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Introduction to n-dimensional dynamical systems

Consider the following n-dimensional system of nonlinear ODEs
dx

dt
= f(x)

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a vector of phase variables, f : D → Rn, and D is a subset of Rn. In an
expanded notation the system (1) can be written as

dx1
dt

= f1(x1, . . . , xn)

dx2
dt

= f2(x1, . . . , xn)

...
dxn
dt

= fn(x1, . . . , xn)

x1(0) = x10

x2(0) = x20
...

xn(0) = xn0

(2)

Initial value problems of the form (1) can model many physical systems. Let us provide a few exam-
ples.

Example: Consider the following idealized pendulum (point mass), subject to gravity and viscous friction

1Il.

⑦(t) L

D

i v=0L

mgein(8). M
-vil mo

As is well-known from physics (Newton’s law), the rate of change (time derivative) of the angular momen-
tum of the point mass m relative to the point P equals the momentum of the external forces acting on
the point mass. The external forces in this case are gravity and viscous friction. Setting up the balance of
momenta yields

mL2d
2θ

dt2
= −mgL sin(θ)− γL

dθ

dt
, (3)
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Pendulum without friction Pendulum with friction

Figure 1: Flow (phase portrait) generated by the the pendulum equations (8) for {g/L, γ/(Lm)} = {(1, 0)}
(a) and for {g/L, γ/(Lm)} = {(1, 0.05)} (b). In the latter case the oscillations of the pendulum decay
asymptotically to zero due to the viscosity γ.

i.e.
d2θ

dt2
= − g

L
sin(θ)− γ

Lm

dθ

dt
. (4)

This is a second-order nonlinear ordinary differential equation in θ(t). The equation can be easily trans-
formed into a system two first-order nonlinear ODEs by defining the new variables

x1(t) = θ(t), x2(t) =
dθ(t)

dt
. (5)

Based on the definition of x1(t) and x2(t) we have

dx1
dt

= x2. (6)

Moreover, by differentiating x2(t) with respect to time and using equation (4) we obtain

dx2
dt

= − g

L
sin(x1)−

γ

Lm
x2. (7)

Hence, equation (4) can be represented as a system of two first-order ODEs
dx1
dt

= x2,

dx2
dt

= − g

L
sin(x1)−

γ

Lm
x2,

(8)

i.e., the dynamics of the pendulum can be described by a two-dimensional dynamical system. To solve the
system of ODEs (8), we need an initial condition for the position of the pendulum x1(0), and an initial
condition for the velocity of the pendulum x2(0). In Figure 1 we plot the trajectories of the pendulum
corresponding to different initial conditions. Given the nature of the phase space coordinates x1(t) and
x2(t), it is clear that the dynamics of the the pendulum un
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Figure 2: Numerical solution of the linear system (12) representing the initial-boundary value problem for
the heat equation (9) . We set for α = 1 and n = 200 and computed one trajectory corresponding to the
initial condition u0(y) = 1 + exp(sin(5y)).

Example: Consider the following initial-boundary value problem for the heat equation in the periodic
spatial domain [0, 2π] 

∂u(t, y)

∂t
= α

∂2u(y, t)

∂y2
heat equation

u(0, y) = u0(y) initial condition

u(t, 0) = u(t, 2π) periodic boundary conditions

(9)

A finite-difference approximation of the PDE (9) on the evenly-spaced grid with n points

yk = (k − 1)∆y k = 1, . . . , n, ∆y =
2π

n
(10)

yields the n-dimensional linear dynamical system1

dx1(t)

dt
=

α

∆y2
[x2(t)− 2x1(t) + xn(t)]

dx2(t)

dt
=

α

∆y2
[x3(t)− 2x2(t) + x1(t)]

...
dxn(t)

dt
=

α

∆y2
[x1(t)− 2xn(t) + xn−1(t)]

(12)

where we defined xk(t) = u(yk, t). This system can be written in a vector form as

dx

dt
= Ax, (13)

