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Random processes and random fields

Let (Ω,B, P ) be a probability space. A real valued stochastic process in the time interval [0, T ] is a
mapping

X : Ω× [0, T ] → R. (1)

The process can be continuous in time1 (e.g., the Wiener process), discontinuous in time (e.g., telegrapher’s
random process), or time-discrete, e.g., represented by a sequence of random variablesX(tj ;ω) j = 1, . . . , n.
In this sense, a random process can be thought of as an infinite set (countable or uncountable) of random
variables indexed by the time t.

The properties of X(t;ω) very much depend on the way we characterize the process, i.e., the set of rules
and specifications that allow us to fully characterize the process. Clearly, X(t;ω) is a random variable for
each fixed t. This means that X(t;ω) admits a distribution function

F (x, t) = P ({ω : X(t;ω) ≤ x}) , (4)

and eventually a probability density function

p(x, t) =
dF (x, t)

dx
. (5)

With F (x, t) or p(x, t) available we can compute the statistical moments at time t, e.g.,

E
{
X(t;ω)k

}
=

∫ ∞

−∞
xkp(x, t)dx, k ∈ N. (6)

However, the PDF p(x, t) provides very limited statistical information about the process X(t;ω). In fact,
it does not allow us to compute any joint statistics at different times, for example the auto-correlation
function

E{X(t;ω)X(s;ω)} =

∫ ∞

−∞
x1x2p(x1, x2, t, s)dx1dx2, (7)

1The notion of continuity for real-valued functions can be generalized big time to stochastic processes. For example,

Continuity in probability: lim
s→t

P ({ω : |X(t;ω)−X(s;ω)| > ϵ}) = 0 for all ϵ > 0.

Continuity with probability one: P
(
{ω : lim

s→t
|X(s;ω)−X(t;ω)| = 0}

)
= 1 for all t ≥ 0.

Mean-square continuity: lim
s→t

E{|X(t;ω)−X(s;ω)|2} = 0.

Continuity in distribution: lim
s→t

F (x, s) = F (x, t) (F (x, t) distribution function of X(t;ω)).

In general, it can be shown that:

Continuity in mean-square ⇒ continuity in probability ⇒ continuity in distribution.

Continuity in probability follows from mean-square continuity thanks to the Markov’s inequality

P ({ω : |X(t;ω)−X(s;ω)| > ϵ}) ≤ 1

ϵ2
E{|X(t;ω)−X(s;ω)|2} ∀t, s ∈ [0, T ]. (2)

Note: there are pathwise continuous stochastic processes that are not mean-square continuous. On the other hand Mean-
square continuity implies that the mean process E{X(t;ω)} is continuous in t (but not necessarily pathwise continuous). In
fact, using the inequality |E{X}|2 ≤ E{X2} we obtain

|E{X(t;ω)−X(s;ω)}| = |E{X(t;ω)} − E{X(s;ω)}| ≤
√

E{|X(t;ω)−X(s;ω)|2}. (3)

Similarly, if the process is mean-square continuous then the auto-correlation function E{X(t;ω)X(s;ω)} continuous in both s
and t.
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where p(x1, x2, t, s) is the joint probability density function of the random variables X(t;ω) and X(s;ω),
where t and s can vary in [0, T ].

A straightforward generalization of what we just said leads us to construct the joint PDF of a vector
{X(t1;ω), . . . , X(tn;ω)} representing the values of the process X(t;ω) at an arbitrary number of time
instants ti ∈ [0, T ]. Similarly, we can construct the joint characteristic function of the random process
X(t;ω) at {t1, . . . , tn} as

ϕ(a1, . . . , an; t1, . . . , tn) = E
{
eia1X(t1;ω)+···+ianX(tn;ω)

}
. (8)

This expression can be obtained (at least formally) from the so-called Hopf characteristic functional [9, 2]
associated with the stochastic process X(t;ω), i.e.,

Φ([θ(t)]) = E
{
exp

(
i

∫ T

0
X(τ ;ω)θ(τ)dτ

)}
, (9)

where θ(t) is a deterministic test function which we are free to choose. For example, if we pick

θ(t) =

n∑
i=1

aiδ(t− ti), (10)

and substitute it into (9) then we obtain (8). The Hopf functional2 (9) provides full statistical information
about the stochastic process X(t;ω), including all joint statistical moments, all multi-time PDFs, etc. For
instance, the functional derivatives of Φ evaluated at θ = 0 coincide with the statistical moments (see, e.g.
[7])

δqΦ([θ])

δθ(t)q

∣∣∣∣
θ=0

=
1

iq
E{X(t;ω)q}, δq+pΦ([θ])

δθ(t)qδθ(s)p

∣∣∣∣
θ=0

=
1

iq+p
E{X(t;ω)qX(s;ω)p}. (11)

In [2] the Hopf functional is determined for various types of stochastic processes.

Remark: To fully characterize a stochastic process it is not necessary to identify or provide the Hopf
functional. A stochastic process can be defined in many different ways, some of which are not even explicit.
However, if the Hopf characteristic functional is available, then the process is fully specified, perhaps in
the most compact possible way (see [5] for applications of Hopf functional methods to turbulence).

Gaussian processes. The Hopf characteristic functional of a Gaussian process is (see, e.g., [2])

Φ([θ(t)]) = exp

(
i

∫ T

0
µ(τ)θ(τ)− 1

2

∫ T

0

∫ T

0
C(τ, s)θ(τ)θ(s)dτds

)
, (12)

where

µ(t) = E{X(t;ω)} (mean), (13)

C(t, s) = E{X(t;ω)X(s;ω)} − µ(t)µ(s) (covariance function). (14)

Higher order moments can be computed using functional differentiation (e.g., (11)), or by noticing that the
joint characteristic function the random process X(t;ω) at an arbitrary number of distinct time instants
is

ϕ(a1, . . . , an; t1, . . . , tn) = exp

i n∑
k=1

akµ(tk)−
1

2

n∑
k,j=1

C(tk, tj)akaj

 . (15)

2Recall that a functional is a mapping from a certain space of functions (or distributions) into the real line or the complex
plane. The Hopf functional is a complex-valued nonlinear functional into C.
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Figure 1: Samples of zero-mean Gaussian process with covariance function (17) and σ = 1. We show
samples corresponding to different values of the Hurst parameter h.

