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Linear dynamical systems

Consider the following n-dimensional linear dynamical system
dx

dt
= Ax

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a column vector of phase variables, and A ∈Mn×n(R) is a n× n matrix
with real coefficients.

It is immediate to show that the linear function f(x) = Ax is Lipschitz continuous on Rn. In fact,

‖Ax1 −Ax2‖ = ‖A(x1 − x2)‖ ≤ ‖A‖ ‖x1 − x2‖ (2)

for any matrix norm ‖A‖ that is compatible with the vector norm ‖x‖ (see Appendix B). Alternatively,
note that the function f(x) = Ax has bounded derivatives for all x ∈ Rn (provided the entries of the
matrix A are finite), i.e.,

∂fi(x)

∂xj
= Aij <∞ for all i, j = 1, . . . , n. (3)

Therefore by Lemma 2 in the course note 2, we immediately conclude that the solution of (1) is global, i.e.,
it exists and is unique for all t ≥ 0. Moreover, since Ax is continuously differentiable an infinite number
of times on Rn, then by Theorem 2 and Theorem 3 in the course note 3 we have that the flow X(t,x0)
generated by (1) is of class C∞ in t and x0.

Fixed points. The fixed points of the linear dynamical system (1) are solutions of the linear equation

Ax = 0Rn , (4)

i.e., they lie at the intersection of n hyper-planes passing through the origin in Rn. Such hyper-planes are
defined by the linear equations

Aj1x1 +Aj2x2 + · · ·+Ajnxn = 0, j = 1, . . . , n. (5)

Clearly, if the matrix A is invertbile then we have a unique fixed point at

x∗ = 0Rn . (6)

On the other hand, if the matrix A is not invertible then we have an infinite number of fixed points, i.e.,
all points in the nullspace1 of A are fixed points. For example, the fixed points of the 2D linear dynamical
system defined by the rank 1 matrix

A =

[
5 1
10 2

]
(7)

are obtained by solving [
5 1
10 2

] [
x1

x2

]
=

[
0
0

]
⇒ x2 = 2x1 (8)

Hence, in this case we have an infinite number of fixed points sitting on a line with slope 2 passing through
the origin of the phase plane (x1, x2).

1Recall that the nullspace of a matrix A is the set of vectors that are sent to the zero vector by applying A. The nullspace
of an n× n matrix is a vector subspace of Rn.
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Flow generated by linear dynamical systems. As shown in Appendix C, the analytical solution of
the initial value problem (1) can be formally expressed in terms of a matrix exponential2, i.e.,

X(t,x0) = etAx0. (10)

This expression shows that the flow map is indeed of class C∞ in both x0 and t, as anticipated above.
Hereafter we take a linear algebraic approach to the problem of solving the linear system of ODEs (1), i.e.,
we focus on linear algebraic techniques to compute the matrix exponential etA explicitly in terms of the
spectral properties (eigenvalues, eigenvectors and generalized eigenvectors) of the matrix A.

Computation of the matrix exponential. The matrix exponential in appearing in (10) can be written
explicitly in terms of the eigenvalues and the eigenvectors (or generalized eigenvectors) of the matrix A.
In Appendix A we provide a thorough review of the matrix eigenvalue problem, including calculation of
the eigenvalues, eigenvectors and generalized eigenvectors of a matrix. Please read through Appendix A
very carefully, as everything that is discussed hereafter assumes that you are familiar with eigenvalues,
eigenspaces, generalized eigenvectors, and similarity transformations. The computation of the matrix the
matrix exponential etA, and therefore the solution (10) of the linear system (1), differs depending on
whether or not

• the matrix A is diagonalizable,

• the matrix A is not diagonalizable.

For a definition diagonalizable and non-diagonalizable matrices see Appendix A. As we will see, the non-
diagonalizable case includes the diagonalizable one. Therefore, in principle, we could just develop the
formula for the matrix exponential in the case where A is not-diagonalizable. However, for clarity of
exposition, here we present the two cases separately.

Matrix exponential for diagonalizable matrices. If A is diagonalizable then there exists a set of n
distinct eigenvectors {v1, . . . ,vn} and a similarity transformation P such that (see Appendix A)

AP = PΛ, (11)

where

Λ =

λ1 · · · 0
...

. . .
...

0 · · · λn

 (12)

is a diagonal matrix that contains all eigenvalues {λ1, . . . , λn} of A and

P =
[
v1 v2 · · · vn

]
(13)

is a matrix that contains all eigenvectors of A. Each vector vi in (13) is a column vector. Since the matrix
P is invertible we have

A = PΛP−1. (14)

2Recall that the matrix exponential is formally defined by the power series

etA = I + tA +
t2

2
A2 + · · · =

∞∑
k=0

tkAk

k!
, (9)

which converges uniformly for all t ≥ 0.
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This matrix factorization is very effective when computing the matrix powers appearing in the definition
of the matrix exponential (9). In fact,

A2 = PΛP−1P︸ ︷︷ ︸
I

ΛP−1 = PΛ2P−1. (15)

Similarly,
A3 = PΛ3P−1, · · · ,Ak = PΛkP−1. (16)

This implies that

etA = P

(
I + tΛ +

t2

2
Λ2 + · · ·

)
P−1 = P etΛP−1. (17)

The exponential the diagonal matrix Λ in (12) is easily obtained as

etΛ =

e
tλ1 · · · 0
...

. . .
...

0 · · · etλn

 . (18)

Hence, steps to compute the analytical solution (1) in the case where A is diagonalizable are:

1. Compute the eigenvalues and the eigenvectors of A;

2. Construct the matrix P in (13) and the matrix exponential (18);

3. Compute the analytical solution of (1) using matrix-vector products

X(t,x0) = P etΛP−1x0. (19)

Matrix exponential for non-diagonalizable matrices. If the matrix A is not diagonalizable then
there exist a similarity transformation P such that

AP = PJ , (20)

where (assuming that A has p distinct eigenvalues3)

J =

J1 · · · 0
...

. . .
...

0 · · · Jp

 (21)

is a block-diagonal matrix called the Jordan form of A (see Appendix A and Table 1). The matrix

P =
[
v1 v2 · · · vn

]
(22)

is the matrix that contains the eigenvectors and the generalized eigenvectors of A columnwise.

