52) undergoes a supercritical Hopf bifurcation at µ∗ = 2. This implies that there
exist a stable limit cycle surrounding the fixed point x∗(µ) = (1, µ) for µ > 2.

Bifurcations depending on multiple parameters. There are many other bifurcations of equilibria that
can take place in dynamical systems. Some of these bifurcations are characterized by multiple parameters.
For instance,

• Bogdanov-Takens bifurcation. The Bogdanov-Takens bifurcation is a local bifurcation of an
equilibrium point at which the Jacobian of the system has a zero eigenvalue of algebraic multiplic-
ity two (see the book of Gukenheimer and Holmes, Section 7.3). The bifurcation depends on two
parameters. For nearby parameter values, the system has two equilibria (a saddle and a nonsaddle)
which collide and disappear via a saddle-node bifurcation. The nonsaddle equilibrium undergoes an
Andronov-Hopf bifurcation generating a limit cycle. This cycle degenerates into an orbit homoclinic
to the saddle and disappears via a saddle homoclinic bifurcation.

• Saddle-node Hopf bifurcation. The saddle-node Hopf bifurcation is a bifurcation of an equilib-
rium point in a two-parameter family of autonomous ODEs at which the Jacobian of the system has
a zero eigenvalue and a pair of purely imaginary eigenvalues. This bifurcation is described in the
book of Gukenheimer and Holmes, Section 7.4.
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µ = −1/2 µ = 0 µ = 1/2

Figure 13: Phase portraits of the system (70) for different µ. Note that the system seems to have a spiral
before and after the bifurcation, but actually when µ approaches zero such spiral becomes a stable node
as predicted by the normal form in Figure 15. Note also that since the bifurcation is local we have that
index is preserved before and after the bifurcation. In other word, the index of the non-hyperbolic fixed
point at (x1, x2, µ) = (0, 0, 0) is zero (saddle node + attractor).

Appendix A: Calculation of the normal form of zero-eigenvalue bifurcations in 2D

In this Appendix we provide a detailed calculation of the normal form of two zero-eigenvalue bifurcations
(transcritical and saddle node) arising in two-dimensional dynamical systems. The procedure is general
and it can be applied to other zero eigenvalue bifurcations.

Transcritical bifurcation. Consider the two-dimensional systemẋ1 = x2

ẋ2 = −x2 + µx1 − x21

(70)

In Figure 13 we plot phase portraits of the system (70) for different µ. The system has two fixed points
located at

x∗
A = (0, 0) and x∗

B = (µ, 0). (71)

The Jacobian of the system evaluated at xA = (0, 0) is

Jf (x
∗
B(µ), µ) =

[
0 1
−µ −1

]
(72)

and it has eigenvalues (see Figure 14)

λ1,2(µ) =
−1±

√
1− 4µ

2
. (73)

For µ∗ = 0 the two fixed point are both located at (0, 0) and the system has eigenvalues

λ1(µ
∗) = −1, λ2(µ

∗) = 0. (74)

Hence for µ∗ = 0 the fixed point (0, 0) is non-hyperbolic. The eigenvectors of Jf corresponding to λ1(µ
∗)

and λ2(µ
∗) are

v1 =

[
1
−1

]
, v1 =

[
1
0

]
. (75)
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Figure 14: Eigenvalues of the Jacobian matrix (72) as a function of µ.

To study the normal form of the system at the fixed point (0, 0), we include µ as phase variable, i.e., we
consider the extended system 

ẋ1 = x2

ẋ2 = −x2 + µx1 − x21

µ̇ = 0

(76)

The Jacobian at (x1, x2, µ) = (0, 0, 0) is

Jf (0, 0, 0) =

0 1 0
0 −1 0
0 0 0

 (77)

and it has eigenvalues

λ1 = 0 (multiplicity 2), λ2 = −1 (multiplicity 1). (78)

Therefore the system has a two-dimensional center subspace V c, and a one-dimensional stable subspace
V s spanned by the eigenvectors

