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Linear dynamical systems

Consider the following n-dimensional linear dynamical system
dx

dt
= Ax

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a column vector of phase variables, and A ∈ Mn×n(R) is a n× n matrix
with real coefficients. It is straightforward to verify that the (linear) function f(x) = Ax is Lipschitz
continuous on Rn. Indeed, for any matrix norm ∥A∥ compatible with the vector norm ∥x∥ (see Appendix
C), we have

∥Ax1 −Ax2∥ = ∥A(x1 − x2)∥ ≤ ∥A∥∥x1 − x2∥, (2)

for all x1,x2 ∈ Rn. Alternatively, note that the function f(x) = Ax has bounded partial derivatives
everywhere in Rn, provided the entries of A are finite:

∂fi(x)

∂xj
= Aij < ∞, for all i, j = 1, . . . , n. (3)

Therefore, by Lemma 2 from course note 2, it follows immediately that the solution of equation (1) is
global, i.e., it exists and is unique for all t ≥ 0. Furthermore, since Ax is infinitely differentiable on Rn,
Theorems 2 and 3 from course note 2 imply that the flow X(t,x0) generated by the linear dynamical
system (1) is of class C∞ with respect to both t and x0.

Fixed points and their stability properties

Fixed points of the linear dynamical system (1) are solutions of the linear equation

Ax = 0Rn , (4)

i.e., they lie at the intersection of n hyper-planes passing through the origin in Rn. Such hyper-planes are
defined by the linear equations 

A11x1 +A12x2 + · · ·+A1nxn = 0

A21x1 +A22x2 + · · ·+A2nxn = 0
...

An1x1 +An2x2 + · · ·+Annxn = 0

(5)

Clearly, if the matrix A is invertbile then we have a unique fixed point at

x∗ = 0Rn . (6)

On the other hand, if the matrix A is not invertible then we have an infinite number of fixed points, i.e.,
all points in the nullspace1 of A are fixed points.

Example: The fixed points of the 2D linear dynamical system defined by the rank 1 matrix

A =

[
5 1
10 2

]
(7)

1Recall that the nullspace of a matrix A is the set of vectors that are sent to the zero vector by applying A. The nullspace
of an n× n matrix is a vector subspace of Rn.
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are obtained by solving [
5 1
10 2

] [
x1
x2

]
=

[
0
0

]
⇒ x2 = 2x1 (8)

Hence, in this case we have an infinite number of fixed points sitting on a line with slope 2 passing through
the origin of the phase plane (x1, x2).

Stability analysis. The stability of fixed points (either one or infinite) is determined by the eigenvalues
{λ1, . . . , λn} of the matrix A. If A is invertible (no zero-eigenvlaue) we only have one fixed point (the
origin) and

Re(λi) ≤ 0 ⇒ fixed points are stable

Re(λi) < 0 ⇒ fixed points are asymptotically stable

Re(λi) > 0 ⇒ fixed points are unstable

Flow generated by linear dynamical systems

As shown in Appendix D, the analytical solution of the initial value problem (1) can be formally expressed
in terms of a matrix exponential2, i.e.,

X(t,x0) = etAx0. (10)

This expression shows that the flow is indeed of class C∞, in both x0 and t, as anticipated above. Hereafter
we take a linear algebraic approach to the problem of solving the linear system of ODEs (1), i.e., we focus
on linear algebraic techniques to compute the matrix exponential etA explicitly in terms of the spectral
properties (eigenvalues, eigenvectors and generalized eigenvectors) of the matrix A.

Computation of the matrix exponential. The matrix exponential in appearing in (10) can be written
explicitly in terms of the eigenvalues and the eigenvectors (or generalized eigenvectors) of the matrix A.
In Appendix A and Appendix B we provide a thorough review of the matrix eigenvalue problem, including
calculation of the eigenvalues, eigenvectors and generalized eigenvectors of a matrix. Please read through
Appendix A and Appendix B very carefully, as everything that is discussed hereafter assumes that you
are familiar with eigenvalues, eigenspaces, generalized eigenvectors, and similarity transformations. The
computation of the matrix the matrix exponential etA, and therefore the solution (10) of the linear system
(1), differs depending on whether or not

• the matrix A is diagonalizable,

• the matrix A is not diagonalizable.

For definitions of diagonalizable and non-diagonalizable matrices, see Appendix A. As we will see, the
non-diagonalizable case includes the diagonalizable one. Therefore, in principle, it would be sufficient to
develop the formula for the matrix exponential in the case where A is non-diagonalizable. However, for
clarity of exposition, we present the two cases separately.

2Recall that the matrix exponential is formally defined by the power series

etA = I + tA+
t2

2
A2 + · · · =

∞∑
k=0

tkAk

k!
, (9)

which converges uniformly for all t ≥ 0.
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Matrix exponential for diagonalizable matrices. If A is diagonalizable then there exists a set of n
distinct eigenvectors {v1, . . . ,vn} and a similarity transformation P such that (see Appendix A)

AP = PΛ, (11)

where

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 (12)

is a diagonal matrix that contains all eigenvalues {λ1, . . . , λn} of A and

P =
[
v1 v2 · · · vn

]
(13)

is a matrix that contains all eigenvectors of A. Each vector vi in (13) is a column vector. Since the matrix
P is invertible we have

A = PΛP−1. (14)

This matrix factorization is very effective when computing the matrix powers appearing in the definition
of the matrix exponential (9). In fact,

A2 = PΛP−1P︸ ︷︷ ︸
I

ΛP−1 = PΛ2P−1. (15)

Similarly,
A3 = PΛ3P−1, · · · ,Ak = PΛkP−1. (16)

This implies that

etA = P

(
I + tΛ+

t2

2
Λ2 + · · ·

)
P−1 = P etΛP−1. (17)

The exponential the diagonal matrix Λ in (12) is easily obtained as

etΛ =

e
tλ1 · · · 0
...

. . .
...

0 · · · etλn

 . (18)

Hence, when A is diagonalizable, the analytical solution to equation (1) can be computed through the
following steps:

1. Compute the eigenvalues and the eigenvectors of A;

2. Construct the matrix P in (13) and the matrix exponential (18);

3. Compute the analytical solution of (1) using matrix-vector products

X(t,x0) = P etΛP−1x0. (19)

Matrix exponential for non-diagonalizable matrices. If the matrix A is not diagonalizable then
there exist a similarity transformation P such that

AP = PJ , (20)
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where (assuming that A has p distinct eigenvalues3)

J =

J1 · · · 0
...

. . .
...

0 · · · Jp

 (21)

is a block-diagonal matrix called the Jordan form of A (see Appendix B and Table 1). The matrix

P =
[
v1 v2 · · · vn

]
(22)

is the matrix that contains the eigenvectors and the generalized eigenvectors of A columnwise.

Since the matrix P is invertible (eigenvectors and generalized eigenvectors are linearly independent) we
have the matrix factorization

A = PJP−1, (23)

By following exactly the same steps as in (15)-(17) we obtain the following expression for the matrix
exponential of A in the case where A is non-diagonalizable

etA = P etJP−1. (24)

The Jordan canonical form of A is a block-diagonal matrix (see equation (159)), with blocks given in Table
1. The matrix exponential of a block-diagonal matrix is a matrix that has the exponential of each block
in the diagonal

etJ =


etJ1

etJ2

. . .

etJp

 . (25)

In Table 1 we summarize the Jordan blocks corresponding to different types of eigenvalues. The mathe-
matical proof of each Jordan block is given in Appendix B.