Sampling Gaussian processes. To sample a Gaussian process with mean µ(t) and covariance function
C(s, t) it is sufficient to construct a temporal grid in [0, T ] and then sample a Gaussian random vector with
mean µi = µ(ti), and covariance matrix with entries C(tk, tj). To this end, recall that if X(ω) is a zero-
mean Gaussian random vector (column vector) with independent entries of variance one, and C = RRT is
the Cholesky decomposition of the covariance matrix3 C, then Y = RX is a zero-mean Gaussian random
vector with covariance C. In fact,

E{Y (ω)Y T (ω)} = E{RX(ω)XT (ω)RT } = RE{X(ω)XT (ω)}︸ ︷︷ ︸
(identity matrix)

RT = C. (16)

In Figure 1 we plot a few samples of a Gaussian random process with zero mean and covariance func-
tion

C(s, t) =
σ

2

(
|s|2h + |t|2h − |s− t|2h

)
, (17)

where 0 < h < 1 is the so-called Hurst parameter. A Gaussian process with covariance function (17) is
called fractional Brownian motion.

Gaussian random fields. The procedure we used to sample of Gaussian stochastic process with covari-
ance C(s, t) (e.g., (17)) can be extended to Gaussian random fields [6], i.e., random functions defined of a
domain V ⊆ Rd. For example, we can sample a zero-mean Gaussian random field X(x;ω) defined on the
square domain V = [0, 1]× [0, 1] with covariance function

C(x,y) =
σ

2

(
∥x∥2h2 + ∥y∥2h2 − ∥x− y∥2h2

)
. (18)

To this end we, first construct the covariance matrix C(xi,xj) and then use the procedure we just described
before, i.e.

1. sample a zero-mean i.i.d. Gaussian random variable with variance one at each spatial location xi,

2. multiply the sample of the random vector constructed in this way by the matrix R obtained by the
Cholesky decomposition of the covariance function (18).

In Figure 2 we provide a few samples of a zero mean Gaussian random field with covariance (18).

3The entries of the covariance matrix C are C(ti, tj), where C(t, s) is the covariance function of the random process.
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Figure 2: Samples of zero-mean Gaussian random field with covariance function (18) and σ = 1. We show
samples corresponding to different values of the Hurst parameter h.

Discrete Markov processes

Consider a vector-valued discrete random process, i.e., a sequence of random vectors

X0(ω) 7→ X1(ω) 7→ X2(ω) 7→ · · · (19)

defined by some law that allows us to generate new elements of the sequence (hence the name “process”).
To define the random process (19) we need to specify how a particular state Xn can be computed given
past states. This is modeled effectively by the transition density of Xn given previous states. Alternatively,
we can write down a deterministic evolution equation for Xj , i.e., an equation that relates Xn to previous
states.

Nonlinear autoregressive processes. The random process (19) is often defined via recurrence relations4,
e.g., of the form5

Xk+1(ω) = F (Xk(ω)) + ξk(ω), (21)

where X0 is a random vector with known PDF, and {ξ1, ξ2, . . .} is a sequence of random vectors with
known joint PDFs. The index “k” usually refers to time , but is can also refer to other quantities, e.g., the
layer identity in a feed-forward neural network. Indeed, the recurrence relation (21) can model a recurrent
neural network where the output of each layer is perturbed by some noise ξk, and the components of F
represent the neural activation functions (see [10]).

Markov property. Disregarding how we generate the sequence of random vectors {Xj} in (19), we can
characterize the statistics of the process Xi in terms of the joint PDF of the random vectors {X0, . . . ,Xn},
p(xn, . . . ,x0). By using the definition of conditional probability density we have

p(xn, . . . ,x1,x0) = p(xn|xn−1, . . . ,x1,x0)p(xn−1, . . . ,x0). (22)

4The discrete process defined by (21) is also called nonlinear autoregressive process [1].
5A discrete nonlinear autoregressive process that generalizes (21) is

Xk+1 = Fk (Xk, ξk) , (20)
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If the system is memoryless (or Markovian), we have that the conditional PDF of Xn given the entire
history of Xi from X0 to Xn−1 equals p(xn|xn−1), i.e.,

p(xn|xn−1, . . . ,x1,x0) = p(xn|xn−1) (Markov property). (23)

In other words, the PDF of the random vector Xn(ω) conditional to any set of “previous” vectors {Xj(ω)}
with j < n equals to p(xn|xn−1), i.e., it depends only on Xn−1(ω). By applying (23) recursively we
obtain

p(xn,xn−1, . . . ,x1,x0) = p(xn|xn−1)p(xn−1|xn−2) · · · p(x1|x0)p(x0). (24)

Hence, to fully specify a Markov process we just need to define

• The transition densities p(xk+1|xk),

• The PDF p(x0) of the initial state X0.

Note also that by marginalizing (24) with respect to (x0, . . . ,xn−1) we obtain

p(xn) =

∫
p(xn|xn−1)p(xn−1)dxn−1. (25)

The transition densities p(xk|xk−1) depend on way the process is defined.

