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One-dimensional dynamical systems

Consider the following initial value problem for one (autonomous1) ODE
dx

dt
= f(x)

x(0) = x0

(1)

where f : D 7→ R and D ⊆ R is a subset of R. In order for the initial value problem (1) to be well-posed
(a problem is well-posed if the solution exist and is unique), it is necessary and sufficient for f(x) to be
Lipschitz continuous in D.

Definition 1 (Lipschitz continuity). Let D ⊆ R be a subset of R. We say that f : D × [0, T ] → R is
Lipschitz continuous in D if there exists a positive constant 0 ≤ L <∞ (Lipschitz constant) such that

|f(x1)− f(x2)| ≤ L |x1 − x2| for all x1, x2 ∈ D. (2)

The smallest number L∗ such that the inequality above is satisfied is called “best” Lipschitz constant.

Lipschitz continuity is stronger than continuity, which requires only that2

lim
y1→y±2

|f(y1)− f(y2)| = 0 for all t ∈ [0, T ] and for all y2 ∈ D (exluding boundary). (3)

In fact, Lipschitz continuity implies that the rate at which f(x1) approaches f(x2) as x1 → x2 cannot be
larger than L. In other words, a Lipschitz continuous function f(x) has a growth rate that is bounded by
L for all x in D.

Example: Let D = [−1, 1] be a closed interval, i.e., an interval including the endpoints −1 and 1. The
function f(x) = x1/3 is continuous in D for all t ∈ R (see Figure 1). However, f(x) is not Lipschitz
continuous in D. The problem here is that f(x) has infinite “slope” at the point x = 0. In other words,
there is no constant 0 ≤ L <∞ such that

|f(x)− f(0)| ≤ L |x− 0| for all x ∈ D. (4)

This can be seen by substituting f(x) = y1/3 in (4)

|f(x)| ≤ L |x| ⇒

∣∣∣∣∣x1/3x
∣∣∣∣∣ =

∣∣∣∣ 1

x2/3

∣∣∣∣ ≤ L for all x ∈ D. (5)

Clearly, if we send x to zero we have that
∣∣x−2/3∣∣→∞. Hence, it cannot be bounded from above by any

finite constant L. In other words, f(x) is not Lipschitz continuous in D because its growth rate at x = 0
is too large. However, if we remove x = 0 and consider, e.g., the domain

D =

[
1

10
, 1

]
(6)

then f(x) is Lipschitz continuous (actually infinitely-differentiable with continuous derivatives) in D. Fi-
nally we notice that f(x) is not Lipschitz continuous in the open interval D =]0, 1]. In fact the growth
rate of f(x) cannot be bounded by a finite constant L as x→ 0+.

1The ODE (1) is called “autonomous” if the right hand side f does not depend explicitly on t.
2The notation x1 → x±2 means that x1 is approaching x2 either from the left (“−”) or from the right (“+”). Note that we

can equivalently write (3) as
lim

x1→x+
2

f(x1) = lim
x1→x−2

f(x1) = f(y2).
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Figure 1: Sketch of the function f(x) = x1/3 in D = [−1, 1]. The function is continuous in D, but it has
an infinite slope at x = 0 and therefore it is not Lipschitz continuous in D.
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Figure 2: Geometric meaning of Lipschitz continuity.

Geometric meaning of the Lipschitz continuity condition. The Lipschitz continuity condition (2)
has a nice geometric interpretation. In practice it says that the function f(x) cannot enter a double cone
with slope L and vertex placed on any point of the graph (x, f(x)) with x ∈ D. In other words, if we can
slide the vertex of the double cone over the graph of the function f(x) for all x ∈ D and the function never
enters the cone then f(x) is Lipschitz continuous in D. To explain this, let us divide the inequality (2) by
|x1 − x2| (for x1 6= x2). This yields∣∣∣∣f(x1)− f(x2)

x1 − x2

∣∣∣∣︸ ︷︷ ︸
|K|

≤ L for all x1, x2 ∈ D. (7)

As shown in Figure 2, K represents the slope of the line connecting the points (x1, f(x1)) and (x2, f(x2)).
The “best” Lipshitz constant is obtained as

L∗ = max
x1,x2∈D

∣∣∣∣f(x1)− f(x2)

x1 − x2

∣∣∣∣ . (8)
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Figure 3: Geometric meaning of the existence and uniqueness theorem for the solution of one ODE.

