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Random vectors

Let (Ω,B, P ) be a probability space. A real-valued random vector

X(ω) = (X1(ω), . . . , Xn(ω))

is a measurable map from the sample space Ω into Rn, i.e.,

X : Ω→ Rn. (1)

Each component of X(ω), say Xi(ω), is a real-valued random variable. As before, we can push forward
the probability measure P from Borel sets of Ω to Borel sets of Rn via the mapping (1), i.e.,

PX(A) = B(Rn) 7→ [0, 1] (2)

where PX(A) is defined as1

PX(A) = P ({ω ∈ Ω : X(ω) ∈ A}) for all A ∈ B(Rn). (4)

Joint CDFs and PDFs. The cumulative distribution function (CDF) of a X(ω) is defined as

F (x1, . . . , xn) = P ({ω : X1(ω) ≤ x1} ∩ · · · ∩ {ω : Xn(ω) ≤ xn}︸ ︷︷ ︸
event in B(Ω) defined as intersection of n events

). (5)

As before, if P is absolutely continuous with respect to the Lebesgue measure dx1 · · · dxn then there exists
a (Lebesgue integrable) probability density function2 (PDF) p(x1, . . . , xn) such that

F (x1, . . . , xn) =

∫ x1

−∞
· · ·

∫ xn

−∞
p(y1, . . . , yn)dy1 · · · dyn. (6)

Equivalently, we can express p(x1, . . . , xn) as a (weak) derivative of F (x1, . . . , xn) as

p(x1, . . . , xn) =
∂nF (x1, . . . , xn)

∂x1 · · · ∂xn
. (7)

The multivariate distribution function F and associated probability density function p satisfy similar
properties as the properties we have seen for one one random variable (see [13] for details). For instance
F is non-decreasing, with range in [0, 1], etc. Similarly, p is non-negative, and it allows us to compute the
probability of the event

{ω ∈ Ω : X(ω) ∈ A}

as

P (A) =

∫
A
p(x1, . . . , xn)dx1 · · · dxn. (8)

Frequency interpretation of the joint PDF: Consider a continuous random vector X(ω) (i.e., a random
vector with continuous CDF) with only two components, say X1(ω) and X2(ω). By using equations (5)
and (6) we have

P ({ω : x1 ≤ X1(ω) ≤ x1 +∆x1} ∩ {ω : x2 ≤ X2(ω) ≤ x2 +∆x2}) ≃ p(x1, x2)∆x1∆x2. (9)

1The set
X−1(A) = {ω ∈ Ω : X(ω) ∈ A} (3)

is known as pre-image of A under the mapping X(ω).
2Technically speaking, the joint probability density function p(x1, . . . , xn) is the Radon-Nikodym derivative of the proba-

bility measure P relative to the Lebesgue measure dx1 · · · dxn.
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Let us partition the tensor product space R2 with an evenly-spaced grid of width ∆x1 (along x1) and
∆x2 (along x2). Suppose we observe S realizations of X(ω) = (X1(ω), X2(ω)), and suppose that nA < S
instances satisfy the condition

{x1 ≤ X1(ω) ≤ x1 +∆x1} and {x2 ≤ X2(ω) ≤ x2 +∆x2}. (10)

Then from (9) we obtain the PDF estimate

p(x1, x2) ≃
1

∆x1∆x2

nA

n
. (11)

Of course there are methods other than relative frequencies to estimate PDFs from data/observations.
Among them, we have kernel methods [2] (see Figure 1) and generative modeling techniques based on
diffusion [14].

Marginal CFDs and PDFs. Let X(ω) = (X1(ω), X2(ω)) be a random vector with joint distribution
function function F (x1, x2). The distribution of the random variable X1(ω) can be obtained from F (x1, x2)
simply by sending x2 to infinity, i.e.,

F (x1) = lim
x2→∞

F (x1, x2). (12)

In fact,

lim
x2→∞

F (x1, x2) = P ({ω : X1(ω) ≤ x1} ∩ {ω : X2(ω) ≤ ∞}) = P ({ω : X1(ω) ≤ x1}) = F (x1). (13)

We can write the last equation in terms of PDFs as

lim
x2→∞

∫ x1

−∞

∫ x2

−∞
p(y1, y2)dy1dy2 =

∫ x1

−∞
p(y1)dy1. (14)

Since x1 is arbitrary, it follows from (14) that

p(x1) =

∫ ∞

−∞
p(x1, x2)dx2 (marginalization rule). (15)

Moreover, we have F (∞,∞) = 1, i.e.,∫ ∞

−∞

∫ ∞

−∞
p(x1, x2)dx1dx2 = 1 (normalization condition). (16)

It is straightforward to extend these formulas to distribution functions and PDFs in more than two vari-
ables. For example, if X(ω) = (X1(ω), X2(ω), X3(ω), X4(ω)) is a four-dimensional random vector with
distribution function F (x1, . . . , x4) and PDF p(x1, . . . , x4), then we can obtain the joint distribution func-
tion and the joint PDF of X2 and X3, respectively, as

F (x2, x3) = F (∞, x2, x3,∞), p(x2, x3) =

∫ ∞

−∞

∫ ∞

−∞
p(x1, x2, x3, x4)dx1dx4. (17)

Example (Gaussian distribution): Consider the multivariate Gaussian PDF

p(x1, . . . , xn) =
1√

(2π)n det(Σ)
e−(x−µ)TΣ−1(x−µ)/2, (18)
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where

xT =
[
x1 . . . xn

]
, (19)

µT =
[
E {X1} . . . E {Xn}

]
(mean), (20)

Σij =E {XiXj} − E {Xi}E {Xj} (covariance matrix). (21)

It is straightforward to show that all marginal PDF and distribution functions are still Gaussians of the
form (18).

Independence. Let (Ω,B, P ) be a probability space. Two events A ∈ B and B ∈ B are said to be
independent if the probability of their intersection (i.e., the probability that both events A and B happen)
equals the product of their probabilities, i.e.,

A,B ∈ B independent ⇔ P (A ∩B) = P (A)P (B). (22)

Consider now a random vector X(ω) = (X1(ω), X2(ω)) with components X1(ω) and X2(ω). We say that
the random variables X1(ω) and X2(ω) are statistically independent if

P ({ω : X1(ω) ≤ x1}︸ ︷︷ ︸
event A

∩{ω : X2(ω) ≤ x2}︸ ︷︷ ︸
event B

) = P ({ω : X1(ω) ≤ x1})P ({ω : X2(ω) ≤ x2}), (23)

for all x1, x2 ∈ R. Equation (23) can be written in terms of the cumulative distribution function as

F (x1, x2) = F (x1)F (x2). (24)

This also implies that the joint PDF of X1 and X2 (if it exists) is simply the product of the PDF of X1

and the PDF of X2, i.e.,
p(x1, x2) = p(x1)p(x2). (25)

These formulas can be generalized to n independent random variables as

F (x1, . . . , xn) = F (x1) · · ·F (xn), p(x1, . . . , xn) = p(x1) · · · p(xn). (26)

Examples:

• Jointly uniform random vector. Let X be a n-dimensional random vector with zero-mean i.i.d.
(independent identically distributed) uniform components in [-1,1]. The joint PDF of X is

p(x1, . . . , xn) =


1

2n
(x1, . . . , xn) ∈ [−1, 1]n

0 otherwise
(27)