Nonlinear autoregressive Markov processes. Consider a slightly generalized version of the random
process defined in (21), where F can be dependent of the particular iteration

Xk+1(ω) = Fk(Xk(ω)) + ξk(ω), (26)

In Appendix A we show that if the perturbation vectors {ξ1, . . . , ξn} are mutually independent, and if each
ξj is independent of past and current states, i.e., {X0, . . . ,Xn}, then (26) defines a Markov process. The
transition density of such process is given by

p(xk+1|xk) =

∫
p(xk+1|xk, ξk)pξk(ξk)dξk

=

∫
δ(xk+1 − Fk(xk)− ξk)pξk(ξk)dξk

=pξk(xk+1 − Fk(xk)), (27)

where pξk is the PDF of the noise vector ξk. Note that if the noise vectors ξk are zero, i.e., if the
autoregressive model is of the form

Xk+1 = Fk(Xk) k = 0, 1, . . . (28)

with X0 random, then the transition density reduces to

p(xk+1|xk) = δ(xk+1 − Fk(xk)). (29)

A substitution of (29) into (25) yields

p(xk+1) =

∫
δ(xk+1 − Fk(xk))p(xk)dxk, (30)

which is the expression we have seen when studying random vectors to transform the PDF of Xk into the
of Xk+1 via the nonlinear mapping (28).
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Remark: Any discrete autoregressive process (state+noise) can be written as a Markovian process in a
higher-dimensional state space. For example, consider

Xk+1 =F (Xk,Xk−1) + ξk, (31)

ξk+1 =sin(ξk) + ηk, (32)

where ηk are i.i.d. and independent of {ξk} and {Xk}. Clearly the noise ξk here is a Markov process (not an
i.i.d. process), and it is driving the autoregressive process {Xk}. Upon definition of Zk = [Xk, Xk−1, xk]

T ,
it is possible to write (31)-(32) as a Markov process driven by the i.i.d. noise {ηk}.

Statistically steady states. Consider the Markovian auto-regressive process (26), where Fk is indepen-
dent of k, i.e.,

Xk+1 = F (Xk) + ξk, (33)

and the noise vectors {ξk} are independent and identically distributed. In these hypotheses the transition
density p(xk+1|xk) has a functional form that is independent of k. Denote such functional form as p(x|y).
A statistically stationary state p∗(x) of the auto regressive Markov process (33) is a solution to the Volterra
integral equation

p∗(x) =

∫
p(x|y)p∗(y)dy. (34)

Pseudo-random number generators. Random variables and other random objects are simulated by
deterministic computer algorithms. The purpose of these algorithms is to produce sequences of numbers
whose behavior is very hard to distinguish from that of their “truly random” counterparts, at least for the
application of interest. Most algorithms commonly used to generate random numbers in a computer utilize
autoregressive relations of the form (28). For example the function rand() to generate uniformly distributed
random numbers in Matlab and other programming languages implements the so called “MRG32k3a se-
quence” originally proposed by L’Ecuyer in [3]. The sequence can be written as

Xk =(1403580Xk−2 − 810728Xk−3) mod m1 (35)

Yk =(527612Yk−1 − 1370589Yk−3) mod m2 (36)

where m1 = 232−209, and m2 = 232−22853. The uniform “random number” Uk is then obtained as

Uk =
(X̂k − Ŷk) mod m1

m1 + 1
. (37)

where

X̂k =

{
Xk if Xk ≥ 0

Xk −m1Xk if Xk < 0
Ŷk =

{
Yk if Yk ≥ 0

Yk −m2Yk if Yk < 0
(38)

The period of this sequence (i.e., after how many iterations it repeats itself) is quite large, i.e., approxi-
mately 3.1 × 1057. The sequence is usually initialized via a “seed” (hereafter set as 12345 for all compo-
nents)

X−3 = X−2 = X−1 = Y−3 = Y−2 = Y−1 = 12345. (39)

The seed must be positive and less than m1 and m2.

Particle filtering and recursive Bayesian state estimation

Consider a model described by a nonlinear autoregressive Markov process of the form6

Xk+1 = F (Xk) + ξk, (model equations), (40)

6The model can be easily generalized the “non-autonomous” case by letting F depend on the particular iteration k, i.e.
Xk+1 = Fk(Xk), or even by including the noise vector ξk as an argument of Fk, i.e., Xk+1 = Fk(Xk, ξk).
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where {ξj} are i.i.d. random vectors independent of past and present states {X0, . . . ,Xk}. Suppose that
we are also given (noisy) measurements of a nonlinear function of the states {Xk}

Yk+1 = H(Xk+1) + ηk+1, (measurements), (41)

where i.i.d. random vectors. The goal of particle filtering and recursive Bayesian state estimation is to
construct the PDF of the current state Xk, given all the available information, i.e., the discrete system (40)
and the measured data {Y0, . . . ,Yk} defined in (41). In principle, this PDF may be obtained recursively
by computing a one-step PDF prediction and then update such PDF with the measurement

Prediction ⇒ Update ⇒ Prediction ⇒ . . .

To show how, suppose we are given the PDF of the initial state X0, i.e. p(x0). By using the Markovian
property of (40) we can write the PDF of X1 as

p(x1) =

∫
p(x1|x0)p(x0)dx0 (prediction 1). (42)

The transition density p(x1|x0) can be easily derived from (40) (see, e.g., Eq. (27)) as

p(x1|x0) = pξ0 (x1 − F (x0)) . (43)

At this point suppose that a measurement of Y1 comes available. By using the Bayes’s rule we have

p(x1|y1) =
p(y1|x1)p(x1)

p(y1)
=

p(y1|x1)p(x1)∫
p(y1|x1)p(x1)dx1

(update 1). (44)

The transition density p(y1|x1) is easily obtained from (41) as

p(y1|x1) = pη1 (y1 −H(x1)) . (45)

With this expression, we can compute the PDF p(x1|y1) in (44). Next, we push forward the updated PDF
p(x1|y1) using the transition density p(x2|x1) defined by our model equations (40), i.e.,

p(x2|y1) =

∫
p(x2|x1)p(x1|y1)dx1 (prediction 2). (46)

When a measurement of Y2 comes in we can updated the PDF as p(x2|y1) as

p(x2|y1,y2) =
p(y2|x2)p(x2|y1)∫
p(y2|x2)p(x2|y1)dx2

(update 2). (47)

In summary, we need to iterate the following two equations

p(xn+1|y1, . . . ,yn) =

∫
p(xn+1|xn)p(xn|y1, . . . ,yn)dxn (prediction), (48)

p(xn+1|y1, . . . ,yn,yn+1) =
p(yn+1|xn+1)p(xn+1|y1, . . . ,yn)∫

p(yn+1|xn+1)p(xn+1|y1, . . . ,yn)dxn+1

(update/filtering). (49)

The recurrence relations (48)-(49) of constitute the formal solution to the Bayesian recursive estimation
problem. Analytic solutions to this problem are only available for a relatively small and restrictive choice
of system and measurement models, the most important being the Kalman filter (see hereafter), which
assumes that both F and H in (40) and (41) are linear, and that {ηk} and {ηk} are zero-mean additive
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Gaussian noises with known covariance matrices. This yields a sequence of Gaussian transition densities
and Gaussian states. To represent such states, we only need a evolution equations for the mean and the
covariance of the predicted and updated Gaussian PDFs. Indeed mean and covariance fully characterize
the Gaussian.