Hence, when A is not diagonalizable, the analytical solution to equation (1) can be computed through the
following steps:

1. Compute the eigenvalues, the eigenvectors, and the generalized eigenvectors of A;

2. Construct the the matrix J using the Jordan blocks in Table 1;

3. Construct the matrix P in (22) and the matrix exponential (25) by exponentiating each Jordan block
as in Table 1;

4. Compute the analytical solution of (1) using matrix-vector products

X(t,x0) = P etJP−1x0. (26)

Fundamental matrix. In the theory of autonomous linear ODEs the general solution of the system (1)
is often expressed in terms of a fundamental matrix Φ(t) as

xg(t) = Φ(t)c, (27)

where c is an arbitrary vector. Enforcing the initial condition xg(0) = x0 we find that

c = Φ−1(0)x0. (28)

3The sum of the algebraic multiplicities of the eigenvalues {λ1, . . . , λp} must be equal to n.
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Properties of the eigenvalue Jordan block Exponential of Jordan block

λi has algebraic multiplicity one Ji =
[
λi

]
etJi =

[
etλi
]

λi has algebraic multiplicity two
and geometric multiplicity two

Ji =

[
λi 0
0 λi

]
etJi =

[
etλi 0
0 etλi

]

λi has algebraic multiplicity two
and geometric multiplicity one

Ji =

[
λi 1
0 λi

]
etJi =

[
etλi tetλi

0 etλi

]

λi has algebraic multiplicity three
and geometric multiplicity three

Ji =

λi 0 0
0 λi 0
0 0 λi

 etJi =

etλi 0 0
0 etλi 0
0 0 etλi



λi has algebraic multiplicity three
and geometric multiplicity two

Ji =

λi 0 0
0 λi 1
0 0 λi

 etJi =

etλi 0 0
0 etλi tetλi

0 0 etλi



λi has algebraic multiplicity three
and geometric multiplicity one

Ji =

λi 1 0
0 λi 1
0 0 λi

 etJi =

etλi tetλi t2etλi/2
0 etλi tetλi

0 0 etλi



Table 1: Jordan blocks and matrix exponentials of Jordan blocks (see Appendix B) corresponding to
eigenvalues λi with different algebraic and geometric multiplicities.

Substituting this expression for c back into (27) gives

X(t,x0) = Φ(t)Φ−1(0)x0. (29)

Comparing this expression to (10) suggests that we can equivalently write the matrix exponential of A
as

etA = Φ(t)Φ−1(0). (30)

Regarding the analytical expression of the fundamental matrix Φ(t), it can be obtained by comparing (30)
with (24). This yields

Φ(t) = P etJ (31)

where P is the matrix (22) that has the eigenvectors and generalized eigenvectors of A as columns. As
before, the exponential of the Jordan canonical form of A, i.e., etJ , can be computed by using (25) and
exponentiating each Jordan block as in Table 1.
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Two-dimensional linear dynamical systems

In this section we compute the analytical solution/flow of several prototype two-dimensional dynamical
systems using the mathematical techniques we just discussed. Specifically, we study the flow corresponding
to the saddle node, spiral, center, and degenerate node.

Saddle node. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
2 3
3 −6

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (32)

We have seen in Appendix A (Example 4) that the eigenvalues of A are

λ1 = 3, λ2 = −7. (33)

Since the eigenvalues are simple, the matrix A is diagonalizable. A basis for the eigenspace corre-
sponding to each eigenvalue is

v1 =

[
3
1

]
, v2 =

[
1
−3

]
. (34)

The matrix of eigenvectors that defines the similarity transformation (11) is

P =
[
v1 v2

]
=

[
3 1
1 −3

]
. (35)

The inverse of P is

P−1 =
1

10
=

[
3 1
1 −3

]
. (36)

This yields the analytical solution[
X1(t,x0)
X2(t,x0)

]
=

[
3 1
1 −3

]
︸ ︷︷ ︸

P

[
e3t 0
0 e−7t

]
︸ ︷︷ ︸

etΛ

1

10

[
3 1
1 −3

]
︸ ︷︷ ︸

P−1

[
x01
x02

]
︸ ︷︷ ︸

x0

(37)

Developing the matrix products yields the desired flow
X1(t,x0) =

x01
10

(
9e3t + e−7t

)
+

x02
10

(
e3t + 9e−7t

)
X2(t,x0) =

x01
10

(
3e3t − 3e−7t

)
+

x02
10

(
3e3t − 3e−7t

) (38)

The phase portrait of this flow is shown in Figure 1.

Stable spiral. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
−1 −1
1 −1

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (39)

The eigenvalues of the matrix A are

λ1 = −1 + i, λ2 = −1− i. (40)
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Figure 1: Saddle node. Shown are the nullclines, and the unstable (red arrows)/stable (green arrows)
manifolds of the saddle identified by the eigenvectors v1 and v2, respectively.

These eigenvalues are complex conjugates and both have algebraic multiplicity one (simple eigenval-
ues), which implies that they have geometric multiplicity one. Therefore the matrix A is diagonal-
izable, and there exits a one-dimensional eigenspace (spanned by a complex vector) for each λi. To
compute such eigenspaces/eigenvectors we proceed as usual

(A− λ1I)v1 = 0R2 ⇔
[
−i −1
1 −i

] [
v11
v12

]
=

[
0
0

]
⇔

{
−iv11 = v12

v12 or v11 free
(41)

(A− λ2I)v2 = 0R2 ⇔
[
i −1
1 i

] [
v21
v22

]
=

[
0
0

]
⇔

{
iv21 = v22

v21 or v22 free
(42)

We choose v1 = v21 = i, which yields the following basis for the (complex) eigenspaces corresponding
to λ1 and λ2, respectively

v1 =

[
i
1

]
, v2 =

[
i
−1

]
. (43)

The similarity matrix P and its inverse are

P =
[
v1 v2

]
=

[
i i
1 −1

]
, P−1 =

1

2

[
−i 1
−i 1

]
. (44)

The matrix exponential (17) is easily obtained as

etA =

[
i i
1 −1

]
︸ ︷︷ ︸

P

[
et(−1+i) 0

0 et(−1−i)

]
︸ ︷︷ ︸

etΛ

1

2

[
−i 1
−i 1

]
︸ ︷︷ ︸

P−1

=
e−t

2

[
i i
1 −1

] [
−ieit eit

−ie−it −e−it

]
=
e−t

2

[
eit + e−it ieit − ie−it

−ieit + ie−it eit + e−it

]
. (45)

Page 7



AM 224 Prof. Daniele Venturi

Figure 2: Stable spiral.

At this point we use the Euler formulas

cos(t) =
eit + e−it

2
, sin(t) =

eit − e−it

2i
, (46)

to obtain

etA = e−t

[
cos(t) − sin(t)
sin(t) cos(t)

]
. (47)

Applying etA to the initial condition x0 gives us the analytical solution{
X1(t,x0) = e−t [cos(t)x01 − sin(t)x02]

X2(t,x0) = e−t [sin(t)x01 + cos(t)x02]
. (48)

The phase portrait of this flow is shown in Figure 2.

• Center. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (49)

The eigenvalues of A are
λ1 = i, λ2 = −i. (50)

The eigenspaces associated with λ1 and λ2 are both one-dimensional (both eigenvalues are simple).
Let us compute a basis for the eigenspace associated with λ1

(A− λ1I)v1 = 0R2 ⇔
[
−i 1
−1 −i

] [
v11
v12

]
=

[
0
0

]
⇔

{
iv11 = v12

v11 or v12 free
. (51)

We choose v11 = 1, which yields

v1 =

[
1
i

]
. (52)
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Figure 3: Center.