• Jointly normal random vector. Let X be a n-dimensional random vector with zero-mean i.i.d. Gaus-
sian components with variance equal to one. The joint PDF of X is

p(x1, . . . , xn) =
1

(2π)n/2
e−xTx/2 x ∈ Rn. (28)

Clearly, from equation (18) we see that Gaussian random variables are independent if and only if

E {XiXj} = E {Xi}E{Xj} for i ̸= j. (29)

In general, if (29) is satisfied then we say that Xi and Xj are uncorrelated. Lack of correlation is a
much weaker statement than independence, yet sufficient to claim independence for Gaussian random
variables.
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Expectation, joint moments, and joint cumulants. Let X(ω) = (X1(ω), . . . , Xn(ω)) be a random
vector defined on the probability space (Ω,B, P ). For any measurable function g(X1, . . . , Xn) we define
the expectation3 as

E {g(X1, . . . , Xn)} =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, . . . , xn)p(x1, . . . , xn)dx1 · · · dxn. (31)

In particular, if g(X1, . . . , Xn) = Xk1
1 · · ·Xkn

n then

E
{
Xk1

1 · · ·X
kn
n

}
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
xk11 · · ·x

kn
n p(x1, . . . , xn)dx1 · · · dxn (joint moments) (32)

The correlation matrix4 and the covariance matrix are defined as (see, e.g., (18))

E {XiXj} =
∫ ∞

−∞

∫ ∞

−∞
xixjp(xi, xj)dxidxj (correlation matrix), (34)

E {(Xi − µi)(Xj − µj)} = E {XiXj} − µiµj (covariance matrix). (35)

where µi = E {Xi} (mean of Xi).

Remark: We say that two random variables Xi(ω) and Xj(ω) are uncorrelated if

E {XiXj} = E {Xi}E {Xj} . (36)

Independent random variables are always uncorrelated. In fact, let p(xi, xj) be the joint PDF of Xi and
Xj . We know that if Xi and Xj are independent then p(xi, xj) can be factorized as

p(xi, xj) = p(xi)p(xj). (37)

A substitution of (37) into (34) immediately yields (36). However, uncorrelated random variables are not
necessarily independent.

We define the moment generating function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) as

m(a1, . . . , an) = E
{
ea1X1+···+anXn

}
. (38)

3Note that the expectation E{·} is a linear operator from a space of functions, e.g., the space of real-valued functions that
are measurable with respect p(x1, . . . , xn). Also, we do not need to assume the existence of the PDF to define the expectation
operator. In fact, a more general expression for (31) is

E {g(X1, . . . , Xn)} =

∫
Ω

g(X1(ω), . . . , Xn(ω))dP (ω). (30)

4Note that (34) follows from (32) using the marginalization property of the PDF. For instance

E {X1X2} =

∫ ∞

−∞
· · ·

∫ ∞

−∞
x1x2p(x1, . . . , xn)dx1 · · · dxn

=

∫ ∞

−∞

∫ ∞

−∞
x1x2

(∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1, . . . , xn)dx3 · · · dxn

)
dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞
x1x2p(x1, x2)dx1dx2. (33)

.
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It is straightforward to show that

∂m(0, . . . , 0)

∂ai
=E{Xi}, (39)

∂2m(0, . . . , 0)

∂aj∂ai
=E{XiXj} (40)

∂3m(0, . . . , 0)

∂aj∂ai∂ak
=E{XiXjXk},

· · · (41)

Hence, the partial derivatives of the moment generating function evaluated at zero represent the joint
moments of the components of random vector X. Clearly, if m(a1, . . . , an) admits a convergent power
series expansion at 0 then all joint moments exist.

The cumulant generating function of the random vector X(ω) = (X1(ω), . . . , Xn(ω)) is defined as

Ψ(a1, . . . , an) = log(m((a1, . . . , an))). (42)

It is straightfoward to show that

∂Ψ(0, . . . , 0)

∂ai
=E{Xi}, (43)

∂2Ψ(0, . . . , 0)

∂aj∂ai
=E{XiXj} − E{Xi}E{Xj}, (44)

∂3Ψ(0, . . . , 0)

∂aj∂ai∂ak
=E{XiXjXk} − E{Xi}E{XjXk} − E{Xj}E{XiXk} − E{Xk}E{XiXj}

+ 2E{Xi}E{Xj}E{Xk},
· · ·

The quantities at the right hand side are known as joint cumulants of the random variables (X1, . . . , Xn).
The cumulants are often denoted as ⟨XiXj · · · ⟩c (see, e.g., [11])

⟨Xi · · · ⟩c =E{Xi},
⟨XiXj · · · ⟩c =E{XiXj} − E{Xi}E{Xj}, (45)

· · ·.

Characteristic function. The characteristic function of the random vector X(ω) = (X1(ω), . . . , Xn(ω))
is defined as

ϕ(a1, . . . , an) = E
{
ei(a1X1+···+anXn)

}
. (46)

Note that the characteristic function is the Fourier transform5 of the joint probability density function
p(x1, . . . , xn) and therefore it essentially carries the same information. The joint moments of X can be
computed as

E
{
Xk1

1 · · ·X
kn
n

}
=

1

ik1+···+kn

∂k1+···+knϕ(0, . . . , 0)

∂k1a1 · · · ∂knan
. (47)

It is interesting to notice that the marginalization operation we have seen for the PDF, e.g.,

p(x1) =

∫ ∞

−∞
p(x1, x2, . . . , xn)dx2 · · · dxn (48)

5The Fourier transform (46) is taken in the appropriate function space, e.g., L2(Rn) or in the space of tempered distributions
S(Rn).
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turns out to be simplified substantially in Fourier space. Indeed

ϕ(a1) = ϕ(a1, 0, . . . , 0) = E
{
eia1X1+i0X2···+i0Xn

}
. (49)

By using well-known series expansion of the complex exponential, it is possible to show that (see, e.g.,
[11])

ϕ(a1, a2, . . . , an) = exp

 ∞∑
ν1,...,νn=0

⟨Xν1
1 · · ·X

νn
n ⟩c

n∏
k=1

(iak)
νk

νk!

 , (50)

where the series at the exponent excludes the case ν1 = · · · = νn = 0. For example,

ϕ(a1, a2) = ϕ(a1)ϕ(a2) exp

 ∞∑
j,k=1

〈
Xj

1X
k
2

〉
c

(ia1)
j(ia2)

k

j!k!

 . (51)

Clearly, if X1 and X2 are independent we have
〈
Xj

1X
k
2

〉
c
= 0 for all i and j and therefore (51) reduces

to
ϕ(a1, a2) = ϕ(a1)ϕ(a2). (52)

Clearly, this equation is the Fourier transform of the PDF p(x1, x2) = p(x1)p(x2), and shows that if X1

and X2 are independent both the joint PDF and the joint characteristic function can be factorized as a
product of one-dimensional functions.

Joint PDF of m functions of n random variables. Let X(ω) = (X1(ω), . . . , Xn(ω)) be a random
vector with joint probability density function p(x1, . . . , xn). Define

Y1 = g1(X1, . . . , Xn)
...

Ym = gm(X1, . . . , Xn)

(53)

What is the joint probability density function of the random vector Y = (Y1, . . . , Ym)? Note that m can
be smaller, equal or larger than n. These cases need to be handled differently.