V c = span


10
0

 ,

00
1

 , V s = span


 1
−1
0

 . (79)

We choose the similarity matrix P that transforms Jf (0, 0, 0) to a diagonal form as

P =

1 1 0
0 −1 0
0 0 1

 . (80)

In this way we have

Jf (0, 0, 0) = PΛP−1 where Λ =

0 0 0
0 −1 0
0 0 0

 . (81)
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That matrix factorization (81) defines the change of variables10cs
r

 =

1 1 0
0 −1 0
0 0 1


︸ ︷︷ ︸

P−1

x1x2
µ

 =

x1 + x2
−x2
µ

 ⇔

x1x2
µ

 =

1 1 0
0 −1 0
0 0 1


︸ ︷︷ ︸

P

cs
r

 =

c+ s
−s
r

 . (84)

This allows us to transform the system (70) in coordinates (c, s, r) as

ċ =ẋ1 + ẋ2 = x2 − x2 + µx1 − x21 = r(c+ s)− (c+ s)2, (85)

ṡ =− ẋ2 = x2 − µx1 + x21 = −s− r(c+ s) + (c+ s)2, (86)

i.e., 
ċ = r(c+ s)− (c+ s)2

ṡ = −s− r(c+ s) + (c+ s)2

ṙ = 0

(87)

Now we calculate the center manifold of the system (87). Such manifold must:

• Pass through the point (c, s, r) = (0, 0, 0);

• Be tangent to V c at (c, s, r) = (0, 0, 0);

• Be invariant under (87).

The vectors defining the center subspace V c in the new coordinate system (c, s, r) are (see V c in equation
(79)) 1 1 0

0 −1 0
0 0 1


︸ ︷︷ ︸

P−1

10
0

 =

10
0

 ,

1 1 0
0 −1 0
0 0 1


︸ ︷︷ ︸

P−1

00
1

 =

00
1

 (88)

The local center manifold can be represented by the two-dimensional polynomial

s = h(c, r) = a0 + a1c+ a2r + a3c
2 + a4cr + a5r

2 + · · · . (89)

By definition, the center manifold passes through the fixed point (c, s, r) = (0, 0, 0) and is tangent to

V c = span


10
0

 ,

00
1

 (90)

at (c, s, r) = (0, 0, 0). Imposing these two conditions yields

h(0, 0) = 0 ⇒ a0 = 0, ∇h(0, 0) = (0, 0) ⇒ a1 = 0, a2 = 0. (91)

10Recall that we can always write a nonlinear dynamical system ẋ = f(x) at a fixed point x∗ as

η̇ =Jf (x
∗)η + g(η)

=PΛP−1η + g(η). (82)

Defining q = P−1η and substituting it in the equation above yields

q̇ = Λq + P−1g(Pq). (83)
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TRANSCRITICAL BIFURCATION

i = rc - c2

E j =- S
S S

Wit Wit
B * emeA at

S

↑
S

B
M

C

r <0 r =0 r O

Figure 15: Sketch of the 2D transcritical bifurcation process described by the normal form (98).

Hence we are left with the expression

s = h(c, r) = a3c
2 + a4cr + a5r

2 + · · · . (92)

The coefficients {a3, a4, . . . , } can be determined by imposing that the center manifold is an invariant
manifold, i.e.,

ṡ =
∂h(c, r)

∂c
ċ+

∂h

∂r
ṙ =

∂h

∂c
ċ+

∂h

∂r
0 =

∂h

∂c
ċ. (93)

Substituting the equations of motion (87) into (93) yields

−s− r(c+ s) + (c+ s)2 = (2a3c+ a4r)
(
r(c+ s)− (c+ s)2

)
. (94)

Now we replace s with the power series expansion (92) and we match the coefficients multiplying the same
powers of c and r. This yields (after some algebra)

a3 = 1, a4 = −1, a5 = 0. (95)

Therefore the local center manifold (92) can be written as

s = h(c, r) = c2 − rc+ · · · (96)