Similarly, for the eigenspace associated with λ2 we have

(A− λ2I)v2 = 0R2 ⇔
[
i 1
−1 i

] [
v21
v22

]
=

[
0
0

]
⇔

{
iv21 = −v22

v21 or v22 free
. (53)

We choose v21 = 1, which yields

v2 =

[
1
−i

]
. (54)

The similarity matrix P and its inverse are

P =
[
v1 v2

]
=

[
1 1
i −i

]
, P−1 =

1

2

[
1 −i
1 i

]
. (55)

The matrix exponential etA can be computed using equation (17)

etA =

[
1 1
i −i

]
︸ ︷︷ ︸

P

[
eit 0
0 e−it

]
︸ ︷︷ ︸

etΛ

1

2

[
1 −i
1 i

]
︸ ︷︷ ︸

P−1

=
1

2

[
eit + e−it −i

(
eit − e−it

)
i
(
eit − e−it

)
eit + e−it

]
(56)

=

[
cos(t) sin(t)
− sin(t) cos(t)

]
, (57)

where we used again the Euler formulas (46). A substitution of the matrix exponential into (10)
yields the analytical solution {

X1(t,x0) = x01 cos(t) + x02 sin(t)

X2(t,x0) = −x01 sin(t) + x02 cos(t)
. (58)

The phase portrait of this flow is shown in Figure 3.
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• Degenerate node. Consider the linear dynamical system[
ẋ1
ẋ2

]
=

[
1 1
−1 3

]
︸ ︷︷ ︸

A

[
x1
x2

]
. (59)

The matrix A has only one eigenvalue λ = 2 with algebraic multiplicity 2. The dimension of the
corresponding eigenspace, i.e., the dimension of the nullspace of (A− λI) (geometric multiplicity of
λ), can be calculated using the matrix rank theorem

dim (N(A− λI)) = 2− rank(A− λI) = 2− rank

([
−1 1
−1 1

])
︸ ︷︷ ︸

=1

= 1 (60)

Hence the dimension of the eigenspace associated with λ = 2, is equal to one. This implies that the
matrix A is not diagonalizable. Let us compute a basis for the one-dimensional eigenspace. We have

(A− λI)v1 = 0R2 ⇔
[
−1 1
−1 1

] [
v11
v12

]
=

[
0
0

]
⇔

{
v11 = v12

v11 or v12 free
(61)

We choose v12 = 1, which yields

v1 =

[
1
1

]
. (62)

At this point we need to complement v1 to a basis of R2 by adding one linearly independent vector.
To this end, we compute the so-called generalized eigenvector4 by solving the linear equation

(A− λI)v2 = v1 (64)

We obtain [
−1 1
−1 1

] [
v21
v22

]
=

[
1
1

]
⇒

{
−v21 + v22 = 1

v21 or v22 free
(65)

We choose v22 = 1 which gives the generalized eigenvector

v2 =

[
0
1

]
. (66)

The similarity matrix in this case has the eigenvector v1 and the generalized eigenvector v2 as columns

P =

[
1 0
1 1

]
⇔ P−1 =

[
1 0
−1 1

]
. (67)

The matrix exponential of the Jordan block that corresponds to the eigenvalue λ = 2 with algebraic
multiplicity two and geometric multiplicity one is (see Table 1)

etJ =

[
e2t te2t

0 e2t

]
. (68)

4Note that the generalized eigenvector v2 defined in (64) is in the nullspace of the matrix (A− λI)2. In fact,

(A− λI)v2 = v1 ⇒ (A− λI)2v2 = 0R2 . (63)

It can be shown that eigenvectors and generalized eigenvectors are linearly independent.
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Figure 4: Degenerate node. Shown is the unstable manifold of the node (red arrows), which is defined by
the eigendirection v1 corresponding to the eigenvalue λ = 2.

The the matrix exponential etA can now be computed explicitly via the formula (24)

etA =

[
1 0
1 1

]
︸ ︷︷ ︸

P

[
e2t te2t

0 e2t

]
︸ ︷︷ ︸

etJ

[
1 0
−1 1

]
︸ ︷︷ ︸

P−1

=

[
e2t − te2t te2t

−te2t e2t + te2t

]
. (69)

This gives the analytical solution{
X1(t,x0) =

(
e2t − te2t

)
x01 + te2tx02

X2(t,x0) = −te2tx01 +
(
e2t + te2t

)
x02

. (70)

The phase portrait of this flow is shown in Figure 4.

Classification of two-dimensional flows generated linear dynamical systems. In Figure 5 and
Figure 6 we provide a classification of all possible flows generated by two-dimensional dynamical systems in
terms of the eigenvalues of the matrix A. Of course, changing the sign of the eigenvalues of A is equivalent
to transforming the matrix from A to −A. This yields an inversion in the orientation of all trajectories,
which implies, e.g., that stable nodes become unstable, centers spin the other way around, etc.
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EIGENVALUES OF A STABLE NODE
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Re i.
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⑱
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x
2 m

Figure 5: Classification of flows generated by two-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.
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Im

TWO-DIMENSIONAL =x
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x2 Re

EIGEN SPACE

DEGENERATE NODE

Im Xe

ONE-DIMENSIONAL Fionncionx
=
x2 Re
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X1

EIGEN SPACE

Im Xe

E M FixeAs Ra Re X1

Figure 6: Classification of flows generated by two-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.
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Three-dimensional linear dynamical systems

In this section, we derive the analytical expression for the flow generated by linear systems in three
dimensions. The methods presented here extend naturally to higher-dimensional systems.

Example: Consider the three dimensional linear system Consider the linear dynamical systemẋ1ẋ2
ẋ3

 =

1 0 0
0 1 0
1 1 −1


︸ ︷︷ ︸

A

x1x2
x3

 (71)

The matrix A has eigenvalues λ1 = 1 (with algebraic multiplicity two) and λ2 = −1 (with algebraic
multiplicity one). The dimension of the eigenspace corresponding to λ1, i.e., the geometric multiplicity of
λ1 is

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

0 0 0
0 0 0
1 1 −2

 = 3− 1 = 2. (72)

Therefore the matrix A is diagonalizable. The eigenvectors corresponding to λ1 are solution to the linear
system N(A− λ1I)v = 0R3 , i.e.,0 0 0

0 0 0
1 1 −2

v1v2
v3

 =

00
0

 ⇒

{
v1 + v2 − 2v3 = 0

(v1, v2) or (v1, v3) or (v2, v3) are arbitrary
(73)

We pick (v2, v3) = (1, 1) and (v2, v3) = (2, 1) which yields the following eigenvectors

v1 =

11
1

 , v2 =

02
1

 . (74)

Any linear combination of v1 and v2 is still an eigenvector. The eigenvectors corresponding to λ2 = −1
are solutions to the linear system N(A− λ2I)v = 0R3 , i.e.,3 0 0

0 3 0
1 1 0

v1v2
v3

 =

00
0

 ⇒


v1 = 0

v2 = 0

v3 is arbitrary

(75)

We choose

v3 =

00
1

 (76)

The similarity matrix and its inverse are

P =

1 0 0
1 2 0
1 1 1

 , P−1 =
1

2

 2 0 0
−1 1 0
−1 −1 2

 (77)

Therefore, the analytical solution of the 3D linear system (71) isX1(t,x0)
X2(t,x0)
X3(t,x0)

 =

1 0 0
1 2 0
1 1 1

et 0 0
0 et 0
0 0 e−t

 1

2

 2 0 0
−1 1 0
−1 −1 2

x01x01
x03

 (78)
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EIGENVALUES OF A
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Figure 7: Examples of flows generated by three-dimensional dynamical systems in terms of the eigenvalues
of the matrix A. The 2-3 plane is defined by two real three-dimensional vectors obtained from the real
Jordan form of the matrix A (see Appendix B).

i,e, 
X1(t,x0) = etx01

X2(t,x0) = etx02

X3(t,x0) =

(
et − e−t

)
2

(x01 + x02) + e−tx03

(79)

Three- and higher-dimensional flows generated linear dynamical systems In Figure 7 we provide
a few sketches of three-dimensional flows corresponding to matrices A with various eigenvalues. As easily
seen, the classification of these flows is not as straightforward as in the 2D case. In fact, we can have
spiraling directions, saddle node planes, etc.

