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Probability spaces and random variables

There is a well-developed and powerful mathematical theory that allows us to describe randomness in
phenomena we observe and experience every day. Such theory is called probability theory and it is at the
basis of all UQ techniques we will discuss in this course. The proper mathematical setting of probability
theory is quite abstract and technical, as is involves rather advanced mathematical concepts such asmeasure
theory [4]. However, we will try to avoid most technicalities whenever possible, and have a more practical
version of probability theory that allows to perform computations.

Probability space

To formally describe the outcome of a real-world “experiment” from a mathematical viewpoint it is con-
venient to define the probability space (Ω,B, P ) which consists of the following items:

• Ω (sample space): the set of all possible outcomes of the experiment

• B (event space): set of possible events, en event being a set defined as union or intersection of elements
in the sample space. As we shall see hereafter, such elements are usually defined by some condition.

• P (probability measure): this function assigns each event in B a probability, which is a number
between 0 and 1.

Example 1: Let us roll a fair dice with 6 faces once. In this case we can define the sample space as

Ω = {1, 2, 3, 4, 5, 6} (sample space). (1)

In particular, we may be interested in the following events1

B = {∅,Ω, {1, 3, 5}︸ ︷︷ ︸
odd

, {2, 4, 6}︸ ︷︷ ︸
even

}. (2)

These events can be phrased as: “rolling the dice produces no number” (event ∅); “rolling the dice returns
a number between 1 and 6” (event Ω); “rolling the dice gives an even number” (event {2, 4, 6}), “rolling
the dice returns an odd number” (event {1, 3, 5}). As we shall see here hereafter, the events (2) are all
subsets of a so-called σ-algebra B(Ω) We can assign probabilities to the events in (2) as:

P (∅) = 0, P (Ω) = 1, P ({1, 3, 5}) = 1

2
, P ({2, 4, 6}) = 1

2
. (3)

Note that in this case assigning probabilities is rather straightforward process, as we can imagine rolling
a dice, and how its outcomes affect probability. Similarly we can consider the process of rolling two dices
(or the same dice twice). The sample space in this case will be the set of elements

Ω = {{1, 1}, {1, 2}, . . . , {5, 6}, {6, 6}} (4)

As before, we can define a set of events we are interested in, and assign corresponding probabilities. In a
similar way, we can assign, e.g., the probability of winning various prizes in the the Mega-Millions lottery
(assuming the lottery is fair).

Example 2: Let (θ, r) be the polar coordinated identifying where the leaf falling off a tree is going to
land. Suppose that r = 0 identifies the center of the tree. Clearly (θ, r) is a vector with two random
components. In this case, the outcome of the “experiment” are realizations of two real random variables

1As we will see, the set B defined in (2) is a σ-algebra.
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(polar coordinates (θ, r) of the location where the leaf lands). The sample space in this case can be thought
of as a Cartesian product of two intervals

Ω = [0, 2π[×[0,∞[ (5)

We can define the following events (distance from the tree)2:

B = {∅,Ω, {r ≤ 1}︸ ︷︷ ︸
event 1

, {1 < r ≤ 2}︸ ︷︷ ︸
event 2

, {r > 2}︸ ︷︷ ︸
event 3

}. (6)

At this point we can assign probabilities3 to each event in (6), which can be done, e.g., by observing many
leaves falling off a tree, or by running a fluid dynamics model (repeated simulations).

Example 3: Consider an infinite (uncountable) collection of real-valued continuous functions X(t;ω)
(stochastic process) defined in the temporal interval [0, T ]. In this case the sample can be thought of as
the set of all possible sample paths X(t;ω). An event, can be defined, e.g., by singling out of the sample
space ensemble of paths satisfying a certain condition. For instance, we can define an event by requiring
that for some fixed t > s > 0

E1 = {ω : X(t;ω) < 1} ∩ {ω : X(s;ω) < 1}. (7)

Alternatively, we can require that for all t ∈ [0, T ]

E2 = {ω : X(t;ω) ≥ 1} (8)

Both events are (measurable) subsets of the sample space (space of continuous functions defined in [0, T ])
The probability the events E1 or E2 may be estimated using a frequency approach, i.e., P (Ei) ≃ nEi/n,
where nEi is the number events Ei that occurs over n trials (assuming we can observe X(t;ω)).