1Recall that the second-order centered finite-difference approximation of the second derivative at yk is

∂2u(yk, t)

∂y2
≃ u(yk+1, t)− 2u(yk, t) + u(yk−1, t)

∆y2
(11)
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Figure 3: Kuramoto-Sivashinsky equation. Shown is one trajectory of the dynamical system (17) approx-
imating the solution of (15) for L = 25 and n = 200. In (b) we plot the 200-dimensional solution vector
X(t,x0) at t = 0, t = 20 and t = 50.

where

A =
α

∆y2


−2 1 0 · · · 1
1 −2 1 · · · 0
...

. . .
...

0 · · · 1 −2 1
1 · · · 0 1 −2

 (14)

Note that xk(t) represents an approximation of the solution to the partial differential equation (9) at the
grid point y = yk. Hence, by computing the solution to (12), we are computing an approximation of the
solution to the PDE (9) at the grid points (y1, . . . , yn).

Example: Consider the following initial-boundary value problem for the Kuramoto-Sivashinsky equation
in the periodic spatial domain [−L,L]

∂u

∂t
+ u

∂u

∂y
+

∂2u

∂y2
+

∂4u

∂y4
= 0 t ≥ 0 y ∈ [−L,L]

u(y, 0) = sin(y)e−(y−10)2/2

Periodic boundary conditions

(15)

As before, we can approximate the solution to this PDE using finite differences on the spatial grid

yk = −L+ (k − 1)∆y k = 1, . . . , n,
2L

n
. (16)

This yields the n-dimensional nonlinear dynamical system

dxj
dt

= −xj
xj+1 − xj−1

2∆y
− xj−1 − 2xj + xj+1

∆y2
− xj−2 − 4xj−1 − 6xj + 4xj+1 + xj−2

∆y4︸ ︷︷ ︸
fj(x1,...,xn)

j = 1, . . . , n (17)

In Figure 3 we show one trajectory of this system for L = 25 and n = 200 (i.e., a 200-dimensional system)
corresponding to the initial condition

x0k = u(yk, 0). (18)
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itttor at laxit time*1
Figure 4: Illustration of the meaning of Theorem 1 in two-dimensions. Shown are the open set D ⊂ R2 in
which f(x) is Lipschitz continuous, the trajectory corresponding to a particular x0 ∈ D and the exit time
τ for such trajectory.

Well-posedness of the initial value problem

Let us recall the theorem that guarantees existence and uniqueness of the solution to the initial value
problem (1).

Theorem 1. Let D ⊂ Rn be an open set, x0 ∈ D. If f : D → Rn is Lipschitz continuous in D then there
exists a unique solution to the initial value problem (1) within the time interval [0, τ [, where τ is the time
instant at which the trajectory x(t) exits2 the domain D. The solution x(t) is continuously differentiable
in [0, τ [.

How do we define Lipschitz continuity for a vector-valued function f(y) defined on subset of Rn? By a
simple generalization of the definition we gave for one-dimensional functions.

Definition 1. Let D be a subset of Rn, f : D → Rn. We say that f is Lipschitz continuous in D if there
exists a constant 0 ≤ L < ∞ such that

∥f(x1)− f(x2)∥ ≤ L ∥x1 − x2∥ for all x1,x2 ∈ D, (19)

where ∥·∥ is any norm defined in Rn (see Appendix B). Recall, in fact that all norms defined in a finite-
dimensional space such as Rn are equivalent.

Similarly to what we have seen for one-dimensional dynamical systems, there conditions that are simpler
to verify than Lipschitz continuity.

Lemma 1. Let f(x) is of class C1 in a compact domain D ⊂ Rn. Then f(x) is Lipschitz in D.

The proof of this lemma is provided in Appendix B for the case where D is compact and convex.

Lemma 2. Let f(x) be of class C1 in D ⊆ Rn. If f(x) has bounded derivatives ∂fi/∂xj then f(y) is
Lipschitz continuous in D.