Example: Consider the following initial-boundary value problem for the heat equation in the periodic
spatial domain [0, 2π] 

∂u(t, y)

∂t
= α

∂2u(y, t)

∂y2
heat equation

u(0, y) = u0(y) initial condition

u(t, 0) = u(t, 2π) periodic boundary conditions

(80)
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This equation describes heat propagation by thermal conduction in a one-dimensional slab with periodic
conditions. We have seen that a finite difference approximation of this problem on the evenly-spaced grid
with n spatial points

yk = (k − 1)∆y k = 1, . . . , n, ∆y =
2π

n
(81)

yields the n-dimensional linear dynamical system

dx

dt
= Ax, (82)

where xj(t) ≃ u(t, yj) and

A =
α

∆y2


−2 1 0 · · · 1
1 −2 1 · · · 0
...

. . .
...

0 · · · 1 −2 1
1 · · · 0 1 −2

 (83)

It can be shown that the eigenvalues of the matrix A (circulant Laplacian) are

λj = − 4α

∆y2
sin2

(
πj

n

)
j = 0, . . . , n− 1. (84)

Since λ0 = 0, we have that A is not invertible. Indeed, there exists a one-dimensional nullspace spanned
by the unit vector

v0 =
[
1 · · · 1

]T
. (85)

This implies that this system has an infinite number of fixed points x∗ = κv0. Physically, this is saying
that there is no temperature dynamics in a homogeneous one-dimensional slab with periodic boundary
conditions and isothermal initial condition.
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Appendix A: The matrix eigenvalue problem

In this Appendix we briefly review the eigenvalue problem for a n×n matrix A with real coefficients. The
eigenvalue problem is essentially the problem of finding all real (or complex) numbers λ (eigenvalues) and
all nonzero real (or complex) vectors v (eigenvectors) satisfying the equation

Av = λv. (86)

Computation of eigenvalues. From equation (86) it follows that

(A− λI)v = 0Rn , (87)

Hence, the eigenvector v (which is non-zero by definition) is in the nullspace of the matrix (A− λI). This
implies that the matrix (A − λI) is not invertible5. A necessary and sufficient condition for (A − λI) to
be not invertible is

det(A− λI) = 0 (characterististic equation). (88)

The polynomial
p(λ) = det(A− λI) (89)

is known as characteristic polynomial associated with the matrix A. The characteristic equation (88)
implies that the eigenvalues of the matrix A are roots of the characteristic polynomial p(λ).

How many eigenvalues do we have for a given n×nmatrixA? The characteristic polynomial p(λ) associated
with the matrix A is a polynomial of degree n with real coefficients. Hence, by using the fundamental
theorem of algebra we conclude p(λ) has exactly n roots which may be real or complex conjugates. In
other words, every n × n matrix has exactly n eigenvalues. Such eigenvalues may be repeated, in which
case we say that they have “algebraic multiplicity” greater than one. In other words, the multiplicity of an
eigenvalue as a root of the characteristic polynomial is called algebraic multiplicity the eigenvalue.

Example 1: Compute the eigenvalues of the matrix

A =

[
2 3
3 −6

]
. (90)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
2− λ 3
3 −6− λ

]
= −(2− λ)(6 + λ)− 9, (91)

i.e.,
p(λ) = λ2 + 4λ− 21. (92)

The eigenvalues of A are roots of p(λ). Setting p(λ) = 0 yields

λ1,2 = −2±
√
4 + 21 = −2± 5 ⇒ λ1 = 3, λ2 = −7. (93)

In this case, both eigenvalues have algebraic multiplicity one, i.e., they are simple roots of p(λ). The
characteristic polynomial can be factored as

p(λ) = (λ− 3)(λ+ 7), (94)

suggesting once again that λ = 3 and λ = −7 are simple roots.

5The matrix (A−λI) in (87) maps a non-zero vector v into 0Rn . Hence the the nullspace of (A−λI) has a nonzero vector
in it, which implies that the matrix (A− λI) is not invertible.
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Example 2: Compute the eigenvalues of the matrix

A =


2 5 1 −5
0 4 3 0
0 0 2 4
0 0 0 1

 . (95)

In this case we have

A− λI =


2− λ 5 1 −5
0 4− λ 3 0
0 0 2− λ 4
0 0 0 1− λ

 (96)

and
p(λ) = det(A− λI) = (2− λ)2(4− λ)(1− λ). (97)

Hence, the matrix A has three eigenvalues:

λ1 = 2 with algebraic multiplicity 2,

λ2 = 4 with algebraic multiplicity 1,

λ3 = 1 with algebraic multiplicity 1.

Note that the eigenvalues coincides with the diagonal entries of the matrix A. This is a general fact about
upper or or lower triangular matrices, i.e., the eigenvalues of such matrices coincides with the diagonal
entries of the matrix. For example, the following matrix

A =


1 1 1 1
0 1 3 0
0 0 0 −1
0 0 0 0

 . (98)

has two eigenvalues λ1 = 1 and λ2 = 0, both with algebraic multiplicity 2.

Example 3: Compute the eigenvalues of the following matrix

A =

[
1 2
−1 1

]
. (99)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
1− λ 2
−1 1− λ

]
= −(1− λ)2 + 2, (100)

i.e.,
p(λ) = λ2 − 2λ+ 3. (101)

Hence, the eigenvalues are
λ1 = 1 + i

√
2 λ2 = 1− i

√
2 (102)

Note that λ1 and λ2 are complex conjugates eigenvalues. Clearly, for 2 × 2 matrices with real entries
the fundamental theorem of algebra tells us that the eigenvalues are either both real or complex conju-
gates.

Eigenvectors and eigenspaces. By definition, an eigenvector of a n × n matrix A is a nonzero vector
v ∈ Rn such that

Av = λv. (103)
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This means that v is a nonzero vector in the nullspace of the matrix (A− λI). In fact, v is mapped onto
the zero of Rn by (A− λI) (see equation (87)). We know that the nullspace of a n× n matrix is a vector
subspace of Rn.

We denote by N(A − λI) the nullspace of the matrix (A − λI), and call N(A − λI) the eigenspace of
A corresponding to the eigenvalue λ. The dimension of the eigenspace N(A − λI) is called geometric
multiplicity of the eigenvalue λ. By definition, an eigenvector cannot be zero and therefore the eigenspace
corresponding to each eigenvalue has dimension at least equal to one. The dimension of the eigenspace
corresponding to some eigenvalue can be computed by using the matrix rank theorem.

