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PDF equations for dynamical systems and PDEs

Consider the following n-dimensional dynamical system
dx

dt
= f(x)

x(0;ω) = x0(ω)

(1)

where x0(ω) is a random initial state with joint PDF p0(x). We are interested in studying the statistical
properties of the solution to (1) using probability density function (PDF) methods. As we shall see
hereafter, systems of the form (1) include systems in which we have random variables at appearing the
right hand side of the ODE, i.e., systems with random parameters.

Systems with random parameters.The non-autonomous system
dx

dt
= G(x, ξ(ω), t)

x(0;ω) = x0(ω)

(2)

can be transformed into an autonomous system evolving form a random initial state. To this end, we define
the phase variables of z(t) = t and y(t) = ξ(ω) rewrite (2) as

dx

dt
= G(x,y, z)

dy

dt
= 0

dz

dt
= 1

x(0;ω) = x0(ω), y(0;ω) = ξ(ω), z(0, ω) = 0.

(3)

Systems of the form (2) include also dynamical systems driven by random processes represented by of series
expansions with a finite or an infinite number of random variables. A simple example is

dx

dt
= f(x) + η(t;ω) (4)

i.e., a scalar ODE driven by random noise η(t;ω) represented as a truncated Karhunen-Loève series ex-
pansion (see [22] for an application to cancer modeling)

η(t;ω) ≃
M∑
k=1

√
λkξk(ω)ψk(t) (5)

with a finite number of uncorrelated random variables {ξ1, . . . , ξM}. We shall call M the dimensionality
of the noise process1. The adjective “colored” refers to the fact that the Fourier power spectral density of

1To sample realizations of the random process (5) we need to sample the random variables {ξ1, . . . , xiM}. Such random
variables are (by construction) orthonormal, i.e., they are uncorrelated and have variance one:

E{ξi(ω)ξj(ω)} = δij . (6)

If {ξ1, . . . , ξM} are jointly Gaussian then we know that (6) is necessary and sufficient for independence. Hence, in this case
sampling the joint PDF of {ξ1, . . . , ξM} reduces to sampling the PDF of an independent set of one-dimensional Gaussian PDFs
with zero mean and variance one. More generally, the joint PDF of {ξ1, . . . , ξM} can be sampled using Markov Chain Monte
Carlo methods, e.g., the Gibbs sampling algorithm.
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the random noise η(t;ω) is in general not flat [13, 22, 18] as in the case of white noise2.

Wiener–Khinchin theorem. Define the truncated Fourier transform of the random process η(t;ω) in
the time interval [−T, T ] as (assuming it exists)

η̂(w;ω) =

∫ T

−T
e−2πiwtη(t;ω)dt, (7)

and the truncated power spectral density of η(t;ω) as

ST (w) =
1

2T
E
{
|η̂(w;ω)|2

}
. (8)

The Wiener–Khinchin theorem states that for wide-sense stationary random process, i.e., for processes
with time-independent mean and temporal auto-correlation function C(s, t) = E{η(t;ω)η(s;ω)} depending
only on the time difference τ = s− t, the power spectral density of η(t;ω), i.e.,

S(w) = lim
T→∞

ST (w) (9)

can be written as

S(w) =

∫ ∞

−∞
C(τ)e−2πiwτdτ, (10)

where w denotes the frequency and C(τ) = E{η(t + τ ;ω)η(t;ω)} is the autocorrelation function of the
process (which is independent of t due to the wide-sense stationary assumption). In other words, the
power spectral density is the Fourier transform of the auto-correlation function. Conversely,

C(τ) =

∫ ∞

−∞
e2πiτwS(w)dw. (11)

In the case of Gaussian white noise (derivative of the Wiener process) we have seen that C(t, s) = δ(t− s),
i.e., C(τ) = δ(τ). This yields the power spectral density

S(w) =

∫ ∞

−∞
δ(τ)e−2πiwτdτ = 1 (12)

Note that the amplitude of the power spectral density is the same for all frequencies w, hence the name
Gaussian “white” noise.

Remark: A random dynamical systems is a systems driven by a finite number of random variables. An
example is the system (4)-(5), in which the the random input process is finite-dimensional (M finite).
On the other hand, a “stochastic dynamical system” is usually driven by infinite-dimensional random
processes, i.e., processes that can be represented in terms of an infinite (countable or uncountable) number
of random variables. An example is the ODE (4) if we let η(t;ω) be Gaussian white noise (derivative of
the Wiener process W (t;ω)). In this case, it is more appropriate to write the ODE as

dx = f(x)dt+ dW (t;ω), (13)

where dW (t;ω) denotes the infinitesimal increment of a Wiener process.

2A flat power spectral density implies that all frequencies contribute equally to the signal. The adjective “white” follows
from an analogy the power spectrum of visible colors, in which the color white has all visible frequencies contributing equally.
If the power spectral density of a random signal decays with the frequency ν as 1/να (α ∈ [1, 2]) then the noise is called
“pink”.
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Liouville equation. Let x(t;x0) be the flow generated by (1). The PDF of x(t;x0), i.e., the solution of
(1) at time t, satisfies the Liouville equation

∂p(x, t)

∂t
+∇ · (f(x)p(x, t)) = 0, p(x, 0) = p0(x), (14)

where p0(x) is the PDF of the random initial state x0(ω). To derive equation (14), consider the charac-
teristic function representation of p(x, t)

ϕ(a, t) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·xp(x, t)dx =

∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·x(t;x0)p(x0)dx0. (15)

Differentiating (15) with respect to t yields

∂ϕ(a, t)

∂t
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ia · ∂x(t,x0)

∂t
eia·x(t;x0)p(x0)dx0

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ia · f (x(t,x0)) e

ia·x(t;x0)p(x0)dx0

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
ia · f (x) eia·xp(x, t)dx

=

∫ ∞

−∞
· · ·

∫ ∞

−∞

∂

∂x

(
eia·x

)
· f (x) p(x, t)dx

=−
∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·x∇ · (f (x) p(x, t)) dx. (16)

In the last step we used integration by parts and the fact that the PDF p(x, t) decays to zero at infinity
sufficiently fast. By combining (15) and (16) we obtain∫ ∞

−∞
· · ·

∫ ∞

−∞
eia·x

[
∂p(x, t)

∂t
+∇ · (f (x) p(x, t))

]
dx = 0, for all a ∈ Rn, (17)

which implies that the function between square bracket must be equal to zero for all x and all t. This
proves the Liouville equation (14).

