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Stability analysis of equilibria in nonlinear systems

Consider the n-dimensional nonlinear dynamical system
dx

dt
= f(x)

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a vector of phase variables, f : D → Rn, and D is a subset of Rn. In this
course note we study the behavior of the nonlinear system (1) in a neighborhood of a fixed point. As is
well known, fixed points are solutions to the nonlinear system of algebraic equations

f(x∗) = 0. (2)

To study the flow in a neighborhood of a fixed point x∗ we consider a local coordinate system centered at
x∗, i.e. we define the new phase variables

η(t,x0) = X(t,x0)− x∗. (3)

Assuming that the initial condition x0 is sufficiently close to x∗ and that f is sufficiently smooth, we
expand

f(X(t,x0)) = f(x∗ + η(t,x0)) (4)

in a neighborhood of x∗, i.e., for small η(t,x0). This yields

f(x∗ + η(t,x0)) = f(x∗)︸ ︷︷ ︸
=0

+Jf (x
∗)η(t,x0) + g(η), (5)

where

Jf (x
∗) =


∂f1(x

∗)
∂x1

· · · ∂f1(x
∗)

∂xn
...

. . .
...

∂fn(x
∗)

∂x1
· · · ∂fn(x

∗)

∂xn

 (6)

is the Jacobian1 of f(x) evaluated at the fixed point x∗, and g(η) is the reminder of the Taylor series at
x∗. Of course g(η) depends on x∗. Moreover,

g(0) = 0 and Jg(x
∗) = 0. (7)

These conditions imply that η = 0 is indeed a fixed point, and that that g(η) is at least quadratic in η.
This allows us to write the nonlinear dynamical system (1) at x∗ as

dη

dt
= Jf (x

∗)η + g(η)

η(0,x0) = x0 − x∗
(8)

Note that (8) is completely equivalent to (1), since we retained all nonlinearities. Such nonlinerities are
responsible for the slight variations in the local phase portraits displayed in Figure 1.

1The Jacobian of f(x) is a matrix-valued function that takes in a function f(x) and it returns a n × n matrix-valued
function. The entries of such Jacobian matrix are functions. Of course, if we evaluate the Jacobian of f(x) at a specific point
x∗ then we obtain a matrix with real entries (provided f is real).
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Figure 1: Geometric meaning of the Hartmman-Grobman Theorem 1. The trajectories of a nonlinear sys-
tem in a neighborhood of any hyperbolic fixed point are homeomorphic to the trajectories of the linearized
system at x∗. This means that the trajectories of the nonlinear and linearized system are not exactly the
same in the neighborhood of x∗, but they can be mapped to each other by a continuous transformation
that has a continuous inverse. The reason why the trajectories are not the same can be traced back to the
term g(η) in equation (8).

Theorem 1 (Hartman-Grobman). Let x∗ ∈ Rn be a fixed point of the dynamical system (1). If the
Jacobian (6) has no eigenvalue with zero real part then there exists a homeomorphism (i.e., continuous
invertible mapping with continuous inverse) defined on some neighborhood of x∗ that takes orbits of the
linear system η̇ = Jf (x

∗)η and maps them into orbits of the system (8). The mapping preserves the
orientation of the orbits.

An outline of the proof is given in L. Perko, Differential equations and dynamical systems, page 121.

Remark: Theorem 1 states that if x∗ is a hyperbolic2 fixed point, then the flow of the nonlinear system (1)
in a neighborhood U ⊂ Rn of x∗ is homeomorphic to the flow of the corresponding linearized system (??).
That is, the trajectories of the nonlinear and linear systems can be mapped to each other by a continuous
bijection

h : U 7→ V, (9)

with a continuous inverse, where V is the image of U under h. Stated mathematically, the theorem asserts
that there exists a homeomorphism h such that

h(X(t,x0)− x∗) = etJf (x
∗)h(x0 − x∗), i.e. X(t,x0) = x∗ + h−1

(
etJf (x

∗)h(x0 − x∗)
)
, (10)

The homeomorphism maps trajectories of (8) to trajectories of η̇ = Jf (x
∗)η (without g(η)) in some

neighborhood of 0.