• If n = m and {g1, . . . , gm} are distinct functions we proceed as in Theorem 1 below.

• If m < n and {g1, . . . , gm} are distinct functions we can add m − n equations to complement the
system so that we have n independent equations in n variables:

Y1 = g1(X1, . . . , Xn)
...

Ym = gm(X1, . . . , Xn)

Ym+1 = Xm+1

...

Yn = Xn

(54)

Once the joint PDF of Y1, . . . , Yn is known (using Theorem 1 below) then we can marginalize it with
respect to (ym+1, . . . , yn) to obtain p(y1, . . . , ym) as

p(y1, . . . , ym) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(y1, . . . , ym, ym+1, . . . yn)dym+1 · · · dyn. (55)
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• If we have more equations than variables (i.e. m > n) then the computation of the joint PDF of
(Y1, . . . , Ym) is not as straightforward as above. Consider for example the mapping Y1(ω) = X(ω) and
Y2(ω) = X2(ω). Here we have two functions of the same random variable. Note also that Y2 = Y 2

1 .
It can be shown that the joint PDF of Y1 = X and Y2 = X2 is

p(y1, y2) = pX(y1)δ(y2 − y21), (56)

where pX is the PDF of X and δ(·) is the Dirac delta function.

Theorem 1. Let xk(y) (k = 1, . . . , r) be the zeros of the nonlinear system of equations y = g(x) defined
in (53) (for n = m) or in (54) (for m < n). The joint PDF of Y1, . . . , Yn is given by

pY (y) =
r∑

i=1

pX(xi(y))

|J(xi(y))|
, (57)

where J is the Jacobian determinant6 associated with the mapping g(x) evaluated at xi(y) (assumed
non-zero).

The proof of this theorem is provided in [13, Chapter 8].

Example 1: Consider the mapping

Y1 = X2
1 , Y2 = X1 +X2. (59)

Suppose we know the joint PDF of X1 and X2. What’s the joint PDF of Y1 and Y2? The following mapping
from (X1, X2) to (Y1, Y2) can be inverted as{

y1 = x21
y2 = x1 + x2

⇒

{
x1 = ±

√
y1

x2 = y2 ∓
√
y1

. (60)

The Jacobian determinant of (60) is easily obtained as

J(x1, x2) = det

[
2x1 0
1 1

]
= 2x1. (61)

Hence, by applying Theorem 1, we obtain the following joint PDF of Y1 and Y2 is

pY (y1, y2) =
1

2
√
y
[pX(

√
y1, y2 −

√
y1) + pX(−√y1, y2 +

√
y1)] y1 ≥ 0. (62)

Example 2: Consider the mapping

Y1(ω) = X1 Y2(ω) = 2 sin (2X1(ω) +X2(ω)) , (63)

where X1 and X2 and independent Gaussians with zero mean and variance one. In Figure 1 we estimate
the joint PDF of Y1 and Y2 using the frequency approach approach, i.e., formula (11), and the 2D kernel
density estimation method discussed in [2].

6In (57) it is assumed that

J(xi(y)) = det

[
∂g(x)

∂x

]
x=xi(y)

̸= 0. (58)
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n = 104 n = 106

Figure 1: Estimation of the joint PDF of the random variables Y1 = X1 and Y2 = 2 sin(2X1 +X2) where
X1 and X2 and independent Gaussians with zero mean and variance one. We show the results we obtain
with the frequency approach, i.e., formula (11) and the 2D kernel density estimation method discussed in
[2] (transparent surface plot). We plot results for a different number of samples n.

Other methods to compute the joint PDF of functions of random vectors. There are of course
other methods to compute the joint PDF (Y1, . . . , Ym), given the joint PDF (X1, . . . , Xn). For instance,
methods based on the Dirac delta function [8], or methods based on the joint characteristic function. With
reference to the previous example we have the joint characteristic function

ϕY (a1, a2) =

∫ ∞

−∞

∫ ∞

−∞
eia1x

2
1+ia2(x1+x2)p(x1, x2)dx1dx2. (64)

Clearly, if ϕY (a1, a2) can be computed then we can simply inverse Fourier transform it to obtain the joint
PDF of (Y1, Y2). By using Dirac delta functions we can represent directly the joint PDF of the random
variable

Y (ω) = g(X1(ω), . . . , Xn(ω)), (65)

as

p(y) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
δ(y − g(x1, . . . , xn))p(x1, . . . , xn)dx1 · · · dxn (66)

=
1

2π

∫ ∞

−∞
· · ·

∫ ∞

−∞
eia(y−g(x1,...,xn))p(x1, . . . , xn)dx1 · · · dxnda. (67)

Example 3: Let Y1 = X and Y2 = X2 (two functions of one random variable). What is the joint PDF
of Y1 and Y2? The mapping (53) yields a Jacobian determinant that is zero, and therefore the mapping
it is not invertible. This implies that theorem (1) cannot be applied. However, using the characteristic
function approach we obtain

ϕ(a1, a2) =

∫ ∞

−∞
eia1x+ia2x2

pX(x)dx. (68)
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Taking the inverse Fourier transform yields,

p(y1, y2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
eia1(x−y1)+ia2(x2−y2)pX(x)dxda1da2

=
1

2π

∫ ∞

−∞
δ(x− y1)e

ia1(x2−y2)pX(x)dxda2

=δ(y21 − y2)pX(y1). (69)

Example 4: If X is Gaussian with mean µ and covariance Σ, and A is invertible then Y = AX is
Gaussian with mean Aµ and covariance AΣAT . To show this, we notice that we have the unique solution
X = A−1Y . Hence by applying Theorem 1 we obtain the following PDF of Y

pY (y) =
pX

(
A−1y

)
|det(A)|

=
1√

2π)n det(AΣAT )
exp

[
−1

2

(
A−1y − µ

)T
Σ−1

(
A−1y − µ

)]
=

1√
2π)n det(AΣAT )

exp

[
−1

2
(y −Aµ)T

(
AΣAT

)−1
(y −Aµ)

]
. (70)

Remark: If (X1, . . . , Xn) are independent random variables and (g1, . . . , gn) are n functions from R into R,
then Y1 = g1(X1), . . ., Yn = gn(Xn) are independent random variables. It is straightforward to prove this
statement using the Dirac delta function representation (or the characteristic function) of PDF mapping
[8]. To this end, let

Yi(ω) = gi(Xi(ω)). (71)

We have

p(y1, . . . , yn) =

∫ ∞

−∞

n∏
j=1

δ(yj − gj(xj))p(x1, . . . , xn)dx1 · · · dxn

=

n∏
j=1

∫ ∞

−∞
δ(yj − gj(xj))p(xj)dxj

=p(y1) · · · p(yn). (72)

Sum of independent random variables. The PDF of the sum of independent random variables is the
convolution the PDF of each variable. For example, let

Y = X1 +X2 +X3 (73)

be the sum of three independent random variables X1, X2 and X3, with PDFs p1(x1), p2(x2) and p3(x3)
respectively. By using (66) we obtain

p(y) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(y − x1 − x2 − x3)p(x1, x2, x3)dx1dx2dx3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x1 − y + x2 + x3)p1(x1)p2(x2)p3(x3)dx1dx2dx3