Any finite number L ≥ L∗ is still a Lipschitz constant, though not the best one. If the function f(x) is
continuously differentiable on a closed set D ⊂ R then

L∗ = max
x∈D

∣∣∣∣df(x)

dx

∣∣∣∣ <∞. (9)

Lemma 1. If f(x) is continuously differentiable on a closed set D ⊆ R then f(x) is Lipschitz continuous
in D.

Proof. By assumption the derivative of df(x)/dx is continuous in the closed set D ⊆ R. This implies that
the minimum and the maximum of df(x)/dx are attained at some points in D (Extreme Value Theorem).
By using the mean value theorem we immediately see that

|f(x1)− f(x2)| =
∣∣∣∣df(x∗)

dx

∣∣∣∣ |x1 − x2| . (10)

where x∗ is some point within the interval [x1, x2] ⊂ D. The point x∗ depends on f , x1 and x2. The right
hand side of (10) can be bounded as

|f(x1)− f(x2)| ≤ max
x∈D

∣∣∣∣df(x)

dx

∣∣∣∣︸ ︷︷ ︸
L∗

|x1 − x2| for all y1, y2 ∈ D. (11)

Example: The function f(x) = x2 is of class C∞ (infinitely differentiable with continuous derivatives) in
any closed set D ⊂ R. However, the function f(x) = x2 is not Lipschitz continuous at x = ±∞, since the
slope of the first-order derivative f ′(x) = 2x grows unboundedly as x→ ±∞.

Well-posedness of the initial value problem. Next, we formulate the existence and uniqueness
theorem for the solution of the first-order ODE (1).
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Theorem 1 (Existence and uniqueness of the solution to (1)). Let D ⊂ R be an open set, x0 ∈ D. If
f : D → R is Lipschitz continuous in D then there exists a unique solution to the initial value problem
(1) within the time interval [0, τ [, where τ is the instant at which x(t) exits3 the domain D (see Figure 3).
The solution x(t) is continuously differentiable in [0, τ [.

Remark: In Theorem 1, we required that D is an open set so that we can have solutions in D at least for
some t ∈ [0, τ [. On the other hand, if D is closed then we can pick x0 right at the boundary of D so that
the solution4 x(t) = X(t, x0) never enters D, which is the region in which f is assumed to be Lipschitz
continuous. In this case, the “exit time” τ may be zero, and Theorem 1 does not provide any information
on the existence and uniqueness of the solution.

xSt, Xo)

Xo
⑧

De

t

Global solutions. If f(x) is Lipschitz continuous on the entire real line R then the solution to the initial
value problem (1) is global. This means that the solution exists and is unique for all t ≥ 0. In fact, x(t)
never exits the domain in which f(x) is Lipschitz continuous, and therefore we can extend τ in Theorem 1
to infinity. It is important to emphasize that existence and uniqueness of the solution to (1) has nothing
to do with the smoothness of f(x) but rather with the rate at which f(x) grows or decays.

Computing the solution of one-dimensional autonomous ODEs. The initial value problem (1) is
separable, i.e., it can be equivalently written in an integral form as∫ x(t)

x0

dx

f(x)
= t (12)

Hence, if we know how to compute the primitive of 1/f(x), i.e., the integral at the left hand side of (12),
then we have an algebraic equation that relates x(t), x0 and t. This does not mean that we can always
easily write x(t) explicitly in terms of x0 and t. This is demonstrated in the following simple example.

Example: Consider the initial value problem (1) and set

f(x) =
1

x4 − x2 + 1
and x0 = 0. (13)

As it is seen in Figure 4, f(x) continuously differentiable in R with bounded derivative.

3As shown in Figure 3, the “exit time” τ depends on D f(x) and x0.
4The nonlinear map X(t, x0) represents the solution of (1) corresponding to the initial condition x0, where x0 is left

unspecified. As we shall see hereafter X(t, x0) is called flow generated by the dynamical system (1).
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Figure 4: Plot of the function defined in equation (13).

Therefore, the solution of the initial value problem (1), with f and x0 as in (13) is global, meaning that it
exists and it is unique for all t ≥ 0. A substitution of (13) into the integral equation (12) yields

x(t)5

5
− x(t)3

3
+ x(t) = t. (14)

Hence, to express x(t) as a function of t we need to compute the roots of the fifth-order polynomial (14)
as a function of t and among them select the one that passes through x(0) = 0.