Kalman filter. Suppose that both F and H in (40) and (41) are linear, and that {ηk} and {ηk} are
zero-mean additive Gaussian noises with known covariance matrices. In these assumptions we write the
system (40) and (41) as

Xk+1 =AkXk + ξk model, (50)

Yk+1 =Bk+1Xk+1 + ηk+1 measurements. (51)

Since all PDFs in (48)-(49) are Gaussian, we just need to update the (conditional) mean and the (condi-
tional) covariance of the PDF defined by the prediction and update/filtering steps. In the hypotheses of
zero-mean Gaussian noise with known covariances7 a straightforward calculation shows that

prediction step:

µk+1 = Akµk mean

Ck+1 = AkCkA
T
k +Σk covariance

(52)

where µk = E{Xk|Y1, . . . ,Yk}, µk+1 = E{Xk+1|Y1, . . . ,Yk}, Ck is the covariance of Xk conditional to
{Y1, . . . ,Yk}, Ck+1 is the covariance of Xk+1 conditional to {Y1, . . . ,Yk}, and Σk is the covariance of ξk.
Upon definition of

Kk+1 = Ck+1B
T
k

[
BkCk+1B

T
k +Qk+1

]−1
(Kalman gain), (53)

where Qk+1 is the covariance of ηk+1, we can write the update/filtering step (49) as

update step:

µ̂k+1 = µk+1 +Kk+1 (yk+1 −Bk+1µk+1) mean

Ĉk+1 = (I −Kk+1Bk+1)Ck+1 covariance
. (54)

Here, µ̂k = E{Xk+1|Y1, . . . ,Yk+1} is the posterior mean of Xk+1 after the observation of Yk+1 (denoted as
yk+1). Similarly, Ĉk+1 is the covariance of Xk+1 conditional to {Y1, . . . ,Yk+1}, i.e., after the observation
of Yk+1 comes in.

In other words, µk+1 and Ck+1 are the mean and the covariance of the PDF p(xk+1|y1, . . . ,yk) defined
in (48), while µ̂k+1 and Ĉk+1 are the mean and the covariance of the PDF p(xk+1|y1, . . . ,yk+1) defined
in (49). With the updated mean µ̂k+1 and covariance Ĉk+1, we go back to (52) and use such updated
mean/covariance to do another prediction step forward, and so on so forth.

Example (polynomial prediction of a random signal): Consider the problem of predicting the next
element of a random sequence of numbers defined on an evenly-spaced temporal grid using a simple second-
order polynomial interpolation/extrapolation scheme. With reference to Figure 3, we have that the second
order polynomial that interpolates a function Z(t) at {tk−2, tk−1, tk} can be written in a Lagrangian form
as

X(t) = Z(tk−2)lk−2(t) + Z(tk−1)lk−1(t) + Z(tk)lk(t) (55)

where {lj(t)} are Lagrange characteristic polynomials. We have Z(tk) = Xk (interpolation condition).
Moreover, by evaluating X(t) at t = tk+1 we obtain the linear multi-step relation

Xk+1 = 3Xk − 3Xk−1 +Xk−2. (56)

7In general the covariance matrices of the noise sequences {ξk} and {ηk} is not known and has to be estimated from data.
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Figure 3: Sketch of the second-order polynomial interpolation/extrapolation process to construct the linear
forecasting model (57). The function Z(t) is interpolated at {tk−2, tk−1, tk} by the second-order polynomial
X(t), which is then extrapolated at tk+1.

Before filtering (Eqs. (52)) After filtering (Eqs. (54))
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Figure 4: Kalman filtering of a second-order polynomial model to predict (via simple extrapolation) a
random signal at the next time step. Shown are the mean and a confidence interval of the predictor at a
particular time. We show results of predictor mean and variance before and after filtering.

This allows us to write the following linear prediction model for Xk+1 given {Xk, Xk−1, Xk−2}Xk−1

Xk

Xk+1


︸ ︷︷ ︸

Xk+1

=

0 1 0
0 0 1
1 −3 3


︸ ︷︷ ︸

A

Xk−2

Xk−1

Xk


︸ ︷︷ ︸

Xk

+

ξk−2

ξk−1

ξk


︸ ︷︷ ︸

ξk

. (57)

Since Xk is a random vector, this model should be interpreted as an infinite number of interpolations and
extrapolations, one for each sample of Xk. This yields a whole ensemble of Xk+1, which is then perturbed
by noise. Suppose we observe the full state vector Xk at each time, with some additive noise, i.e.,

Yk+1 = Xk+1 + ηk. (58)

In Figure 4 we plot the results obtained by applying the Kalman filter to the prediction model (57).
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Karhunen-Loève expansion of random processes

Let X(t;ω) be a zero-mean square-integrable stochastic process defined on the probability space (Ω,B, P ).
“Square-integrable” means that X(t;ω) has finite second order moment, i.e.,

E
{∫ T

0
X(t;ω)2dt

}
<∞. (59)

By using the properties of L2(Ω,B, P ) spaces (probability spaces of square integrable random variables),
it can be shown that X(t;ω) admits a series expansion