Remark: In all three examples we defined a sample space that coincides with the range of a discrete
random variable (Example 1), a continuous two-dimensional random vector (Example 2), or a continuous
random process (Example 3). The sample space does not need to be the actual space in which we observe
outcomes of a random variables or process, but rather it can be just a space in which we pick labels for a
certain random quantity. For instance, it can be shown that the set of sample paths of a Wiener process
(continuous random process) can be put in a correspondence with Ω = [0, 1] (sample space), meaning that
we can set up a map that labels each sample path of the random process with a real number in [0, 1] (see
[9]).

The event space B. As we shall see hereafter, in order to perform set operations and corresponding
operations on probabilities we need to make sure that the event space B(Ω) has the structure of a σ-
algebra on Ω. Broadly speaking, a σ-algebra on Ω is a collection of subsets of Ω that is closed under
complement, countable unions, and countable intersections. In other words,

A,B ∈ B ⇒


A ∩B ∈ B
A ∪B ∈ B
Ac, Bc ∈ B (complement of A and B, i.e., Ac = Ω \A)

(9)

From this conditions it also follows that ∅,Ω ∈ B. Moreover, if {Ai}∞i=1 ∈ B then

∞⋃
i=1

Ai ∈ B,
∞⋂
i=1

Ai ∈ B (countable union and intersection). (10)

2As we shall see, the set B derived in (6) is a σ-algebra
3For a thorough discussion on the meaning of probability and how to assign probabilities see [7, Chapters 1-3].
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Note that by this definition, the simplest σ-algebra we can possibly think of is

B = {∅,Ω} (trivial σ-algebra). (11)

Examples of σ-algebras:

• Consider the sample space Ω = {a, b, c}. The power set of Ω, i.e., the combination of all possible
elements of Ω (including the empty set), is a σ-algebra.

2Ω = {∅, a, b, c, {a, b}, {a, c}, {b, c}, {a, b, c}︸ ︷︷ ︸
Ω

} (power set). (12)

The cardinality of the power set, i.e., the number of elements of the set 2Ω is equal to 2#Ω (where #
denotes the number of elements of a set). In the specific case of (12) we have #Ω = 3, and therefore
#2Ω = 23 = 8.

• If the sample space Ω is countably infinite (i.e., the elements of Ω can be put in a correspondence
with N) then the power set 2Ω is isomorphic to R, i.e., it is an uncountable set.

• If the sample space Ω is uncountably infinite, e.g., Ω = [0, 1] then any σ-algebra on Ω can be
represented as a sub-algebra of the power set 2Ω (Stone’s representation theorem [4]). This is why
the σ-algebra B on an uncountably infinite sample space Ω is often written as a subset of the power
set 2Ω, i.e., B(Ω) ⊆ 2Ω.

• The σ-algebra on Ω = R is the σ-algebra of the collection of all open subsets of R. Such σ-algebra
necessarily contains all open sets, all closes sets4, and all (countable) unions and intersections of open
and closed sets. Such σ-algebra is a sub-algebra of the power set 2Ω.

• Let H be a Hilbert space of functions. We can define a Borel σ-algebra on B(H) as the collection of
all open subsets of H (subsets of functions in H). B(H) defines which subsets of the Hilbert space
are “measurable”.

Borel σ-algebras. The last two examples of σ-algebras, i.e., B(R) and B(H) are Borel σ-algebras. A
Borel σ-algebra on a space S (such as the real line R or the Hilbert space H) is generated by the collection
of all open sets of S. It includes all sets that can be constructed from open sets using countable unions,
countable intersections, and complements. Clearly the trivial σ-algebra (11) is not a Borel σ-algebra, as it
does not include any subset of Ω.