Since the matrix P is invertible (eigenvectors and generalized eigenvectors are linearly independent) we
have the matrix factorization

A = PJP−1, (23)

By following exactly the same steps as in (15)-(17) we obtain the following expression for the matrix
exponential of A in the case where A is non-diagonalizable

etA = P etJP−1. (24)

3The sum of the algebraic multiplicities of the eigenvalues {λ1, . . . , λp} must be equal to n.
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Properties of the eigenvalue Jordan block Exponential of Jordan block

λi has algebraic multiplicity one Ji =
[
λi
]

etJi =
[
etλi
]

λi has algebraic multiplicity two
and geometric multiplicity two

Ji =

[
λi 0
0 λi

]
etJi =

[
etλi 0
0 etλi

]

λi has algebraic multiplicity two
and geometric multiplicity one

Ji =

[
λi 1
0 λi

]
etJi =

[
etλi tetλi

0 etλi

]

λi has algebraic multiplicity three
and geometric multiplicity three

Ji =

λi 0 0
0 λi 0
0 0 λi

 etJi =

etλi 0 0
0 etλi 0
0 0 etλi



λi has algebraic multiplicity three
and geometric multiplicity two

Ji =

λi 0 0
0 λi 1
0 0 λi

 etJi =

etλi 0 0
0 etλi tetλi

0 0 etλi



λi has algebraic multiplicity three
and geometric multiplicity one

Ji =

λi 1 0
0 λi 1
0 0 λi

 etJi =

etλi tetλi t2etλi/2
0 etλi tetλi

0 0 etλi



Table 1: Jordan blocks and matrix exponentials of Jordan blocks (see Appendix A) corresponding to
eigenvalues λi with different algebraic and geometric multiplicities.

The Jordan canonical form of A is a block-diagonal matrix (see equation (153)), with blocks given in Table
1. The matrix exponential of a block-diagonal matrix is a matrix that has the exponential of each block
in the diagonal

etJ =


etJ1

etJ2

. . .

etJp

 . (25)

In Table 1 we summarize the Jordan blocks corresponding to different types of eigenvalues. The mathe-
matical proof of each Jordan block is given in Appendix A. Hence, steps to compute the analytical solution
(1) in the case where A is not diagonalizable are:

1. Compute the eigenvalues, the eigenvectors, and the generalized eigenvectors of A;

2. Construct the the matrix J using the Jordan blocks in Table 1;

3. Construct the matrix P in (22) and the matrix exponential (25) by exponentiating each Jordan block
as in Table 1;
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4. Compute the analytical solution of (1) using matrix-vector products

X(t,x0) = P etJP−1x0. (26)

Fundamental matrix. In the theory of autonomous linear ODEs the general solution of the system (1)
is often expressed in terms of a fundamental matrix Φ(t) as

xg(t) = Φ(t)c, (27)

where c is an arbitrary vector. Enforcing the initial condition xg(0) = x0 we find that

c = Φ−1(0)x0. (28)

Substituting this expression for c back into (27) gives

X(t,x0) = Φ(t)Φ−1(0)x0. (29)

Comparing this expression to (10) suggests that we can equivalently write the matrix exponential of A
as

etA = Φ(t)Φ−1(0). (30)

Regarding the analytical expression of the fundamental matrix Φ(t), it can be obtained immediately by
comparing (30) with (24). This yields

Φ(t) = P etJ (31)

where P is the matrix (22) that has the eigenvectors and generalized eigenvectors of A as columns. As
before, the exponential of the Jordan canonical form of A, i.e., etJ , can be computed by using (25) and
exponentiating each Jordan block as in Table 1.

Two-dimensional linear dynamical systems. In this section we compute the analytical solution/flow of
several prototype two-dimensional dynamical systems using the mathematical techniques we just discussed.
Specifically, we study the flow corresponding to the saddle node, spiral, center, and degenerate node.

Saddle node. Consider the linear dynamical system[
ẋ1

ẋ2

]
=

[
2 3
3 −6

]
︸ ︷︷ ︸

A

[
x1

x2

]
. (32)

We have seen in Appendix A (Example 4) that the eigenvalues of A are

λ1 = 3, λ2 = −7. (33)

Since the eigenvalues are simple, the matrix A is diagonalizable. A basis for the eigenspace corre-
sponding to each eigenvalue is

v1 =

[
3
1

]
, v2 =

[
1
−3

]
. (34)

The matrix of eigenvectors that defines the similarity transformation (11) is

P =
[
v1 v2

]
=

[
3 1
1 −3

]
. (35)
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Figure 1: Saddle node. Shown are the nullclines, and the unstable (red arrows)/stable (green arrows)
manifolds of the saddle identified by the eigenvectors v1 and v2, respectively.

The inverse of P is

P−1 =
1

10
=

[
3 1
1 −3

]
. (36)

This yields the analytical solution[
X1(t,x0)
X2(t,x0)

]
=

[
3 1
1 −3

]
︸ ︷︷ ︸

P

[
e3t 0
0 e−7t

]
︸ ︷︷ ︸

etΛ

1

10

[
3 1
1 −3

]
︸ ︷︷ ︸

P−1

[
x01

x02

]
︸ ︷︷ ︸

x0

(37)

Developing the matrix products yields the desired flow
X1(t,x0) =

x01

10

(
9e3t + e−7t

)
+
x02

10

(
e3t + 9e−7t

)
X2(t,x0) =

x01

10

(
3e3t − 3e−7t

)
+
x02

10

(
3e3t − 3e−7t

) (38)

The phase portrait of this flow is shown in Figure 1.

Stable spiral. Consider the linear dynamical system[
ẋ1

ẋ2

]
=

[
−1 −1
1 −1

]
︸ ︷︷ ︸

A

[
x1

x2

]
. (39)

The eigenvalues of the matrix A are

λ1 = −1 + i, λ2 = −1− i. (40)

These eigenvalues are complex conjugates and both have algebraic multiplicity one (simple eigenval-
ues), which implies that they have geometric multiplicity one. Therefore the matrix A is diagonal-
izable, and there exits a one-dimensional eigenspace (spanned by a complex vector) for each λi. To
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compute such eigenspaces/eigenvectors we proceed as usual

(A− λ1I)v1 = 0R2 ⇔
[
−i −1
1 −i

] [
v11

v12

]
=

[
0
0

]
⇔

{
−iv11 = v12

v12 or v11 free
(41)

(A− λ2I)v2 = 0R2 ⇔
[
i −1
1 i

] [
v21

v22

]
=

[
0
0

]
⇔

{
iv21 = v22

v21 or v22 free
(42)