X(t;ω) =
∞∑
k=1

√
λkξk(ω)ψk(t), (60)

where {ξ1(ω), ξ2(ω), . . .} is a set of uncorrelated, i.e., orthonormal, random variables satisfying

E {ξi(ω)ξj(ω)} = δij , (61)

and {ψ1(t), ψ2(t), . . .} are orthonormal (in L2([0, T ])) temporal modes∫ T

0
ψi(t)ψj(t)dt = δij . (62)

By using the orthogonality properties (61)-(62), we obtain the so-called dispersion relations8

ξk(ω) =
1√
λk

∫ T

0
X(t;ω)ψk(t)dt, (64)

ψk(t) =
1√
λk

E{ξk(ω)X(t;ω)}. (65)

A substitution of (64) into (65) yields the eigenvalue problem∫ T

0
C(t, s)ψk(s)ds = λ2kψk(t). (66)

where
C(t, s) = E {X(t;ω)X(s;ω)} (67)

is the autocorrelation function of the process. In other words, the KL temporal modes are eigenfunctions
of the the auto-correlation function of the process. Since C(t, s) is a Mercer’s kernel (continuous symmetric
non-negative definite kernel) we have that {ψk(t)} is a complete orthonormal basis of L2([0, T ]).

Example: Let us compute the KL expansion of a stochastic process with exponential auto-correlation
function

C(t, s) =
σ2

2τ
e−|t−s|/τ , (68)

where τ denotes the correlation time. Note that (68) is an element of a Dirac delta sequence. This implies
that

lim
τ→0

σ2

2τ
e−|t−s|/τ = σ2δ(t− s). (69)

8It is straightforward to show that (65) follows form the variational principle

min
ψk

E([ψ1, ψ2, . . .]) = min
ψk

∫ T

0

E

{∣∣∣∣∣X(t;ω)−
∞∑
k=1

√
λkξk(ω)ψk(t)

∣∣∣∣∣
2}

dt. (63)
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The eigenvalue problem (68) with C(t, s) defined in(68) admits the analytical solution9 (see [4])

ψk(t) =
τzk cos(zkt) + sin(zkt)√

1

2

(
τ2z2k + 1

)
T +

(
τ2z2k − 1

) sin(2zkT )
4zk

+
τ

2
(1− cos(2zkT ))

, (73)

where zk are solution of the transcendental equation(
z2k −

1

τ

)
tan(zkT )−

2zk
τ

= 0, (74)

and

λk =
σ2(

z2kτ
2 + 1

) (75)

are the KL eigenvalues. The KL eigenvalues become smaller and smaller as zk increases. The eigenvalue
decay is more pronounced for larger correlation lengths τ , while for very small correlation lengths the
eigenvalue decay rate is very small, eventually zero for zero correlation length.

For practical purposes, the KL series expansion (60) is usually truncated to a finite number of terms. As
we just discussed, the number of terms is inversely proportional to τ : the smaller τ the larger the number
of terms. The number of terms M in the KL series expansion (60) is usually chosen by thresholding the
relative “energy” of the process as

M∑
k=1

λk

∞∑
k=1

λk

≃ 0.95. (76)

This implies that the modes we retain in the series capture about 95% of the process “energy”. In Figure
5 we plot samples of the exponentially correlated Gaussian random process

X(t;ω) = sin(t) +
σ

2τ

M∑
k=1

√
λkξk(ω)ψk(t) t ∈ [0, 20], (77)

for τ = 1 and τ = 0.1.

Remark: In the case where (66) cannot be solved analytically, we can resort to numerical method for
Fredholm eigenvalue problems, e.g., Finite-difference methods, spectral methods, or Galerkin methods (see

9To compute the analytical solution of the KL eigenvalue problem (66) with exponential covariance (68) let us first rewrite
it as ∫ T

0

e−c|t−s|ψk(s)ds = λ̂kψk(t), c =
1

τ
, λ̂k =

2τ

σ2
λk. (70)

Differentiating with respect to t the equivalent expression∫ t

0

e−c(t−s)ψk(s)ds+

∫ T

t

ec(t−s)ψk(s)ds = λ̂kψk(t) (71)

yields the second-order boundary value problem

d2ψk
dt2

=
c2λ̂k − 2c

λ̂k
ψk(t)

dψk(t)

dt
= cψ(0)

dψk(T )

dt
= cψ(T )

(72)

The solution of the BVP (72) is (73)-(75).
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Figure 5: Samples of the exponentially correlated Gaussian random process (77) for different correlation
times τ . The KL The mean of the process is shown in red. The truncation threshold for the number of
terms M is set at 95% of the energy of the process (see Eq. (76)).

e.g., [8]). Of course it is also possible to define KL expansions of random fields by simply generalizing the
bi-orthogonal series (60) as

X(x;ω) =
∞∑
k=1

√
λkξk(ω)ψk(x). (78)

The computation of the KL expansion follows exactly the same steps as before, i.e., ψk(x) are solutions to
the eigenvalue problem ∫

V
C(x,y)ψk(y)dy = λkψk(x), (79)

where V is some spatial domain.

Remark: To sample realizations of the random process (60) we need to sample the random variables
{ξ1, . . . , ξM}. Such random variables are (by construction) orthonormal (see (61)), i.e., they are uncor-
related and have variance equal to one. Clearly, if {ξ1, . . . , ξM} are jointly Gaussian then we know that
the condition (61) is necessary and sufficient for independence. Hence, in the Gaussian case, sampling the
joint PDF of {ξ1, . . . , ξM} reduces to sampling the PDF of an independent set of one-dimensional Gaussian
random variables with zero mean and variance one. More generally, if we have available the joint PDF
p(ξ1, . . . , ξM ), e.g., by computing (64), then we can sample it using Markov Chain Monte Carlo (MCMC)
methods, e.g., the Metropolis-Hastings algorithm or Gibbs sampling.