2As shown in Figure 4, the “exit time” τ depends on D, f(x) and x0.
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Figure 5: It is impossible for two trajectories to intersect with nonzero velocity any point in phase space.
This would make f(x) non-unique at such point and also violate the existence and uniqueness Theorem 1.

Global solutions. If f(x) is Lipschitz continuous on the entire space Rn then the solution to the initial
value problem (1) is global. This means that the solution exists and is unique for all t ≥ 0. In fact, x(t)
never exits the domain in which f(x) is Lipschitz continuous, and therefore we can extend τ in Theorem
1 to infinity. It is important to emphasize that existence and uniqueness of the solution to (1) has nothing
to do with the smoothness of f(x) but rather with the rate at which f(x) grows or decays.

Example: The solution to the dynamical systems (8) and (12) is global in time, meaning that it exists
and is unique for all t ≥ 0. In fact, the right hand side of such systems is globally Lipschitz in R2 and Rn,
respectively.

Flow generated by nonlinear dynamical systems

The solution to the initial value problem (1) depends on both the vector field f(x) and the initial condition
x0. As before, we denote this dependence explicitly by writing the solution as

x(t) = X(t,x0). (20)

where X(t,x0) represents the flow generated by (1). Analogous to the one-dimensional case, two solu-
tions corresponding to distinct initial conditions cannot intersect at any finite time t (see Figure 5). If
they did, one could use the intersection point as a new initial condition, which would result in multiple
solution trajectories originating from the same point, contradicting the existence and uniqueness theorem
(Theorem 1). This implies that the flow X(t,x0) is invertible at each finite time3. That is, for any given
time t, we can uniquely determine the initial condition x0 of the “particle” located at x(t) = X(t,x0). As
a consequence, two particles can never collide at a finite time, nor can a single particle split into multiple
trajectories (see Figure 5).

Theorem 2 (Regularity of the flow with respect to x0). Let D ⊂ Rn be an open set, x0 ∈ D. If
f : D → Rn is Lipschitz continuous in D then the flow X(t,x0) generated by the initial value problem
(1), is continuous in x0. Moreover, If f(x) is of class Ck(D) (continuously differentiable k-times in D) in
D then X(t,x0) is of class C

k(D) relative to x0 (continuously differentiable k-times with respect to x0).

3Solutions may intersect asymptotically as t → ∞, for example when trajectories approach an attracting set.
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In summary, Theorem 2 states that the smoother the function f(x), the smoother the dependence of the
flow X(t,x0) on the initial condition x0. The n-dimensional mapping X(t,x0).

Theorem 3 (Regularity of the flow in time). Let D ⊂ Rn be an open set, x0 ∈ D. if f(x) is of class Ck

in D (continuously differentiable k-times in D with continuous derivative), then X(t,x0) is of class C
k+1

in time for all t ∈ [0, τ [, where τ is the time at which X(t,x0) exits the domain D.

Properties of the flow. The flow X(t,x0) satisfies the following properties:

• Identity at time zero: X(0,x0) = x0. That is, the flow reduces to the identity mapping at time t = 0.

• Invertibility: The mapping X(t,x0) is invertible for all times t for which the solution to the initial
value problem (1) exists and is unique.

• Semigroup property: The flow satisfies the composition rule

X(t+ s,x0) = X(t,X(s,x0)) = X(s,X(t,x0)).

This semigroup property reflects the fact that the solution to the ODE (1) can be restarted at any
intermediate time (e.g., t or s) using the state at that time as the new initial condition. This property
follows from the existence and uniqueness Theorem 1.

• Flow equation (forward map): The flow X(t,x0) satisfies the following system of first-order partial
differential equations: 

∂X(t,x0)

∂t
− f(x0) · ∇X(t,x0) = 0,

X(0,x0) = x0.

(21)

• Inverse flow equation: The inverse flow X0(t,x) satisfies a similar system of first-order PDEs:
∂X0(t,x)

∂t
+ f(x) · ∇X0(t,x) = 0,

X0(0,x) = x.