Example: Consider the initial value problem
dx

dt
= sin(x)

x(0) = x0

(15)

where x0 is any number in the interval D = [0, π]. The solution to (15) can be obtained by computing the
integral5 ∫ x(t)

x0

dx

sin(x)
= t ⇒

[
log
(∣∣∣tan

(x
2

)∣∣∣)]x(t)
x0

= t (16)

By using the properties of the logarithm we obtain

log

∣∣∣∣∣∣∣∣
tan

(
x(t)

2

)
tan

(x0
2

)
∣∣∣∣∣∣∣∣ = t ⇒ x(t) = 2 arctan

(
et tan

(x0
2

))
. (17)

Note that
lim
t→∞

x(t) = π (18)

The trajectories of the system (15) are shown in Figure 8.

Hereafter we provide an example of an initial value problem the solution of which blows-up in a finite time,
and an example of an initial value problem that has an infinite number of solutions.

5Recall that the primitive of 1/ sin(x) is

log
(∣∣∣tan

(x
2

)∣∣∣) .
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Figure 5: (left) Solutions of the initial value problem (19) for different initial conditions x0. It is seen that
for x0 > 0 the solution blows up at the fine time t∗ = 1/x0. On the other hand, if x0 ≤ 0 the solution
exists and is unique for all t ≥ 0. (b) Solutions of the initial value problem (21) corresponding to the initial
condition x0 = 0. This problem has an infinite number of solutions.

• Finite-time blow-up: Consider the initial value problem

dx

dt
= x2 x(0) = x0. (19)

We know that f(x) = x2 is not Lipschitz continuous at infinity. By using separation of variables, i.e.,
equation (12), it is straightforward to show that∫ x(t)

x0

dx

x2
= − 1

x(t)
+

1

x0
= t ⇒ x(t) =

x0
1− x0t

. (20)

The function x(t) clearly blows up to infinity as t approaches 1/x0 (from the left) for positive initial
conditions x0. On the other hand, if x0 ≤ 0 the solution exists and is unique for all t ≥ 0.

• Non-uniqueness of solutions: Consider the initial value problem

dx

dt
= x1/3 x(0) = 0. (21)

We have seen that f(x) = x1/3 is not Lipschitz continuous in any domain D that includes the point
the point x = 0. Note that we are setting the initial condition exactly at the point in which the slope
of f(x) is infinity (see Figure 1). By using separation of variables it straightforward to show that a
solution to (21) is

x(t) =

(
2

3
t

)3/2

. (22)

However, note that the functions

x(t) =


0 for 0 ≤ t < c

±
(

2

3
(t− c)

)3/2

for t ≥ c
(23)

are also solutions to (21) for all c ≥ 0.
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Figure 6: Trajectories corresponding to different initial conditions cannot intersect.

One-dimensional flows. We have seen that the initial value problem (1) admits a unique solution x(t)
(continuously differentiable in t) if f(x) is Lipschitz continuous on an open subset D ⊂ R (Theorem 1),
and if x0 is chosen in D. This means that the solution x(t) depends on f(x) and x0. We will denote the
dependence of x(t) on x0 as X(t, x0), i.e.,

x(t) = X(t, x0). (24)

Let us first notice that because of the existence and uniqueness Theorem 1, it is not possible for two
solutions corresponding to two different initial conditions to intersect at any finite time t (see Figure 6).
This implies that X(t, x0) is invertible at each finite time6 (see below), i.e., we can always identify which
“particle” x0 sits at location x(t) = X(t, x0) at time t. Moreover, it is impossible for two “particles” x01
and x02 to collide at any finite time, or for one particle to split into two or more particles (Figure 6). Next,
we characterize how the flow X(t, x0) depends on the initial condition x0 at each fixed time t.

Theorem 2 (Regularity of the ODE solution with respect to x0). Let D ⊂ R be an open set, x0 ∈ D. If
f : D → R is Lipschitz continuous in D then the solution of the initial value problem (1), i.e., X(t, x0) (i.e.,
the flow generated by the ODE) is continuous in x0. Moreover, if f(x) is of class Ck in D (continuously
differentiable k-times in D with continuous derivative), then X(t, x0) is of class Ck in D.