2A fixed point x∗ is called hyperbolic if the Jacobian matrix Jf (x
∗) has no eigenvalues with zero real part.
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Figure 2: Eigenvalues of the Jacobian matrix Jf (x
∗), and definition of the associated subspaces.

Stable, unstable, and center subspaces

The eigenvalues of the Jacobian matrix Jf (x
∗) and the associated subspaces can be grouped into three

main classes (see Figure 2):

• Stable subspace. We denote the subspace spanned by the eigenvectors and the generalized eigen-
vectors associated with eigenvalues with negative real part as V s. The subspace V s is called stable
subspace (or stable eigenspace if it is spanned by eigenvectors).

• Unstable subspace. We denote the subspace spanned by the eigenvectors and the generalized
eigenvectors associated with eigenvalues with positive real part as V u. The subspace V u is called
unstable subspace (or unstable eigenspace if it is spanned by eigenvectors).

• Center subspace. We denote the subspace spanned by the eigenvectors and the generalized eigen-
vectors associated with eigenvalues with zero real part as V c. The subspace V c is called center
subspace (or center eigenspace if it is spanned by eigenvectors).

The Hartman-Grobman theorem applies to a fixed point x∗ with center subspace V c reducing to just one
element, i.e., V c = {0Rn}. This means that dim(V c) = 0, i.e., the center subspace is zero dimensional.

On the other hand, the center manifold theorem discussed hereafter provides useful information on the
stable, unstable, and center manifolds associated to a fixed point x∗.

A manifold in Rn is a subset that “locally looks like” Rk for some 1 ≤ k ≤ n. That is, around every point,
it resembles flat k-dimensional Euclidean space, even though globally it might be curved or embedded in
a higher-dimensional space.

In other words, we can locally flatten a manifold in Rn using a smooth coordinate transformation. For
example, a smooth (non-intersecting) curve in R2 is a one-dimensional manifold. Similarly, a smooth
surface in R3 is a two-dimensional manifolds. A smooth curve in Rn is a one-dimensional manifold that
can be parameterized as x(t) ∈ Rn. Similarity, a smooth surface in Rn is a two-dimensional manifold that
can be parameterized as x(u, v) ∈ Rn, where u and v are scalar parameters.
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Figure 3: Stable and unstable eigenspaces V s and V u, and stable and unstable manifolds W s and W u

of a two-dimensional saddle node and a two-dimensional stable node. Note that the stable and unstable
manifolds of the saddle node are one-dimensional and tangent to the stable and unstable eigenspaces at
fixed point. The stable eigenspace of the stable node is two-dimensional. Hence the the stable manifold
is two-dimensional as well. Hence the tangency condition of W s to V s in this case reduces to the trivial
statement that all trajectories belong to the stable manifold, at least locally.

In the context of dynamical systems, an invariant manifold W ⊆ Rn is a manifold such that for all x0 ∈ W
we have that X(t,x0) ∈ W for all t.

Theorem 2 (Center manifold theorem). Let x∗ ∈ Rn be a fixed point of the dynamical system (1), and let
V s, V u and V c be the stable, unstable and center subspaces defined by (generalized) eigendecomposition
of the Jacobian matrix Jf (x

∗) defined in (6). Then there exist two unique stable and unstable invariant
manifolds W s and W u of the same dimension of V s and V u and tangential to V s and V c at x∗, and a (not
necessarily unique) center manifold W c of the same dimension of V c and tangential to V c at x∗. If f in
(1) is of class Ck then W s and W u are of class Ck, while W c is of class Ck−1.

An invariant manifold W ⊆ Rn is a manifold such that for all x0 ∈ W we have that X(t,x0) ∈ W .

It is useful to sketch the stable and unstable subspaces V s and V u together with the stable and unstable
manifolds W s and W u for 2D a saddle node and for a 2D stable node. In the latter case, the stable
subspace has dimension 2, and therefore all curves in a neighborhood of x∗ are part of the stable manifold
W s.