Wiener process

The Wiener process (also known as “Brownian motion”) is a zero-mean continuous-time random process
satisfying the following conditions:

• The increment X(t+ τ ;ω)−X(t;ω) is a Gaussian random variable with zero mean and variance τ .
In other words, the conditional probability density of X(t+ τ ;ω) given X(t;ω), i.e., p(x(t+ τ)|x(t))
is Gaussian with mean X(t;ω) and variance τ10.

10Random processes with conditional mean at time tk+1 equal to the process observation at time tk (given the whole past
history) are called martingales. In a discrete setting a martingale is defined as

E {Xk+1|Xk = xk, . . . , X0 = x0} = xk. (80)

The Wiener process is therefore a martingale.
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• The random variables (increments)

X(t1;ω)−X(t0;ω) and X(t3;ω)−X(t2;ω) (81)

are statistically independent for t0 < t1 ≤ t2 < t3. In other words, the Wiener process is an
independent increment process11.

• The process X(t;ω) is continuous with probability one, i.e.,

P
(
{ω : lim

s→t
|X(s;ω)−X(t;ω)| = 0}

)
= 1 for all t ≥ 0. (82)

This means that almost all (except sets of measure zero) sample paths are continuous in the classical
sense, but the process X(t;ω) is nowhere differentiable. Continuity with probability one implies
continuity in probability, and therefore mean square continuity and continuity in distribution.

An very clear construction of the Wiener process is provided by Wiener himself in [11, Lecture 1]. The
simplest algorithm to sample a Wiener process leverages the fact that the process has Gaussian distributed
independent increments. Let {tk}k=1,...,n be n distinct time instants

0 = t0 < t1 < . . . < tn. (83)

Then

X(tk;ω) =
k∑

j=1

√
∆tjξj(ω) ∆tj = tj − tj−1, (84)

where {ξj(ω)} are independent random variables with mean zero and variance 1. Note that the initial
condition of X(t;ω) is set to zero at t = 0. This is not a strict requirement, and indeed we can set the
initial condition to be an arbitrary number x0, or even a Gaussian random variable X0. A closer look at
(84), reveals

X(t1;ω) =
√

∆t1ξ1(ω), (85)

X(t2;ω) =X(t1;ω) +
√

∆t2ξ2(ω) =
√

∆t1ξ1(ω) +
√
∆t2ξ2(ω) (86)

· · ·

Since X(tk;ω) is a superimposition of essentially an infinite number of independent random vairable, it is
easy to show that the one-time PDF of X(t;ω) is (sum of independent Gaussian random variables)

p(x, t) =
1√
2πt

e−x2/(2t), (87)

i.e., it is Gaussian. This equation also follows from the conditional PDF identity

p(x, t) =

∫ ∞

∞
p(x, t|y, s)p(y, s)dy t > s, (88)

where p(x, t|y, s) is the transition density12, and p(y, s) is the PDF of X(s;ω). If we set s = 0 then
p(y, 0) = δ(y) and, of course, this yields (87). The auto-correlation function of the Wiener process is

C(t, s) = min(t, s) (90)

11We emphasize that there are other types of independent processes beyond the Wiener process. Indeed, the concept of
independent increment process quite general and applies to non-Gaussian processes as well.

12From the recurrence relation
X(tk+1;ω) = X(tk;ω) +

√
∆tk+1ξk+1(ω) (89)

with ξk+1(ω) Gaussian with zero mean and variance one we see that the conditional PDF p(x, t|y, s) is Gaussian with mean
X(tk) and variance t− s.
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Recurrence relation (84) KL expansion (94)
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Figure 6: Wiener processes obtained by sampling the Karhunen-Loève expansion (94) with 105 terms on a
temporal grid with 2000 points in [0, 1], and by iterating (84) on the same temporal grid.

With the autocorrelation function available we can compute a KL expansion of the Wiener process following
the procedure outlined in the previous section. If we consider the time interval [0, 1] this yields the
eigenvalue problem ∫ 1

0
C(t, s)ψk(s) = λkψk(t), (91)

the solution of which is

ψk(t) =
√
2 sin

([
k − 1

2

]
πt

)
k = 1, 2, . . . (92)

and

λk =
4

π2 (2k − 1)2
. (93)

Substituting (92) and (93) into (60) yields

X(t;ω) =

∞∑
k=1

2
√
2

π (2k − 1)
ξk(ω) sin

([
k − 1

2

]
πt

)
, (94)

where ξk(ω) are independent Gaussian random variables with zero mean and variance one (they satisfy
(61)). The series expansion in (94) can be eventually truncated to a finite number of terms, depending on
the threshold set on the eigenvalues (93) (which decay as 1/k). In Figure 6 we plot a few samples of the
Wiener process we obtain by sampling (94) with 105 terms on a temporal grid with 2000 points in [0, 1],
and the Wiener process we obtain by iterating (84) on the same temporal grid. Note that if X(t;ω) is a
Wiener process in t ∈ [0, 1] then

√
TX

(
t

T
;ω

)
t ∈ [0, T ] (95)

is a Wiener process in [0, T ]. This expression is obtained by simply changing the variables in the integral
equation (91). The expression (95) shows that features of a Wiener process do not change while zooming
in or out. In other words, the Wiener process is self-similar.
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ODEs driven by Gaussian white noise

Consider the following stochastic differential equation13 (SDE)

dX(t;ω) = m(X(t, ω), t)dt+ dW (t;ω) t ∈ [0, T ], (97)

where m(x, t) is a smooth vector field, and W (t;ω) is a vector of independent Wiener processes (each
component is a Wiener process). We discretize the SDE (97) with the Euler-Maruyama scheme on an
evenly-spaced grid with N points in [0, T ] to obtain

Xk+1 = Xk +m(Xk, tk)∆t+∆Wk (98)

where ∆Wk is a Gaussian random vector with zero mean and variance ∆t = T/N (same variance in each
component). Since the Wiener process is an independent-increment process, we have that the increments
{W1,W2, . . .} are statistically independent and identically distributed. Specifically, they are all jointly
Gaussian with zero mean and diagonal covariance with ∆t along the diagonal. This implies that the
nonlinear autoregressive process (98) is Markovian (see Appendix A) with transition density

p(xk+1|xk) =
1

(2π∆t)n/2
exp

(
− 1

2∆t
∥xk+1 − xk −m(xk, tk)∆t∥22

)
. (99)