=

∫ ∞

−∞

∫ ∞

−∞
p1(x2 + x3 − y)p2(x2)p3(x3)dx2dx3

=

∫ ∞

−∞

∫ ∞

−∞
p1(x1 − y)p2(x1 − x3)p3(x3)dx1dx3. (74)
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In the last equality we considered the mapping x1 = x2 + x3 as a coordinate change from x1 to x2 with
parameter x3. Note that the process of computing the PDF of the sum of independent random variables
can be also seen as a hierarchical process in which we proceed with two variables at a time To this end,
we first compute the PDF of Z = X2 +X3 as

pZ(z) =

∫ ∞

−∞
p2(z − x3)p3(x3)dx3. (75)

Clearly, Z is independent of X1 and therefore the PDF of Y = Z +X1 is

pY (y) =

∫ ∞

−∞
p1(y − x1)pZ(x1)dx1. (76)

A substitution of (75) into (76) yields (74). A more direct proof relies on the characteristic function, which
is the Fourier transform of (74). In fact

ϕY (a) =E
{
eia(X1+X2+X3)

}
=E

{
eiaX1eiaX2eiaX3

}
=E

{
eiaX1

}
E
{
eiaX2

}
E
{
eiaX3

}
. (77)

In the last step we used the fact that the expectation of a product of independent variables is the product
of expectation. Equation (77) can be written as

ϕY (a) = ϕX1(a)ϕX2(a)ϕX3(a) (78)

The inverse Fourier transform of (78) yields (74).

Example (sample average): Consider an experiment where we sample N independent realizations of a
random variable X(ω) (like rolling a dice N times) and then take an average of all outcomes. Denote by
Xj(ω) the outcome of the random variable X(ω) at the j-th sampling step and define

XN (ω) =
X1(ω) +X2(ω) + · · ·XN (ω)

N
(sample average). (79)

In this equation Xj(ω) are i.i.d. random variables with the same distribution as X(ω). Clearly if we
repeat the sampling experiment multiple times, we have that XN (ω) attains different values (the samples
of {X1, . . . , XN} are different from experiment to experiment). As we will see when we study Monte Carlo
sampling methods, XN (ω) is an approximation of E{X}, i.e.,

E{X} =
∫ ∞

−∞
xpX(x)dx ≃ XN (ω) =

X1(ω) +X2(ω) + · · ·XN (ω)

N
. (80)

By using (77) and (78) it is straightforward to compute the characteristic function of XN (ω), and therefore
its PDF. Specifically, we obtain7

ϕXN
(a) = E

{
eiaXj/N

}N
for any fixed j. (81)

Let us provide two illustrative examples.

7Recall that the variables Xj are i.i.d. and therefore they have the same PDF and same characteristic function.
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• Sample average of a Gaussian random variable: Consider a Gaussian random variable X(ω) with
PDF

pX(x) =
1√
2π

e−x2/2. (82)

The sample average (79) in this case is a combination of i.i.d. variables Xj , all of which have PDFs
(82). This implies that Xj/N are Gaussians with variance 1/N2, i.e.,

pXj/N (x) =
N√
2π

e−x2N2/2. (83)

The characteristic function of Xj/N , i.e., E
{
eiaXj/N

}
is obtained by taking the Fourier transform of

(83). This yields

E
{
eiaXj/N

}
= e−a2/(2N2) (84)

Taking the product in (81) we obtain

ϕXN
(a) = e−a2/(2N) ⇔ pXN

(x) =

√
N

2π
e−x2/(2N). (85)

Therefore, the sample average XN (ω) is distributed as a Gaussian random variable with variance
1/N . This means that as we sum up more and more terms in (79) we have a concentration of measure
phenomenon such that the Gaussian 85 gets more and more concentrated nearby 0. Moreover,∣∣XN (ω)− E{X}

∣∣ = O

(
1√
N

)
(86)

i.e., the sample mean XN (ω) converges8 to the mean of X(ω) at a rate 1/
√
N .

• Sample average of a Cauchy random variable: Consider a Cauchy random variable X(ω) with PDF

pX(x) =
1

π (1 + x2)
(87)

We have seen that all moments of X (including the mean) are undefined, e.g.,∫ ∞

−∞
xpX(x)dx =∞−∞. (88)

Does that mean that if we sample the Cauchy variable X and compute the sample mean (79) we
may not converge to anything even for a very large number of samples N? Yes! To show this, recall
that the PDF of Xj/N in this case is

pXj/N (x) =
N

π (1 +N2x2)
. (89)

The Fourier transform of this PDF is

ϕXj/N (a) = E
{
eiaXj/N

}
= e|a|/N . (90)

Therefore the characteristic function and PDF of the sample average (79) is

ϕXN
(a) = e|a| ⇔ pXN

(x) =
1

π (1 + x2)
, (91)

independently of the number of samples N ! Stated in different terms: no matter how many samples
we consider, we have that the sample average of a Cauchy random variable is always a Cauchy random
variable.

8As we will see, there are different modes of convergence of sequences of random variables, e.g., converge in probability,
convergence in distribution, mean-square convergence, etc. In this case we have mean square convergence, which implies
convergence in probability (thanks to the Markov inequality), and convergence in distribution.
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Mapping random vectors to random vectors with desired distributions. It is always possible
to flow a multivariate PDF p0(x) into another multivariate (target) PDF p1(x) using a time-dependent
vector field, i.e., a system of ODEs of the form

dx(t)

dt
= f(x, t) x(0) = X0(ω). (92)

Indeed, as shown in Appendix A, the PDF of the state vector of the dynamical system (92) satisfies the
Lioville equation

∂p(x, t)

∂t
+∇ · [f(x, t)p(x, t)] = 0. (93)

Of course, if we set p(x, 0) = p0(x) and p(x, 1) = p1(x) we can design (via optimization) a vector f(x, t)
that transports p0(x) to p1(x). This concept has been recently leveraged to develop samplers for arbitrary
PDFs p1(x). The idea is to sample a known PDF p0(x), i.e., sample X0(ω) and then flow such samples
to samples of p1(x) using (92) and an appropriate (optimized) vector field f(x, t). Techniques such as
continuous normalizing flows and flow-matching approaches [12, 6] are notable examples of methods in
this category. Note that the target distribution can also be the distribution of a vector with independent
components. In this sense, we can flow an arbitrary PDF into a fully separated one, hence transforming
the components of an arbitrary random vector into independent random variables. In addition, the vector
field f(x, t) can be chosen to minimize a Wasserstein metric or other metrics (e.g. the KL divergence), in
which case we talk about optimal mass transport [10].

Rosenblatt transformation. Another transformation that allows us to map a PDF p0(x) into another
(arbitrary) PDF p1(x) is the Rosenblatt transformation [17]. Essentially, one can show that there exists a
unique monotone increasing transformation of the form

T (x) = (T1(x1), T2(x1, x2), . . . , Tn(x1, x2, . . . , xn)) (94)

such that
p0(T (x)) det(∇T (x)) = p1(x). (95)

In this setting, the samples of p1(x) are obtained by simply mapping the samples of p0(x) via the trans-
formation T (x) (when available). For the computation of T (x) see [17] and the references therein.