Stability analysis of hyperbolic fixed points in two-dimensional dynamical systems

In this section we provide a few examples of stability analysis of a hyperbolic fixed point in two-dimensional
nonlinear dynamical systems.

Example: Consider the following Volterra-Lotka model governing the population dynamics two interacting
species competing for some common resource

dx1
dt

= x1(3− x1 − 2x2)

dx2
dt

= x2(2− x1 − x2)

(11)
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Figure 4: Fixed points of the Volterra-Lotka model (11).

The nullclines are

ẋ1 = 0 ⇒ x1 = 0, x2 =
3

2
− 1

2
x1, (12)

ẋ2 = 0 ⇒ x2 = 0, x2 = 2− x1. (13)

Fixed points are located at the intersections of the nullclines. As shown in Figure 4 we obtain

x∗
A = (0, 0), x∗

B = (0, 2), x∗
C = (1, 1), x∗

D = (3, 0). (14)

The Jacobian of (11) is easily obtained as

Jf (x) =

[
3− 2x1 − 2x2 −2x1

−x2 2− x1 − 2x2

]
. (15)

Let us study the flow of the nonlinear system in a neighborhood of the fixed point x∗
C = (1, 1). The

Jacobian at x∗
C is

Jf (x
∗
C) =

[
−1 −2
−1 −1

]
, (16)

and it has eigenvalues
λ1 = −1−

√
2 < 0, λ2 = −1 +

√
2 > 0. (17)

Therefore the fixed point x∗
C is hyperbolic (saddle node). The stable and unstable eigenspaces of the saddle

node are spanned by the vectors

v1 =

[√
2
1

]
, v2 =

[
−
√
2

1

]
(18)

which are eigenvectors of (16) corresponding to λ1 and λ2. Based on Theorem 2, the stable and unstable
manifolds of the saddle node are tangent to the tangent eigenspaces stable and unstable manifolds are
tangent to the eigendirections. Proceeding similarly for the other points, it is straightforward to find that
x∗
A is an unstable node, while x∗

B and x∗
D are stable nodes. In Figure 5 we sketch the phase portrait of

the system, and compare it with a numerically computed portrait.
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Figure 5: Phase portrait of the Volterra-Lotka model (11). The stable manifold of the saddle node deter-
mines which species is going to survive.

Example: Consider the nonlinear system
dx1
dt

= 1− (µ+ 1)x1 + x21x2

dx2
dt

= µx1 − x21x2

(19)

where µ > 0 is a real parameter. We allow µ to vary3, since this will change the location of the fixed points
and their stability properties. The nullclines are obtained by setting{

1− (µ+ 1)x1 + x21x2 = 0

x1(µ− x1x2) = 0
⇒


x2 =

µ+ 1

x1
− 1

x21
(for x1 ̸= 0)

x1 = 0, or x2 =
µ

x1

The fixed points are at the intersections of the nullclines. By substituting x2 = µ/x1 into the equation
defining the nullcline ẋ1 = 0 we obtain

µ

x1
=

µ+ 1

x1
− 1

x21
⇒ x∗1(µ) = 1. (20)

Correspondingly,

x∗2(µ) =
µ+ 1

x∗1(µ)
− 1

x∗1(µ)
2

=µ+ 1− 1

=µ. (21)

Therefore, we obtain the unique fixed point

(x∗1(µ), x
∗
2(µ)) = (1, µ). (22)

The Jacobian of the system (19) is

Jf (x1, x2, µ) =

[
−(µ+ 1) + 2x1x2 x21

µ− 2x1x2 −x21

]
. (23)

3By allowing µ in (19) to vary, we are effectively studying potential bifurcations of the system, in particular bifurcations
of equilibria.
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Figure 6: Eigenvalues of the Jacobian matrix (24) as a function of µ.