We choose v1 = v21 = i, which yields the following basis for the (complex) eigenspaces corresponding
to λ1 and λ2, respectively

v1 =

[
i
1

]
, v2 =

[
i
−1

]
. (43)

The similarity matrix P and its inverse are

P =
[
v1 v2

]
=

[
i i
1 −1

]
, P−1 =

1

2

[
−i 1
−i 1

]
. (44)

The matrix exponential (17) is easily obtained as

etA =

[
i i
1 −1

]
︸ ︷︷ ︸

P

[
et(−1+i) 0

0 et(−1−i)

]
︸ ︷︷ ︸

etΛ

1

2

[
−i 1
−i 1

]
︸ ︷︷ ︸

P−1

=
e−t

2

[
i i
1 −1

] [
−ieit eit

−ie−it −e−it
]

=
e−t

2

[
eit + e−it ieit − ie−it
−ieit + ie−it eit + e−it

]
. (45)

At this point we use the Euler formulas

cos(t) =
eit + e−it

2
, sin(t) =

eit − e−it

2i
, (46)

to obtain

etA = e−t
[
cos(t) − sin(t)
sin(t) cos(t)

]
. (47)

Applying etA to the initial condition x0 gives us the analytical solution{
X1(t,x0) = e−t [cos(t)x01 − sin(t)x02]

X2(t,x0) = e−t [sin(t)x01 + cos(t)x02]
. (48)

The phase portrait of this flow is shown in Figure 2.

• Center. Consider the linear dynamical system[
ẋ1

ẋ2

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
. (49)

The eigenvalues of A are
λ1 = i, λ2 = −i. (50)
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Figure 2: Stable spiral.

The eigenspaces associated with λ1 and λ2 are both one-dimensional (both eigenvalues are simple).
Let us compute a basis for the eigenspace associated with λ1

(A− λ1I)v1 = 0R2 ⇔
[
−i 1
−1 −i

] [
v11

v12

]
=

[
0
0

]
⇔

{
iv11 = v12

v11 or v12 free
. (51)

We choose v11 = 1, which yields

v1 =

[
1
i

]
. (52)

Similarly, for the eigenspace associated with λ2 we have

(A− λ2I)v2 = 0R2 ⇔
[
i 1
−1 i

] [
v21

v22

]
=

[
0
0

]
⇔

{
iv21 = −v22

v21 or v22 free
. (53)

We choose v21 = 1, which yields

v2 =

[
1
−i

]
. (54)

The similarity matrix P and its inverse are

P =
[
v1 v2

]
=

[
1 1
i −i

]
, P−1 =

1

2

[
1 −i
1 i

]
. (55)

The matrix exponential etA can be computed using equation (17)

etA =

[
1 1
i −i

]
︸ ︷︷ ︸

P

[
eit 0
0 e−it

]
︸ ︷︷ ︸

etΛ

1

2

[
1 −i
1 i

]
︸ ︷︷ ︸

P−1

=
1

2

[
eit + e−it −i

(
eit − e−it

)
i
(
eit − e−it

)
eit + e−it

]
(56)

=

[
cos(t) sin(t)
− sin(t) cos(t)

]
, (57)
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Figure 3: Center.

where we used again the Euler formulas (46). A substitution of the matrix exponential into (10)
yields the analytical solution {

X1(t,x0) = x01 cos(t) + x02 sin(t)

X2(t,x0) = −x01 sin(t) + x02 cos(t)
. (58)

The phase portrait of this flow is shown in Figure 3.

• Degenerate node. Consider the linear dynamical system[
ẋ1

ẋ2

]
=

[
1 1
−1 3

]
︸ ︷︷ ︸

A

[
x1

x2

]
. (59)

The matrix A has only one eigenvalue λ = 2 with algebraic multiplicity 2. The dimension of the
corresponding eigenspace, i.e., the dimension of the nullspace of (A− λI) (geometric multiplicity of
λ), can be calculated using the matrix rank theorem

dim (N(A− λI)) = 2− rank(A− λI) = 2− rank

([
−1 1
−1 1

])
︸ ︷︷ ︸

=1

= 1 (60)

Hence the dimension of the eigenspace associated with λ = 2, is equal to one. This implies that the
matrix A is not diagonalizable. Let us compute a basis for the one-dimensional eigenspace. We have

(A− λI)v1 = 0R2 ⇔
[
−1 1
−1 1

] [
v11

v12

]
=

[
0
0

]
⇔

{
v11 = v12

v11 or v12 free
(61)

We choose v12 = 1, which yields

v1 =

[
1
1

]
. (62)
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At this point we need to complement v1 to a basis of R2 by adding one linearly independent vector.
To this end, we compute the so-called generalized eigenvector4 by solving the linear equation

(A− λI)v2 = v1 (64)

We obtain [
−1 1
−1 1

] [
v21

v22

]
=

[
1
1

]
⇒

{
−v21 + v22 = 1

v21 or v22 free
(65)

We choose v22 = 1 which gives the generalized eigenvector

v2 =

[
0
1

]
. (66)

The similarity matrix in this case has the eigenvector v1 and the generalized eigenvector v2 as columns

P =

[
1 0
1 1

]
⇔ P−1 =

[
1 0
−1 1

]
. (67)

The matrix exponential of the Jordan block that corresponds to the eigenvalue λ = 2 with algebraic
multiplicity two and geometric multiplicity one is (see Table 1)

etJ =

[
e2t te2t

0 e2t

]
. (68)

The the matrix exponential etA can now be computed explicitly via the formula (24)

etA =

[
1 0
1 1

]
︸ ︷︷ ︸

P

[
e2t te2t

0 e2t

]
︸ ︷︷ ︸

etJ

[
1 0
−1 1

]
︸ ︷︷ ︸

P−1

=

[
e2t − te2t te2t

−te2t e2t + te2t

]
. (69)

This gives the analytical solution{
X1(t,x0) =

(
e2t − te2t

)
x01 + te2tx02

X2(t,x0) = −te2tx01 +
(
e2t + te2t

)
x02

. (70)

The phase portrait of this flow is shown in Figure 4.

Classification of two-dimensional flows generated linear dynamical systems. In Figure 5 and
Figure 6 we provide a classification of all possible flows generated by two-dimensional dynamical systems in
terms of the eigenvalues of the matrix A. Of course, changing the sign of the eigenvalues of A is equivalent
to transforming the matrix from A to −A. This yields an inversion in the orientation of all trajectories,
which implies, e.g., that stable nodes become unstable, centers spin the other way around, etc.