Mapping correlated Gaussian vectors to independent ones. To transform a correlated Gaussian
vector into an independent one we just need a linear map. Essentially, if X is Gaussian with zero mean
and identity covariance then

Y = AX + µ (96)

has mean µ and covariance Σ = AAT . This means that if we are interested in sampling a correlated
Gaussian we can simply decompose the covariance Σ using the Cholesky factorization, sample X and map
the samples as in (96), where A is the lower-triangular factor of the Cholesky decomposition. Similarly,
if we to “de-correlate” a correlated Gaussian vector Y we can apply invert the Cholesky factor of the
covariance matrix and construct the vector

X = A−1(Y − µ). (97)

Lebesgue spaces of random variables. The expectation operator E{·} is a linear integral operator
over a probability measure. Such an operator can be used to define norms and inner products in spaces of
random variables. For example,

E {|X|q} =
∫
Ω
|X(ω)|qdP (ω) q ∈ N (98)
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is essentially a weighted q norm. The space of random variables satisfying E {|X|q} < ∞ is denoted as
Lq(Ω,B, P ), in analogy with the classical Lebesgue space for functions. The case q = 2 is of particular im-
portance as it has the structure of a Hilbert space. Specifically, for any two random variables in L2(Ω,B, P )
we have the inner product

E {XY } =
∫
Ω
X(ω)Y (ω)dP (ω) (99)

and the norm

E
{
X2

}
=

∫
Ω
X(ω)2dP (ω). (100)

The inner product (99) allows us to define orthogonal random variables. Specifically, X(ω) and Y (ω) are
orthogonal in L2(Ω,B, P ) if they are uncorrelated, i.e., E {XY } = 0. Also, X(ω) and Y (ω) are orthonormal
if they are orthogonal and have norm equal to one, i.e., E

{
X2

}
= E

{
Y 2

}
= 1.

Application to dynamical systems

Consider the following linear dynamical system{
ẋ(t) + ξ(ω)x(t) = 0
x(0) = x0(ω)

(101)

where ξ(ω) and x0(ω) are independent random variables. Specifically ξ(ω) is uniformly distributed in [0, 1],
while x0(ω) is Gaussian random variable with mean zero and variance one. As is well-known, the analytical
solution of (101) is

x(t;ω) = x0(ω)e
−tξ(ω). (102)

Let us compute the mean, the second-order moment and the auto-correlation function of the solution
x(t;ω), i.e., E{x(t;ω)}, E{x(t;ω)2}, and E{x(t;ω)x(t′ω)} versus time. We have

E {x(t;ω)} = 1√
2π

∫ ∞

−∞
x0e

−x2
0/2dx0

∫ 1

0
e−tξdξ = 0, (103)

E
{
x(t;ω)2

}
=

1√
2π

∫ ∞

−∞
x20e

−x2
0/2dx0

∫ 1

0
e−2tξdξ =

1

2t

(
1− e−2t

)
, (104)

E
{
x(t;ω)x(t′;ω)

}
=

1√
2π

∫ ∞

−∞
x20e

−x2
0/2dx0

∫ 1

0
e−(t+t′)ξdξ =

1

t+ t′

(
1− e−(t+t′)

)
. (105)

The one-time probability density function of x(t;ω) can be easily computed by using the Dirac delta
function approach [8]. Indeed,

p(x, t) =
1√
2π

∫ ∞

−∞

∫ 1

0
δ
(
x− x0e

−ξt
)
e−x2

0/2dx0dξ

=
1√
2π

∫ ∞

−∞

∫ 1

0

δ
(
x0 − xeξt

)
e−ξt

e−x2
0/2dx0dξ (106)

=
1√
2π

∫ 1

0
eξt−(xeξt)2/2dξ. (107)

Now consider the change of variables from ξ to u defined as

u =
xeξt√

2
⇒ dξ =

√
2

xt
e−ξtdu. (108)
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A substitution of (108) into (107) yields

p(x, t) =
1

xt
√
π

∫ xet/
√
2

x/
√
2

e−u2
du (109)

=
1

xt
√
π

[
erf

(
xet√
2

)
− erf

(
x√
2

)]
. (110)

Liouville equation approach: We can transform the linear system (101) involving one random variable
at the right hand side to an equivalent 2D linear system evolving from a random initial state (an no random
variables at the right hand side). To this end, we notice that

ẋ(t) + yx(t) = 0
ẏ(t) = 0
x(0) = x0(ω)
y(0) = ξ(ω)

(111)

is completely equivalent to (101). In this setting, we can derive a linear transport equation for the joint
PDF of x(t;ω) and y(t;ω), i.e., x(t;ω) and ξ(ω). Such PDF equation takes the form

∂p(x, y, t)

∂t
=

∂

∂x
(xyp(x, y, t)) +

∂

∂y
(xyp(x, y, t))

p(x, y, 0) = px0(x)pξ(y)
(112)

It can be verified by a direct substitution that the solution the initial value problem (112) is

p(x, y, t) =
1√
2π

eyt−(xeyt)2/2. y ∈ [0, 1], x ∈ R. (113)

Note that the joint PDF (113) was already obtained in equation (107), right before marginalizing with
respect to ξ.

Conditional probability. Conditional probability is a measure of the probability of an event A occurring,
given that another event B has already occurred. Such probability defined as9

P (A|B) =
P (A ∩B)

P (B)
. (114)

Note that the conditional probability is non-zero if A and B are intersecting. Also note that if B is a
subset of A then P (A|B) = 1.

Clearly, if A and B are independent events then by equation (22) we have that P (A ∩ B) = P (A)P (B).
This implies that if A and B are independent then P (A|B) = P (A). In other words, B has no effect
whatsoever on the probability of A occurring. Moreover, P (A ∩ B) ≤ P (B) (also P (A ∩ B) ≤ P (A)) and
therefore we always have that

P (A|B) ≤ 1. (115)

9An example of conditional probability could be the following:

• Event A: “Daniele’s team scores a goal”.

• Event B: “Daniele takes a shot”.

The conditional probability P (A|B), i.e., the probability that Daniele’s team scores a goal, conditional to Daniele taking a
shot equals the probability that Daniele takes a shot and scores a goal, divided by the probability that Daniele takes a shot.

Page 14



AM 238 Prof. Daniele Venturi

In the context of random vectors with multiple components, we may be interested in determining the con-
ditional probability of an event involving one component, given that an event involving another component
has already occurred. This yields the concept of conditional CDF and conditional PDF. Let us first clarify
these concepts for a random vector with only two components X(ω) = (X1(ω), X2(ω)). By using the
definition of the cumulative distribution function (5) we define (see [13, Ch. 7])

F (x1|x2) =
F (x1, x2)

F (x2)
⇔ F (x1, x2) = F (x1|x2)F (x2). (116)

Conditioning on particular outcomes. The determination of the conditional density of X1(ω) given
X2(ω) = x2, i.e., when X2(ω) attains a specific deterministic value x2, is of particular interest. This
density cannot be derived directly from (114) or (116) because, as we know, the event X2(ω) = x2 has
zero probability (if X2 is a continuous random variable). However, one can make sense of such conditional
probability by taking a suitable limit. Specifically, consider

P ({X1(ω) ≤ x1}︸ ︷︷ ︸
A

∩{x2 < X2(ω) ≤ x2 +∆x2}︸ ︷︷ ︸
B

) = F (x1, x2 +∆x2)− F (x1, x2) (117)

and
P ({x2 < X2(ω) ≤ x2 +∆x2}) = F (x2 +∆x2)− F (x2). (118)