The (linear) stability of the fixed point (22) is determined by the eigenvalues of

Jf (x
∗
1(µ), x

∗
2(µ), µ) =

[
µ− 1 1
−µ −1

]
(24)

The associated characteristic polynomial

p(λ) = λ2 − (µ− 2)λ+ 1 (25)

has roots

λ1,2(µ) =
(µ− 2)±

√
(µ− 2)2 − 4

2
. (26)

In Figure 6 we plot the eigenvalues (26) as a function of µ. Based on such eigenvalue analysis, it is seen
that the fixed point (22) is:

• a stable spiral for 0 < µ < 2;

• a non-hyperbolic fixed point for µ = 2. Center manifold analysis outlined later in this course note
allows us to conclude that the non-hyperbolic fixed point is a stable spiral;

• an unstable spiral for 2 < µ < 4;

• an unstable degenerate node for µ = 4;

• a repellor for µ > 4.

For µ = 2 linear stability analysis predicts a center (λ1,2 = ±i). However, such fixed point is not hyperbolic
and therefore such conclusion does not hold. Indeed the analysis of the center manifold outlined later in
this course note allows us to conclude that for µ = 2 we have a stable spiral. For µ = 4 we have λ1,2 = 1.
The geometric multiplicity of such eigenvalue is 1, and therefore at µ = 4 we have an unstable degenerate
node. The phase portrait of the system is shown in Figure 7 for different values of µ.

One-dimensional center manifolds in two-dimensional dynamical systems

We now examine the stability of non-hyperbolic fixed points in a two-dimensional dynamical system where
one eigenvalue is zero. The local behavior near such fixed points can be analyzed by studying the dynamics
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Figure 7: Phase portraits of (19) for different values of µ.

restricted to the center manifold W c in a neighborhood of the equilibrium point x∗ ∈ R2. To this end, we
represent such local center manifold W c as a graph of a smooth function h, i.e.,

W c = {(x1, x2) ∈ R2 such that x2 = h(x1) for all x1 in a neighborhood of x∗1}. (27)

According to the center manifold Theorem 2, there are three conditions that the function h(x1) needs to
satisfy in order to represent the center manifold in a neighborhood of the fixed point x∗:

1. (x1, h(x1)) needs to pass through the fixed point, i.e.,

x∗2 = h(x∗1) (28)

2. h(x1) needs to be tangent to V c at the fixed point x∗. This means that the slope h(x1) must be the
same as the slope4 of V c at x∗1. Such slope is identified by the “center” eigenvector of Jf (x

∗).

3. W c must be an invariant manifold. This means that any trajectory trajectory (x1(t), x2(t)) on W c

must satisfy

x2(t) = h(x1(t)) ⇒ dx2
dt

=
dh(x1)

dx1

dx1
dt

, (29)

i.e.,

f2(x1, h(x1)) =
dh(x1)

dx1
f1(x1, h(x1)). (30)

These three conditions allow us to determine a power series expansion of the (one-dimensional) center
manifold W c in a neighborhood of the fixed point x∗. Let’s see some examples.

Example: Consider the nonlinear system
dx1
dt

= x1x2

dx2
dt

= −x2 − x21

(31)

4If the center subspace V s is a vertical line then we need to compute a preliminary coordinate transformation, e.g., use the
so-called normal coordinates.
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The nullclines are

ẋ1 =0 ⇔ x1 = 0 or x2 = 0, (32)

ẋ2 =0 ⇔ x2 = −x21. (33)

Hence, there exists only one fixed point at the intersection of the nullclines which is

x∗ = (0, 0). (34)

The Jacobian of the system (31) is

Jf (x) =

[
x2 x1

−2x1 −1

]
. (35)

By evaluating Jf (x) at the fixed point x∗ = (0, 0) we obtain

Jf (0) =

[
0 0
0 −1

]
. (36)

The eigenvalues of Jf (0) are
λc = 0 and λs = −1. (37)

Correspondingly, we have a center eigenspace V c and a stable eigenspace V s, both of dimension one. Such
eigenspaces are spanned by the eigenvectors

vc =

[
1
0

]
, and vs =

[
0
1

]
. (38)

In Figure 8 we sketch the nullclines and the eigenspaces V c and V s. Next, we compute the local center

X2

y
4 =0

"
Figure 8: Nonlinear system (31). Stable (V s) and center (V c) eigenspaces associated with the fixed point
x∗ = (0, 0).