(22)

The proofs of these properties are straightforward and closely parallel the corresponding arguments pre-
sented for one-dimensional dynamical systems.

Geometric approach

The flow X(t,x0) maps any initial condition x0 to the solution of the ODE (1) at time t. If we interpret
x0 as the initial position of a particle in Rn, then from elementary mechanics it follows that the derivative
dX(0,x0)/dt = f(x0) represents the velocity of the particle at time t = 0. The vector field4 f(x) associated
with the dynamical system indicates the direction in which a particle located at any given point in phase
space will move. To illustrate this idea, consider the two-dimensional dynamical system

dx1
dt

= f1(x1, x2)

dx2
dt

= f2(x1, x2)

(23)

4A vector field is a vector-valued function that is continuously indexed by one or more variables. In one-dimensional systems,
the vector field f(x) is indexed by the scalar coordinate x and represented as a vector along the line. In two dimensions, the
vector field f(x) = (f1(x), f2(x)) has two components, one along x1 and one along x2. For three-dimensional systems, the
field has three components, and so on.
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Figure 6: Geometric approach in 2D. (a) Sketch of a trajectory in the phase plane and associated velocity
vectors f(x(t)). This process can be reversed in the sense that we can also guess how the trajectory x(t)
looks like by plotting a bunch of velocity vectors f(x) evaluated at different points x in the plane (b).

In Figure 6, we plot the velocity vector

f(x) = (f1(x), f2(x)) (24)

along a trajectory x(t). This process can be reversed, i.e., by plotting a sufficiently dense set of velocity
vectors f(x) evaluated at points near a location of interest in phase space, we can qualitatively infer the
shape of the trajectory x(t) (see Figure 7(b)).

Example: In Figure 7 we plot the vector fields and corresponding trajectories defined by following two-
dimensional dynamical systems {

ẋ1 = 2x1x2 − 1

ẋ2 = −x21 − x22 + 10
(25)

and 
ẋ1 = x2

ẋ2 = − sin(x1)−
1

10
x2

(pendulum with friction) (26)

As we shall see hereafter, the curves ẋ1 = 0 and ẋ2 = 0 are called nullclines. Fixed points are at the
intersection of nullclines.

Fixed points

If the velocity vector f(x) vanishes at some points x∗ ∈ Rn, then a particle placed at that point won’t
move as time evolves. Such points are called fixed points (or equilibria) of the dynamical system (1).
Mathematically, a fixed point x∗ ∈ Rn can be defined as

X(t,x∗) = x∗ for all t ≥ 0. (27)

By differentiating this equation with respect to time we obtain

∂X(t,x∗)

∂t
= f(X(t,x∗)) = f(x∗) = 0. (28)
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(a) (b)

Figure 7: Vector field and trajectories generated by the two-dimensional nonlinear dynamical system (25)
(Figure (a)), and (26) (Figure (b)). Shown are also the nullclines for both systems.

Therefore, the fixed points of the system (1) are solutions to the nonlinear system of equations

f(x) = 0. (29)

This system can be written as 

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fn(x1, . . . , xn) = 0

(30)

In this form, it is clear that the fixed points (if any) of the system (1) lie at the intersection of the zero
level sets5 of the n functions fj , each of which depends on n variables. In two-dimensions such zero level
sets are identified by the intersection of two surfaces f1(x1, x2) and f1(x1, x2) with the (x1, x2) planef1(x1, x2) = 0

f2(x1, x2) = 0
(31)

The zero level sets of f1(x1, x2) and f2(x1, x2) are called nullclines. This terminology arises from the fact
that the vector field f(x1, x2) is vertical at every point on the nullcline defined by f1(x1, x2) = 0, and
horizontal at every point on the nullcline defined by f2(x1, x2) = 0. Consequently, trajectories intersect
the nullclines f1(x1, x2) = 0 and f2(x1, x2) = 0 vertically and horizontally, respectively (see, for example,
Figure 7 or Figure 1).