From a mathematical viewpoint, the Liouville equation (14) is a linear hyperbolic conservation law in as
many variables as the dimension of the system (1). Therefore, computing its solution can be challenging
due to high-dimensionality (PDE in n independent variables), normalization and positivity constraints
of the solution (the solution is a PDF), as well as potential multiple scales. Related to the last point,
in Figure 1 we show what happens to a jointly Gaussian initial state when samples from such PDF are
evolved forward in time by the flow map generated by the 2D Duffing equation [1]

d2x

dt2
= −x− 1

50

dx

dt
− 5x3 + 8 cos

(
t

2

)
. (18)

By using the method of characteristics, it is straightforward to obtain the following formal solution to the
Liouville equation (14)

p(x, t) = p0 (x0(x, t)) exp

(
−
∫ t

0
∇ · f (x(τ,x0)) dτ

)
, (19)

where x0(x, t) denotes the inverse flow map generated by (1). Equation (19) follows from the well-known
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t = 0 t = 16 t = 76

Figure 1: Point clouds corresponding to a jointly Gaussian initial PDF advected by the flow map generated
by the Duffing equation (18). The x-axis corresponds to x while the y-axis represents ẋ. We plot a point
cloud representing the joint PDF of x(t) and ẋ(t) at different times.

method of characteristics3 

dx(t,x0)

dt
= f (x(t,x0))

x(0,x0) = x0

dp(x(t,x0), t)

dt
= −p(x(t,x0), t)∇ · f (x(t,x0))

p(x(0,x0), 0) = p0(x0)

(21)

Example: The Liouville equation corresponding to the system (4)-(5) is

∂p(x,y, t)

∂t
+

∂

∂x
(f(x)p(x,y, t)) +

∂p(x,y, t)

∂x

M∑
k=1

√
λkykψk(t) = 0. (22)

If x0(ω) and ξ(ω) are statistically independent then the initial PDF can be factored as p(x0,y, 0) =
px0(x0)pξ(y). It is important to emphasize that in the joint PDF equation (22), x is the variable repre-
senting x(t;ω) while yk are variables representing ξk in the noise process (5).

Example: The Liouville equation corresponding to the three-dimensional dynamical system

ẋ1 = x1x3. ẋ2 = −x2x3, ẋ3 = −x21 + x22. (23)

is

∂p(x, t)

∂t
= − ∂

∂x1
(x1x3p(x, t)) +

∂

∂x2
(x2x3p(x, t)) +

∂

∂x3

(
(x21 − x22)p(x, t)

)
. (24)

3Note that (14) can be written as

∂p(x, t)

∂t
+ f(x) · ∇p(x, t) = −p(x, t)∇ · f(x) p(x, 0) = p0(x). (20)

Applying the method of characteristics to (20) yields the ODE system (21). In practice, the PDF p(x, t) is computed using
(21) along each characteristic curve. Clearly, this is computationally challenging in high-dimensions.
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Reduced-order PDF equations for dynamical systems. The Liouville equation (14) describes the
exact dynamics of the joint PDF of state variables x(t). In most cases, however, we are only interested in
a smaller subset of such variables, e.g., in the scalar quantity of interest

z(t, ω) = u(x(t,x0(ω))) (phase space function). (25)

We have seen that the probability density function of such phase space function can be written as

p(z, t) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
δ (z − u(x)) p(x, t)dx =

∫ ∞

−∞
· · ·

∫ ∞

−∞
δ (z − u(x(t,x0))) p(x0)dx0, (26)

where δ(·) is the Dirac’s delta function (see [8, 21, 15]) and z is the phase space variable representing
u(x(t)). Multiplying the Liouville equation (14) by δ (z − u(x)) and integrating over all phase variables
yields

∂p(z, t)

∂t
+

1

2π

∫ ∞

−∞
· · ·

∫ ∞

−∞
eia(z−u(x))∇ · (f(x)p(x, t)) dxda = 0, (27)

where we used the Fourier representation of the Dirac delta function δ (z − u(x)). In general, equation (27)
is unclosed in the sense that there are terms at the right hand side that cannot be represented or computed
based on p(z, t) alone. If we set u(x(t)) = xk(t), i.e., the quantity of interest is the k-th component of the
dynamical system (1), then (27) reduces to

∂p(xk, t)

∂t
+

∫ ∞

−∞
· · ·

∫ ∞

−∞

∂

∂xk
(fk(x)p(x, t)) dx1 . . . dxk−1dxk+1 . . . dxN = 0. (28)

The specific form of this equation depends on the vector field f(x).

Remark: Low-dimensional marginals of high-dimensional PDF are usually smoother functions than the
original PDF. This is illustrated in Figure 2 with reference to the Duffing equation (18). Hence, deriving and
solving low-dimensional PDF equations for quantities of interest, has advantages relative to full Liouville
equation. In particular: 1) the PDF equation for the quantity of interest is low dimensional, 2) we expect
the solution to a reduced-order PDF equations to relatively smooth because of the “regularization by
integration” effect.