manifold W c in a neighborhood of the fixed point x∗ = (0, 0). To this end, we consider the following power
series expansion of the function h(x1) appearing in (27)

x2 = h(x1) = a+ bx1 + cx21 + dx31 + · · · , (39)
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where a, b, c, etc. are coefficients to be determined. By enforcing that W c passes through the fixed point
(0, 0) and is tangent to V c at (0, 0) we obtain0 = h(0) = a ⇔ a = 0

0 = h′(0) = b ⇔ b = 0
(40)

Therefore we are left with
h(x1) = cx21 + dx31 + ex41 + · · · (41)

At this point we impose that the dynamics on the local center manifold W c is invariant, which means that
any trajectory with initial condition on W c stays on W c. This condition is expressed mathematically by
equation (30), which can written the system (31) as

−h(x1)− x21 =
(
2cx1 + 3dx21 + · · ·

)︸ ︷︷ ︸
h′(x1)

x1h(x1). (42)

Substituting h(x1) yields

−
(
cx21 + dx31 + ex41 · · ·

)
− x21 =

(
2cx1 + 3dx21 + · · ·

)
x1

(
cx21 + dx31 + · · ·

)
, (43)

i.e.,
− (c+ 1)x21 − dx31 − ex41 + · · · = 2c2x41 + 5cdx51 + · · · . (44)

Since we are free to choose x1 as small as we like, the previous equation yields the following conditions
(match the coefficients multiplying the same power of x1 at the left and the right hand sides)

c+ 1 = 0, d = 0, −e = 2c2, (45)

i.e.,
c = −1, d = 0, e = −2. (46)

This yields the following power series expansion of the local center manifold W c

x2 = h(x1) = −x21 − 2x41 + · · · . (47)

The dynamics on this manifold can be obtained by substituting x2 = h(x1) into the first equation of the
system (31). This yields

dx1
dt

= −x31 − 2x51 + · · · (48)

Hence ẋ1 always points towards the origin when evaluated along the manifold W c, i.e., W c is stable (see
Figure 9). In Figure 10 we plot the phase portrait of (31) computed numerically.

Example: Let us provide another example of analysis of a two-dimensional non-hyperbolic fixed point.
To this end, consider the nonlinear system 

dx1
dt

= −x1x2

dx2
dt

= x1 − x2

(49)

The nullclines are

ẋ1 =0 ⇔ x1 = 0 or x2 = 0, (50)

ẋ2 =0 ⇔ x2 = x1. (51)
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Figure 9: Nonlinear system (31). Local center manifold W c at the non-hyperbolic fixed point (0, 0).

Hence, there exists only one fixed point at
x∗ = (0, 0). (52)

The Jacobian of the system (49) is

Jf (x) =

[
−x2 −x1
1 −1

]
(53)

By evaluating Jf (x) at the fixed point x∗ = (0, 0) we obtain

Jf (0) =

[
0 0
1 −1

]
. (54)

The eigenvalues of Jf (0) are
λc = 0 and λs = −1. (55)

Correspondingly we have a center eigenspace V c and a stable eigenspace V s, both of dimension one. Such
eigenspaces are spanned by the eigenvectors

vs =

[
0
1

]
, and vc =

[
1
1

]
. (56)

To study stability of the non-hyperbolic fixed point x∗ = (0, 0), we compute the local center manifold W c

at x∗. Based on Theorem 2, W c is a C∞ one-dimensional manifold and therefore it can be represented
locally as a graph of a C∞ one-dimensional function h as

x2 = h(x1). (57)

The function h must satisfies the conditionsh(0) = 0 W c passes through the fixed point x∗ = (0, 0),

h′(0) = 1 W c is tangent to V c at the fixed point x∗ = (0, 0).
(58)

Expanding h(x1) in a power series at x∗ = (0, 0) yields

h(x1) = a+ bx1 + cx21 + dx31 + · · · . (59)
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Figure 10: Phase portrait of the dynamical system (31). Note that the numerical results indicate that
there may be an infinite number of center manifolds at x∗ = (0, 0) (all curves passing through (0, 0) with
horizontal tangent at (0, 0)). However, the Taylor series expansions of any two center manifolds at (0, 0)
agree to all orders.