Example 4: Compute the eigenspaces of the matrix

A =

[
2 3
3 −6

]
(104)

We have seen in Example 1 that the eigenvalues of A are λ1 = 3 and λ2 = −7. Let us compute the
eigenspace corresponding to λ1. To this end, we first compute the dimension of such eigenspace by using
the matrix rank theorem

dim(N(A− λ1I) = 2− rank(A− λ1I) = 2− rank

([
−1 3
3 −9

])
= 2− 1 = 1 (105)

Hence, the eigenspace corresponding to λ1 has dimension one. Any vector of such an eigenspace is an
eigenvector of A corresponding to λ1. To compute a basis for the eigenspace N(A− λ1I) consider

(A− λ1I)v = 0R2 ⇔
[
−1 3
3 −9

] [
v1
v2

]
=

[
0
0

]
⇔ −v1 + 3v2 = 0 (106)

Hence,

v =

[
3
1

]
(107)

is a basis for N(A−λ1I), and an eigenvector of A corresponding to λ1. All eigenvectors of A corresponding
to λ1 are in the form

c

[
3
1

]
with c ̸= 0. (108)

Similarly, the eigenspace corresponding to λ2 has dimension 1 and can be determined by solving the linear
system

(A− λ2I)v = 0R2 ⇔
[
9 3
3 1

] [
v1
v2

]
=

[
0
0

]
⇔ 3v1 + v2 = 0. (109)

Hence,

v =

[
1
−3

]
(110)

is a basis for N(A − λ2I) and an eigenvector of A corresponding to λ2. In summary, λ1 and λ2 are
eigenvalues with algebraic multiplicity one and geometric multiplicity one. Geometric multiplicity one
means that the eigenspaces N(A−λ1I) and N(A−λ2I) are both one-dimensional. A basis for N(A−λ1I)
and N(A− λ2I) is given by (107) and (110), respectively.

The following theorem establishes a relationship between the algebraic multiplicity and the geometric
multiplicity of an eigenvalue λ.
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Theorem 1. Let λ be an eigenvalue of a n × n matrix A. Denote by s the algebraic multiplicity of λ.
Then

dim(N(A− λI)) ≤ s. (111)

In other words the geometric multiplicity of the eigenvalue λ (i.e., the dimension of the associated eigenspace)
is always smaller or equal than the algebraic multiplicity).

Of course, if λ is a simple eigenvalue (s = 1) then dim(N(A− λI)) = 1, i.e., the eigenspace corresponding
to simple eigenvalues is always one-dimensional. If λ has algebraic multiplicity 2, i.e., it is a repeated
eigenvalue, then it is possible to have geometric multiplicity equal to one or equal to two. In the latter
case the eigenspace is two-dimensional and any vector in such eigenspace (including linear combinations
of multiple eigenvectors) is an eigenvector. Let us provide a simple example of a 2 × 2 matrix with one
eigenvalue of algebraic multiplicity two and geometric multiplicity one.

Example 5: Consider the following matrix

A =

[
2 1
0 2

]
. (112)

We know that λ = 2 is the only eigenvalue and it has algebraic multiplicity two. In fact, the characteristic
polynomial is p(λ) = (2− λ)2. The geometric multiplicity of λ = 2 can be calculated by using the matrix
rank theorem

dim(N(A− λI)) = 2− rank(A− λI) = 2− rank

([
0 1
0 0

])
︸ ︷︷ ︸

=1

= 2− 1 = 1. (113)

Hence, the eigenspace associated with λ = 2 is one-dimensional. A basis for such an eigenspace is obtained
as follows:

(A− λI)v = 0R2 ⇔
[
0 1
0 0

] [
v1
v2

]
=

[
0
0

]
⇔ v2 = 0. (114)

We choose

v =

[
1
0

]
. (115)

Example 6: Compute the eigenvalues and the eigenvectors of the following matrix

A =

2 1 3
0 1 5
0 0 2

 . (116)

This is an upper triangular matrix and therefore the eigenvalues coincide with the diagonal entries. Hence
we have λ1 = 2 with algebraic multiplicity two and λ2 = 1 with algebraic multiplicity one.

A− λ1I =

0 1 3
0 −1 5
0 0 0

 ⇔ dim(N(A− λ1I)) = 3− rank(A− λ1I)︸ ︷︷ ︸
=2

= 1, (117)

A− λ2I =

1 1 3
0 0 5
0 0 1

 ⇔ dim(N(A− λ2I)) = 3− rank(A− λ2I)︸ ︷︷ ︸
=2

= 1. (118)
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Therefore, the dimension of the eigenspaces associated with λ1 and λ2 is one. Let us find a basis for such
eigenspaces.

(A− λ1I)v = 0R3 ⇒

0 1 3
0 −1 5
0 0 0

v1v2
v3

 =

00
0

 ⇔


v1 arbitrary

v2 + 3v3 = 0

−v2 + 5v3 = 0

(119)

Hence, an eigenvector that spans N(A− λ1I) is

v =

10
0

 . (120)

Similarly,

(A− λ2I)v = 0R3 ⇒

1 1 3
0 0 5
0 0 1

v1v2
v3

 =

00
0

 ⇔

{
v1 + v2 + 3v3 = 0

v3 = 0
(121)

Hence, an eigenvector that spans N(A− λ2I) is

v =

 1
−1
0

 . (122)

Hereafter, we recall an important theorem on eigenvectors corresponding to different eigenvalues.

Theorem 2. Eigenvectors corresponding to different eigenvalues are linearly independent.

Of course if an eigenvalue λ has geometric multiplicity larger than one, then we can construct a basis for
N(A − λI). In any case, such basis will be linearly independent on any other eigenvector corresponding
to a different eigenvalue.

Similarity transformations. Let A,B ∈ Mn×n(Rn). We say that A is similar to B is there exists an
invertible matrix P ∈ Mn×n(Rn) such that

AP = PB ⇔ A = PBP−1 (123)

The transformation B → PBP−1 is called similarity transformation. An example of similarity transfor-
mation is the change of basis transformation.

Theorem 3. Similar matrices have the same eigenvalues.

Proof. Let A,B ∈ Mn×n be two similar matrices, i.e., P ∈ Mn×n such that

A = PBP−1. (124)

Then
det(A− λI) = det(PBP−1 − λPP−1) = det(P ) det(B − λI) det(P−1) = det(B − λI) (125)
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Diagonalization. Consider a n×n matrix A. We have seen in Theorem 2 that eigenvectors corresponding
to different eigenvalues are linearly independent. Hence, if the algebraic multiplicity of each eigenvalue is
equal to the geometric multiplicity then it is possible to construct a basis for Rn made of eigenvectors of
A. Let us organize such n eigenvectors as columns of a matrix P

P =
[
v1 · · · vn

]
. (126)

Clearly,

AP =
[
Av1 · · · Avn

]
=
[
v1 · · · vn

] λ1 · · · 0
...

. . .
...

0 · · · λn


︸ ︷︷ ︸

Λ

= PΛ, (127)

where Λ is a diagonal matrix with the eigenvalues of A (counted with their multiplicity) sitting along the
diagonal. Equation (127) shows that if A has n linearly independent eigenvectors then A is similar to a
diagonal matrix6 Λ. The similarity transformation is defined by the matrix P in (126), i.e., the matrix
that has the eigenvectors of A as columns.

A simple corollary of this statement is that matrices with simple eigenvalues are always diagonalizable,
since they have n linearly independent eigenvectors.