BBGKY PDF hierarchy. By integrating the Liouville equation (14) with respect to different phase
variables it is possible to derive a hierarchy of PDEs known as Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy involving PDFs with an increasing number of phase variables. The first set of PDEs
is (28), and it clearly depends on PDFs with a larger number of variables, unless fk(x) depends only on xk
(in which case the system (1) is uncoupled). Let us provide specific examples of BBGKY hierarchies.

Example: Consider the Kraichnan-Orszag three-mode problem [14, 25]

ẋ1 = x1x3. ẋ2 = −x2x3, ẋ3 = −x21 + x22. (29)

The associated Liouville equation is

∂p(x, t)

∂t
= − ∂

∂x1
(x1x3p(x, t)) +

∂

∂x2
(x2x3p(x, t)) +

∂

∂x3

(
(x21 − x22)p(x, t)

)
. (30)

Suppose we are interested in the PDF of the first component of the system, i.e., set u(x(t)) = x1(t) in
equation (25). By integrating (30) with respect to x2 and x3, and assuming that p(x, t) decays fast enough
at infinity, we obtain

∂p(x1, t)

∂t
= − ∂

∂x1

∫ ∞

−∞
x1x3p(x1, x3, t)dx3. (31)
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Figure 2: Regularization of PDFs by integration/marginalization. The PDF of x1(t) at one specific location
is obtained by summing up the probability mass within the strips highlighted in red. The figures at the
top represent the joint PDF of x1 and x2, i.e., x and ẋ in the Duffing equation (18) at different times (see
also Figure 1).

From this equation we see that the evolution of p(x1, t) depends on an integral involving p(x1, x3, t). Hence,
to compute p(x1, t) we need to know what p(x1, x3, t) is. The evolution equation for p(x1, x3, t) can be
obtained by integrating (30) with respect to x2, i.e.,

∂p(x1, x3, t)

∂t
= − ∂

∂x1
(x1x3p(x1, x3, t)) + x21

∂

∂x3
(x3p(x1, x3, t))−

∂

∂x3

∫ ∞

−∞
x22p(x1, x2, x3, t)dx2. (32)

The PDE system (31)-(32) represents the first two levels of a BBGKY hierarchy. Note that the hierarchy
be closed only at the level of the Liouville equation (30). Indeed, the integral at the right hand side of (32)
involves p(x1, x2, x3, t), which is unknown unless we solve (30).

At this point we notice that we can represent the term involving p(x1, x3, t) in (31) in a different way.
Specifically, we can write the joint PDF of x1(t) and x3(t) at time t as

p(x1, x3, t) = p(x1, t)p(x3|x1, t), (33)

where p(x3|x1, t) is the conditional probability density of x3(t) given x1(t). A substitution of (33) into (31)
yields

∂p(x1, t)

∂t
= − ∂

∂x1
(x1p(x1, t)E[x3(t)|x1(t)]) , (34)

where

E[x3(t)|x1(t)] =
∫ ∞

−∞
x3p(x3|x1, t)dx3 (conditional expectation of x3(t) given x1(t)). (35)

As we shall see hereafter, E[x3(t)|x1(t)] can be estimated from sample trajectories of (29).
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Figure 3: Kraichnan-Orszag three mode problem. Absolute values of the first 8 rescaled cumulants
⟨x1(t)x3(t)k⟩c/k!. The initial condition xi(0) (i = 1, 2, 3) in (29) is set to be i.i.d. Gaussian with mean
and variance 1. We estimated the cumulants numerically by using Monte Carlo (50000 sample paths) and
ensemble averages. It is seen that the odd cumulants decay slowly with k, suggesting that the cumulant
expansion (38) cannot be truncated at low order. This implies that any reasonably accurate approximation
of the reduced-order equation (40) involves high-order derivatives of p(x1, t) with respect to x1.

Note that the reduced-order PDF equation (34) is a scalar conservation law where the (compressible)
advection velocity field is equal to x1E[x3(t)|x1(t)]. We emphasize that the innocent-looking PDE (31) is
actually a PDE involving derivatives of p(x1, t) up to order infinity in the phase variable x1. In fact, by
using Kubo’s cumulant expansion [9] of the joint characteristic function of x3(t) and x1(t) (i.e. Eq. (156)
in lecture notes 1)

ϕ(a1, a3, t) = ϕ(a1, t)ϕ(a3, t) exp

 ∞∑
j,k=1

〈
xj1(t)x

k
3(t)

〉
c

(ia1)
j(ia3)

k

j!k!

 , (36)

and the correspondence

p(x1, x3, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(a1x1+a3x3)ϕ(a1, a3, t)da1da3 (37)

we can prove that∫ ∞

−∞
x3p(x3, x1, t)dx3 = E[x3(t)]p(x1, t) +

∞∑
k=1

(−1)k+1 ⟨x1(t)x3(t)k⟩c
k!

∂kp(x1, t)

∂xk1
, (38)

where ⟨x1(t)x3(t)k⟩c are cumulant averages4. A substitution of (38) into (31) yields the infinite-order
PDE

∂p(x1, t)

∂t
= −E[x3(t)]

∂ (x1p(x1, t))

∂x1
+

∞∑
k=1

(−1)k+1 ⟨x1(t)x3(t)k⟩c
k!