Three-dimensional linear dynamical systems. In this section we calculate analytically the flow
generated by three dimensional linear systems. Higher-dimensional system can be dealt with using similar

4Note that the generalized eigenvector v2 defined in (64) is in the nullspace of the matrix (A− λI)2. In fact,

(A− λI)v2 = v1 ⇒ (A− λI)2v2 = 0R2 . (63)

It can be shown that eigenvectors and generalized eigenvectors are linearly independent.
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Figure 4: Degenerate node. Shown is the unstable manifold of the node (red arrows), which is defined by
the eigendirection v1 corresponding to the eigenvalue λ = 2.

techniques. The general approach to compute the analytical solution (10) of a general linear system (1) is
described beginning at pages 2-5 of this course note.

Example: Consider the three dimensional linear system Consider the linear dynamical systemẋ1

ẋ2

ẋ3

 =

1 0 0
0 1 0
1 1 −1


︸ ︷︷ ︸

A

x1

x2

x3

 (71)

The matrix A has eigenvalues λ1 = 1 (with algebraic multiplicity two) and λ2 = −1 (with algebraic
multiplicity one). The dimension of the eigenspace corresponding to λ1, i.e., the geometric multiplicity of
λ1 is

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

0 0 0
0 0 0
1 1 −2

 = 3− 1 = 2. (72)

Therefore the matrix is diagonalizable. The eigenvectors corresponding to λ1 are solution to the linear
system N(A− λ1I)v = 0R3 , i.e.,0 0 0

0 0 0
1 1 −2

v1

v2

v3

 =

0
0
0

 ⇒

{
v1 + v2 − 2v3 = 0

(v1, v2) or (v1, v3) or (v2, v3) are arbitrary
(73)

We pick (v2, v3) = (1, 1) and (v2, v3) = (2, 1) which yields the following eigenvectors

v1 =

1
1
1

 , v2 =

0
2
1

 . (74)
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EIGENVALUES OF A STABLE NODE

Im

Da X1 Re in⑧ ⑧
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· X2

Re i.
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*
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⑱
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Figure 5: Classification of flows generated by two-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.
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Im

TWO-DIMENSIONAL =x
=
x2 Re

EIGEN SPACE

DEGENERATE NODE

Im Xe

ONE-DIMENSIONAL Fionncionx
=
x2 Re

M

X1

EIGEN SPACE

Im Xe

E M FixeAs Ra Re X1

Figure 6: Classification of flows generated by two-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.

Any linear combination of v1 and v2 is still an eigenvector. The eigenvectors corresponding to λ2 = −1
are solutions to the linear system N(A− λ2I)v = 0R3 , i.e.,3 0 0

0 3 0
1 1 0

v1

v2

v3

 =

0
0
0

 ⇒


v1 = 0

v2 = 0

v3 is arbitrary

(75)

We choose

v3 =

0
0
1

 (76)
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EIGENVALUES OF A

Im
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Figure 7: Examples of flows generated by three-dimensional dynamical systems in terms of the eigenvalues
of the matrix A.

The similarity matrix and its inverse are

P =

1 0 0
1 2 0
1 1 1

 , P−1 =
1

2

 2 0 0
−1 1 0
−1 −1 2

 (77)

Therefore, the analytical solution of the 3D linear system (71) isX1(t,x0)
X2(t,x0)
X3(t,x0)

 =

1 0 0
1 2 0
1 1 1

et 0 0
0 et 0
0 0 e−t

 1

2

 2 0 0
−1 1 0
−1 −1 2

x01

x01

x03

 (78)

i,e, 
X1(t,x0) = etx01

X2(t,x0) = etx02

X3(t,x0) =

(
et − e−t

)
2

(x01 + x02) + e−tx03

(79)

Classification of three-dimensional flows generated linear dynamical systems In Figure 7 we
provide a few sketches of three-dimensional flows corresponding to matrices A with various eigenvalues.
As easily seen, the classification of these flows is not as straightforward as in the 2D case. In fact, we can
have spiraling directions, saddle node planes, etc.
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Appendix A: The matrix eigenvalue problem

In this Appendix we briefly review the eigenvalue problem for a n×n matrix A with real coefficients. The
eigenvalue problem is essentially the problem of finding all real (or complex) numbers λ (eigenvalues) and
all nonzero real (or complex) vectors v (eigenvectors) satisfying the equation

Av = λv. (80)

Computation of eigenvalues. From equation (80) it follows that

(A− λI)v = 0Rn , (81)

Hence, the eigenvector v (which is non-zero by definition) is in the nullspace of the matrix (A− λI). This
implies that the matrix (A − λI) is not invertible5. A necessary and sufficient condition for (A − λI) to
be not invertible is

det(A− λI) = 0 (characterististic equation). (82)

The polynomial
p(λ) = det(A− λI) (83)

is known as characteristic polynomial associated with the matrix A. The characteristic equation (82)
implies that the eigenvalues of the matrix A are roots of the characteristic polynomial p(λ).

How many eigenvalues do we have for a given n×n matrix A? The characteristic polynomial p(λ) associated
with the matrix A is a polynomial of degree n with real coefficients. Hence, by using the fundamental
theorem of algebra we conclude p(λ) has exactly n roots which may be real or complex conjugates. In
other words, every n × n matrix has exactly n eigenvalues. Such eigenvalues may be repeated, in which
case we say that they have “algebraic multiplicity” greater than one. In other words, the multiplicity of an
eigenvalue as a root of the characteristic polynomial is called algebraic multiplicity the eigenvalue.

Example 1: Compute the eigenvalues of the matrix

A =

[
2 3
3 −6

]
. (84)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
2− λ 3

3 −6− λ

]
= −(2− λ)(6 + λ)− 9, (85)

i.e.,
p(λ) = λ2 + 4λ− 21. (86)

The eigenvalues of A are roots of p(λ). Setting p(λ) = 0 yields

λ1,2 = −2±
√

4 + 21 = −2± 5 ⇒ λ1 = 3, λ2 = −7. (87)

In this case, both eigenvalues have algebraic multiplicity one, i.e., they are simple roots of p(λ). The
characteristic polynomial can be factored as

p(λ) = (λ− 3)(λ+ 7), (88)

5The matrix (A−λI) in (81) maps a non-zero vector v into 0Rn . Hence the the nullspace of (A−λI) has a nonzero vector
in it, which implies that the matrix (A− λI) is not invertible.
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suggesting once again that λ = 3 and λ = −7 are simple roots.