The Fokker-Planck equation. For simplicity, let us first consider the one-dimensional case with time-
independent “drift” m(x). In this case the discrete dynamical system (98) is written as

Xk+1 = Xk +m(Xk)∆t+∆Wk. (100)

Consider the random variable X(tk) = Xk and the corresponding probability density p(x, tk) = p(xk). We
are interested in deriving an evolution equation for p(x, t) by taking the limit

lim
∆t→0

p(x, tk +∆t)− p(x, tk)

∆t
(101)

To this end, let us first push forward in time (by a small amount ∆t) the PDF p(x, tk) using the transition
density (99), i.e.,

p(x, tk +∆t) =

∫ ∞

−∞
p(x|y)p(y, tk)dy

=

∫ ∞

−∞

1√
2π∆t

exp

[
− 1

2∆t
(x− y −m(y)∆t)2

]
p(y, tk)dy. (102)

Note that for small ∆t and any given x, the kernel p(x|y) (considered as a function of y) is very much
concentrated around x. This allows us to expand the integrand in (102) in a Taylor series in y for y very
close to x. To this end, we first change the integration variable y as

ϵ = y − x (103)

which allows us to rewrite (102) as

p(x, tk +∆t) =

∫ ∞

−∞

1√
2π∆t

exp

[
− 1

2∆t
(ϵ+m(x+ ϵ)∆t)2

]
p(x+ ϵ, tk)dϵ. (104)

13The SDE (97) can also be written as

dX(t;ω)

dt
= m(X(t;ω), t) + Ẇ (t;ω). (96)

The quantity Ẇ (t;ω) = dW (t;ω)/dt is the “derivative” of the Wiener process, which is known as Gaussian white noise.
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Expanding the exponential in a Taylor series at ϵ = 0 yields

p(x, tk +∆t) ≃
∫ ∞

−∞

1√
2π∆t

exp

[
− 1

2∆t

(
ϵ(1 +m′(x)∆t) +m(x)∆t+ · · · )

)2]×[
p(x, tk) +

∂p(x, tk)

∂x
ϵ+

1

2

∂2p(x, tk)

∂x2
ϵ2 +

1

6

∂3p(x, tk)

∂x3
ϵ3 + · · ·

]
dϵ. (105)

To compute the Gaussian integrals, we do another change of variables14

η = ϵγ(∆t), and define γ(∆t) = 1 +m′(x)∆t. (107)

Substituting (107) into (105) yields

p(x, tk +∆t) ≃ 1

γ(∆t)

∫ ∞

−∞

1√
2π∆t

exp

[
− 1

2∆t
(η +m(x)∆t))2

]
×[

p(x, tk) +
1

γ(∆t)

∂p(x, tk)

∂x
η +

1

2γ2(∆t)

∂2p(x, tk)

∂x2
η2 +

1

6γ3(∆t)

∂3p(x, tk)

∂x3
η3 + · · ·

]
dη

=
1

γ(∆t)

[
p(x, tk)−

m(x)∆t

γ(∆t)

∂p(x, tk)

∂x
+

(m(x)∆t)2 +∆t

2γ2(∆t)

∂2p(x, tk)

∂x2
+

(m(x)∆t)3 − 3m(x)∆t2

6γ3(∆t)

∂3p(x, tk)

∂x3
+ · · ·

]
. (108)

In fact the second- and third-order moments of a Gaussian distribution mean µ = −m(x)∆t and variance
σ2 = ∆t are µ2 + σ2 and µ3 + 3µσ2, respectively. Lastly, note that for small ∆t we have

p(x, tk)

1 +m′(x)∆t
≃ p(x, tk)−∆tm′(x)p(x, tk). (109)

Putting all this together, we finally obtain

∂p(x, tk)

∂t
= lim

∆t→0

p(x, tk +∆t)− p(x, tk)

∆t

= lim
∆t→0

[
−m′(x)p(x, tk)−

m(x)

γ2(∆t)

∂p(x, tk)

∂x
+
m(x)2∆t+ 1

2γ3(∆t)

∂2p(x, tk)

∂x2
+

m(x)3∆t2 − 3m(x)∆t2

6γ4(∆t)

∂3p(x, tk)

∂x3
+ · · ·

]
=−m′(x)p(x, tk)−m(x)

∂p(x, tk)

∂x
+

1

2

∂2p(x, tk)

∂x2
, (110)

i.e.,
∂p(x, t)

∂t
+

∂

∂x
[m(x)p(x, t)] =

1

2

∂2p(x, t)

∂x2
. (111)

This equation is an advection-diffusion equation known as Fokker-Planck equation. It governs the one-time
PDF p(x, t) of the random process X(t;ω) defined by the SDE

dX(t;ω) = m(X(t;ω))dt+ dW (t;ω), X(0) = X0(ω). (112)

14Note that γ(∆t) = 1 +m′(x)∆t in (107) is a perturbation of 1 for ∆t sufficiently small. Moreover,

lim
∆t→0

γ(∆t) = 1. (106)
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More generally, the Fokker Planck equation corresponding to SDE15

dX(t;ω) = m(X(t;ω), t)dt+ s(X(t;ω), t)dW (t;ω), X(0) = X0(ω). (114)

is
∂p(x, t)

∂t
+

∂

∂x
[m(x, t)p(x, t)] =

1

2

∂2

∂x2
[D(x, t)p(x, t)] , D(x, t) = s(x, t)2. (115)

Multivariate Fokker-Planck equation. By following a similar derivation, it can be shown that the
Fokker Plank equation corresponding to the general n-dimensional nonlinear SDE driven by m-dimensional
Gaussian white noise

dX(t;ω) = m(X(t;ω), t)dt+ S(X(t;ω), t)dW (t;ω), (116)

where m ∈ Rn and S is a n×m matrix, and in the limit ∆t→ 0 is

∂p(x, t)

∂t
+

n∑
j=1

∂

∂xj
[mj(x)p(x, t)] =

1

2

n∑
k,j=1

∂2

∂xk∂xk
[Djk(x, t)p(x, t)] . (117)

Here

Djk(x, t) =
m∑
p=1

Sjp(x, t)Skp(x, t) (118)

is the diffusion matrix induced by S(x, t).