Theorem 4. LetA be a n×nmatrix with eigenvalues {λ1, . . . , λp} with algebraic multiplicities {s1, . . . , sp},
respectively. Then A is diagonalizable if and only if

dim(N(A− λiI)) = si for all i = 1, . . . , p. (128)

This theorem is saying that if each eigenvalue of a matrix A has algebraic multiplicity equal to its ge-
ometric multiplicity then the matrix A is similar to a diagonal matrix. Conversely, if a matrix A is
similar to a diagonal matrix then each eigenvalue of A has algebraic multiplicity equal to its geometric
multiplicity.

Example 7: The matrix

A =

[
2 3
3 −6

]
(129)

is diagonalizable. In fact, we have seen that the eigenvalues are λ1 = 3 and λ2 = −7 (simple eigenvalues).
This implies that the dimension of the associated eigenspace is one for both eigenvalues. The eigenvectors
of A are

v1 =

[
3
1

]
and v2 =

[
1
−3

]
. (130)

Define

P =
[
v1 v2

]
=

[
3 1
1 −3

]
, Λ =

[
λ1 0
0 λ2

]
=

[
3 0
0 −7

]
. (131)

It is straightforward to verify that

P−1 =
1

10

[
3 1
1 −3

]
(132)

and
A = PΛP−1 or Λ = P−1AP . (133)

6In general, we say that a matrix A is diagonalizable if there exists an invertible matrix P such that A is similar to a
diagonal matrix.
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Example 8: The matrix

A =

[
2 1
0 2

]
(134)

is not diagonalizable. In fact the algebraic multiplicity of the eigenvalue λ = 2 is two, while its geometric
multiplicity is one. We will see hereafter that it is possible to complement the eigenvector that spans the
eigenspace with another linearly independent vector called “generalized eigenvector” to form a basis of
R2. Such generalized eigenvector of A, makes A similar to a matrix J called Jordan form of A. In this
particular example, the Jordan form of A coincides with A, i.e., A is already in a Jordan form.

Example 9: Verify that the matrix

A =

1 0 0
0 1 0
0 1 2

 (135)

is diagonalizable. The matrix is lower-triangular with eigenvalues λ1 = 1 (algebraic multiplicity two) and
λ2 = 2 (algebraic multiplicity one). To verify that A is diagonalizable we just need to check that the
geometric multiplicity of λ1 = 1 is equal to two. To this end, we use the matrix rank theorem:

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

0 0 0
0 0 0
0 1 1

 = 3− 1 = 2 (136)

This shows that the dimension of the nullspace of N(A − λ1I), i.e., the dimension of the eigenspace
associated with λ1 = 1 is two. Let us compute a basis for such an eigenspace. To this end,

(A− λ1I)v = 0R3 ⇒

0 0 0
0 0 0
0 1 1

v1v2
v3

 =

00
0

 ⇔


v1 arbitrary

v2 arbitrary

v3 = −v2

(137)

Hence, a basis for the eigenspace corresponding to λ1 is
10
0

 ,

 0
1
−1

 . (138)

On the other hand, the eigenspace N(A− λ2I) is spanned by a vector that can be computed as

(A− λ2I)v = 0R3 ⇒

−1 0 0
0 −1 0
0 1 0

v1v2
v3

 =

00
0

 ⇔


v1 = 0

v2 = 0

v3 arbitrary

(139)

Therefore a matrix P that diagonalizes A is

P =

1 0 0
0 1 0
0 −1 1

 . (140)

Indeed, it can be verified by a direct calculation that1 0 0
0 1 0
0 0 2


︸ ︷︷ ︸

Λ

=

1 0 0
0 1 0
0 1 1


︸ ︷︷ ︸

P−1

1 0 0
0 1 0
0 1 2


︸ ︷︷ ︸

A

1 0 0
0 1 0
0 −1 1


︸ ︷︷ ︸

P

. (141)
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Appendix B: Generalized eigenvectors and Jordan canonical form

The set of eigenvectors of any n× n matrix A can be complemented to a basis of Rn. To this end, we can
add a certain number of so-called generalized eigenvectors, to each “defective” eigenspace of A. A defective
eigenspace of A is an eigenspace with dimension dim(N(A− λiI)) smaller than the algebraic multiplicity
si of the associated eigenvalue λi (see Theorem 1). For such defective eigenspaces we compute

si − dim(N(A− λiI)) (142)

additional generalized eigenvectors. This yields a basis of Rn made of eigenvectors and generalized eigen-
vectors of A. Such basis, also induces a similarity transformation between A and a matrix called Jordan
canonical form of A. Let us describe the procedure to compute the Jordan form of a matrix A. To this
end, let us first consider the simple 2 matrix

A =

[
λ 1
0 λ

]
. (143)

We know that the eigenspace corresponding to the eigenvalue λ is one-dimensional with basis

v =

[
1
0

]
. (144)

To complement v with another vector and form a basis of R2 we choose w as follows

(A− λI)w = v. (145)

Clearly, w is in the nullspace of the matrix (A−λI)2. In fact, by applying (A−λI) to both sides of (145)
we obtain

(A− λI)2w = (A− λI)v = 0R2 . (146)

It can be shown that w and v are linearly independent. To compute the generalized eigenvector w we
solve the linear system (145)

(A− λI)w = v ⇔
[
0 1
0 0

] [
w1

w2

]
=

[
1
0

]
⇔

{
w1 arbitrary

w2 = 1
. (147)

Hence a generalized eigenvector for the eigenspace N(A− λI) is

w =

[
0
1

]
(148)

At this point we define the similarity transformation

P =
[
v w

]
=

[
1 0
0 1

]
, (149)

and apply A to P to obtain

AP =
[
Av Aw

]
=
[
v w

] [λ 1
0 λ

]
︸ ︷︷ ︸

J

= PJ . (150)

Hence, A is similar to a matrix J in a particular form (not diagonal but almost diagonal), known as
Jordan canonical form of A. In this particular example, A is already in a Jordan form so the similarity
transformation defined by P turns out to be the identity transformation.
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Next, let us consider a 3 × 3 matrix A with only one eigenvalue λ of algebraic multiplicity three and
geometric multiplicity two.

A =

λ 1 1
0 λ 0
0 0 λ

 . (151)

The eigenspace of A corresponding to the eigenvalue λ is

(A− λI)v = 0R3 ⇔

0 1 1
0 0 0
0 0 0

v1v2
v3

 =

00
0

 ⇔


v1 arbitrary

v2 arbitrary

v3 = −v2

. (152)

Hence a basis for N(A− λI) is

v1 =

 0
1
−1

 v2 =

10
0

 . (153)

To complement {v1,v2} to a basis of R3 we add a generalized eigenvector v3 that solves the following linear
system7

(A− λI)v3 = v2. (154)

We obtain 0 1 1
0 0 0
0 0 0

v31v32
v33

 =

10
0

 ⇔


v31 arbitrary

v32, arbitrary

v32 + v33 = 1

. (155)

Hence a generalized eigenvector for the eigenspace N(A− λI) is

v3 =

00
1

 . (156)

We define the similarity trasformation P by using the eigenvectors
[
v1 v2

]
and the generalized eigenvector

v3 of A
P =

[
v1 v2 v3

]
. (157)

Since {v1,v2,v3} are linearly independent we have that P is invertible. Clearly,

AP =
[
Av1 Av2 Av3

]
=
[
λv1 λv2 v2 + λv3

]
=
[
v1 v2 v3

]︸ ︷︷ ︸
P

λ 0 0
0 λ 1
0 0 λ


︸ ︷︷ ︸

J

= PJ . (158)

Jordan blocks. At this point it is clear that by computing the generalized eigenvectors it is always
possible to construct a similarity transformation P that takes any matrix A into its Jordan canonical
form

J =


J1

J2

. . .