∂k+1 (x1p(x1, t))

∂xk+1
1

. (40)

As shown in Figure 3, the rescaled cumulants ⟨x1(t)x3(t)k⟩c/k! decay slowly with k, suggesting that the
cumulant expansion (38) cannot be truncated at low-order. This implies that any reasonably accurate

4The cumulant averages appearing in equation (38) are defined as

⟨x1(t)x3(t)
k⟩c = E[x1(t)x3(t)

k]− E [x1(t)]E[x3(t)
k]. (39)
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Figure 4: 2D sections of the point clouds generated by the dynamical system (41) at t = 14. The random
initial condition samples are taken from a Gaussian distribution.

approximation of the reduced-order PDF equation (40) involves high-order derivatives of p(x1, t) with
respect to x1. The data-driven cumulant expansion approach we just described relies on computing sample
paths of (29), estimating the cumulant averages ⟨x1(t)x3(t)k⟩c using ensemble averaging, and then solving
the PDE (40). Clearly this is not practical since such PDE potentially involves high-order derivatives of
p(x1, t) with respect to x1. Another approach relies on estimating the conditional expectation (35) directly
from data and then solving the hyperbolic conservation law (34), which is a first-order linear PDE.

Example: Consider the following N -dimensional nonlinear dynamical system

dxi
dt

= − sin(xi+1)xi −Axi + F, i = 1, ..., N, (41)

where xN+1(t) = x1(t) (periodic boundary conditions). Depending on the value of F , A and on the number
of phase variables N , this system can exhibit different behaviors. In Figure 4 we plot a 2D section of the
point cloud we obtain at t = 14 by sampling the initial condition from a Gaussian random vector. Here
we set F = 10, A = 0.2 and N = 1000. The Liouville transport equation associated with (41) is

∂p(x, t)

∂t
= −

N∑
i=1

∂

∂xi
[(F − sin(xi+1)xi −Axi) p(x, t)] . (42)

This PDF is very hard to solve numerically because of the very high number of phase variables. The
evolution equation for the PDF of each phase variable xi(t) can be obtained by integrating (42) with
respect to all other variables. This yields the unclosed equation

∂p(xi, t)

∂t
= − ∂

∂xi

∫ ∞

−∞
[(F − sin(xi+1)xi −Axi) p(xi, xi+1, t)] dxi+1. (43)

We can write (43) equivalently as

∂p(xi, t)

∂t
= −F ∂p(xi, t)

∂xi
+A

∂(xip(xi, t))

∂xi
− ∂

∂xi
xi

∫ ∞

−∞
sin(xi+1)p(xi, xi+1, t)dxi+1. (44)

Note that all equations for p(xi, t) have the same structure, independently of the index i. This means that
if the random initial state x0 has i.i.d. components, then the evolution of each p(xi, t) does not depend on
i, i.e., it is the same for all i = 1, ..., N . A similar conclusion holds for the joint distributions p(xi, xi+1, t),
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which satisfy the equations

∂p(xi, xi+1, t)

∂t
=− ∂

∂xi
[(F − sin(xi+1)xi −Axi) p(xi, xi+1, t)]−

∂

∂xi+1

∫ ∞

−∞
[(F − sin(xi+2)xi+1 −Axi+1) p(xi, xi+1, xi+2, t)] dxi+2. (45)

The PDE system (44)-(45) represents the first two levels of the BBGKY hierarchy corresponding to
(41).

Let us set i = 1 in equation (44) and express the integral in terms of the conditional expectation of
sin(x2(t)) given x1(t). This yields

∂p(x1, t)

∂t
=

∂

∂x1
(x1p(x1, t)E [sin(x2(t))|x1(t)]) +

∂

∂x1
[(Ax1 − F )p(x1, t)] , (46)

where

E [sin(x2(t))|x1(t)] =
∫ ∞

−∞
sin(x2)p(x2|x1, t)dx2. (47)

Example: Consider the Liouville equation (22) corresponding to (4)-(5). Is it possible to derive an
evolution equation for p(x, t), i.e., integrate the variables y representing (ξ1, . . . , ξM ) in the KL expansion
of the noise (5)? By applying the marginalization rule

p(x, t) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x,y, t)dy (48)

to the Liouville equation (22) we obtain

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) +

M∑
k=1

√
λkψk(t)

∂

∂x

∫ ∞

−∞
ykp(x, yk, t)dyk = 0. (49)

Note that the PDF p(x, t) depends on M joint PDFs p(x, yk, t). Therefore (49) is an unclosed PDF
equation. We can of course derive an evolution equation for each p(x, yk, t) as

∂p(x, yk, t)

∂t
+

∂

∂x
(f(x)p(x, yk, t)) +

∂p(x, yk, t)

∂x

√
λkykψk(t) +

M∑
j=1
j ̸=k

√
λjψj(t)

∂

∂x

∫ ∞

−∞
yjp(x, yj , yk, t)dyj = 0.

(50)
These are additional M unclosed PDEs involving p(x, yj , yk, t). At this point we can derive the evolution
equation for the joint PDF p(x, yj , yk, t), and go on and on. The BBGKY hierarchy is formally closed only
at the level of the Liouville equation, unless the system has a special structure, or a closure approximation
is introduced. For instance, if p(x, yj , yk, t) can be factored in terms of lower-order PDFs as

p(x, yj , yk, t) ≃ p(x, yk, t)p(yj) (51)

then (49)-(50) is a closed system of PDEs. We can also use conditional expectations to formally close the
reduced-order PDF equation. To this end, we recall that

p(x, yk, t) = p(yk|x, t)p(x, t), (52)

where p(yk|x, t) is the conditional PDF of yk given x(t;ω). Substitute this expression into (49) to obtain
the low-dimensional PDE

∂p(x, t)

∂t
+

∂

∂x
(f(x)p(x, t)) +

M∑
k=1

ψk(t)
∂

∂x
(p(x, t)E{ξk(ω)|x(t;ω) = x}) . (53)
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Figure 5: Kraichnan-Orszag three mode problem. (a) Sample trajectories of (29) corresponding to random
samples projected on the plane (x1, x3). For each value of x1, the conditional PDF p(x3|x1, t) can be
estimated based on samples sitting on or lying nearby the vertical dashed line. The conditional expectation
E[x3(t)|x1(t)] is the mean of such conditional PDF.