Example 2: Compute the eigenvalues of the matrix

A =


2 5 1 −5
0 4 3 0
0 0 2 4
0 0 0 1

 . (89)

In this case we have

A− λI =


2− λ 5 1 −5

0 4− λ 3 0
0 0 2− λ 4
0 0 0 1− λ

 (90)

and
p(λ) = det(A− λI) = (2− λ)2(4− λ)(1− λ). (91)

Hence, the matrix A has three eigenvalues:

λ1 = 2 with algebraic multiplicity 2,

λ2 = 4 with algebraic multiplicity 1,

λ3 = 1 with algebraic multiplicity 1.

Note that the eigenvalues coincides with the diagonal entries of the matrix A. This is a general fact about
upper or or lower triangular matrices, i.e., the eigenvalues of such matrices coincides with the diagonal
entries of the matrix. For example, the following matrix

A =


1 1 1 1
0 1 3 0
0 0 0 −1
0 0 0 0

 . (92)

has two eigenvalues λ1 = 1 and λ2 = 0, both with algebraic multiplicity 2.

Example 3: Compute the eigenvalues of the following matrix

A =

[
1 2
−1 1

]
. (93)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
1− λ 2
−1 1− λ

]
= −(1− λ)2 + 2, (94)

i.e.,
p(λ) = λ2 − 2λ+ 3. (95)

Hence, the eigenvalues are
λ1 = 1 + i

√
2 λ2 = 1− i

√
2 (96)

Note that λ1 and λ2 are complex conjugates eigenvalues. Clearly, for 2 × 2 matrices with real entries
the fundamental theorem of algebra tells us that the eigenvalues are either both real or complex conju-
gates.
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Eigenvectors and eigenspaces. By definition, an eigenvector of a n × n matrix A is a nonzero vector
v ∈ Rn such that

Av = λv. (97)

This means that v is a nonzero vector in the nullspace of the matrix (A− λI). In fact, v is mapped onto
the zero of Rn by (A− λI) (see equation (81)). We know that the nullspace of a n× n matrix is a vector
subspace of Rn.

We denote by N(A − λI) the nullspace of the matrix (A − λI), and call N(A − λI) the eigenspace of
A corresponding to the eigenvalue λ. The dimension of the eigenspace N(A − λI) is called geometric
multiplicity of the eigenvalue λ. By definition, an eigenvector cannot be zero and therefore the eigenspace
corresponding to each eigenvalue has dimension at least equal to one. The dimension of the eigenspace
corresponding to some eigenvalue can be computed by using the matrix rank theorem.

Example 4: Compute the eigenspaces of the matrix

A =

[
2 3
3 −6

]
(98)

We have seen in Example 1 that the eigenvalues of A are λ1 = 3 and λ2 = −7. Let us compute the
eigenspace corresponding to λ1. To this end, we first compute the dimension of such eigenspace by using
the matrix rank theorem

dim(N(A− λ1I) = 2− rank(A− λ1I) = 2− rank

([
−1 3
3 −9

])
= 2− 1 = 1 (99)

Hence, the eigenspace corresponding to λ1 has dimension one. Any vector of such an eigenspace is an
eigenvector of A corresponding to λ1. To compute a basis for the eigenspace N(A− λ1I) consider

(A− λ1I)v = 0R2 ⇔
[
−1 3
3 −9

] [
v1

v2

]
=

[
0
0

]
⇔ −v1 + 3v2 = 0 (100)

Hence,

v =

[
3
1

]
(101)

is a basis for N(A−λ1I), and an eigenvector of A corresponding to λ1. All eigenvectors of A corresponding
to λ1 are in the form

c

[
3
1

]
with c 6= 0. (102)

Similarly, the eigenspace corresponding to λ2 has dimension 1 and can be determined by solving the linear
system

(A− λ2I)v = 0R2 ⇔
[
9 3
3 1

] [
v1

v2

]
=

[
0
0

]
⇔ 3v1 + v2 = 0. (103)

Hence,

v =

[
1
−3

]
(104)

is a basis for N(A − λ2I) and an eigenvector of A corresponding to λ2. In summary, λ1 and λ2 are
eigenvalues with algebraic multiplicity one and geometric multiplicity one. Geometric multiplicity one
means that the eigenspaces N(A−λ1I) and N(A−λ2I) are both one-dimensional. A basis for N(A−λ1I)
and N(A− λ2I) is given by (101) and (104), respectively.
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The following theorem establishes a relationship between the algebraic multiplicity and the geometric
multiplicity of an eigenvalue λ.

Theorem 1. Let λ be an eigenvalue of a n × n matrix A. Denote by s the algebraic multiplicity of λ.
Then

dim(N(A− λI)) ≤ s. (105)

In other words the geometric multiplicity of the eigenvalue λ (i.e., the dimension of the associated eigenspace)
is always smaller or equal than the algebraic multiplicity).

Of course, if λ is a simple eigenvalue (s = 1) then dim(N(A− λI)) = 1, i.e., the eigenspace corresponding
to simple eigenvalues is always one-dimensional. If λ has algebraic multiplicity 2, i.e., it is a repeated
eigenvalue, then it is possible to have geometric multiplicity equal to one or equal to two. In the latter
case the eigenspace is two-dimensional and any vector in such eigenspace (including linear combinations
of multiple eigenvectors) is an eigenvector. Let us provide a simple example of a 2 × 2 matrix with one
eigenvalue of algebraic multiplicity two and geometric multiplicity one.

Example 5: Consider the following matrix

A =

[
2 1
0 2

]
. (106)

We know that λ = 2 is the only eigenvalue and it has algebraic multiplicity two. In fact, the characteristic
polynomial is p(λ) = (2− λ)2. The geometric multiplicity of λ = 2 can be calculated by using the matrix
rank theorem

dim(N(A− λI)) = 2− rank(A− λI) = 2− rank

([
0 1
0 0

])
︸ ︷︷ ︸

=1

= 2− 1 = 1. (107)

Hence, the eigenspace associated with λ = 2 is one-dimensional. A basis for such an eigenspace is obtained
as follows:

(A− λI)v = 0R2 ⇔
[
0 1
0 0

] [
v1

v2

]
=

[
0
0

]
⇔ v2 = 0. (108)

We choose

v =

[
1
0

]
. (109)

Example 6: Compute the eigenvalues and the eigenvectors of the following matrix

A =

2 1 3
0 1 5
0 0 2

 . (110)

This is an upper triangular matrix and therefore the eigenvalues coincide with the diagonal entries. Hence
we have λ1 = 2 with algebraic multiplicity two and λ2 = 1 with algebraic multiplicity one.