In summary, Theorem 2 states that the smoother f(x), the smoother the dependency of X(t, x0) on x0. The
two-dimensional function X(t, x0) is called flow generated by the dynamical system (1), and it represents
the full set of solutions to (1) for every initial condition x0.

Theorem 3 (Regularity of the ODE solution in time t). Let D ⊂ R be an open set, x0 ∈ D. if f(x) is
of class Ck in D (continuously differentiable k-times in D with continuous derivative), then X(t, x0) is of
class Ck+1 in time.

The continuity of higher-order derivatives, and its link to the the regularity of f(x) can be established by
differentiating the ODE

dX(t, x0)

dt
= f(X(t, x0)) (25)

6Solutions corresponding to different initial conditions can, however, intersect at t =∞, e.g., when there exist an attracting
set such as a stable equilibrium point (proof below).
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Figure 7: Visualization of the flow generated by the ODE (28).

with respect to time. For instance, we have

d2X(t, x0)

dt2
= f ′(X(t, x0))f(X(t, x0)), (26)

d3X(t, x0)

dt3
= f ′′(X(t, x0))f

2(X(t, x0)) + [f ′(X(t, x0))]
2f(X(t, x0)). (27)

At this point we can use the existence and uniqueness theorem for the solution of higher-dimensional
dynamical systems to conclude that the derivatives dnX(t, x0)/dt

n are continuous if dn−1f(x)/dxn−1 is
continuous.

Example: In Figure 7 we visualize the flow generated by the ODE

dx

dt
= sin(x) (28)

for all x0 ∈ [−5π, 5π] and t ∈ [0, 10]. Such flow was computed by solving the ODE (28) numerically (see
Appendix A) for a large number of initial conditions x0. Similarly, in Figure 8 we plot the trajectories of
the system (28) corresponding to an evenly-spaced grid of 100 initial conditions in [−5π, 5π].

Properties of the flow. The flow generated by one dimensional dynamical systems of the form (1)
satisfies the following properties:

• X(0, x0) = x0. This means that at t = 0 the mapping X(t, x0) is the identity.

• X(t, x0) is monotonic in x0 for each fixed t, i.e.,

X(t, x02) > X(t, x01) for all x02 > x01. (29)

This property can be proved easily by substituting x(t) = X(t, x0) into the ODE dx/dt = f(x) and
differentiating it with respect to x0. This yields

∂

∂x0

(
dX(t, x0)

dt

)
=
∂f(X(t, x0))

∂x0
⇒ d

dt

(
∂X(t, x0)

∂x0

)
= f ′(X(t, x0))

∂X(t, x0)

∂x0
. (30)

The last one ODE is linear and that can be easily integrated in time from the initial condition

∂X(0, x0)

∂x0
= 1 (31)
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Figure 8: Trajectories of the dynamical system (28) corresponding to 100 evenly spaced initial conditions
in [−5π, 5π]. All trajectories are computed numerically. The red dashed lines represent the stable fixed
points (equilibria) of the system.

to obtain7

∂X(t, x0)

∂x0
= exp

[∫ t

0
f ′(X(τ, x0))dτ

]
. (34)

The right hand side of (34) is strictly positive for each t ≥ 0, which implies

∂X(t, x0)

∂x0
> 0 for each finite t ≥ 0. (35)

This proves that the flow map X(t, x0) is monotonic in x0 and therefore invertible for each finite t.

• X(t, x0) satisfies the composition rule X(t+s, x0) = X(t,X(s, x0)) = X(s, x(t, x0)). This property is
called “semi-group property” of the flow and it follows from the fact that we can restart integration
of the ODE (1) at time t (or time s) from the new initial condition X(t, x0) (or X(s, x0)) to get to
the final integration time s + t. Again, this property holds because of the existence and uniqueness
theorem 1.