By enforcing conditions (58) we obtain
a = 0, b = 1. (60)

Hence,
h(x1) = x1 + cx21 + dx31 + · · · . (61)

As before, the other coefficients can be obtained by imposing that W c is an invariant manifold, i.e., that
trajectories starting in W c stay in W c. This is equivalent to imposing that the dynamical system (49) has
(57) as trajectory, i.e.,

x2(t) = h(x1(t)) for all t ≥ 0, (62)

where (x1(t), x2(t)) is a solution of (49). Differentiating (62) with respect to time yields and using (49)
yields

x1 − h(x1) = −dh(x1)

dx1
x1h(x1). (63)

Substituting the power series (61) into the previous equation we obtain

x1 − x1 − cx21 − dx31 − · · · = −x1
(
1 + 2cx1 + 3dx21 + · · · .

) (
x1 + cx21 + dx31 + · · ·

)
, (64)

i.e.,
−cx21 − dx31 − · · · = −x21 − 3cx31 + · · · ⇒ c = 1, d = 3. (65)

Hence, the power series expansion of the center manifold W c in a neighborhood of x∗ = (0, 0) is

x2 = h(x1) = x1 + x21 + 3x31 + · · · . (66)

The dynamics on the manifold W c is obtained by substituting (62) into (49). This yields

ẋ1 = −x1(x1 + x21 + 3x31 + · · · ) = −x21 − x31 − 3x41 + · · · . (67)
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Figure 11: Nonlinear system (49). Stable and center eigenspaces V s and V c, and local center manifold W c

at the non-hyperbolic fixed point (0, 0).

The right hand side suggests of this equation that the x1 component of the velocity on the center manifold
W c always points left (see Figure 11). Hence the fixed point (0, 0) is unstable. In Figure 12 we plot the
phase portrait of (31) computed numerically.

Non-uniqueness of center manifolds. We’ve mentioned in Theorem 2 that center manifolds need not
be unique. Specifically if f(x) is C∞ then it is possible to find a Cr center manifold for each r < ∞. This
can be seen from the following simple example. Consider the dynamical system

dx1
dt

= x21

dx2
dt

= −x2

(68)

clearly, (x1, x2) = (0, 0) is a fixed point. The stable manifold W s is the vertical axis x1 = 0. Moreover,
x2 = 0 is an invariant center manifold, but there are other center manifolds. In fact, eliminating t as the
independent variable in (68), we obtain (for x1 ̸= 0)

dx2
dx1

= −x2
x21

⇒ x2(x1) = βe1/x1 β ∈ R. (69)

Thus, the curves given by

h(x1) =

{
βe1/x1 x1 < 0

0 x1 ≥ 0
(70)

are a one-parameter (parametrized by β) family of center manifolds of (x1, x2) = (0, 0). These center
manifolds are shown in Figure 13. It is easy to verify indeed that x2(t) = βe1/x1(t) is an invariant manifold
for the system (68). Moreover it is tangent to V c (x1 axis), and it passes through (0, 0) (for x1 → 0−).
This example brings up the following question:

• In approximating the local center manifold via power series expansions, which center manifold is
actually being approximated?

It can be shown that any two center manifolds of a given fixed point differ by (at most) transcendentally
small terms. Thus, the Taylor series expansions of any two center manifolds at a given fixed point agree to
all orders. Moreover, it can be shown that for an analytical system, if the series expansion of h converges,
then there exists a unique analytical center manifold. The function (70) is of class C∞ but is not analytic
at 0 (not convergent power series expansion at x1 = 0).
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Figure 12: Phase portrait of the dynamical system (49).