A− λ1I =

0 1 3
0 −1 5
0 0 0

 ⇔ dim(N(A− λ1I)) = 3− rank(A− λ1I)︸ ︷︷ ︸
=2

= 1, (111)
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A− λ2I =

1 1 3
0 0 5
0 0 1

 ⇔ dim(N(A− λ2I)) = 3− rank(A− λ2I)︸ ︷︷ ︸
=2

= 1. (112)

Therefore, the dimension of the eigenspaces associated with λ1 and λ2 is one. Let us find a basis for such
eigenspaces.

(A− λ1I)v = 0R3 ⇒

0 1 3
0 −1 5
0 0 0

v1

v2

v3

 =

0
0
0

 ⇔


v1 arbitrary

v2 + 3v3 = 0

−v2 + 5v3 = 0

(113)

Hence, an eigenvector that spans N(A− λ1I) is

v =

1
0
0

 . (114)

Similarly,

(A− λ2I)v = 0R3 ⇒

1 1 3
0 0 5
0 0 1

v1

v2

v3

 =

0
0
0

 ⇔

{
v1 + v2 + 3v3 = 0

v3 = 0
(115)

Hence, an eigenvector that spans N(A− λ2I) is

v =

 1
−1
0

 . (116)

Hereafter, we recall an important theorem on eigenvectors corresponding to different eigenvalues.

Theorem 2. Eigenvectors corresponding to different eigenvalues are linearly independent.

Of course if an eigenvalue λ has geometric multiplicity larger than one, then we can construct a basis for
N(A − λI). In any case, such basis will be linearly independent on any other eigenvector corresponding
to a different eigenvalue.

Similarity transformations. Let A,B ∈ Mn×n(Rn). We say that A is similar to B is there exists an
invertible matrix P ∈Mn×n(Rn) such that

AP = PB ⇔ A = PBP−1 (117)

The transformation B → PBP−1 is called similarity transformation. An example of similarity transfor-
mation is the change of basis transformation.

Theorem 3. Similar matrices have the same eigenvalues.

Proof. Let A,B ∈Mn×n be two similar matrices, i.e., P ∈Mn×n such that

A = PBP−1. (118)

Then
det(A− λI) = det(PBP−1 − λPP−1) = det(P ) det(B − λI) det(P−1) = det(B − λI) (119)
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Diagonalization. Consider a n×n matrix A. We have seen in Theorem 2 that eigenvectors corresponding
to different eigenvalues are linearly independent. Hence, if the algebraic multiplicity of each eigenvalue is
equal to the geometric multiplicity then it is possible to construct a basis for Rn made of eigenvectors of
A. Let us organize such n eigenvectors as columns of a matrix P

P =
[
v1 · · · vn

]
. (120)

Clearly,

AP =
[
Av1 · · · Avn

]
=
[
v1 · · · vn

] λ1 · · · 0
...

. . .
...

0 · · · λn


︸ ︷︷ ︸

Λ

= PΛ, (121)

where Λ is a diagonal matrix with the eigenvalues of A (counted with their multiplicity) sitting along the
diagonal. Equation (121) shows that if A has n linearly independent eigenvectors then A is similar to a
diagonal matrix6 Λ. The similarity transformation is defined by the matrix P in (120), i.e., the matrix
that has the eigenvectors of A as columns.

A simple corollary of this statement is that matrices with simple eigenvalues are always diagonalizable,
since they have n linearly independent eigenvectors.

Theorem 4. Let A be a n×nmatrix with eigenvalues {λ1, . . . , λp} with algebraic multiplicities {s1, . . . , sp},
respectively. Then A is diagonalizable if and only if

dim(N(A− λiI)) = si for all i = 1, . . . , p. (122)

This theorem is saying that if each eigenvalue of a matrix A has algebraic multiplicity equal to its ge-
ometric multiplicity then the matrix A is similar to a diagonal matrix. Conversely, if a matrix A is
similar to a diagonal matrix then each eigenvalue of A has algebraic multiplicity equal to its geometric
multiplicity.

Example 7: The matrix

A =

[
2 3
3 −6

]
(123)

is diagonalizable. In fact, we have seen that the eigenvalues are λ1 = 3 and λ2 = −7 (simple eigenvalues).
This implies that the dimension of the associated eigenspace is one for both eigenvalues. The eigenvectors
of A are

v1 =

[
3
1

]
and v2 =

[
1
−3

]
. (124)

Define

P =
[
v1 v2

]
=

[
3 1
1 −3

]
, Λ =

[
λ1 0
0 λ2

]
=

[
3 0
0 −7

]
. (125)

It is straightforward to verify that

P−1 =
1

10

[
3 1
1 −3

]
(126)

and
A = PΛP−1 or Λ = P−1AP . (127)

6In general, we say that a matrix A is diagonalizable if there exists an invertible matrix P such that A is similar to a
diagonal matrix.
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Example 8: The matrix

A =

[
2 1
0 2

]
(128)

is not diagonalizable. In fact the algebraic multiplicity of the eigenvalue λ = 2 is two, while its geometric
multiplicity is one. We will see hereafter that it is possible to complement the eigenvector that spans the
eigenspace with another linearly independent vector called “generalized eigenvector” to form a basis of
R2. Such generalized eigenvector of A, makes A similar to a matrix J called Jordan form of A. In this
particular example, the Jordan form of A coincides with A, i.e., A is already in a Jordan form.