Here,

E{ξk(ω)|x(t;ω) = x} =

∫ ∞

−∞
ykp(yk|x, t)dyk (54)

is the conditional expectation of ξk(ω) given x(t;ω) = x. We shall see hereafter that such conditional
expectation can be estimated from sample trajectories of (4)-(5).

Data-driven closure approximation of BBGKY hierarchies. Computing conditional expectations
from data or sample trajectories is a key step in determining accurate closure approximations of reduced-
order PDF equations. A major challenge to fitting a conditional expectation is ensuring accuracy and
stability. More importantly, the estimator must be flexible and effective for a wide range of numerical
applications. Let us briefly recall how to compute conditional expectations based on sample paths of (1).
To this end, consider the random processes x1(t) and x3(t) defined by the dynamical system (29) evolving
from a random initial state. The conditional expectation of x3(t) given x1(t) is defined mathematically in
equation (35). The geometric meaning of such conditional expectation is illustrated in Figure 5. We first
compute sample trajectories of (29) – see Figure 5(a) – by sampling the initial condition and evolving it
forward in time. We then project the solution samples we obtain at time t on the plane (x1, x3), to obtain
the scatter plot in Figure 5(b). For each value of x1, the conditional PDF p(x3|x1, t) can be estimated based
on all samples sitting on or lying nearby the vertical dashed line. The conditional expectation E[x3(t)|x1(t)]
is the mean of such conditional PDF.

In this section, we present two different approaches to estimate conditional expectations from data based on
moving averages and smoothing splines. The moving average estimate is obtained by first sorting the data
into bins and then computing the average within each bin. With such averages available, we can construct
a smooth interpolant using the average value within each bin. Important factors affecting the bin average
are the bin size (the number of samples in each bin) and the interpolation method used in the final step.
Another approach to estimate conditional expectations uses smoothing splines. This approach seeks to
minimize a penalized sum of squares. A smoothing parameter determines the balance between smoothness
and goodness-of-fit in the least-squares sense [3]. The choice of smoothing parameter is critical to the
accuracy of the results. Specifying the smoothing parameter a priori generally yields poor estimates [16].
Instead, cross-validation and maximum likelihood estimators can guide the choice the optimal smoothing
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Figure 6: Numerical estimation of the conditional expectation (57) for different number of samples of (55).
Shown are results obtained with moving averages (first row) and cubic smoothing splines (second row).
It is seen that both methods converge to the correct conditional expectation in the active region as we
increase the number of samples.

value for the data set [24]. Such methods can be computationally intensive, and is not recommended when
the spline estimate is performed at each time step. Other techniques to estimate conditional expectations
can be built upon deep-neural nets.

In Figure 6 we compare the performance of the moving average and smoothing splines approaches in
approximating the conditional expectation of two jointly Gaussian random variables. Specifically, we
consider the joint distribution

p(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x1 − µ1)

σ21

(x2 − µ2)

σ22
− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

])
(55)

with parameters ρ = 3/4 (correlation coefficient), µ1 = 0, µ2 = 2, σ1 = 1 σ2 = 2. As is well known [15],
the conditional expectation of x2 given x1 can be expressed as5

E[x2|x1] = µ2 + ρ
σ2
σ1

(x1 − µ1) = 2 +
3

2
x1. (57)

Such expectation is plotted in Figure 6 (dashed line), together with the plots of the estimates we obtain
with the moving average and the smoothing spline approaches for different numbers of samples. It is seen
that both methods converge to the correct conditional expectation as we increase the number of samples.
Both estimators are parametric, i.e., they require setting suitable parameters to compute the expectation,

5Given two random variables with joint PDF p(x1, x2), the conditional expectation of x2 given x1 is defined as

E[x2|x1] =

∫ ∞

−∞
x2p(x2|x1)dx2 =

1

p(x1)

∫ ∞

−∞
x2p(x1, x2)dx2, (56)

where p(x1) is the marginal of p(x1, x2) with respect to x2.
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Figure 7: Data-driven estimates of the conditional expectations (35) and (47) defining the reduced-order
PDF models (34) and (46).

e.g., the width of the moving average window in the moving average approach, or the smoothing parameter
in the cubic spline.

If the joint PDF of x1 and x2 is not compactly supported, then the conditional expectation is defined on
the whole real line. It is computationally challenging to estimate (57) in regions where the PDF is very
small. At the same time, if we are not interested in rare events (i.e., tails of probability densities), then
resolving the dynamics in such regions of small probability is not really needed. This means that if we
have available a sufficient number of sample trajectories, then we can identify the regions of the phase
space where dynamics is happening with high probability, and approximate the conditional expectation
only within such regions. Outside the active regions, we can set the expectation equal to zero. However,
keep in mind that if the joint PDF of x1 and x2 is compactly supported, e.g. uniform on the square [0, 1]2,
then conditional expectation is undefined outside the support of the joint PDF.

In Figure 7, we summarize the results we obtain by applying the smoothing spline conditional expectation
estimator to the dynamical systems (29) and (41). In Figure 8 and Figure 9 we provide numerical simulation
result for (34) and (46), respectively.