Example (ODEs driven by Ornstein–Uhlenbeck processes): The Ornstein–Uhlenbeck (OH) process
X(t;ω) is a Gaussian random process defined by the SDE

dY (t;ω) = −τY (t;ω)dt+ σdW (t;ω). (119)

It can be shown that asymptotically in time this process converges to a statistical equilibrium state with
zero mean and auto-covariance function

E {Y (t;ω), Y (s;ω)} =
1

2τ
e−τ |t−s|. (120)

The parameter τ control how fast the process relaxes to statistical equilibrium. The OH process is sometime
used as a prototype colored noise (with non-zero time correlation) to drive other SDE due to the simplicity
of its autocorrelation function. For example, one can havedX(t;ω) = A(X(t;ω), t)dt+ dY (t;ω),

dY (t;ω) = −τY (t;ω)dt+ σdW (t;ω).
(121)

A substitution of the second SDE into the first one yieldsdX(t;ω) = [A(X(t;ω), t)− τY (t;ω)] dt+ σdW (t;ω),

dY (t;ω) = −τY (t;ω)dt+ σdW (t;ω).
. (122)

This can written in the form (116) provided we define

m(X,Y, t) =

[
A(X, t)− τY

−τY

]
, S(X,Y, t) = σ

[
1
1

]
. (123)

15A simple example of and SDE of the form (114) is

dX(t;ω) = µX(t;ω)dt+ σX(t;ω)dW (t;ω), (113)

which defines the so-called geometric Brownian motion process. This is often used in finance to model stock prices.
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The Fokker-Planck equation (117) can also be written explicitly.

Statistical steady states. The Fokker-Planck equation may or may not converge (asymptotically in t)
to an equilibrium PDF. Even in the case where the drift coefficient m(X, t) is time-independent, and the
diffusion S(X, t) is constantly equal to one there may not be any statistically steady states. Moreover,
such steady states, whenever they exist, are usually not Gaussian.

Ito’s Lemma. Let X(t) be a stochastic process defined by the SDE (112). Consider a smooth function
g(x, t) (at least of class C2 in x and t). Ito’s lemma states that the stochastic process (phase space function
of X(t))

Y (t;ω) = g(X(t;ω), t) (124)

satisfies the SDE

dY (t;ω) =

[
∂g(X(t;ω), t)

∂t
+m(X(t;ω))

∂g(X(t;ω), t)

∂x
+

1

2

∂2g(X(t;ω), t)

∂x2

]
dt+

∂g(X(t;ω), t)

∂x
dW (t;ω).

(125)

A more general version of Ito’s lemma is available for the multivariate SDE (116).

Appendix A: Nonlinear autoregressive Markov processes

In this Appendix we prove that if the random vectors {ξ0, . . . , ξn−1} in (21) are statistically independent,
and if ξn is independent of past and current states, i.e., {X0, . . . ,Xn}, then (21) defines a Markov process16.
In other words, we show that discrete nonlinear autoregressive processes driven by white noise (not neces-
sarily Gaussian) are Markov processes. To this end, we first notice that the full statistical information of
the autoregressive process is defined by the joint probability density function of {Xn, . . . ,X0, ξn−1, . . . , ξ0}.
Let us denote by p (xn, . . . ,x0, ξn−1, . . . , ξ0) such joint density function. By using well-known identities
for conditional PDFs we can write

p (xn, . . . ,x0, ξn−1, . . . , ξ0) =p (xn|xn−1, . . . ,x0, ξn−1, . . . , ξ0)×
p (xn−1|xn−2, . . . ,x0, ξn−1, . . . , ξ0)× · · ·
p (x0|ξn−1, . . . , ξ0) p (ξn−1, . . . , ξ0) . (126)

Clearly, from equation (21) it follows that

p (xn|xn−1, . . . ,x0, ξn−1, . . . , ξ0) = p (xn|xn−1, ξn−1) . (127)

This allows us to rewrite (126) as

p (xn, . . . ,x0, ξn−1, . . . , ξ0) =p (xn|xn−1, ξn−1) p (xn−1|xn−2, ξn−2) · · · p (x1|x0, ξ0) p (ξn−1, . . . , ξ0) . (128)

If the vectors {ξn1 , . . . , ξ0} are statistically independent, and if ξk is independent of {X0, . . . ,Xk} then

p (ξn−1, . . . , ξ0) =p (ξn−1) · · · p (ξ0)
=p (ξn−1|xn−1) · · · p (ξ0|x0) . (129)

16Note that Xn depends on ξn−1 via the recursion (21).
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Substituting (129) into (128) and integrating over {ξn−1, . . . , ξ0} yields

p (xn, . . . ,x0) =

(∫
p (xn|xn−1, ξn−1) p (ξn−1|xn−1) dξn−1

)
︸ ︷︷ ︸

p(xn|xn−1)

× · · ·

(∫
p (x1|x0, ξ0) p (ξ0|x0) dξ0

)
︸ ︷︷ ︸

p(x1|x0)

p(x0)

=p (xn|xn−1) p (xn−1|xn−2) · · · p (x1|x0) p(x0), (130)

which clearly represents the joint PDF of a Markov process. Note that the Markovian property of the
process {Xn} relies heavily on the fact that the joint PDF of the random vectors {ξn−1, . . . , ξ0} can be
factorized as a product of conditional densities as in (129), i.e., that the random vectors are statistically
independent, and also that ξn is independent of past and current states, i.e., {X0, . . . ,Xn}.
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