Example 9: Verify that the matrix

A =

1 0 0
0 1 0
0 1 2

 (129)

is diagonalizable. The matrix is lower-triangular with eigenvalues λ1 = 1 (algebraic multiplicity two) and
λ2 = 2 (algebraic multiplicity one). To verify that A is diagonalizable we just need to check that the
geometric multiplicity of λ1 = 1 is equal to two. To this end, we use the matrix rank theorem:

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

0 0 0
0 0 0
0 1 1

 = 3− 1 = 2 (130)

This shows that the dimension of the nullspace of N(A − λ1I), i.e., the dimension of the eigenspace
associated with λ1 = 1 is two. Let us compute a basis for such an eigenspace. To this end,

(A− λ1I)v = 0R3 ⇒

0 0 0
0 0 0
0 1 1

v1

v2

v3

 =

0
0
0

 ⇔


v1 arbitrary

v2 arbitrary

v3 = −v2

(131)

Hence, a basis for the eigenspace corresponding to λ1 is
1

0
0

 ,
 0

1
−1

 . (132)

On the other hand, the eigenspace N(A− λ2I) is spanned by a vector that can be computed as

(A− λ2I)v = 0R3 ⇒

−1 0 0
0 −1 0
0 1 0

v1

v2

v3

 =

0
0
0

 ⇔


v1 = 0

v2 = 0

v3 arbitrary

(133)

Therefore a matrix P that diagonalizes A is

P =

1 0 0
0 1 0
0 −1 1

 . (134)

Indeed, it can be verified by a direct calculation that1 0 0
0 1 0
0 0 2


︸ ︷︷ ︸

Λ

=

1 0 0
0 1 0
0 1 1


︸ ︷︷ ︸

P−1

1 0 0
0 1 0
0 1 2


︸ ︷︷ ︸

A

1 0 0
0 1 0
0 −1 1


︸ ︷︷ ︸

P

. (135)
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Generalized eigenvectors and Jordan canonical form. The set of eigenvectors of any n× n matrix
A can be complemented to a basis of Rn. To this end, we can add a certain number of so-called generalized
eigenvectors, to each “defective” eigenspace of A. A defective eigenspace of A is an eigenspace with
dimension dim(N(A− λiI)) smaller than the algebraic multiplicity si of the associated eigenvalue λi (see
Theorem 1). For such defective eigenspaces we compute

si − dim(N(A− λiI)) (136)

additional generalized eigenvectors. This yields a basis of Rn made of eigenvectors and generalized eigen-
vectors of A. Such basis, also induces a similarity transformation between A and a matrix called Jordan
canonical form of A. Let us describe the procedure to compute the Jordan form of a matrix A. To this
end, let us first consider the simple 2 matrix

A =

[
λ 1
0 λ

]
. (137)

We know that the eigenspace corresponding to the eigenvalue λ is one-dimensional with basis

v =

[
1
0

]
. (138)

To complement v with another vector and form a basis of R2 we choose w as follows

(A− λI)w = v. (139)

Clearly, w is in the nullspace of the matrix (A−λI)2. In fact, by applying (A−λI) to both sides of (139)
we obtain

(A− λI)2w = (A− λI)v = 0R2 . (140)

It can be shown that w and v are linearly independent. To compute the generalized eigenvector w we
solve the linear system (139)

(A− λI)w = v ⇔
[
0 1
0 0

] [
w1

w2

]
=

[
1
0

]
⇔

{
w1 arbitrary

w2 = 1
. (141)

Hence a generalized eigenvector for the eigenspace N(A− λI) is

w =

[
0
1

]
(142)

At this point we define the similarity transformation

P =
[
v w

]
=

[
1 0
0 1

]
, (143)

and apply A to P to obtain

AP =
[
Av Aw

]
=
[
v w

] [λ 1
0 λ

]
︸ ︷︷ ︸

J

= PJ . (144)

Hence, A is similar to a matrix J in a particular form (not diagonal but almost diagonal), known as
Jordan canonical form of A. In this particular example, A is already in a Jordan form so the similarity
transformation defined by P turns out to be the identity transformation.
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Next, let us consider a 3 × 3 matrix A with only one eigenvalue λ of algebraic multiplicity three and
geometric multiplicity two.

A =

λ 1 1
0 λ 0
0 0 λ

 . (145)

The eigenspace of A corresponding to the eigenvalue λ is

(A− λI)v = 0R3 ⇔

0 1 1
0 0 0
0 0 0

v1

v2

v3

 =

0
0
0

 ⇔


v1 arbitrary

v2 arbitrary

v3 = −v2

. (146)

Hence a basis for N(A− λI) is

v1 =

 0
1
−1

 v2 =

1
0
0

 . (147)

To complement {v1,v2} to a basis of R3 we add a generalized eigenvector v3 that solves the following linear
system7

(A− λI)v3 = v2. (148)

We obtain 0 1 1
0 0 0
0 0 0

v31

v32

v33

 =

1
0
0

 ⇔


v31 arbitrary

v32, arbitrary

v32 + v33 = 1

. (149)

Hence a generalized eigenvector for the eigenspace N(A− λI) is

v3 =

0
0
1

 . (150)

We define the similarity trasformation P by using the eigenvectors
[
v1 v2

]
and the generalized eigenvector

v3 of A
P =

[
v1 v2 v3

]
. (151)

Since {v1,v2,v3} are linearly independent we have that P is invertible. Clearly,

AP =
[
Av1 Av2 Av3

]
=
[
λv1 λv2 v2 + λv3

]
=
[
v1 v2 v3

]︸ ︷︷ ︸
P

λ 0 0
0 λ 1
0 0 λ


︸ ︷︷ ︸

J

= PJ . (152)

Jordan blocks. At this point it is clear that by computing the generalized eigenvectors it is always
possible to construct a similarity transformation P that takes any matrix A into its Jordan canonical
form

J =


J1

J2

. . .

Jp

 , (153)

7Note there is really no reason why we should choose v1 instead of v2 at the right hand side of (148). In fact, the choice
of both eigenvectors and generalized eigenvectors is not really unique.
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where p is the total number of distinct eigenvalues of A. The Jordan canonical form is a block-diagonal
matrix in which each block Ji can be of the form summarized in Table 1.

Matrix exponentials of Jordan blocks. The matrix exponential of the Jordan form of (153) is a
block-diagonal matrix that has the matrix exponential of each Jordan block along the diagonal.

etJ =


etJ1

etJ2

. . .

etJp

 . (154)

Hence, to compute the matrix exponential of the Jordan form of A, we just need a formula for the matrix
exponential of each Jordan block in Table 1. The case in which the Jordan block is diagonal is trivial,
since the matrix exponential is just the exponential of the diagonal elements. For instance,

Ji =

[
λi 0
0 λi

]
⇒ etJi =

[
etλi 0
0 etλi

]
. (155)

Let us now show how to compute the matrix exponential of the following Jordan blocks

a) Ji =

[
λi 1
0 λi

]
, b) Ji =

λi 0 0
0 λi 1
0 0 λi

 , c) Ji =

λi 1 0
0 λi 1
0 0 λi

 . (156)

a) Let us write the 2D Jordan block as

Ji =

[
λi 1
0 λi

]
=

[
λi 0
0 λi

]
︸ ︷︷ ︸

Bi

+

[
0 1
0 0

]
︸ ︷︷ ︸

C

. (157)