Jp

 , (159)

7Note there is really no reason why we should choose v1 instead of v2 at the right hand side of (154). In fact, the choice
of both eigenvectors and generalized eigenvectors is not really unique.
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where p is the total number of distinct eigenvalues of A. The Jordan canonical form is a block-diagonal
matrix in which each block Ji can be of the form summarized in Table 1.

Matrix exponentials of Jordan blocks. The matrix exponential of the Jordan form of (159) is a
block-diagonal matrix that has the matrix exponential of each Jordan block along the diagonal.

etJ =


etJ1

etJ2

. . .

etJp

 . (160)

Hence, to compute the matrix exponential of the Jordan form of A, we just need a formula for the matrix
exponential of each Jordan block in Table 1. The case in which the Jordan block is diagonal is trivial,
since the matrix exponential is just the exponential of the diagonal elements. For instance,

Ji =

[
λi 0
0 λi

]
⇒ etJi =

[
etλi 0
0 etλi

]
. (161)

Let us now show how to compute the matrix exponential of the following Jordan blocks

a) Ji =

[
λi 1
0 λi

]
, b) Ji =

λi 0 0
0 λi 1
0 0 λi

 , c) Ji =

λi 1 0
0 λi 1
0 0 λi

 . (162)

a) Let us write the 2D Jordan block as

Ji =

[
λi 1
0 λi

]
=

[
λi 0
0 λi

]
︸ ︷︷ ︸

Bi

+

[
0 1
0 0

]
︸ ︷︷ ︸

C

. (163)

The matrix commutator of Bi and C equals zero. In fact,

[Bi,C] = BiC −CBi =

[
λi 0
0 λi

] [
0 1
0 0

]
−
[
0 1
0 0

] [
λi 0
0 λi

]
=

[
0 0
0 0

]
. (164)

This implies that8

etJi = et(Bi+C) = etBietC . (168)

Since Bi is a diagonal matrix

etBi =

[
etλi 0
0 etλi

]
. (169)

8In general, given two square matrices A and B we have

eAeB = eZ , (165)

where

Z = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] + · · · . (166)

This formula is known as Baker-Campbell-Hausdorff formula. If A and B commute, i.e., if [A,B] = 0Mn×n then by (165)
and (166) we have

eAeB = eA+B . (167)
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Regarding the exponential of C we have the exact formula9

etC = I + tC =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
=

[
1 t
0 1

]
. (171)

Finally, a substitution of (171) and (169) into (168) yields the desired expression

etJi =

[
etλi 0
0 etλi

] [
1 t
0 1

]
=

[
etλi teλit

0 etλi

]
. (172)

b) The exponential of the 3D Jordan block

Ji =

λi 0 0
0 λi 1
0 0 λi

 (173)

can be computed using the formula (172) we just proved. In fact,

etJi =

etλi 0 0
0 etλi teλit

0 0 etλi

 . (174)

c) The exponential of the 3D Jordan block

Ji =

λi 1 0
0 λi 1
0 0 λi

 (175)

requires more work. We begin by splitting Ji as the sum of a diagonal matrix and and a non-diagonal
matrix

Ji =

λi 1 0
0 λi 1
0 0 λi

 =

λi 0 0
0 λi 0
0 0 λi


︸ ︷︷ ︸

Bi

+

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

C

. (176)

As before, it is straightforward to show that Bi and C commute

[Bi,C] = BiC −CBi =

0 0 0
0 0 0
0 0 0

 . (177)

Moreover, by a direct calculation, we can show that C is again a nilpotent matrix

C2 =

0 0 1
0 0 0
0 0 0

 , C3 =

0 0 0
0 0 0
0 0 0

 , . . . , Ck =

0 0 0
0 0 0
0 0 0

 . (178)

Therefore, the matrix exponential of the Jordan block (175) is

etJi = etBietC = etBi

(
I + tC + t2

C2

2

)
. (179)

9In fact,

C2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
. (170)

Of course all matrix powers Ck are all zero for k ≥ 2 since C2 = 0, and we can write Ck = C2Ck−2. Matrices with powers
that are equal to zero for some k larger than a threshold are called nilpotent.
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Substituting (178) into (179) finally yields

etJi =

etλi 0 0
0 etλi 0
0 0 etλi

1 t t2/2
0 1 t
0 0 1


︸ ︷︷ ︸
I+tC+t2C2/2

. (180)

Developing the product finally yields

etJi =

etλi tetλi t2etλi/2
0 etλi tetλi

0 0 etλi

 . (181)

The matrix exponential of all Jordan blocks we discussed in this section are summarized in Table 1.
Formulas for matrix exponentials of higher-dimensional Jordan blocks can be computed by using the
techniques we discussed in this section.

Real Jordan form. Suppose that the matrix A has two complex conjugate eigenvalues

λ1,2 = α± iβ. (182)

The complex eigenvalues will have corresponding eigenvectors that are also complex. To obtain a real
representation, we apply a change of basis that expresses these complex eigenvectors in terms of their real
and imaginary parts. Specifically, by taking the real and imaginary parts of either complex eigenvector10,
we obtain two real linearly independent vectors that span a two-dimensional invariant subspace. The
dynamics on this subspace is characterized by spirals or centers. The Jordan block associated with this
transformation is given by

J1,2 =

[
α ±β
∓β α

]
. (183)

The sign ambiguity in the off-diagonal entries of this block depends on the specific choice of signs for the
real and imaginary parts of the eigenvectors. The exponential of such a Jordan block is

etJ1,2 = eαt
[
cos(βt) ± sin(βt)
∓ sin(βt) cos(βt)

]
. (184)

Example: Let us compute the real Jordan form of the matrix

A =

 1 2 1
−2 1 0
1 0 1

 . (185)

The eigenvalues are
λ1,2 = 1± i

√
3, λ3 = 1. (186)

The eigenvectors are

v1 =

i√3
−2
1

 , v2 =

−i
√
3

−2
1

 , v3 =

 0
1
−2

 . (187)

10Eigenvectors associated with complex conjugate eigenvalues are themselves complex conjugates.

Page 28



AM 224 Prof. Daniele Venturi

Note that v1 and v2 are complex conjugates. The Jordan form corresponding to the similarity transfor-
mation P = [v1 v2 v3] is

J =

1 + i
√
3 0 0

0 1− i
√
3 0

0 0 1

 . (188)

Let us now construct an alternative (real) basis for the subspace spanned by v1 and v2, using the real and
imaginary parts of either complex conjugate eigenvector. Let us chose v1, and define the real similarity
transformation

PR =
[
Re(v1) Im(v1) v3

]
=

 0
√
3 0

−2 0 1
1 0 −2

 (189)

the vectors [Re(v1) Im(v1)] span the two-dimensional space with “unstable spiral” dynamics. The real
Jordan form corresponding to the similarity transformation PR is

JR =

 1
√
3 0

−
√
3 1 0

0 0 1

 . (190)

Note that there is an ambiguity in the sign of the off-diagonal elements. Such ambiguity depends on the
sign we chose for Re(v1) and Im(v1). The exponential of the Jordan block JR is

etJR =

 et cos(
√
3t) et sin(

√
3t) 0

−et sin(
√
3t) et cos(

√
3t) 0

0 0 et

 . (191)