In (117) it is understood that F (x1, x2) is the joint distribution function of (X1, X2), while in (118) F (x2)
denotes the distribution function of X2 alone. Clearly, for small ∆x2

F (x1, x2 +∆x2)− F (x1, x2) ≃ ∆x2

∫ x1

−∞
p(y1, x2)dy1, (119)

and
F (x2 +∆x2)− F (x2) ≃ p(x2)∆x2. (120)

Using (117)-(120) we can calculate the conditional probability

P ({X1(ω) ≤ x1} ∩ {x2 < X2(ω) ≤ x2 +∆x2})
P ({x2 < X2(ω) ≤ x2 +∆x2})

≃
∆x2

∫ x1

−∞
p(y1, x2)dy1

∆x2p(x2)
. (121)

By sending ∆x2 to zero gives

F (x1|X2 = x2) =

∫ x1

−∞
p(y1, x2)dy1

p(x2)
(conditional CDF). (122)

Finally, by differentiating the previous equation with respect to x1 we obtain

p(x1|X2 = x2) =
p(x1, x2)

p(x2)
(conditional PDF). (123)

In summary, to compute the conditional PDF, p(x1|X2 = x2) we literally take a section of the joint
p(x1, x2) for some fixed value of x2 and then rescale the function we obtain by the number p(x2), i.e., the
one-dimensional PDF of p(x) of X2(ω) evaluated at x = x2. This procedure is illustrated in Figure 2 for a
PDF represented in terms of a point cloud. Equation (123) can be written as

p(x1, x2) = p(x1|x2)p(x2) = p(x2|x1)p(x1) (124)

which yields the identities

p(x2) =

∫ ∞

−∞
p(x2|x1)p(x1)dx1, p(x1) =

∫ ∞

−∞
p(x1|x2)p(x2)dx2. (125)

Page 15



AM 238 Prof. Daniele Venturi

Figure 2: Point clouds representing the joint PDF of the phase variables x1(t) and x3(t) of the Kraichnan-
Orzag system at different times, i.e., p(x3, x1, t). Shown is the procedure to compute the conditional PDF
p(x3|x1, t) and the corresponding conditional mean E{X3|X1 = x1}.

The conditional probability density rule can be generalized to multiple random variables. For instance, if
p(x1, x2, x3, x4) denotes the joint PDF of four random variables then

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4). (126)

Moreover, conditional probability densities satisfy the marginalization rule. For instance

p(x1, x3|x4, x5) =
∫ ∞

−∞
p(x1, x2, x3|x4, x5)dx2. (127)

This property follows directly from the definition of conditional probability density (123).

Conditional expectation. Let X(ω) and Y (ω) be two random vectors defined on the probability space
(Ω,B, P ). The conditional mean of g(X(ω)) (g is a measurable function) assuming Y (ω) = y is defined
as10

E{g(X)|Y = y} =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x)p(x|y)dx, (128)

where

p(x|y) = p(x,y)

p(y)
(129)

is the conditional PDF of X(ω) given Y (ω) = y. Note that the E{g(X)|Y = y} is a function of y.
The conditional mean defined in equation (128) allows us to write the conditional moments of a random

10The conditional mean in equation (128) is often written as E{g(X)|Y }.
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variable or a random vector, given information on another random vector. For example, the conditional
mean and conditional correlation of X given Y (ω) = y are defined as

E{Xi|Y = y} =
∫ ∞

−∞
xip(xi|y)dxi, (130)

E{XiXj |Y = y} =
∫ ∞

−∞

∫ ∞

−∞
xixjp(xi, xj |y)dxidxj . (131)

The conditional mean of a system with two random variables is visualized in Figure 2. By combining (129),
(128) and (31) we see that

E{g(X)} =
∫ ∞

−∞
· · ·

∫ ∞

−∞
E{g(X)|Y = y}p(y)dy. (132)

In this sense, E{g(X)|Y = y} can be interpreted as a random variable, i.e., a scalar function of the random
variable Y which, if averaged over p(y), yields exactly E{g(X)}.

Bayes’ theorem. Let p(x,y) the joint probability density of two random vectors. Using conditional
probabilities we have

p(x,y) = p(x|y)p(y) = p(y|x)p(x) ⇔ p(x|y) = p(y|x)p(x)
p(y)

. (133)

This can be written, e.g., as

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx

. (134)

Note that by using the marginalization rule we also have

p(x) =

∫
p(x|y)p(y)dy. (135)

Sampling high-dimensional PDFs using Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) refers to a class of methods that allow us to sample high-dimensional
probability density functions [3]. In MCMC we construct a discrete Markov process that has a stationary
PDF that coincides with the PDF of interest, i.e., the PDF we’d like to sample from. Hence, simulations of
the Markov chain provide samples of the high-dimensional PDF we are interested in, once a transient called
burn-in phase of the chain, is completed. To simulate the Markov chain it is common to use the Monte
Carlo method, hence the name Markov Chain Monte Carlo. There are many different MCMC algorithms
available to sample from high-dimensional PDFs. Perhaps, the simplest ones are

• Gibbs sampling (briefly described hereafter);

• Metropolis-Hastings algorithm (see [3]).

Gibbs sampling. Suppose we are given a three-dimensional PDF p(x1, x2, x3) and that the conditional
PDFs p(x1|x2, x3), p(x2|x1, x3) and p(x3|x1, x2) are all available11. To sample from p(x1, x2, x3) we proceed
as follows:

11Recall that to compute the conditional PDF p(x1|x2, x3) we literally set x2 and x3 in p(x1, x2, x3) equal to some number,
say x2 = x∗

2 and x3 = x∗
3 and then normalize the one-dimensional function p(x1, x

∗
2, x

∗
3) so that the integral with respect to x1

equals one.
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1. Initialize x2 = x
(i)
2 and x3 = x

(i)
3 . Here x

(i)
2 and x

(i)
3 are two real numbers. The superscript “i” is an

integer number that labels the sample

X(i)(ω) =
[
x
(i)
1 (ω) x

(i)
2 (ω) x

(i)
3 (ω)

]
i ∈ N. (136)

2. Sample a new x
(i+1)
1 from the one-dimensional conditional PDF p

(
x1|x(i)2 , x

(i)
3

)
(e.g., using the inverse

CDF approach).

3. With the sample x
(i+1)
1 available, sample a new x

(i+1)
2 from the one-dimensional conditional PDF

p
(
x2|x(i+1)

1 , x
(i)
3

)
.

4. With the sample x
(i+1)
2 available, sample a new x

(i+1)
3 from the one-dimensional conditional PDF

p
(
x3|x(i+1)

1 , x
(i+1)
2

)
.

5. Update x
(i)
j ← x

(i+1)
j for j = 1, 2, 3 and go back to point 2.

This algorithm allows us to compute X(i+1) from X(i) by sampling known one-dimensional conditional
transition densities. To sample from such arbitrary one-dimensional transition densities we can use different
methods. If the inverse cumulative distribution of each conditional PDF is known (or computable), then
we are all set. In fact we can just sample a uniform PDF in [0, 1] and then map such samples using the
inverse cumulative distribution function. The mapping X(i) → X(i+1) defines a random walk in R3. It
can be shown that the stationary distribution of such random walk coincides with p(x1, x2, x3). In other
words, after the burn-in phase is completed, i.e., for sufficiently large i, we have that X(i)(ω) are samples
of the joint PDF p(x1, x2, x3).