Fokker-Planck equation and other kinetic models. Consider the following stochastic ODE

dx = G(x, t)dt+ S(x, t)dW (t;ω), x(0;ω) = x0(ω). (58)

whereW (t) is a vector-valuedm-dimensional random process with known statistical properties, and S(x, t)
is a n ×m matrix of functions. We have seen that if W (t) is a finite-dimensional random noise (i.e., it
can be represented in terms of a finite-number of random variables) then it is possible to derive an exact
transport equation (i.e., (14)) for the joint PDF of x(t;ω) and all random variables representing W (t;ω).
By integrating out the phase variables corresponding to the noise, i.e., by marginalizing the Liouville
equation with respect to the phase variables representing the noise, it is possible to to obtain an evolution
equation for the PDF of x(t;ω) alone. Such equation represents the first equation of a BBGKY hierarchy
and it is is usually not closed, meaning that it involves quantities that cannot be computed just based
on the PDF of x(t;ω). However, there are cases in which the integration of the noise can be carried out
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Figure 8: Kraichnan-Orszag three-mode problem. (a) Accurate kernel density estimate of p1(x1, t) based
on 30000 sample trajectories. (b) Numerical solution of (34) obtained by estimating E[x3(t)|x1(t)] with
5000 sample trajectories.

exactly, and a closed equation for the PDF of x(t;ω) can be derived. Perhaps the most famous example
is the case where W (t;ω) is a Wiener process. In this case we have seen in the course note 3 that p(x, t)
satisfies the Fokker-Plank equation [17]

∂p(x, t)

∂t
= −

n∑
k=1

∂

∂xk
(Gk(x, t)p(x)) +

1

2

n∑
i,k=1

∂2

∂xi∂xk

 m∑
j=1

Sij(x, t)Skj(x, t)p(x, t)

 . (59)

We emphasize that the PDE governing the PDF of the solution to (4) depends substantially on the
statistical properties of the noise W (t;ω). For instance, if we replace the Wiener process W (t;ω) in (4)
with a Lévy random walk then the PDF equation for x(t;ω) has a fractional Laplace operator [19], i.e., it
is a fractional PDE. Similarly, for weakly colored random noise, i.e., noise with short temporal correlation,
it is possible to leverage the quasi-Markovian nature of the system, and integrate out the noise, e.g., using
functional integration [13, 22].
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Figure 9: Nonlinear dynamical system (41). (a) Accurate kernel density estimate [2] of p(x1, t) based on
20000 sample trajectories. (b) Data-driven solution of the transport equation (46). We estimated the
conditional expectation E [sin(x2(t))|x1(t)] based on 5000 sample trajectories of (41) (see Figure 7).

PDF equations for PDEs

The procedure we used to derive reduced-order PDF equations for dynamical systems can be extended to
PDEs evolving from random initial states, or PDEs with random forcing (see, e.g., [10, 7]). To describe the
procedure, consider the prototype problem of a 1D heat equation evolving from a random initial state

∂u(x, t;ω)

∂t
= κ2

∂2u(x, t;ω)

∂x2
, u(x, 0;ω) = u0(x;ω). (60)

We have seen that the Hopf functional6

Φ([θ], t) = E
{
exp

[
i

∫ ∞

−∞
u(x, t;ω)θ(x)dx

]}
(61)

provides full statistical information on u(x, t;ω) at each time t. This includes, e.g., multi-point statistical
moments such as

E {u(xi, t;ω)u(xj , t;ω)} and E {u(xi, t;ω)u(xj , t;ω)u(xk, t;ω)} , (62)

or multi-point probability density functions. It is possible to derive an evolution equation for the Hopf
functional corresponding to the solution of (60). To this end, let us differentiate (61) with respect to time

6In (61) we assumed that the spatial domain for the heat equation (60) is R. If the spatial domain is a compact subset R,
say [0, 2π], then the domain on which the integral in (61) is evaluated changes accordingly.
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to obtain

∂Φ([θ], t)

∂t
=E

{
exp

[
i

∫ ∞

−∞
u(x, t;ω)θ(x)dx

]
i

∫ ∞

−∞

∂u(x, t;ω)

∂t
θ(x)dx

}
=iκ2

∫ ∞

−∞
E
{
exp

[
i

∫ ∞

−∞
u(x, t;ω)θ(x)dx

]
∂2u(x, t;ω)

∂x2

}
θ(x)dx

=iκ2
∫ ∞

−∞

∂2

∂x2

(
E
{
exp

[
i

∫ 2π

0
u(x, t;ω)θ(x)dx

]
u(x, t;ω)

})
θ(x)dx

=iκ2
∫ ∞

−∞

∂2

∂x2

(
δΦ([θ], t)

δθ(x)

)
θ(x)dx, (63)

where δΦ([θ], t)/δθ(x) denotes the first-order functional derivative of the nonlinear functional (61) (see
[20] or [5, p. 309]). Technically speaking, equation (63) is a functional-differential equation (FDE) as it
involves derivatives with respect to functions and derivatives with respect to independent variables x and
t. The solution to (63) is a time-dependent nonlinear functional, i.e., a nonlinear operator from a space of
functions into C. The functional differential equation (63) is essentially an infinite-dimensional PDE, i.e.,
a PDE in an infinite number of independent variables which may be approximated by a PDE in a finite
(though potentially large) number of variables using the functional methods described in [20, 11].

The Hopf equation (63) plays the same role for the heat equation (60) as the Fourier transform of the
Liouville equation (14) does for the finite-dimensional dynamical system (1).