4Recall that the complement of an element in B still belong to the B. Hence if we pick A =]−∞, 1[∪ ]2,∞[∈ B (union of
two open sets), then Ac = [1, 2] ∈ B (closed interval).
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Probability measure. The probability function

P : B → [0, 1] (13)

assigns to each event A (i.e., a set) in the σ-algebra B a number P (A) ∈ [0, 1]. In other words, P (A)
measures the likelihood that the event represented by the set A occurs. The probability function P
satisfies the properties of a measure (hence the name probability measure5):

1. P (∅) = 0.

2. P (Ω) = 1.

3. For all countable collections of disjoint sets Ai ∈ B

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai). (14)

4. For all A,B ∈ B,
P (A ∪B) = P (A) + P (B)− P (A ∩B). (15)

From these properties it follows that of the event B ∈ B is a subset of A ∈ B then A = B∪ (Bc∩A), which
implies that (note that B and Bc ∩A are disjoint)

P (A) = P (B) + P (Bc ∩A) ≥ P (B). (16)

Frequency interpretation of the probability measure: Suppose that in an experiment the event A shows up
nA times out of n trials. If we define the empirical distribution

µn(A) =
nA

n
(17)

then
P (A) = lim

n→∞
µn(A). (18)

Random variables

Let (Ω,B, P ) be a probability space. A real-valued random variable X(ω) is a measurable map from the
sample space Ω into R, i.e.,

X : Ω 7→ R. (19)

The mapping (19) induces a probability measure (known as “push-forward measure”)

PX(A) = B(R) 7→ [0, 1], (20)

where B(R) is the Borel σ-algebra on R. The measure PX(A) is defined as6

PX(A) = P ({ω ∈ Ω : X(ω) ∈ A}) for all A ∈ B(R). (21)

5In real analysis, the pair (Ω,B) is called measurable space [4]. The elements of B, i.e., the events, are called measurable
sets. The triple (Ω,B, P ) is called probability space, which is essentially a measurable space in which we define a probability
measure.

6The set {ω ∈ Ω : X(ω) ∈ A} at the right hand side of (54) is called the pre-image of the set A ∈ R under the mapping X,
and denoted by X−1(A).
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Cumulative distribution function (CDF). The distribution function of the random variable X(ω) is
defined as

F (x) = P ({ω : X(ω) ≤ x}︸ ︷︷ ︸
event

) = PX (]−∞, x]) x ∈ R. (22)

The distribution function represents the measure of the set (event) {ω ∈ Ω : X(ω) ≤ x}, i.e., the probability
that X(ω) is smaller than a given real number x. As such it may seem that F (x) does not carry sufficient
statistical information about the random variable X to enable us to measure other sets. However, given
that P is defined on a Borel σ-algebra, we can see that F actually allows us to measure most sets of interest
in the range of X. An exception is perhaps the measure of the intersection of two non-overlapping sets,
which is of course zero and cannot be written in terms of F (x).

By using the axiomatic properties of the probability measure P it can be shown that:

1. F (−∞) = 0,

2. F (∞) = 1,

3. F (x) is non-decreasing, i.e., x1 < x2 ⇒ F (x1) ≤ F (x2),

4. P ({ω : X(ω) > x}) = 1− F (x),

5. F (x) is continuous from the right, i.e.,

lim
ϵ→0+

F (x+ ϵ) = F (x), (23)

6. F (x) is not continuous from the left (for discrete random variables),

7. P ({ω : a < X(ω) ≤ b}) = F (b)− F (a)

8. P ({ω : a ≤ X(ω) ≤ b}) = F (b)− lim
ϵ→0+

F (a+ ϵ).

The proof of 1.-8. can be found in [7, Chapter 4].

If F (x) is continuous in x then we say that the random variable X(ω) is continuous. If F (x) is a staircase
function then the random variable X(ω) is discrete. F (x) is discontinuous and not staircase, then we say
that X(ω) is mixed.

Frequency interpretation of the distribution function F (x): Suppose we perform an experiment n-times
and observe n realization of the random variable X(ω), say {X(ω1), . . . , X(ωn)}. Let us place all these
numbers on the x axis of a Cartesian plane, and form a staircase function, where each step at X(ωi) has
height 1/n. Then the staircase function Fn(x) converges to F (x) in the limit n → ∞.