Two-dimensional center manifolds for imaginary eigenvalues

Let us consider the case where the Jacobian matrix Jf (x
∗) in (8) has two imaginary (complex conjugate)

eigenvalues, i.e.,
λ1 = iω λ2 = −iω, (71)

where ω is a nonzero real number. In Appendix A we show that the real Jordan form of Jf (x
∗) is

A =

[
0 ω
−ω 0

]
. (72)

Such real Jordan form is obtained by a real similarity transformation P that has the real and the imaginary
part of one eigenvector as columns. By defining new variables

q = P−1η (73)

it is straightforward to transform the dynamical system (8) to
dq1
dt

= ωq2 +H1(q1, q2)

dq2
dt

= −ωq1 +H2(q1, q2)

(74)

It is important to emphasize that the coordinate system we use in (8) is centered at the fixed point x∗.
Correspondingly the transformation induced by the similarity transformation P that yields the real Jordan
form of Jf transforms the coordinate system η centered at x∗ to another coordinate system q still centered
at x∗.
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Figure 13: Non-uniqueness of center manifold for the fixed point x∗ = (0, 0) of the dynamical system (68).

Stability analysis. To study stability of the fixed point x∗, we need to study the orbits of the nonlinear
dynamical system (74) in a neighborhood of q = 0. To this end, we consider a perturbation of the system
(8) depending on one real parameter µ. Such perturbation modifies the eigenvalues of the Jacobian Jf (x

∗)
to

λ1,2 = α(µ)± iβ(µ). (75)

The real Jordan form of the system (8) after perturbation is[
q̇1
q̇2

]
=

[
α(µ) β(µ)
−β(µ) α(µ)

] [
q1
q2

]
+

[
H1(q1, q2;µ)
H2(q1, q2;µ)

]
, (76)

where α(0) = 0 and β(0) = ω.

Note that the perturbation generally changes the location of the fixed point and modifies the vector field
in its neighborhood. However, in the normal coordinates (q1, q2), the fixed point is always positioned at
the origin of the system. It is also worth noting that the flow depends continuously on the perturbation
parameter µ, provided the perturbation is sufficiently smooth. Furthermore, a one-parameter perturbation
describes the complete local dynamics near µ = 0 if the transversality condition α̇(0) ̸= 0 is satisfied. This
guarantees that varying the parameter causes the eigenvalues to cross the imaginary axis.

Let
z = q1 + iq2. (77)

Differentiating with respect to time and using (76) yields

ż = q̇1 + iq̇2 = (α+ iβ)z +H1(q1, q2;µ) + iH2(q1, q2;µ)

Thus, the system (76) reduces to the complex form:

ż = (α+ iβ)z +N(z, z̄;µ), (78)

where the nonlinear term is defined by

N(z, z̄;µ) = H1(q1, q2;µ) + iH2(q1, q2;µ),

i.e.,
Re(N(z, z̄;µ)) = H1(z, z̄;µ), Im(N(z, z̄;µ)) = H2(z, z̄;µ).
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Theorem 3. There exists an analytic (near identity) change of variables ξ = z+S(z, z̄;µ) with S = O(|z|2),
such that the system (78) takes the form

ξ̇ = (α+ iβ)ξ + (γ + iδ)|ξ|2ξ +O(|ξ|4).

The proof is given in Appendix B.

Letting ξ = Reiθ, we obtain
Ṙ+ iRθ̇ = (α+ iβ)R+ γR3 + iδR3,

i.e., {
Ṙ = α(µ)R+ γ(µ)R3

θ̇ = β(µ) + δ(µ)R2
(79)

This system is written in polar coorinates and it represents the dynamics on the two-dimensional center
manifold W c for small R and small µ.

The equilibria of the first equation in (79) are R = 0 and R2 = −α(µ)/γ(µ). Since α(0) = 0, the sign of
α′(0) determines local stability for small µ. If α′(0) > 0, then R = 0 is unstable for µ > 0 and stable for
µ < 0. Conversely, if α′(0) < 0, then R = 0 is stable for µ > 0 and unstable for µ < 0. Evaluating the
system (79) at µ = 0 yields 

dR

dt
= γ(0)R3

dθ

dt
= ω + δ(0)R2

(80)

Therefore the trajectories nearby the fixed point x∗ are either spirals or centers, depending on the parameter
γ(0). It can be shown (see the proof in Appendix B or the book by Guckenheimer and Holmes, “Nonlinear
oscillations, dynamical systems and bifurcations of vector fields”, p. 154) that