Example: Let us calculate the nullclines of the dynamical system (25). The first nullcline is

f1(x1, x2) = 2x1x2 − 1 = 0 ⇒ x2 =
1

2x1
(nullcline ẋ1 = 0), (32)

5The fixed points can be computed analytically only for simple prototype dynamical systems. In general, finding fixed
points requires a numerical root-finding algorithm for nonlinear systems of algebraic equations, such as Newton’s method.
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i.e., the hyperbola depicted in red in Figure 7(a). The second nullcline is a circle with radius
√
10 centered

at the origin

f2(x1, x2) = −x21 − x22 + 10 = 0 ⇒ x21 + x22 = 10 (nullcline ẋ2 = 0). (33)

This is depicted in black in Figure 7(a). We also see that the trajectories of the system intersect the
nullcline ẋ2 = 0 (black curve) horizontally. In fact, such nullcline represents the set of points in the phase
plane where the velocity has zero vertical component. Similarly, the trajectories intersect the nullcline
ẋ1 = 0 (red curve) vertically. The four fixed points of the system are at the intersection of the nullclines
and can be computed analytically.

Example: Let us calculate the nullclines and the fixed points of the dynamical system (26). The first
nullcline is

f1(x1, x2) = x2 = 0 ⇒ x2 = 0 (nullcline ẋ1 = 0), (34)

Such nullcline is plotted in red in Figure 7(b). The second nullcline is

f2(x1, x2) = sin(x1)− x2/10 = 0 ⇒ x2 = 10 sin(x1) (nullcline ẋ2 = 0), (35)

and it is plotted in black in Figure 7(b). The fixed points are at the intersection of the nullclines. In this
case we obtain two physically different fixed points:

x∗1 = (0, 0) x∗2 = (π, 0) (36)

corresponding to a pendulum in a vertical position, i.e., x1 = 0 or x1 = π with zero velocity x2 = 0.

Stability analysis of fixed points

A quick look at the phase portraits in Figure 7 suggests that the dynamics in a neighborhood of a fixed
point can be quite different. Such dynamics can often be computed via a linearization process that is
similar to the process we used in one-dimensional dynamical systems. The idea is “zoom-in” on a fixed
point x∗ and compute the orbits of the dynamical systems in a small neighborhood of x∗ by solving a
linearized version of the system (1). To this end, let us first define what we mean by stability of a fixed
point.

Definition 2. Let f(x) be a locally Lipschitz vector field defined over a domain D ⊆ Rn. Let x∗ be a
fixed point, i.e., f(x∗) = 0. We say that x∗ is stable if for each ϵ > 0 there exists δ > 0 (dependent on ϵ)
such that

∥x0 − x∗∥ < δ ⇒ ∥X(t,x0)− x∗∥ < ϵ ∀t ≥ 0, (37)

We say that x∗ is asymptotically stable if for all ϵ > 0 there exists δ > 0 (dependent on ϵ) such that

∥x0 − x∗∥ < δ ⇒ lim
t→∞

∥X(t,x0)− x∗∥ = 0. (38)

Next, consider an initial condition x0 that lies very close to a fixed point x∗, and define the perturba-
tion

η(t,x0) = X(t,x0)− x∗. (39)

Expanding the function f(X(t,x0)) = f(x∗ + η(t,x0)) in a neighborhood of x∗, i.e., for small η(t,x0)
yields

f(x∗ + η(t,x0)) = f(x∗)︸ ︷︷ ︸
=0

+Jf (x
∗)η(t,x0) + · · · , (40)
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Figure 8: Geometric interpretation of the Hartman–Grobman Theorem 4. The trajectories of a nonlinear
dynamical system in a neighborhood of a hyperbolic fixed point are homeomorphic to those of the linearized
system at x∗. This means that while the trajectories of the nonlinear and linearized systems are not
identical, they can be related through a continuous transformation with a continuous inverse. In other
words, the qualitative structure of the phase portrait near x∗ is preserved under this homeomorphism.

where

Jf (x
∗) =


∂f1(x

∗)
∂x1

· · · ∂f1(x
∗)

∂xn
...