Probability density function (PDF). The probability density function (PDF) p(x) of the random vari-
able X(ω) is (technically speaking) the Radon–Nikodym derivative7 (assuming it exists) of the probability

7A probability measure P on the measurable space (Ω,B) is said to be absolutely continuous with respect to another
measure ν if for all events E ∈ B(Ω) such that P (E) = 0 we have ν(E) = 0. This is denoted as ν ≪ P . Consider, in particular,
the Lebesgue measure dν = dx. The Radon-Nikodym theorem says that if P is absolutely continuous with respect to the
Lebesgue measure, then there exists a unique function p(x) such that

P (E) =

∫
E

p(x)dx. (24)

Setting the event E in (24) as
E = {w : X(ω) ≤ x} ∈ B(Ω) (25)

yields equation (26).
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measure P with respect to the Lebesgue measure. The existence of the Radon–Nikodym derivative allows
us to write the cumulative distribution function (22) as

F (x) =

∫ x

−∞
p(y)dy. (26)

Equivalently p(x) can be interpreted as the (weak) derivative of the CDF F (x), i.e.,

p(x) =
dF (x)

dx
. (27)

By taking the limit of Lebesgue-integrable Dirac delta sequences, we can make sense of PDFs converging
to Dirac deltas. This is useful when dealing with the PDF of deterministic (non-random) variables, or
discrete random variables. For example,

p(x) = δ(x− a) (PDF of the random variable X(ω) = a for all ω ∈ Ω), (28)

and

p(x) =
N∑
i=1

piδ(x− xi) (PDF of a discrete random variable with range {x1, . . . , xn}). (29)

For example, the PDF of a fair dice with 6 faces is

p(x) =
1

6

6∑
i=1

δ(x− i). (30)

By using the properties of the cumulative distribution function F (x) it can be shown that the PDF satisfies
the following properties

1. p(x) ≥ 0 (positivity),

2.

∫ ∞

−∞
p(x)dx = 1 (normalization),

3. P ({ω : x1 < X(ω) ≤ x2}) =
∫ x2

x1

p(x)dx,

4. P ({ω : x < X(ω) ≤ x+ dx}) = p(x)dx.

Frequency interpretation of the PDF: Suppose we sample the random variable X(ω) n times and find that
n∆x samples fall between x and x+∆x. By using property 4. above , and the frequency interpretation of
probability we conclude that

p(x)∆x ≃ n∆x

n
⇒ p(x) ≃ 1

∆x

n∆x

n
. (31)

Hence, by dividing the support of the random variable X(ω) into bins and counting the number of samples
within each bin allows us to estimate the PDF of X(ω) in a rather straightforward way. This is at the basis
of the Monte-Carlo estimation method for random variables. There are of course more effective methods to
estimate the PDF of one random variable from data (see, e.g., [1]). In Figure 2 we estimate the PDF of a
Gaussian random variable using frequency approach, i.e., equation (31), and the kernel density estimation
method discussed in [1].
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Figure 1: PDFs and CDFs of Gaussian (left) and uniform (right) random variables.

Examples of one-dimensional PDFs and CDFs

• Gaussian (continuous):

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , F (x) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
x ∈ R. (32)

• Uniform (continuous):

p(x) =
1

b− a
, F (x) = x, x ∈ [a, b]. (33)

• Binomial (discrete):

p(x) =

n∑
i=0

(
n

i

)
pi(1− p)n−iδ(x− i), p ∈]0, 1[, x ≥ 0. (34)

• Poisson (discrete):

p(x) = e−λ
∞∑
k=0

λk

k!
δ(x− k), λ ∈]0,∞[, x ≥ 0. (35)

See Figure 1.
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n = 103 n = 106

Figure 2: Estimation of the PDF of a Gaussian random variable (first row) and a uniform random variable
(second row) using the frequency approach, i.e., formula (31), and the kernel density estimate discussed in
[1] (red line) . We plot results for a different number of samples n.

Functions of one random variable

In this section we discuss how to compute the probability density function of a random variable Y (ω)
defined as a deterministic nonlinear function of another random variable X(ω). To this end, suppose we
are give a deterministic function

g : R → R (36)

such that
Y (ω) = g(X(ω)) (37)

for all ω ∈ Ω, and suppose we know the PDF of X, pX(x). What is PDF of Y (ω)?