Inverse flows. The monotonicity property (29) guarantees that the flow map is invertible for each finite
t ≥ 0. In other words, it is always possible to determine which x0 sits at a certain location x at time
t. As we mentioned above, this also means that it is impossible to have simultaneous occupation of one
location x by more than one “particle” x0, i.e., the trajectories of the (1) corresponding to two different
initial conditions cannot intersect (see Figure 6). The invertibility of X(t, x0) in x0 for each fixed t allows
us to define the inverse flow, which gives the label x0 of the particle that sits at x at time t. In practice,
the inverse flow can be computed by integrating the (1) from the initial condition x (at time t) backwards

7Equation (34) characterizes the dynamics of an infinitesimal “line element” with length dx0 as it is “transported” by the
flow X(t, x0). In fact, from (34) it follows that

dX(t, x0) = dx0 exp

[∫ t

0

f ′(x(τ, x0))dτ

]
. (32)

Moreover, if x0 is a fixed-point, i.e. if X(τ, x0) = x0, then

dX(t, x0) = dx0e
tf ′(x0). (33)
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Figure 9: Illustration of forward and inverse flows.

in time to t = 0. Integrating (1) backwards in time is equivalent to integrating forward in time the ODE
system with reversed velocity vector (see Figure 9)

dx

dt
= −f(x)

x(0) = x

(36)

The flow associated with this system will be denoted as X0(t, x). Clearly, for each fixed t the inverse flow
X0(t, x) is the inverse of the forward flow X(t, x0), i.e.,

X(t,X0(t, x)) = x, X0(t,X(t, x0)) = x0. (37)

Flow map equation. It can be shown that the flow X(t, x0) generated by the initial value problem (1)
is governed by the first-order partial differential equation (PDE)

∂X(t, x0)

∂t
− f(x0)

∂X(t, x0)

∂x0
= 0

X(0, x0) = x0

(38)

This can be verified, e.g., by substituting the flow

X(t, x0) =
x0

1− x0t
(39)

generated by (19) into (38). Indeed, computing the derivatives

∂X(t, x0)

∂t
=

x20
(1− x0t)2

,
∂X(t, x0)

∂x0
=

1

(1− x0t)2
. (40)

and recalling that f(x0) = x20 in this case, we see that (38) is identically satisfied. Equation (9) is a
hyperbolic PDE that can be solved numerically, e.g., with the method of characteristics, finite differences,
or spectral methods, to obtain the flow map. The solution to (38) can be formally expressed in terms of
an exponential operator known as Koopman operator. To this end, we first define the linear (differential)
operator

K(x0) = f(x0)
∂

∂x0
, (41)
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Figure 10: Vector field associated with f(x), fixed points, and phase portrait.

which is known as “generator” of the Koopman operator. This allows us to write (38) as

∂X(t, x0)

∂t
= K(x0)X(t, x0), (42)

and therefore obtain the formal solution

X(t, x0) = etK(x0)x0, (43)

where etK(x0) is the Koopman operator. In this form, it is immediate to prove the semi-group property of
the flow discussed previously. In fact,

X(t+ s, x0) = e(t+s)K(x0)x0 = etK(x0)esK(x0)x0 = etK(x0)X(s, x0) = X(t,X(s, x0)). (44)

Similarly, the inverse flow X0(t, x) defined by the dynamical system (36) is governed by the PDE
∂X0(t, x)

∂t
+ f(x)

∂X0(t, x)

∂x
= 0

X0(0, x) = x

(45)

The solution to this PDE is
X0(t, x) = e−tK(x0)x. (46)

Geometric approach. We have seen that dynamical systems of the form (1) generate a flow X(t, x0)
that maps every initial condition x0 to the solution of the ODE at time t. If we think as x0 as the
initial position of a particle sitting on a line (phase space), then from elementary mechanics we know
that dX(0, x0)/dt = f(x0) represents the velocity of such particle. Hence, given f(x) we can immediately
plot the vector field 8 associated with the dynamical system, which represents how fast a particle at any
particular location x moves left or right. Clearly, if the velocity vector f(x) is equal to zero at some

8A vector field is a vector that is continuously indexed by one or more variables. For one-dimensional dynamical systems
the vector field f(x) is indexed by coordinate x.
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locations x∗ then any particle placed at that location won’t move at all as time increases. These points
are called fixed points (or equilibria) of the dynamical system (1). Fixed points can be rigorously defined
as the points x∗ ∈ R such that for all t ≥ 0

X(t, x∗) = x∗. (47)

By differentiating the previous equation with respect to time yields

0 =
∂X(t, x∗)

∂t
= f(X(t, x∗)) = f(x∗). (48)

Therefore, the fixed points of the system (1) are zeros of the nonlinear function f(x), i.e.

f(x∗) = 0, (49)

(see Figure 10). The calculation of the fixed points can be done analytically for prototype dynamical
systems. In general, computing the fixed points requires a root-finding numerical algorithm such as the
Newton’s method.