Example (functional derivative): Consider the Hopf functional of a zero-mean Gaussian random field
defined on flat torus [0, 2π]2

Φ([θ]) = exp

(
−1

2

∫ 2π

0

∫ 2π

0
C(x, y)θ(x)θ(y)dxdy

)
. (64)

The first-order functional derivative of Φ is defined as the kernel of the integral operator representing the
Frechèt derivative

Fuη =
dΦ([θ + ϵη])

dϵ

∣∣∣∣
ϵ=0

=

∫ 2π

0

δΦ([θ])

δθ(x)
η(x)dx. (65)

For the functional (64) we have

dΦ([θ + ϵη])

dϵ

∣∣∣∣
ϵ=0

=

∫ 2π

0
−
[
exp

(
−1

2

∫ 2π

0

∫ 2π

0
C(x, y)θ(x)θ(y)dxdy

)∫ 2π

0
C(x, y)θ(y)dy

]
, η(x)dx (66)

i.e.,
δΦ([θ])

δθ(x)
= − exp

(
−1

2

∫ 2π

0

∫ 2π

0
C(x, y)θ(x)θ(y)dxdy

)∫ 2π

0
C(x, y)θ(y)dy. (67)

Example: Another well-known example of a FDE involves the characteristic functional of the solution to
the Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u ∇ · u = 0. (68)

Such a FDE can be written as [6, 12, 20]

∂Φ([θ], t)

∂t
=

3∑
k=1

∫
V
θk(x)

i 3∑
j=1

∂

∂xj

δ2Φ([θ], t)

δθk(x)δθj(x)
+ ν∇2 δΦ([θ], t)

δθk(x)

 dx, (69)
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where

Φ([θ], t) = E
{
exp

[
i

∫
V
u(x, t;ω) · θ(x)dx

]}
. (70)

Here, u(x, t;ω) represents a stochastic solution to the Navier-Stokes equation (68) corresponding to a
random initial state, and E{·} is the expectation over the probability measure of such random initial state.
Equation (69) was deemed by Monin and Yaglom ([12, Ch. 10]) to be “the most compact formulation of the
general turbulence problem”, which is the problem of determining the statistical properties of the velocity
field generated by the Navier-Stokes equations given statistical information on the initial state7.

Remark: Clearly, if we discretize the PDE (60) or (68) in the spatial domain, e.g., with finite-differences,
then we obtain a system of ODEs which can be handled with the mathematical tools we discussed in the
previous section. In particular, it is possible to derive a Liouville equation for such finite-dimensional ODE
system and correspondingly a BBGKY hierarchy for the solution evaluated e.g., at the spatial grid points.
An interesting question is how to compute statistical properties at spatial locations that do not coincide
with the grid points. For example, is it possible to “interpolate” the joint characteristic function of the
solution u(x, t;ω) at n spatial nodes {xk} and obtain an approximation of the joint characteristic at a
different set of m nodes? To answer this question, consider the 2-point characteristic function

ϕ2(a1, a2, t) = E
{
eia1u(x1,t;ω)+ia2u(x2,t;ω)

}
. (71)

Let x∗ be a point in between x1 and x2. Assuming that u(x, t;ω) is a smooth solution to a PDE, we can
construct an interpolant for u(x∗, t, ω), e.g., a linear interpolant as

u(x∗, t;ω) = u(x1, t;ω)ℓ1(x
∗) + u(x2, t;ω)ℓ2(x

∗) (72)

where ℓ1(x) = (x− x2)/(x1 − x2) and ℓ2(x) = (x− x1)/(x2 − x1) are Lagrange characteristic polynomials.
This representation allows us to represent the three-point joint characteristic function of u(x, t;ω) at x1,
x2 and x∗ as

ϕ3(a1, a2, a3, t) =E
{
eia1u(x1,t;ω)+ia2u(x2,t;ω)+ia3u(x∗,t;ω)

}
=E

{
eia1u(x1,t;ω)+ia2u(x2,t;ω)+ia3(u(x1,t;ω)ℓ1(x∗)+u(x2,t;ω)ℓ2(x∗))

}
=E

{
ei(a1+a3ℓ1(x∗))u(x1,t;ω)+i(a2+a3ℓ2(x∗))u(x2,t;ω)

}
=ϕ2(a1 + a3ℓ1(x

∗), a2 + a3ℓ2(x
∗), t). (73)

This expression provides an approximation of the three-point characteristic function in terms of the two
point characteristic function. Of course the method can be generalized to n point characteristic functions.
If the spatial discretization is sufficiently fine, and the interpolants are accurate, we can represent the
2n, 3n, ..., mn, characteristic functions in terms of one core characteristic function e.g., involving the
solution at n spatial points. Taking the limit for m going to infinity yields a functional that differs from
the functional we are approximating interested in, but has an error that can be bounded in some pointwise
norm.

Lundgren-Monin-Novikov (LMN) PDF hierarchy. The LMN hierarchy PDF hierarchy plays the
same role for the PDEs as the BBGKY hierarchy does for finite-dimensional dynamical systems (1). With
reference to the heat equation (60), we are interested in deriving the PDF equation governing the PDF

7In equations (69)-(70), V ⊆ R3 is a periodic box, θ(x) = (θ1(x), θ2(x), θ3(x)) is a vector-valued (divergence-free) function,
and δ/δθj(x) denotes the first-order functional derivative.
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of u(x, t), i.e., the solution at one particular spatial point. To this end, consider the characteristic func-
tion

ϕ(a, x, t) = E
{
eiau(x,t;ω)

}
, (74)

and differentiate it with respect to time to obtain

∂ϕ(a, x, t)

∂t
=iaE

{
∂u(x, t;ω)

∂t
eiau(x,t;ω)

}
=iaκ2E

{
∂2u(x, t;ω)

∂x2
eiau(x,t;ω)

}
=iaκ2 lim

y→x
E
{
∂2u(y, t;ω)

∂y2
eiau(x,t;ω)

}
=iaκ2 lim

y→x

∂2

∂y2
E
{
u(y, t;ω)eiau(x,t;ω)

}
. (75)

Recalling that the two-point characteristic function is defined as

ϕ(a, b, x, y, t) = E
{
eiau(x,t;ω)+ibu(y,t;ω)

}
(76)

we see that we can write the term at the right hand side of (75) as

iE
{
u(y, t;ω)eiau(x,t;ω)

}
= lim

b→0

∂

∂b
ϕ(a, b, x, y, t). (77)

Substituting into (77) into (75) yields

∂ϕ(a, x, t)

∂t
= κ2 lim

b→0
lim
y→x

∂2

∂y2
a
∂ϕ(a, b, x, y, t)