Since X and Y are defined on the same probability space we have

FY (y) = P ({ω : Y (ω) ≤ y}) = P ({ω : g(X(ω)) ≤ y}) . (38)

Therefore, to determine the distribution function FY (y) we just need to measure the set

By = {ω : g(X(ω)) ≤ y} (39)

for each y in the set of g(R(X)) (where R(X) denotes the range of the random variable X). The set By is
shown in Figure 3 (in yellow) for a compactly supported prototype function g(x) (support in [a, b]) and a
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Figure 3: Sketch of the set By defined in equation (39) (yellow lines). The random variable X is compactly
supported in [a, b]. The distribution function of the random variable Y (ω) = g(X(ω)) evaluated at y is the
measure of the set By = A ∪B (union of the two yellow lines), i.e., FY (y) = FX(x1(y)) + 1− FX(x2(y)).

specific value of y. Clearly, the distribution function FY (y) must be defined case-by-case. With reference
to Figure 3 we have

FY (y) = FX(x1(y)) + 1− FX(x2(y)), (40)

where x1(y) and x2(y) are the branches of the inverse function g−1(y). The function (40) represents the
distribution function of Y in terms of cumulative distribution function of X, which we know.

With the cumulative distribution function of Y available, it is straightforward to compute the PDF of Y ,
by taking the (weak) derivative of FY (y). This is formalized in the following theorem.

Theorem 1. Let X be a random variable with PDF pX(x), g ∈ C1(R) a continuously differentiable
function. Then the PDF of Y = g(X) is given by

pY (y) =

r∑
i=1

pX(xi(y))

|g′ (xi(y))|
, (41)

where xi(y) (i = 1, . . . , r) are the real roots of the equation g(x) = y.

Proof. We prove the theorem using Fourier transforms8. Let

ϕY (a) =

∫ ∞

−∞
eiaypY (y)dy =

∫ ∞

−∞
eiag(x)pX(x)dx. (42)

Taking the inverse Fourier transform yields

pY (y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
eia(g(x)−y)pX(x)dxda. (43)

Next, recall that

δ (g(x)− y) =
1

2π

∫ ∞

−∞
eia(g(x)−y)da. (44)

8The Fourier transform of a the probability density function pX(x) is known as characteristic function of the random
variable X(ω) (see Eq. (97)).
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Substituting (44) into (43) yields (see also [5])

pY (y) =

∫ ∞

−∞
δ (g(x)− y) pX(x)dx. (45)

At this point we use the well-known identity9

δ (g(x)− y) =

r∑
i=1

δ (x− xi(y))

|g′ (xi(y))|
, (46)

where xi(y) are the real roots of the y = g(x) for each y ∈ R. A substitution of (46) into (45) yields (41).
This completes the proof. Alternatively, we can rely on conservation of probability mass which can be
stated as

pY (y)dy =
r∑

i=1

pX(xi(y))|dxi|, (47)

where |dxi|/dy = 1/|g′(xi(y))|. The absolute value in dxi takes cares of the fact that dy > 0 may be
associated with dxi positive or negative (see, e.g., Figure 3).

Examples of PDF mappings. Let X be a random variable with probability density function pX(x). In
the following examples we derive the PDF of Y = g(X) for a few prototype g(x).

• Consider the random variable Y (ω) = X(ω)2. The mapping y = g(x) = x2 between the random
variables X and Y can be inverted (with real roots) for all y ≥ 0. This yields

x1(y) =
√
y, x2(y) = −√

y y ≥ 0. (48)

By using Theorem 1 we immediately obtain

pY (y) =
1

2
√
y
[pX(

√
y) + pX(−√

y)] . (49)

For instance, if pX(x) is Gaussian , i.e.,

pX(x) =
1√
2π

e−x2/2 (50)

then

pY (y) =
e−y/2

√
2πy

(χ2-distribution). (51)

Similarly, if X is uniformly distributed in [−1, 1] then10

pY (y) =


1

2
√
y

for all 0 ≤ y ≤ 1

0 for all y > 1 or y < 0
(52)

• Consider the random variable Y (ω) = etX(ω), where t ≥ 0 is a real parameter. The mapping
y = g(x) = etx can be inverted (with unique inverse) for all y > 0 as

x =
log(y)

t
y > 0. (53)

The derivative of g(x) is g′(x) = tetx. Therefore

pY (y) =
1

ty
pX

(
log(y)

t

)
y > 0. (54)

9The identity (46) if and only if g′(xi(y)) ̸= 0.
10Recall that a uniform PDF in [−1, 1] is pX(x) = 1/2 for all x ∈ [−1, 1].
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Application to dynamical systems. Let us briefly discuss two applications of the PDF mapping
technique to simple one-dimensional dynamical systems.