Distribution of fixed points. The (Lipschitz) continuity condition on f(x) in Theorem 1 imposes
topological constraints on the distribution of fixed points. Specifically, fixed points facing each other cannot
be both stable or unstable, but rather they must have opposite stability properties (Figure 10).

Stability analysis of fixed points. A fixed point x∗ of the dynamical system (1) is said to be asymp-
totically stable if

lim
t→∞
|X(t, x0)− x∗| = 0 (50)

for all x0 in some neighborhood of x∗. In other words, stable fixed points attract trajectories of the
dynamical system from both left and right (see Figure 10). Of course, by plotting f(x) we can immediately
infer the stability properties of all fixed points. This can be also done analytically by a technique known as
linearization. The basic idea is very simple. If f(x) is smooth (at least continuously differentiable) then the
more we “zoom-in” at a fixed point x∗ the more f(x) looks linear in a neighborhood of x∗, and therefore
it can be replaced by its fist-order term in a Taylor series expansion. In other words, by “zooming-in” we
are studying the local dynamics of the system nearby the fixed point. To this end, let us pick an initial
condition x0 that is sufficiently close to to the fixed point x∗, say x0 − x∗ = 10−10. By continuity, the
flow X(t, x0) will map x0 to a position that is still close to x∗ at least for some time (see Figure 11). The
distance between X(t, x0) and the fixed point x∗ can be expressed as function9

η(t, x0) = X(t, x0)− x∗ ⇔ X(t, x0) = η(t, x0) + x∗. (52)

A substitution of X(t, x0) = η(t, x0) + x∗ into (1) yields
dη

dt
= f(η + x∗)

η(0, x0) = x0 − x∗
(53)

If η(0, x0) is very small then η(t, x0) is very small too (at least for some time). This allows us expand
f(η + x∗) in a Taylor series as

f(η(t, x0) + x∗) = f(x∗)︸ ︷︷ ︸
=0

+f ′(x∗)η(x, t) +
1

2
f ′′(x∗)η(x, t)2 + · · · (54)

9Note that
η(0, x0) = X(0, x0)− x∗ = x0 − x∗. (51)
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Figure 11: Linearization nearby the fixed point x∗.

Hence, to first-order in η we obtain the linear initial value problem
dη

dt
= f ′(x)η

η(0, x0) = x0 − x∗
(55)

The solution of (55) is
η(t, x0) = (x− x0)ef

′(x∗)t. (56)

The last equation allows us to conclude that

• f ′(x∗) < 0 ⇒ x∗ is asymptotically stable

• f ′(x∗) > 0 ⇒ x∗ is unstable

• f ′(x∗) = 0 ⇒ results of linear stability analysis are inconclusive.

If f ′(x0) = 0 then need to expand f to higher order in η, and solve a nonlinear ODE to classify the stability
of the fixed point x∗.

Example: The dynamical system
dx

dt
= x2 − 1︸ ︷︷ ︸

f(x)

(57)

has two fixed points located at x∗1,2 = ±1. Of course, f ′(x) = 2x. By evaluating f ′(x) at the fixed points
we see that f ′(1) = 2 > 0 and f ′(−1) = −2 < 0. Hence x∗1 = 1 is unstable, and x∗2 = −1 is asymptotically
stable.

Example: The dynamical system
dx

dt
= 1 + sin(x) (58)

has a global solution for all initial conditions x0, and an infinite number of fixed points located at (see
Figure 12)

x∗k =
3π

2
+ 2kπ. (59)
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Figure 12: (a) Graph of function the f(x) = 1 + sin(x) and some of its fixed points (red circles). (b)
Trajectories of the dynamical system (58).