. . .
...

∂fn(x
∗)

∂x1
· · · ∂fn(x

∗)

∂xn

 (41)

denotes the Jacobian matrix6 of f evaluated at x∗. Hence, the first-order approximation of the nonlinear
dynamical system (1) at x∗ can be written as

dη

dt
= Jf (x

∗)η

η(0,x0) = x0 − x∗
(42)

Theorem 4 (Hartman-Grobman). Let x∗ ∈ Rn be a fixed point of the dynamical system (1). If the
Jacobian (41) has no eigenvalue with zero real part then there exists a homeomorphism (i.e., continuous
invertible mapping with continuous inverse) defined on some neighborhood U of x∗ that takes orbits of
the system (1) and maps them into orbits of the linearized system (39)-(42). The mapping preserves the
orientation of the orbits.

An outline of the proof is given in L. Perko, Differential equations and dynamical systems, page 121.

6The Jacobian of f(x) is a matrix-valued function that maps the vector field f(x) to an n × n matrix whose entries are
functions of x. When the Jacobian is evaluated at a particular point x∗, it becomes a matrix with real-valued entries (assuming
f is a real-valued function).
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Remark: Theorem (4) states that if x∗ is a hyperbolic7 fixed point, then the flow of the nonlinear system (1)
in a neighborhood U ⊂ Rn of x∗ is homeomorphic to the flow of the corresponding linearized system (42).
That is, the trajectories of the nonlinear and linear systems can be mapped to each other by a continuous
bijection

h : U 7→ V, (43)

with a continuous inverse, where V is the image of U under h. Stated mathematically, the theorem asserts
that there exists a homeomorphism h such that

h(X(t,x0)− x∗) = etJf (x
∗)h(x0 − x∗), i.e. X(t,x0) = x∗ + h−1

(
etJf (x

∗)h(x0 − x∗)
)
, (44)

Questions: At this point, it is natural to ask the following questions:

1. To analyze the stability of hyperbolic fixed points, we must compute the flow of the linear system (42)
that approximates (2) at x∗. Is there a general method for computing such flows? The answer is yes.
Flows of linear systems are important in their own right, as many systems, e.g., the discretized
PDE system (12), are inherently linear.

2. What happens if the fixed point is non-hyperbolic? In such cases, as we will see, one could use a
generalization of the Hartman-Grobman theorem known as center manifold theorem.

3. Is there an alternative method to study the stability of fixed points that does not rely on computing
trajectories of the linearized system or analyzing center manifolds? In principle, yes. Such a method
was developed by Lyapunov in 1892 and is known as Lyapunov stability theory.

Appendix A: Equivalent norms in Rn

As is well known, all norms defined in a finite-dimensional vector space such as Rn are equivalent. This
means that if we pick two arbitrary norms in Rn, say ∥·∥a and ∥·∥b , then there exist two numbers C1 and
C2 such that

C1 ∥x∥a ≤ ∥x∥b ≤ C2 ∥x∥a for all x ∈ Rn. (45)

The most common norms in Rn are

∥x∥∞ = max
k=1,..,n

|xk| , (46)

∥x∥1 =
n∑

k=1

|xk| , (47)

∥x∥2 =

(
n∑

k=1

|xk|2
)1/2

, (48)

... (49)

∥x∥p =

(
n∑

k=1

|yk|p
)1/p

p ∈ N \ {∞}. (50)

Based on these definitions it can be shown that, e.g., that

∥x∥∞ ≤ ∥x∥1 ≤ n ∥x∥∞ , (51)

∥x∥2 ≤ ∥x∥1 ≤
√
n ∥x∥2 , (52)

∥x∥∞ ≤ ∥x∥2 ≤
√
n ∥x∥∞ . (53)