• Consider the following Cauchy problem for one ODE evolving from a random initial state
dx

dt
= f(x)

x(0) = X(ω)
(55)

We know from AM 214 that if f is continuously differentiable in x then the system generates a
smooth flow map x(t) = x(t,X(ω)) (differentiable in X) that takes any initial state X(ω) (at t = 0)
and maps it to the corresponding solution at time t. Given the PDF of the initial condition pX(x)
we can compute the PDF of x(t) as

p(x, t) =

∫ ∞

−∞
δ (x− x(t, y)) pX(y)dy. (56)

A convenient way to actually compute such PDF is by sampling, i.e., compute sample paths of x(t)
corresponding to samples of X(ω). However, if the flow map is available analytically then we can
also compute (56) analytically. To this end, consider the system

dx

dt
= x2

x(0) = X(ω)
(57)

We known that the analytical solution (flow map) is

x(t,X) =
X(ω)

1− tX(ω)
. (58)

Suppose that X(ω) is uniformly distributed in [−1, 0] so that the flow map exists for all t ≥ 0 (no
blow-up). What is then the PDF of x(t,X) at each fixed time t? Clearly, we can invert

g(x) =
x

1− tx
= y (59)

uniquely for each t ≥ 0 (x ≤ 0) as

x(1 + ty) = y ⇒ x(y) =
y

1 + ty
. (60)

The first derivative of (59) with respect to x evaluated at the unique root x(y) = y/(1 + ty) is

g′(x(y)) =
1

(1− tx(y))2
= (1 + ty)2. (61)

At this point we use Theorem 1 to conclude that the PDF of the solution to the ODE (57) at each
fixed time t is

p(x, t) =
1

(1 + tx)2
pX

(
x

1 + tx

)
. (62)

In particular, if pX is the PDF of a uniform random variable in [−1, 0] then the support of p(x, t) is
defined by the condition

−1 ≤ x

1 + tx
≤ 0 ⇒ − 1

(1 + t)
≤ x ≤ 0. (63)

Hence, as t goes to infinity the support of p(x, t) shrinks to 0 and p(x, t) converges to a Dirac delta
function at x = 0. Note that for each fixed t we have that the normalization condition of the PDF
p(x, t) is satisfied. In fact,∫ ∞

−∞
p(x, t)dx =

∫ 0

−1/(1+t)

1

(1 + tx)2
1︸︷︷︸

pX( x
1+tx)

dx = 1. (64)
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• Next, consider the linear decay problem 
dx

dt
= ξ(ω)x

x(0) = 1
(65)

where ξ(ω) is a random variable with known probability density pξ(x). The analytical solution to
(65) is

x(t, ξ(ω)) = etξ(ω). (66)

By using equation (54), we immediately conclude that the probability density of the solution to (65)
is

p(x, t) =
1

tx
pX

(
log(x)

t

)
x > 0. (67)

For instance, if pX is a uniform PDF in [−2, 0] then the support of p(x, t) is defined by

−2t ≤ log(x) ≤ 0 ⇒ e−2t ≤ x ≤ 1. (68)

At t = 0 the PDF of the solution is supported only at one point, i.e., x = 1. Indeed,

p(x, 0) = δ(x− 1) (deterministic initial condition). (69)

For t > 0 the PDF of the solution to (65) is11

p(x, t) =
1

2tx
for e−2t ≤ x ≤ 1. (71)

The Liouville equation. The PDF of the solution of the Cauchy problem (55) satisfies the following
linear hyperbolic conservation law

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) = 0, p(x, 0) = pX(x). (72)

This equation is known as Liouville equation. It is straightforward to show by using the method of
characteristics that (62) is the solution of Liouville equation (72) for f(x) = x2, i.e., for the dynamical
system (57). More generally, that the joint probability density function of the phase space variables of the
n-dimensional autonomous nonlinear dynamical system

dx

dt
= f(x), x(0) = X(ω) (73)

evolving from a random initial state satisfies X(ω) satisfies the Liouville equation

∂p(x, t)

∂t
+∇ · (f(x)p(x, t)) = 0. (74)

To solve (74) one could propagate characteristic curves from the support of random initial state p(x, 0), or
use more sophisticated methods, e.g., numerical tensor methods [2, 3] or physics-informed neural network
techniques [8].