∂b
. (78)

Next, we transform this equation for the characteristic function to an equation for the PDF. To this end,
we first recall that

ϕ(a, x, t) =

∫ ∞

−∞
eiaup(u, x, t)du, ϕ(a, b, x, y, t) =

∫ ∞

−∞

∫ ∞

−∞
eiau+ibvp(u, v, x, y, t)dudv. (79)

This allows us to write the right hand side of (78) as

a
∂ϕ(a, b, x, y, t)

∂b
=ia

∫ ∞

−∞

∫ ∞

−∞
eiau+ibvvp(u, v, x, y, t)dudv. (80)

Taking the limit

lim
b→0

a
∂ϕ(a, b, x, y, t)

∂b
=ia

∫ ∞

−∞

∫ ∞

−∞
veiaup(u, v, x, y, t)dudv

=

∫ ∞

−∞

∫ ∞

−∞
v
∂
(
eiau

)
∂u

p(u, v, x, y, t)dudv

=−
∫ ∞

−∞
eiau

∫ ∞

−∞
v
∂p(u, v, x, y, t)

∂u
dudv. (81)

Hence,
∂p(u, x, t)

∂t
= −κ2 lim

y→x

∂2

∂y2

∫ ∞

−∞
v
∂p(u, v, x, y, t)

∂u
dv. (82)

In other words, the dynamics of the one-point PDF p(u, x, t) (PDF of the solution at location x and
time t) depends on the joint PDF of u(x, t;ω) and u(y, t, ω) through some quite unusual limit. Equation
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(82) is the first equation of an infinite hierarchy of PDF equations known as Lundgren-Monin-Novikov
(LMN) hierarchy [10, 4, 23], first developed by Thomas Lundgren to study the statistical properties of
turbulence. The second equation of the LMN hierarchy is an equation for the time derivative of the two
point PDF p(u, v, x, y, t). It was shown in [7] that the Hopf functional equation (63) is equivalent to the
LMN hierarchy.

Remark: Why do we get a closure problem for the one-point one-time PDF equation of the solution to
the heat equation? The reason is simple, and can be understood by recalling that the analytic solution of
(60) in an infinite domain is

u(x, t;ω) =

∫ ∞

−∞
G
(
x, t|x′, t′

)
u(x′, t′)dx′ t ≥ t′, (83)

where

G
(
x, t|x′, t′

)
=

1

[4πκ2(t− t′)]1/2
exp

(
− (x− x′)2

4κ2(t− t′)

)
(84)

is the heat kernel, i.e., the Green function of the diffusion equation on the real line. For an infinitesimal time
increment ∆t we have that the random variable u(x, t+∆t;ω) (for fixed x) depends on an infinite number
of random variables at the previous time step, i.e., u(x′, t;ω) for arbitrary x′ ∈ R. To see this more clearly,
consider the following quadrature approximation of the integral in (83) (e.g., Hermite quadrature)

u(xp, t+∆t;ω) =
M∑
j=1

wj

[4πκ2∆t]1/2
exp

(
−(xp − xj)

2

4κ2∆t

)
u(xj , t;ω), (85)

where xj are Gauss-Hermite nodes, and wj are quadrature weights. Clearly, (85) represents a mapping
from M random variables {u(x1, t;ω), . . . , u(xM , t;ω)} into one random variable u(xp, t+∆t;ω). We know
that the PDF of u(xp, t + ∆t;ω) can be computed if and only if the joint PDF of the random vector
{u(x1, t;ω), . . . , u(xM , t;ω)} is available. In other words, the fact that the solution (83) is non-local in x
(it involves an integral in x) implies that the statistical properties at some fixed spatial point x and time
t + ∆t are determined by the joint statistics at all points x′ at a previous time instant. Hence, a closed
equation for the one-point PDF cannot exist.

By using similar methods, it is possible to derive LMN PDF hierarchies corresponding to rather general
nonlinear PDEs, e.g., the Navier-Stokes equation (68), evolving from random initial states (see [10]).

Representation in terms of conditional expectations. The integral at the right hand side of (82)
can be written in terms of a conditional expectation of u(y, t;ω) given u(x, t;ω). A substitution of the
identity

p(u, v, x, y, t) = p(v, y, t|u, x, t)p(u, x, t) (86)

into (82) yields

∂p(u, x, t)

∂t
=− κ2 lim

y→x

∂2

∂y2

∫ ∞

−∞
vp(v, y, t|u, x, t)∂p(u, x, t)

∂u
dv

=− κ2
∂p(u, x, t)

∂u
lim
y→x

∂2

∂y2
E {u(y, t;ω)|u(x, t;ω)} . (87)

As before, if we estimate the conditional expectation E {u(y, t;ω)|u(x, t;ω)} from sample paths of (60) then
we can solve (87) as we did in the case of data-driven closures for BBGKY hierarchies. The development
of efficient methods for data-driven estimation of conditional expectations such as E {u(y, t;ω)|u(x, t;ω)}
nearby x = y is (to my knowledge) an open problem.
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Example: Consider the Kuramoto-Sivashinsky equation

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+ ν

∂4u

∂x4
= 0 (88)

By using the methods we just outlined it can be shown that the first equation of the LMN hierarchy
is

∂p(u, x, t)

∂t
+

∫ u

−∞

∂p(u′, x, t)

∂x
du′ + u

∂p(u, x, t)

∂x
=

− lim
y→x

[
∂2

∂y2
E {u(y, t;ω)|u(x, t;ω)}+ ν

∂4

∂y4
E {u(y, t;ω)|u(x, t;ω)}

]
. (89)

Hence, once again, the PDF equation may be closed by estimating E {u(y, t;ω)|u(x, t;ω)} from data.
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