By expanding f(x) = 1 + sin(x) in a Taylor series at x∗0 = 3π/2 we obtain

sin

(
η +

3π

2

)
= sin

(
3π

2

)
+ cos

(
3π

2

)
η − 1

2
sin

(
3π

2

)
η2 + · · ·

=− 1 +
η2

2
+ · · · , (60)

i.e.,

1 + sin

(
η +

3π

2

)
=
η2

2
+ · · · . (61)

Substituting this back into (53) yields the nonlinear system
dη

dt
=
η2

2

η(0, x0) = x0 −
3π

2

(62)

We computed the analytical solution to this system before (see Eq. (20)),

η(t, x0) =

(
x0 −

3π

2

)
1−

(
x0 −

3π

2

)
t

2

. (63)

Clearly, if x0 > 3π/2 then trajectory tends to go further away from the fixed point x∗0 = 3π/2. On the
other hand, if x0 < 3π/2 then the trajectories are attracted to x∗0 = 3π/2. Note that the second-order
polynomial approximation of the system (58) at the fixed point x∗0 = 3π/2 we just considered seems to
blow-up in a finite time for x0 > 3π/2, while the trajectories plotted in Figure 12 exist and are unique
for all times. This is due to the fact that we did not include a sufficient number of terms in the Taylor
expansion, some of which become increasingly important in stabilizing the polynomial approximation of
the dynamical system as η becomes larger.

Example: The dynamical system
dx

dt
= −x3︸︷︷︸

f(x)

(64)
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Figure 13: These trajectories are impossible for one-dimensional dynamical systems of the form (1).

has a fixed point at x∗ = 0. Linear stability analysis in this case is ineffective at inferring stability. In fact
f ′(x) = −3x2, which is equal to zero at x∗ = 0. The analytical solution to (64) is obtained as∫ x(t)

x0

dx

x3
= −t ⇒ 1

2

(
1

x(t)2
− 1

x20

)
= t. (65)

Therefore,

X(t, x0) = sign(x0)

√
x20

1 + 2x20t
, (66)

which shows that x∗ = 0 is a globally attracting fixed point. This means that x∗ = 0 attracts all trajectories
generated by the ODE (64) independently of the initial condition x0.

Lyapunov functions (potentials). Lyapunov functions are used to make conclusions about trajectories
of a system (1) without finding the trajectories (i.e., solving the differential equation). A typical Lya-
punov theorem has the form: “if there exists a function V (x) that satisfies some conditions on V (x) and
dV (x(t))/dt, then the trajectories of the system satisfy some property”. A Lyapunov function V can be
thought of as generalized potential for a system.

• Asymptotic stability of fixed points: If there exists a smooth function V (x) in a neighborhood of the
fixed point x∗ satisfying

a) V (x) has a local minimum at x∗,

b) V (x) does not increase along trajectories of (1), i.e., dV (x(t))/dt < 0, in a neighborhood of x∗,
(excluding x∗).

Then x∗ is is an asymptotically stable fixed point. The proof is very simple. Suppose that x(t1) is
in a neighborhood of x∗ then

V (x(t2)) = V (x(t1)) +

∫ t2

t1

dV (x(τ))

dτ
dτ < V (x(t1)) for all t2 ≥ t1 (67)

Hence x(t) converges monotonically to the local minimum of V located at x∗ as time increases,
implying that x∗ is asymptotically stable.

• Impossibility of trajectory reversals: If there exists a smooth function V (x) satisfying dV (x(t))/dt < 0
then there cannot be any maxima or minima of x(t) at any finite time t. In particular, this rules
out trajectories of the form shown in Figure 13. The proof follows immediately from (67). In fact,
for any trajectory reversal there exist t1 and t2 such that x(t2) = x(t1) (see Figure 13). Hence,
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Figure 14: An autonomous dynamical generates trajectories that depend only on x0 and f . This means that
we can translate a trajectory left and right to obtain other solutions of the same system. This translational
symmetry, together with the existence and uniqueness theorem 1, rules out the possibility of trajectory
reversals, e.g., the blue trajectory.

V (x(t2)) = V (x(t1)) which immediately contradicts (67). Note in fact, that dV (x(t))/dt is not zero
and does not change sign in [t1, t2]).

How do we construct a function V (x) with the properties stated above? For one-dimensional systems it is
sufficient to consider primitive of −f(x), i.e.,

dV (x)

dx
= −f(x). (68)

In fact,
dV (x(t))

dt
= −dV (x(t))

dx

dx(t)

dt
= −f(x(t))2 ≤ 0. (69)

The equality sign holds only at fixed points, which are indeed the only points where dx(t)/dt = 0. Note
that this rules out the possibility of trajectories of the form shown in Figure 13. If we interpret f(x) as a
vector field in the sense described in Figure 10, then V (x) defined in (68) is called potential for f(x). The
potential is defined up to an additive constant.