11Note that the PDF (71) integrates to one. In fact∫ ∞

−∞
p(x, t)dx =

∫ 1

e−2t

1

tx

1

2︸︷︷︸
pX

(
log(x)

t

)
dx = 1. (70)
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Sampling from arbitrary one-dimensional PDFs

Let X(ω) be a uniform random variable in [0, 1]. We would like to find a mapping g(X) such that the
(continuous) random variable Y (ω) = g(X) has a given probability density pY (y). With such mapping
g available we can transform each sample of X(ω) to a sample of Y (ω), hence constructing a sampler
for Y (ω). As we shall see hereafter, if we denote by FY (y) the cumulative distribution of the continuous
random variable Y (the random variable we are interested in sampling) then the mapping g is simply the
inverse of FY , i.e., Y (ω) = F−1

Y (X(ω)).

Lemma 1. Let X(ω) be a uniform random variable in [0, 1]. Consider a second random variable Y (ω)
with PDF pY and cumulative distribution function

FY (y) =

∫ y

−∞
pY (x)dx (75)

The random variable Y = F−1
Y (X) has cumulative distribution function FY (y).

Proof. Suppose that FY is invertible12. Let us show that the random variable F−1
Y (X) has indeed cumu-

lative distribution function FY (y). By definition,

FY (y) = P ({ω : Y (ω) ≤ y})
= P

(
{ω : F−1

Y (X(ω)) ≤ y}
)

= P ({ω : X(ω) ≤ FY (y)}) (FY invertible and nondecreasing)

= FX(FY (y))

= FY (y). (76)

In fact, since X(ω) is uniform in [0, 1] we have FX(x) = x for all x ∈ [0, 1]. This shows that the random
variable F−1

Y (X), where X is uniform in [0, 1], has as distribution function FY (y).

How do we use Lemma 1 to sample the PDF of Y , i.e., pY (y)? Very simple: we first generate samples of
a uniform random variable X in [0, 1] and then we map each sample to a sample of pY by applying the
nonlinear transformation

Y = F−1
Y (X). (77)

In practice, to compute FY (y) and the inverse of the cumulative distribution function F−1
Y (y) we can

proceed numerically, e.g., by using the cumulative trapezoidal rule and interpolation. In Figure 4 we show
the results of this procedure applied to a PDF pY that is mixture between a Gaussian and a uniform PDF.

An alternative method for sampling arbitrary one-dimensional PDFs relies on first discretizing the PDF
into bins and computing the corresponding bin probabilities as probabilities

{p1, . . . , pN} where pi =

∫ yi+∆y/2

yi−∆y/2
pY (z)dz (78)

We can then sampling the states {y1, . . . , yN} with probabilities {p1, . . . , pN}. The basic idea to do so is
to divide the [0, 1] into N bins, with the length of each bin proportional to the probability mass pk. Then,

12We know that the CDF FY is non-decreasing. Hence, it is always possible to invert it in appropriate regions of its domain.
Wherever the function is not invertible the inverse does not exist. Recall that the CDF may not be even continuous (it is
continuous from the right but not from the left). This about the CDF of a PDF mixture made of two uniform in [0, 1] and
[3, 4].
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Figure 4: Sampling from arbitrary one-dimensional PDFs. In this example we sample from a given PDF
pY (y) (mixture between Gaussian and uniform PDFs) by first computing FY (y) and F−1

Y (y) numerically,
and then using F−1

Y (y) to map samples of a uniform random variable X in [0, 1] to samples of the PDF
pY (y) via the mapping (77).

we draw samples from a uniform distribution in [0, 1], and the bins that these values fall into are picked as
results. This is also equivalent to rolling a loaded dice with N faces and probabilities given in (78).