Example (Gibbs’s sampling): Suppose we are interested in sampling the joint PDF

p(x1, x2) = K sin2(x1x2), (x1, x2) ∈ [0, 1]2 (137)

where

K =
4

2− Si(2)
Si(x) =

∫ x

0

sin(t)

t
dt (138)

using Gibbs’ sampling. To this end, we first compute the marginals

p(x1) =
K

2

(
1− sin(2x1)

2x1

)
, (139)

p(x2) =
K

2

(
1− sin(2x2)

2x2

)
, (140)

and the conditionals

p(x1|x2) =
p(x1, x2)

p(x2)
=

4x2 sin
2(x1x2)

2x2 − sin(2x2)
, (141)

p(x2|x1) =
p(x1, x2)

p(x1)
=

4x1 sin
2(x1x2)

2x1 − sin(2x1)
. (142)

In Figure 3 we plot the PDF (137) and the samples we obtain from the Gibbs’ algorithm. To sample from
(141)-(142) we use the 1D inverse CDF algorithm with numerically computed CDFs.
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Figure 3: Plot of the 2D PDF (137) and samples of such PDF obtained by using Gibbs sampling.

Sampling approximate high-dimensional PDFs using copulas

A copula is a multivariate cumulative distribution function on [0, 1]n. Copulas are used to model the
dependence between random variables. Given a random vector

X(ω) = (X1(ω), . . . , Xn(ω)) (143)

we know can transform each component to a uniform random variable via the probability mappings

Ui(ω) = Fi(Xi(ω)) i = 1, . . . , n. (144)

A copula is defined as the cumulative distribution function of (U1, . . . , Un), i.e.,

FU (u1, . . . , un) = P {{ω : U1(ω) ≤ u1} ∩ · · · ∩ {ω : Un(ω) ≤ un}} . (145)

The copula FU is a CDF on the unit cube [0, 1]n, and it contains all information on the dependence structure
between the components of the random vector X(ω). Note that by using the definition (144)

FU (u1, . . . , un) =P {{ω : U1(ω) ≤ u1} ∩ · · · ∩ {ω : Un(ω) ≤ un}}
=P {{ω : F1(X1(ω)) ≤ u1} ∩ · · · ∩ {ω : Fn(Xn(ω)) ≤ un}}
=P

{
{ω : X1(ω) ≤ F−1

1 (u1)} ∩ · · · ∩ {ω : Xn(ω) ≤ F−1
n (un)}

}
=FX

(
F−1
1 (u1), . . . , F

−1
n (un)

)
. (146)

Moreover, equation (146) can be reversed to obtain

FX(x1, . . . , xn) = FU (F1(x1), . . . , Fn(xn)) . (147)

Hence, it appears that it is always possible write the joint CDF FX(x1, . . . , xn) of a random vector X in
terms of a copula FU (u1, . . . , un) and the individual CDFs Fi of each component Xi(ω). This result is
known as Sklar’s theorem (see, e.g., [5, Theorem 1.9]).

By differentiating (147) with respect to (x1, . . . , xn) yields the copula representation of the PDF of X,
i.e.,

pX(x1, . . . , xn) = pU (F1(x1), . . . , Fn(xn))p1(x1) · · · pn(xn), (148)

where pU (u1, . . . , un) is the PDF of the copula.
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Gaussian copula. The Gaussian copula is a distribution over the unit cuve [0, 1]n. It is constructed from
a multivariate normal distribution by using simple one-dimensional probability mappings.

For a given correlation matrix R the Gaussian copula is defined as

FU (u1, . . . , un) = FGauss
R

(
F−1
g (u1), . . . , F

−1
g (un)

)
, (149)

where FGauss
R is the CDF of a zero-mean Gaussian with correlation matrix R, and Fg are one-dimensional

CDFs of standard Gaussian variables with zero mean and variance one, i.e.,

Fg(u) =
1

2

[
1 + erf

(
u√
2

)]
. (150)

By differentiating (149) with respect to {u1, . . . , un} we obtain12

pU (u1, . . . , un) =
1√

det(R)
exp

[
1

2
zu

(
I −R−1

)
zT
u

]
, (152)

where
zu =

[
F−1
g (u1), . . . , F

−1
g (un)

]
. (153)

Sampling from Gaussian copulas. Suppose we are interested in sampling a random vector X with
given marginals p(xi) and correlation function

Cij = E {XiXj} (154)

In other words, we are not interested in sampling the full PDF of X (which may not have available) but
rather create an approximate model, i.e., a surrogate, that allows us to sample the vector given only its
marginals and the correlation matrix C.

Gaussian copulas can be used for that as they have sufficient degrees of freedom to enforce a correlation
structure while being consistent with marginals. The procedure to sample a Gaussian copula is very
simple:

1. We first sample realizations of a Gaussian vector with zero mean and unit variance, say Z(j).

2. Such sample vectors are then transformed to a vector with correlation R (copula correlation) using
the Cholesky factor13 of R. Call such samples Y (j) = LZ(j) (L is the lower-triangular Cholesky
factor of R).

3. Each component of the rotated vectors is then mapped to a uniform distribution via the Gaussian
probability mapping Fg (which is the same for all components), i.e., U (i) = Fg(Y

(j)). The samples
U (j) are samples of the Gaussian copula.

4. At this point we generate a sample of the random vector of interest as X by using the marginal CDF
mapping as

X(i) =
[
F−1
1

(
U

(i)
1

)
, . . . , F−1

n

(
U (i)
n

)]
. (156)

12Recall that
dF−1

g (Fg(x))

dx
= 0 ⇒

dF−1
g (u)

du
=

1

F ′
g(F

−1
g (u))

=
1

p
(
F−1
g (u)

) . (151)

This explains the term zuIz
T
u in (152).

13The matrix R is symmetric and positive definite. Hence it admits the Cholesky factorization R = LLT where L is lower
triangular with positive diagonal entries. If Z is a Gaussian vector with zero mean and unit covariance then Y = LZ is a
Gaussian vector with zero mean and covariance R. In fact

E
{
Y Y T

}
= LE

{
ZZT

}
LT = LLT = R. (155)
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Nataf transformation. It is important to emphasize that the correlation matrix R is not the correlation
matrix C of the vector X we are interested in sampling, but rather the “copula correlation matrix”. There
is of course a relation between the two. Indeed, by using the the copula PDF we have

Cij =

∫
[0,1]2

F−1
i (ui)F

−1
j (uj)pU (ui, uj ; ρij)duiduj (157)

where

pU (ui, uj ; ρij) =
1√

1− ρ2ij

exp

[
1

2(1− ρ2ij)

[
2ρijF

−1
g (ui)F

−1
g (uj)− ρ2ij

(
F−1
g (uj)

2 + F−1
g (uj)

2
)]]

(158)

are 2D marginals14 of (152). Given a target correlation matrix Cij , we can campute the copula correlation
coefficients ρij by solving the following sequence of 1D optimization problem

min
ρij∈[−1,1]

∣∣∣∣∣Cij −
∫
[0,1]2

F−1
i (ui)F

−1
j (uj)pU (ui, uj ; ρij)duiduj

∣∣∣∣∣ j > i. (160)

Once all off-diagonal entries of R are computed in this way, we end up with the symmetric correlation
matrix

R =


1 ρ12 . . . ρ1n
ρ12 1 . . . ρ2n
...