Appendix C: Matrix norms compatible with vector norms

Let us define the following class of matrix norm

∥A∥ = sup
y ̸=0Rn

∥Ay∥
∥y∥

= sup
∥y∥=1

∥Ay∥ , (192)

where ∥Ay∥ and ∥y∥ are vector norms. Clearly, ∥A∥ is matrix norm, i.e., it satisfies the basic properties
of a norm

• ∥A∥ ≥ 0 (∥A∥ = 0 if and only if A = 0)

• ∥cA∥ = |c| ∥A∥ for all c ∈ R

• ∥A+B∥ ≤ ∥A∥+ ∥B∥

Moreover, ∥A∥ satisfies, by definition, the inequalities

∥A∥ ≥ ∥Ay∥
∥y∥

i.e. ∥Ay∥ ≤ ∥A∥ ∥y∥ . (193)

It is straightforward to show that

∥A∥∞ = max
i=1,..,n

 n∑
j=1

|Aij |

 , (194)

∥A∥1 = max
j=1,..,n

(
n∑

i=1

|Aij |

)
, (195)

∥A∥2 =
√

λmax (ATA) = σmax(A), (196)
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where σmax(A) is the largest singular value of the matrix A. For example,

∥Ay∥∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑

j=1

Aijyj

∣∣∣∣∣∣ ≤ max
i=1,...,n

 n∑
j=1

|Aij | |yj |

 ≤ ∥y∥∞ max
i=1,...,n

 n∑
j=1

|Aij |

 (197)

which implies that

∥Ay∥∞
∥y∥∞

≤ max
i=1,...,n

 n∑
j=1

|Aij |

 for all y ̸= 0Rn , (198)

i.e.,

∥A∥∞ = sup
y ̸=0Rn

∥Ay∥∞
∥y∥∞

= max
i=1,...,n

 n∑
j=1

|Aij |

 . (199)

With any compatible matrix norm available we immediately see that the function f(y) = Ay is Lipschitz
continuous in Rn. In fact, we have

∥Ay1 −Ay2∥ ≤ ∥A∥ ∥y1 − y2∥ for all y1,y2 ∈ Rn, (200)

where L = ∥A∥ is a Lipschitz constant.

Appendix D: Solution of a linear system in terms of the matrix exponential

We first write the ODE (1) as a linear integral equation

X(t,x0) = x0 +

∫ t

0
AX(s,x0)ds.

To solve this equation we use the Picard iteration method, which is a fixed point iteration method. To
this end, we define the iterative sequence

X(n)(t,x0) = x0 +

∫ t

0
AX(n−1)(s,x0)ds X(0)(t,x0) = x0 (201)

Picard’s iterations are convergent within a temporal interval t ∈ [0, T ], where T depends on the norm of
A. Let us we start with n = 1

X(1)(t,x0) = x0 +

∫ t

0
Ax0ds = x0 +Ax0t = (I +At)x0.

We can use this to compute n = 2 which gives

X(2)(t,x0) = x0 +

∫ t

0
AX(1)(s,x0)ds = x0 +

∫ t

0
A(I +At)x0ds =

(
I +At+

t2

2
A2

)
x0.

By induction it is straightforward to show that

X(n)(t,x0) =

(
n∑

k=0

Aktk

k!

)
x0.

Clearly,

X(t,x0) = lim
n→∞

X(n)(t,x0) =

(
lim
n→∞

n∑
k=0

Aktk

k!

)
x0 = etAx0. (202)

Convergence of Picard’s iterations. This can be easily established within the context of Banach
fixed point theorem (or Banach contraction mapping theorem) for continuous functions, which we recall
hereafter.
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Theorem 5 (Banach fixed point theorem). Let T > 0 be fixed, and let U = C([0, T ];Rn) denote the space
of all continuous functions from [0, T ] to Rn, equipped with the supremum norm

∥x(t)∥∞ = sup
t∈[0,T ]

∥x(t)∥, (203)

where ∥ · ∥ is any vector norm on Rn. Suppose L : U → U is a linear mapping11 for which there exists a
constant 0 < M < 1 such that

∥Lx1 − Lx2∥∞ ≤ M∥x1 − x2∥∞ for all x1,x2 ∈ U.

Then

1. There exists a unique fixed point x ∈ U such that Lx(t) = x(t).

2. For any initial guess x(0) ∈ U , the Picard iteration

x(k+1)(t) = Lx(k)(t), k = 0, 1, 2, . . . ,

converges uniformly to the unique fixed point x.

3. Convergence is geometric

∥x(k) − x∥∞ ≤ Mk

1−M
∥x(1) − x(0)∥∞.

To show how Theorem 5 can be applied to prove convergence of Picard’s iterations, define the linear
operator12 L : U 7→ U as

Lx(t) = x(0) +

∫ t

0
Ax(s)ds ∀t ∈ [0, T ]. (204)

We want to find conditions on the integration time T such that L is a (strong) contraction, i.e.,

∥Lx1(t)− Lx2(t)∥ ≤ M∥x1(t)− x2(t)∥ for all x1(t),x2(t) ∈ C([0, T ];Rn) 0 < M < 1. (205)

Using the norm defined in (203) we have

∥Lx1(t)− Lx2(t)∥∞ =

∥∥∥∥∫ t

0
A(x1(s)− x2(s)) ds

∥∥∥∥
∞

≤
∫ t

0
∥A(x1(s)− x2(s))∥∞ ds

≤ t∥x1 − x2∥∞∥A∥∞, (206)

where ∥A∥∞ is the matrix norm (194). Hence, the operator L is a contraction on C([0, T ];Rn) provided
that

t∥A∥∞ < 1 for all t ∈ [0, T ] i.e. T <
1

∥A∥∞
. (207)

For any such T , the Banach fixed-point theorem allows us to conclude that there exists a unique fixed point
of the operator L in the space C([0, T ];Rn), satisfying

x(t) = Lx(t), (208)

11Banach fixed point theorem works for both linear and nonlinear mappings.
12Note that the operator L in equation (204) does not require x(t) to be continuously differentiable in time. Therefore,

a solution to the integral equation Lx(t) = x(t) is, in general, a weaker notion than a solution to the differential equation
dx
dt

= Ax, since the former requires only continuity of x(t), whereas the latter requires continuous differentiability.
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that is,

X(t,x0) = x0 +

∫ t

0
AX(s,x0) ds, ∀t ∈ [0, T ]. (209)

The fixed point is explicitly given by (202), for all t ∈ [0, T ]

Furthermore, using the semigroup property of the flow X(t,x0), we can apply the same argument starting
from any later time t1 ∈ [0, T ], treating X(t1,x0) as the new initial condition, and integrate forward by
an additional T units. In this way, the solution can be extended to cover any desired time interval.

Remark: The proof given above holds for functions that are only continuous in time. An equivalent proof
can be given for functions that are continuously differentiable in time. To this end, we can replace the
norm in (203) with one that also accounts for the temporal derivative of x(t) and seek conditions on t that
ensure the contraction property mentioned in Theorem 5 holds with respect to this new norm, allowing us
to invoke the Banach fixed-point theorem.

Remark: The Picard iteration method combined with the Banach fixed point theorem can be used to
prove existence and uniqueness of the solution to systems n-dimensional nonlinear ODEs with Lipshitz
continuous f(x). The sequence of steps is exactly the same as above, with ∥A∥∞ replaced by the Lipschitz
constant of f .
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