The matrix commutator of Bi and C equals zero. In fact,

[Bi,C] = BiC −CBi =

[
λi 0
0 λi

] [
0 1
0 0

]
−
[
0 1
0 0

] [
λi 0
0 λi

]
=

[
0 0
0 0

]
. (158)

This implies that8

etJi = et(Bi+C) = etBietC . (162)

Since Bi is a diagonal matrix

etBi =

[
etλi 0
0 etλi

]
. (163)

8In general, given two square matrices A and B we have

eAeB = eZ , (159)

where

Z = A + B +
1

2
[A,B] +

1

12
[A, [A,B]] + · · · . (160)

This formula is known as Baker-Campbell-Hausdorff formula. If A and B commute, i.e., if [A,B] = 0Mn×n then by (159)
and (160) we have

eAeB = eA+B . (161)
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Regarding the exponential of C we have the exact formula9

etC = I + tC =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
=

[
1 t
0 1

]
. (165)

Finally, a substitution of (165) and (163) into (162) yields the desired expression

etJi =

[
etλi 0
0 etλi

] [
1 t
0 1

]
=

[
etλi teλit

0 etλi

]
. (166)

b) The exponential of the 3D Jordan block

Ji =

λi 0 0
0 λi 1
0 0 λi

 (167)

can be computed using the formula (166) we just proved. In fact,

etJi =

etλi 0 0
0 etλi teλit

0 0 etλi

 . (168)

c) The exponential of the 3D Jordan block

Ji =

λi 1 0
0 λi 1
0 0 λi

 (169)

requires more work. We begin by splitting Ji as the sum of a diagonal matrix and and a non-diagonal
matrix

Ji =

λi 1 0
0 λi 1
0 0 λi

 =

λi 0 0
0 λi 0
0 0 λi


︸ ︷︷ ︸

Bi

+

0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

C

. (170)

As before, it is straightforward to show that Bi and C commute

[Bi,C] = BiC −CBi =

0 0 0
0 0 0
0 0 0

 . (171)

Moreover, by a direct calculation, we have

C2 =

0 0 1
0 0 0
0 0 0

 , C3 =

0 0 0
0 0 0
0 0 0

 , . . . , Ck =

0 0 0
0 0 0
0 0 0

 . (172)

Therefore, the matrix exponential of the Jordan block (169) is

etJi = etBietC = etBi

(
I + C +

C2

2

)
. (173)

9In fact,

C2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
. (164)

Of course all matrix powers Ck are all zero for k ≥ 2 since C2 = 0, and we can write Ck = C2Ck−2.
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Substituting (172) into (173) finally yields

etJi =

etλi 0 0
0 etλi 0
0 0 etλi

1 t t2/2
0 1 t
0 0 1


︸ ︷︷ ︸

I+C+C2/2

. (174)

Developing the product finally yields

etJi =

etλi tetλi t2etλi/2
0 etλi tetλi

0 0 etλi

 . (175)

The matrix exponential of all Jordan blocks we discussed in this section are summarized in Table 1.
Formulas for matrix exponentials of higher-dimensional Jordan blocks can be computed by using the
techniques we discussed in this section.

Appendix B: Matrix norms compatible with vector norms

Let us define the following matrix norm

‖A‖ = sup
y 6=0Rn

‖Ay‖
‖y‖

= sup
‖y‖=1

‖Ay‖ . (176)

Clearly, ‖A‖ is matrix norm (prove it as exercise), which satisfies, by definition, the following inequal-
ity

‖A‖ ≥ ‖Ay‖
‖y‖

i.e. ‖Ay‖ ≤ ‖A‖ ‖y‖ . (177)

It is straightforward to show that

‖A‖∞ = max
i=1,..,n

 n∑
j=1

|Aij |

 , (178)

‖A‖1 = max
j=1,..,n

(
n∑
i=1

|Aij |

)
, (179)

‖A‖2 =
√
λmax (ATA) = σmax(A), (180)

where σmax(A) is the largest singular value of the matrix A. For example,

‖Ay‖∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑
j=1

Aijyj

∣∣∣∣∣∣ ≤ max
i=1,...,n

 n∑
j=1

|Aij | |yj |

 ≤ ‖y‖∞ max
i=1,...,n

 n∑
j=1

|Aij |

 (181)

which implies that

‖Ay‖∞
‖y‖∞

≤ max
i=1,...,n

 n∑
j=1

|Aij |

 for all y 6= 0Rn , (182)

i.e.,

sup
y 6=0Rn

‖Ay‖∞
‖y‖∞

= max
i=1,...,n

 n∑
j=1

|Aij |

 = ‖A‖∞ . (183)

Page 26



AM 114/214 Prof. Daniele Venturi

With any compatible matrix norm available we immediately see that the function f(y) = Ay is Lipschitz
continuous in Rn. In fact, we have

‖Ay1 −Ay2‖ ≤ ‖A‖ ‖y1 − y2‖ for all y1,y2 ∈ Rn, (184)

where L = ‖A‖ is the Lipschitz constant.

Appendix C: Solution of a linear system in terms of the matrix exponential

We first write the ODE (1) as a linear integral equation

X(t,x0) = x0 +

∫ t

0
AX(s,x0)ds.

To solve this equation we use the Picard iteration method, which is a fixed point iteration method. To
this end, we define the iterative sequence

X(n)(t,x0) = x0 +

∫ t

0
AX(n−1)(s,x0)ds X(0)(t,x0) = x0 (185)

For nonlinear systems Picard’s iterations usually converge only within a small time interval. On the other
hand, for linear systems Picard’s iterations are globally convergent. Let us we start with n = 1

X(1)(t,x0) = x0 +

∫ t

0
Ax0ds = x0 + Ax0t = (I + At)x0.

We can use this to compute n = 2 which gives

X(2)(t,x0) = x0 +

∫ t

0
AX(1)(s,x0)ds = x0 +

∫ t

0
A(I + At)x0ds =

(
I + At+

t2

2
A2

)
x0.

By induction it is straightforward to show that

X(n)(t,x0) =

(
n∑
k=0

Aktk

k!

)
x0.

Clearly,

X(t,x0) = lim
n→∞

X(n)(t,x0) =

(
lim
n→∞

n∑
k=0

Aktk

k!

)
x0 = etAx0. (186)

Page 27