. . .
...

ρ1n ρ2n . . . 1

 (161)

which may not be positive definite. The reason is that we ran a greedy optimization process where we
computed each entry of R separately. The closest (in the Frobenious norm) positive definite matrix to R
is easily obtained by doing a spectral decomposition and chopping of all negative eigenvalues.

R = QΛQT ⇒ R+ = QΛ+QT Λ+ = max{Λ,0}. (162)

The transformation between correlated Gaussian copula variable (with correlation R) and the vector X
with given marginal distributions and correlation C is called Nataf transformation.

Example: Let us use Gaussian copulas to sample a random function f(x;ω) evaluated at N = 100 evenly-
spaced grid points xj . This yields a joint PDF in 100 dimensions. For this test problem, consider

f(x;ω) = sin(3x)eξ1(ω)+ξ2(ω) + ecos(2x−2)ξ3(ω) +
2ξ4(ω)

2 sin(2x) + 3
x ∈ [0, 3π], (163)

where (ξ1, . . . , ξ4) are four i.i.d uniform random variables in [0, 1]. The random vector representing f(x;ω)
on the spatial grid has components

Xj = f(xj ;ω), xj =
3π(j − 1)

N − 1
, j = 1, . . . , 100. (164)

We are given the marginals of f(x;ω), i.e., the PDFs of f(xi;ω) at each spatial point xi (see Figure 4),
and the two-point correlation

Cij = E {f(xi;ω)f(xj ;ω)} . (165)

In Figure 5 we compare the correlation of the samples obtained from the Gaussian copula with the bench-
mark correlation. It is seen that the Gaussian copula has basically the same correlation and also the same
marginals (see Figure 4) as the benchmark model.

14Recall that, by definition, the covariance of a Gaussian copula has ones along the diagonal (variances are one). This
implies that the off-diagonal entries of R coincide with the correlation coefficients ρij , i.e.,

Rij =

[
1 ρij
ρij 1

]
(159)
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Figure 4: Marginals of the random function at points x10, x11 and x20. Comparison between reference
marginals and marginals obtained from the Gaussian copula approximation. Note also that the marginals
p10 and p11 overlap significantly due to the proximity of the spatial points x10 and x11 and the smoothness
of the random function (163).

In Figure 6 we plot a few samples of the Gaussian copula approximation and compare them with samples
of the (163). Note that there exists a strong correlation structure in the random function (163) due to
smoothness. Hence sampling each marginal distribution independently would completely destroy such
correlation structure and result in sample patterns that are essentially Brownian motion (zig-zag) sort of
noise. On the other hand, the sample patterns shown in Figure 6 capture the overall trend of the original
patterns, with some minor deviations.

Learning high-dimensional PDFs from data

This is an active area of research today. There are two mainstreams commonly used for learning high-
dimensional PDFs from data:

• Learning the functional form of the PDF using high-dimensional function representations such as
tensors [18, 15], mixture PDF models, kernel density approaches, etc. These approaches can be
computationally expensive due to due to high-dimensionality of the function p(x1, . . . , xn), which
requires a representation.

• Developing a sampler for the PDF we are estimating from data, rather that attempting to compute the
functional form of the PDF. These methods are computationally much more efficient that learning the
functional form of the PDF. There are many different techniques that have been proposed/developed
in the past decade or so to learn a sampler for a high-dimensional PDF that is learned from data.

a) Generative Adversarial Networks (GANs). GANs consist of two components: a generator
that produces fake data samples and a discriminator that tries to distinguish between real
data and generated samples. The generator learns to create samples that mimic the real data
distribution. GANs do not provide an explicit PDF but can generate samples from the high-
dimensional distribution. They are widely used in tasks like image generation, video synthesis,
and more (see [7, 1]).

b) Variational Autoencoders (VAEs). VAEs combine neural networks with probabilistic mod-
els. The encoder maps input data into a latent space, and the decoder reconstructs the data
from this latent space. The VAE is trained to maximize a lower bound on the likelihood of the
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Gaussian copula benchmark

Figure 5: Comparison between the correlation matrix we obtain from Gaussian copula and the benchmark
correlation (165).
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Figure 6: Samples of the Gaussian copula approximation (left) and samples from (163).

data, thus learning an approximate distribution. The model does not produce an explicit PDF
but provides a way to sample from the learned distribution.

c) Diffusion Models. Diffusion models gradually convert data samples into noise through a
diffusion process, then learn to reverse this process to generate new samples. Like GANs, they
can implicitly learn high-dimensional distributions but do so through iterative denoising steps.
In this class of models we find, e.g., DDPM [14], score-based models [16], and INDM [9].

d) Continuous normalizing flows (CNFs). In CNFs, the goal is to transform a simple base
distribution (like a Gaussian) into a complex target distribution through a sequence of invert-
ible transformations, governed by differential equations (ODEs). A particular case of CNFs is
flow matching [12], which simplifies this process by directly learning the optimal velocity field,
which describes how data points flow from the base distribution to the target. Unlike tradi-
tional approaches that require learning complex dynamics over continuous time, flow matching
trains the model to match the flow of data at discrete steps, making it more efficient. This
method allows for the accurate estimation of high-dimensional PDFs, while also ensuring that
the transformation remains invertible. Flow approaches are provably convergent [6, 4].
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Figure 7: Joint PDFs from the Gaussian copula model (left), and benchmark PDFs (right). Note that the
joint PDF of (163) at two neighboring nodes (x10 and x11) is rather thin, due to the strong correlation
between such random variables induced by the smoothness of f(x;ω). Note also that the Gaussian copula
model does not reproduce exactly the joint PDF, but rather it approximates it.

Appendix A: Derivation of the Liouville equation

Consider the nonlinear dynamical system 
dx(t)

dt
= f(x(t))

x(0) = x0(ω)

(166)

where x0(ω) is a random vector with known joint probability density function p0(x). We know that if f(x)
is continuously differentiable in x then (166) admits a smooth flow x(t,x0(ω)), which is at least continuously
differentiable in x0 . The flow is also continuously differentiable in t, i.e., x(t,x0(ω)) is a diffeomorphism in
t. We are interested in determining an evolution equation for p(x, t), i.e., the probability density function of
x(t,x0) at time t. To this end, consider the characteristic function representation of the PDF p(x, t)

ϕ(a, t) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·x(t;x0)p(x0)dx0 =

∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·xp(x, t)dx (167)

Page 24



AM 238 Prof. Daniele Venturi

Differentiating with respect to t yields

∂ϕ(a, t)

∂t
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ia · ∂x(t,x0)

∂t
eia·x(t;x0)p(x0)dx0

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ia · f (x(t,x0)) e

ia·x(t;x0)p(x0)dx0

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ia · f (x) eia·xp(x, t)dx

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

∂

∂x

(
eia·x

)
· f (x) p(x, t)dx

=−
∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·x∇ · (f (x) p(x, t)) dx. (integrating by parts) (168)

By using (167) and (168) we obtain∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·x

[
∂p(x, t)

∂t
+∇ · (f (x) p(x, t))

]
dx = 0, for all a ∈ Rn, (169)

which implies that the function between square bracket must be equal to zero for all x and all t, i.e.,

∂p(x, t)

∂t
+∇ · (f (x) p(x, t)) = 0 (Liouville equation). (170)
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