7A fixed point x∗ is called hyperbolic if the Jacobian matrix Jf (x
∗) has no eigenvalues with zero real part.
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Therefore if the f(x) is Lipschitz continuous in D with respect to the 1-norm, i.e.,

∥f(x1)− f(x2)∥1 ≤ L1 ∥x1 − x2∥1 for all x1,x2 ∈ D (54)

then it is also Lipschitz continuous in D with respect to the uniform norm. In fact, by using (51) we
have

∥f(x1)− f(x2)∥∞ ≤ L1n︸︷︷︸
L∞

∥x1 − x2∥∞ . (55)

Similarly, by using (52), we see that if f is Lipschitz in D with respect to the 1-norm then f is Lipschitz
in D with respect to the 2-norm.

Appendix B: Proof of Lemma 1

Let D ⊆ Rn be a compact convex domain and let

M = max
x∈D

∣∣∣∣∂fj(x)∂xi

∣∣∣∣ . (56)

Clearly M exists and is finite because we assumed that D is compact and that f is of class C1 in D8.
Consider two points x1 and x2 in D, and the line that connects x1 to x2, i.e.,

z(s) = (1− s)x1 + sx2 s ∈ [0, 1]. (57)

Since D is convex, we have that the line z(s) lies entirely within D. Therefore we can use the mean value
theorem applied to the one-dimensional function fi(z(s)) (s ∈ [0, 1]) to obtain

fi(x2)− fi(x1) = ∇fi(z(s
∗), t) · (x2 − x1) for some s∗ ∈ [0, 1]. (58)

By taking the absolute value and using the Cauchy-Schwartz inequality we obtain

|fi(x1)− fi(x1)|2 =

∣∣∣∣∣∣
n∑

j=1

∂fi(z(s
∗))

∂xj
(x2j − x1j)

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
n∑

j=1

∂fi(z(s
∗))

∂xj

∣∣∣∣∣∣
2 ∣∣∣∣∣∣

n∑
j=1

(x2j − x1j)

∣∣∣∣∣∣
2

≤nM2 ∥x2 − x1∥22 . (59)

This implies that
∥f(x2)− f(x1)∥2 ≤ nM︸︷︷︸

L2

∥x2 − x1∥2 . (60)

i.e., f(y, t) is Lipschitz continuous in the 2-norm, or any other norm that is equivalent to the 2-norm. In
particular, by using the inequalities (51)-(53) we have that f(x) is Lipschitz continuous relative to the
1-norm.

8A compact domain is by definition bounded and closed. The minimum and maximum of a continuous function in defined
on a compact domain is attained at some points within the domain or on its boundary. Note that this is not true if the
domain is not compact. For example, the function f(y) = 1/y is continuously differentiable on ]0, 1] (bounded domain by not
compact), but the function is unbounded on ]0, 1].
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Appendix C: Explicit midpoint method

We can re-write the Cauchy problem (1) as an integral equation

x(t) = x(0) +

∫ t

0
f(x(s))ds. (61)

This form is quite handy to derive numerical methods to solve (1) based on quadrature rules applied to
the one-dimensional integral at the right hand side. For instance, consider a partition of the [0, T ] into an
evenly-spaced grid points such that ti+1 = ti +∆t, and write (61) within each time interval

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(s))ds. (62)

Explicit midpoint method. By approximating the integral at the right hand side of (62), e.g., using
the midpoint rule yields ∫ ti+1

ti

f(x(s))ds ≃ ∆tf

(
x

(
ti +

∆t

2

))
(63)

At this point, we can approximate x(ti +∆t/2) using the Euler forward method

x

(
ti +

∆t

2

)
≃ x(ti) +

∆t

2
f(x(ti)) (64)

to obtain the explicit midpoint method

x(ti+1) = x(ti) + ∆tf

(
x(ti) +

∆t

2
f(x(ti))

)
. (65)

The explicit midpoint method is a one-step method that belongs to the larger class of Runge-Kutta meth-
ods.
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