Substituting this result back into (87) and assuming that c, s and r are very small yields the system
ċ = r(c+ c2 − rc)− (c+ c2 − rc)2 ≃ rc− c2

ṡ = −s− r(c+ s) + (c+ s)2 ≃ −s

ṙ = 0

(97)

Hence, in a neighborhood of the the fixed point (c, s, r) = (0, 0, 0), the system (87) can be written asċ = rc− c2

ṡ = −s
(98)

This is the normal form of a transcritical bifurcation in two dimensions. The phase portraits of (98) for
different r are sketched in Figure 15.

Saddle-node bifurcation. Consider the two dimensional systemẋ1 = x2

ẋ2 = x2 − x21 − µ
(99)
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µ = −0.2 µ = 0 µ = 0.2

Figure 16: Phase portraits of the system (99) for different µ. Note that the system seems to have a spiral
before and after the bifurcation, but actually when µ approaches zero such spiral becomes a stable node
as predicted by the normal form (123). Note also that since the bifurcation is local the index is preserved
before and after bifurcation. Therefore, the index of the non-hyperbolic fixed point at (x∗1, x

∗
2, µ

∗) = (0, 0, 0)
is zero (saddle node + repellor).

For µ < 0 the system has two fixed points located at

x∗
A,B = (±

√
−µ, 0). (100)

Clearly, for µ = 0 these two points coincide and they both disappear for µ > 0 (see Figure 16). So, it
seems that the system is undergoes a saddle-node bifurcation. Let us verify analytically that this is indeed
the case. The Jacobian of the system evaluated at the fixed point (x∗1, x

∗
2, µ

∗) = (0, 0, 0) is

Jf (0, 0, 0) =

[
0 1
0 1

]
(101)

and it has eigenvalues (see Figure 14)
λ1 = 0, λ2 = 1. (102)

the corresponding eigenvectors are

v1 =

[
1
0

]
, v2 =

[
1
1

]
. (103)

To compute the normal form of the system at the bifurcation point (Jacobian non-invertible) we consider
the extended system 

ẋ1 = x2

ẋ2 = x2 − x21 − µ

µ̇ = 0

(104)

The Jacobian of the extended system (104) at (x1, x2, µ) = (0, 0, 0) is

Jf (0, 0, 0)

0 1 0
0 1 −1
0 0 0

 (105)

and has eigenvalues
λ1 = 0 (multiplicity 2), λ2 = 1 (multiplicity 1). (106)
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In this case the eigenvalue λ1 = 0 has geometric multiplicity one and therefore the center subspace V c is
spanned by

V c = span


10
0

 (eigenvector),

01
1

 (generalized eigenvector)

 . (107)

The unstable subspace V u is spanned by the eigenvector

V u = span


11
0

 . (108)

We consider the similarity transformation

P =

1 1 0
0 1 1
0 0 1

 (109)

P transform Jf (0, 0, 0) into the Jordan form

K =

0 0 1
0 1 0
0 0 0

 via Jf (0, 0, 0) = PKP−1. (110)

The transformation P also defines the coordinate changecu
r

 =

1 −1 1
0 1 −1
0 0 1


︸ ︷︷ ︸

P−1

x1x2
µ

 =

x1 − x2 + µ
x2 − µ

µ

 ⇔

x1x2
µ

 =

1 1 0
0 1 1
0 0 1


︸ ︷︷ ︸

P

cu
r

 =

c+ u
u+ r
r

 . (111)

The center subspace and the unstable subspace can be written in coordinates (c, u, r) as11

V c = span


10
0

 ,

00
1

 , V u = span


01
0

 . (113)

Similarly, the system (99) can be written in coordinates (c, u, r) using the mapping (111) as

ċ =ẋ1 − ẋ2 + µ̇ = x2 − x2 + x21 + µ = x21 + µ = (c+ u)2 + r, (114)

u̇ =ẋ2 − µ̇ = x2 − x21 − µ = (u+ r)− (c+ u)2 − r = u− (c+ u)2. (115)