Expectation, moments and cumulants

Let (Ω,B, P ) be a probability space, X : Ω → R a random variable with cumulative distribution function
FX(x) and PDF pX(x). For any function g(X) we define the expectation of g(X) as 13

E {g(X)} =

∫ ∞

−∞
g(x)dFX(x) =

∫ ∞

−∞
g(x)pX(x)dx. (80)

13We do not need to assume the existence of the PDF to define the expectation operator. In fact, a more general expression
for (80) is

E {g(X(ω))} =

∫
Ω

g(X(ω))dP (ω). (79)
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Clearly, if Y (ω) = g(X(ω)) is a random variable with PDF pY (y), we can equivalently express the expec-
tation as

E {g(X)} = E {Y } =

∫ ∞

−∞
ydFY (y) =

∫ ∞

−∞
ypY (y)dy. (81)

In particular, if we set g(X) = Xk then E
{
Xk
}
are called moments14 of the random variable X

E
{
Xk
}
=

∫ ∞

−∞
xkdFX(x) =

∫ ∞

−∞
xkpX(x)dx. (84)

The first few moments of a random variable X are

E {X} =

∫ ∞

−∞
xpX(x)dx (mean), (85)

E
{
X2
}
=

∫ ∞

−∞
x2pX(x)dx (second-order moment), (86)

E
{
X3
}
=

∫ ∞

−∞
x3pX(x)dx (third-order moment). (87)

The moments of a random variable are the coefficients of the power series expansion of the so-called moment
generating function

MX(a) = E
{
eaX(ω)

}
, a ∈ R. (88)

In fact,

MX(a) = MX(0) +
dMX(0)

da︸ ︷︷ ︸
E{X}

a+
1

2

d2MX(0)

da2︸ ︷︷ ︸
E{X2}

a2 + · · · . (89)

In general,

E
{
Xk
}
=

dkMX(0)

dak
. (90)

A function related to the moment generating function is the cumulant generating function

ΨX(a) = log(MX(a)). (91)

The coefficients of the power series expansion of ΨX(a) are called cumulants of the random variable
X(ω)

ΨX(a) = ΨX(0) +
dΨX(0)

da︸ ︷︷ ︸
E{X}

a+
1

2

d2ΨX(0)

da2︸ ︷︷ ︸
E{X2}−E{X}2

a2 + · · · (92)

14There are random variables for which moments do not exist (they are undefined). An example is the Cauchy random
variable, with PDF

pX(x) =
1

βπ

[
1 +

(
x− x0

β

)2
] . (82)

In fact, integrating ∫ ∞

−∞
xpX(x)dx yields ∞−∞ (undefined). (83)

Random variables with compactly supported range have all moments. For such compactly supported random variables it is
always possible to reconstruct the PDF pX from the knowledge of its moments or cumulants. In other words, the so-called
moment problem has a unique solution for compactly supported PDFs.
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Such cumulants are often denoted as
〈
Xk
〉
c
. For example, we have

⟨X⟩c =E {X} , (93)〈
X2
〉
c
=E

{
X2
}
− E {X}2 , (94)〈

X3
〉
c
=E

{
X3
}
− 3E {X}E

{
X2
}
+ 2E {X}3 , (95)

· · ·

The quantity 〈
X2
〉
c
= E

{
X2
}
− E {X}2 , (96)

is the variance of the random variable X. Finally, we define the the characteristic function of the random
variable X(ω) as

ϕX(a) = E
{
eiaX(ω)

}
a ∈ R (97)

where i is the imaginary unit. We have seen this function already, i.e., in the proof of Theorem 1. The
characteristic function is the Fourier transform of the probability density function pX(x). In fact, by
definition

ϕX(a) =

∫ ∞

−∞
eiaxpX(x)dx ⇔ pX(x) =

1

2π

∫ ∞

−∞
e−iaxϕX(a)da. (98)

It is straightforward to show that

E
{
Xk
}
=

1

ik
dkϕ(0)

dak
. (99)

By expanding the complex exponential function in a power series, and using the definition of cumulants,
it is possible to obtain the following cumulant expansion of ϕX(a) (see, e.g., [6])

ϕX(a) = exp

 ∞∑
j=1

〈
Xj
〉
c

(ia)j

j!

 . (100)

Example: The characteristic function of a Gaussian random variable with mean µ and variance σ2 is

ϕX(a) = eiµa−σ2a2/2. (101)

This expression can be derived by the taking the Fourier transform of (32), or by using (100). In fact, for
Gaussian random variables we have that only the first two cumulants are non-zero, i.e.,

⟨X⟩c =E {X} = µ, (102)〈
X2
〉
c
=E

{
X2
}
− E {X}2 = σ2, (103)〈

Xk
〉
c
=0 for all k ≥ 3. (104)

Substituting these expressions into (100) yields (101).
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