An alternative method to rule out the possibility trajectories reversals such those in Figure 13 relies on
the existence and uniqueness Theorem 1. In fact, since the dynamical system (1) is autonomous, it doesn’t
really matter the time at which we set the initial condition. This implies that we are free to translate the
trajectories left and right in the plane (x(t), t), to obtain all possible solutions to the system. However,
as show in Figure 14, it is not possible to do so without violating the existence and uniqueness theorem if
there exists a trajectory reversal.

Note that this also means that to compute flow of 1D systems we just need a few trajectories which can
be then translated left or right as shown in Figure 15 for the system dx/dt = 1− x2.

Example: Consider the dynamical system (58). A potential for such system is

V (x) = V (x0)−
∫ x

x0

(1 + sin(y)) dy = cos(x)− x+ C, (70)

where C is a constant. This function is plotted in Figure 16 for C = 0. It is seen that V (x) has inflection
points at the fixed points suggesting that such fixed points are half-stable.
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Figure 15: We can use the translational symmetry of the solutions to the autonomous system (1) to
construct the entire flow. Specifically, the yellow trajectories are all obtained by translating the trajectory
labeled by “A” to the left and to the right. Similarly, the red trajectories are obtained by translating the
trajectory labeled as “B” to the left, while the green trajectories are obtained by translating the trajectory
labeled by “C” to the left and to the right.

Dynamics of one-dimensional dynamical systems. In summary, the trajectories of a one-dimensional
dynamical system

• Can get to a stable (or half-stable) fixed-point in an infinite time,

• Can blow-up to infinity in a finite or an infinite time,

• Cannot have maxima or minima at any finite time (no overshoot/undershoot, no periodic orbits).

The only attracting sets of one-dimensional dynamical systems are fixed points. In higher dimensions we
can have attracting sets that are more complicated, e.g., limit cycles, saddle nodes connected by heteroclinic
orbits, strange attractors, etc.

Appendix A: Elementary numerical methods for ODEs

The initial value problem (1) can be equivalently written in an integral form as

x(t) = x0 +

∫ t

0

dx(s)

ds
ds = x0 +

∫ t

0
f(x(s))ds (71)

i.e., as an integral equation for x(s). This formulation is quite convenient for developing numerical methods
for ODEs based on numerical quadrature formulas, i.e., numerical approximations of the temporal integral
appearing at the right hand side of (71). For example, consider a discretization of the time interval [0, T ]
in terms of N + 1 evenly-spaced time instants

ti = i∆t i = 0, 1, . . . , N where ∆t =
T

N
. (72)
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Figure 16: A potential function for the dynamical system (58).

By applying (71) within each time interval [ti, ti+1] we obtain

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(s))ds. (73)

At this point we can approximate the integral at the right hand side if (73), e.g., by using the simple
rectangle rule ∫ ti+1

ti

f(x(s))ds ' ∆tf(x(ti)) (74)

This yields the Euler forward scheme
ui+1 = ui + ∆tf(ui), (75)

where ui is an approximation of x(ti). The Euler forward scheme is an explicit one-step scheme. The
adjective “explicit” emphasizes the fact that ui+1 can be computed explicitly based on the knowledge of f
and ui using (75). On the other hand, if we approximate the integral at the right hand side of (71) with
the trapezoidal rule ∫ ti+1

ti

f(x(s))ds ' ∆t

2
[f(x(ti+1)) + f(x(ti))] (76)

we obtain the Crank-Nicolson scheme

ui+1 = ui +
∆t

2
[f(ui) + f(ui+1)] . (77)

The Crank-Nicolson scheme is “implicit” because the approximate solution at time ti+1, i.e., ui+1, cannot
be computed explicitly based on ui, but requires the solution of a nonlinear equation. Such a solution can
be computed numerically by using any method to solve nonlinear equations. These methods are usually
iterative, e.g., the bisection method, or the Newton method if f is continuously differentiable. Iterative
methods for nonlinear equations can be formulated as fixed point iteration problems. In the specific case
of (77) we have

ui+1 = G(ui+1) where G(ui+1) = ui +
∆t

2
[f(ui) + f(ui+1)] . (78)

If ∆t is small then ui is close to ui+1. Moreover, if ∆t is sufficiently small we have that the Lipschitz
constant of G is smaller than 1, which implies that the fixed point iterations will convergence globally to
a unique solution ui+1 .
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