This yields the following extended system in coordinates (c, u, r)
ċ = (c+ u)2 + r

u̇ = u− (c+ u)2

ṙ = 0

(116)

11Note that 1 −1 1
0 1 −1
0 0 1


︸ ︷︷ ︸

P−1

10
0


︸︷︷︸
∈V c

=

10
0

 ,

1 −1 1
0 1 −1
0 0 1


︸ ︷︷ ︸

P−1

01
1


︸︷︷︸
∈V c

=

00
1

 ,

1 −1 1
0 1 −1
0 0 1


︸ ︷︷ ︸

P−1

11
0


︸︷︷︸
∈V u

=

01
0

 . (112)
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This system is equivalent to (104). Next, we calculate the center manifold u = h(c, r) at (c, u, r) = (0, 0, 0).
As before, such center manifold must pass through (c, u, r) = (0, 0, 0), be tangent to V c in (113), and be
invariant under (116). This immediately implies that the polynomial expansion of the local center manifold
is

u = h(c, r) = a1c
2 + a2cr + a3r

2 + · · · . (117)

By imposing that the center manifold is invariant manifold we obtain

u̇ =
∂h

∂c
ċ+

∂h

∂r
ṙ︸︷︷︸

ṙ=0

=
∂h

∂c
ċ. (118)

Substituting (116) and (117) into (118) yields

u− (c+ h(c, r))2 = (2a1c+ a2r + · · · )
(
(c+ h(c, r))2 + r

)
, (119)

i.e., (
a1c

2 + a2cr + a3r
2 + · · ·

)
−
[
c+

(
a1c

2 + a2cr + a3r
2 + · · ·

)]2
=

(2a1c+ a2r + · · · )
[(
c+

(
a1c

2 + a2cr + a3r
2 + · · ·

))2
+ r

]
. (120)

By matching the coefficients multiplying the same powers in the previous equation we obtain (after quite
a bit of algebra)

a1 = 1, a2 = 2, a3 = 2. (121)

Hence, the local center manifold is

u = h(c, r) = c2 + 2rc+ 2r2 + · · · (122)

Substituting this manifold into (116) and assuming that c, u and r are very small yieldsċ = c2 + r

u̇ = u
(123)

which is the normal form of a saddle node bifurcation in two dimensions.

Appendix B: Hopf bifurcation in Cartesian coordinates

Any trajectory (c1(t), c(t)) in a Cartesian plane (c1, c2). can be equivalently expressed in polar coordinates
(R(t), ϑ(t)) and vice versa via the well-known transformationc1(t) = R(t) cos(ϑ(t))

c2(t) = R(t) sin(ϑ(t))
⇔


R2(t) = c21(t) + c22(t)

tan(ϑ(t)) =
c2(t)

c1(t)

(124)

Differentiate these formulas with respect to time
ċ1 = Ṙ cos(ϑ)−R sin(ϑ)ϑ̇ =

Ṙ

R
c1 − c2ϑ̇

ċ2 = Ṙ sin(ϑ) +R cos(ϑ)ϑ̇ =
Ṙ

R
c2 + c1ϑ̇

(125)
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and substitute the expressions for Ṙ and ϑ̇ appearing in (36) to obtain
ċ1 =

rDR+AR3

r
c1 − c2(ω + CH +BR2) = (rD +AR2)c1 − c2(ω + rC +BR2),

ċ2 =
rDR+AR3

R
c2 + c1(ω + rC +BR2) = (rD +AR2)c2 + c1(ω + rC +BR2).

(126)

Recalling that R2 = c21 + c22 these expression can be written asċ1 =
[
rD +A(c21 + c22)

]
c1 − c2

[
ω + rC +B(c21 + c22)

]
,

ċ2 =
[
rD +A(c21 + c22)

]
c2 + c1

[
ω + rC +B(c21 + c22)

]
,

(127)

which coincide with (38).
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