γ(0) =
1

16

[
∂3H1

∂q31
+

∂3H1

∂q1∂q22
+

∂3H2

∂q21∂q2
+

∂3H2

∂q32

]
+

1

16ω

[
∂2H1

∂q1∂q2

(
∂2H1

∂q21
+

∂2H1

∂q22

)
− ∂2H2

∂q1∂q2

(
∂2H2

∂q21
+

∂2H2

∂q22

)
−

∂2H1

∂q21

∂2H2

∂q21
+

∂2H1

∂q22

∂2H2

∂q22

]
, (81)

where all derivatives of H1(q1, q2) and H2(q1, q2) are evaluated at (0, 0). Hence, if γ(0) < 0 we get a stable
spiral and if γ(0) > 0 we get an unstable spiral. The case γ(0) = 0 requires higher order Taylor expansions
in Theorem 3.

Remark: It is not strictly necessary the take a perturbation of the vector field Hi(q1, q2) in (74) to derive
the stability condition on the 2D center manifold corresponding to complex conjugate eigenvalues. Indeed,
the sequence of steps listed in Appendix B to prove Theorem 3 holds in particular for µ = 0. Adding a
parameter helps us understand structural changes in orbits as the parameter is varied.

Example: Consider the dynamical system
dx1
dt

= −x2 − (x21 + x22) + x1x2

dx2
dt

= x1 − (x21 + x22)− x1x2

(82)
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X2

HOMOCLINIC
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N Xsose
Figure 14: Phase portraint of the system (82). The system has a non-hyperbolic fixed point at x∗ = (0, 0),
which turns out to be a stable spiral. The stable spiral is enclosed by a homoclinic trajectory, i.e., an
trajectory that connect the unstable manifold and the stable manifold of the saddle node that is located
nearby.

The system has a fixed point at x∗ = (0, 0). The Jacobian of (82) at (0, 0) is

Jf (x) =

[
−2x1 + x2 −1− 2x2 + x1
1− 2x1 − x2 −2x2 − x1

]
⇒ Jf (0, 0) =

[
0 −1
1 0

]
(83)

The eigenvalues of Jf (0, 0) are
λ1,2 = ±i. (84)

Hence, x∗ = (0, 0) is a non-hyperbolic fixed point with an associated two-dimensional center manifold.
To study the dynamics nearby x∗ = (0, 0) we use the normal form (80) and calculate the coefficient (81)
for

H1(x1, x2) = −(x21 + x22) + x1x2 H2(x1, x2) = −(x21 + x22)− x1x2 (85)

Note that in this case ω is equal to one (compare (82) and (74)) and the third derivatives of (H1, H2) are
both equal to zero. Moreover,

∂2H1

∂x1x2
= 1,

∂2H2

∂x1x2
= −1,

∂2Hi

∂x2j
= −2, (i, j = 1, 2). (86)

Substituting these derivatives in (81) we yields

γ(0) =
1

16
[1× (−2− 2)− (−1)× (−2− 2)− (−2)× (−2) + (−2)× (−2)]

=
1

16
[−4− 4− 4 + 4]

=− 1

2
(87)

Hence, we conclude that the non-hyperbolic fixed point (0, 0) is a stable spiral. The phase portrait is for
this system is shown in Figure 14. Note that the stable spiral is enclosed by a homoclinic orbit, i.e., a
trajectory that connects the unstable and unstable manifolds of a nearby saddle point.
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Normal form of n-dimensional nonlinear dynamical systems at fixed points

The center manifold Theorem 2 allows us to write any dynamical system in a neighborhood of an equilibrium
point in a “normal form”. Such normal form differs from a standard linearization in that the dynamics
on the subspace V c is nonlinear. To obtain such normal form let us start from the nonlinear system (8),
which represents (1) at the fixed point x∗. We group the eigenvalues of the Jacobian matrix Jf (x

∗) as in
Figure 2, and denote by

K =

C S
U

 (88)

the real Jordan form of the Jacobian matrix Jf (x
∗). Here C denotes the real Jordan block corresponding

to the center subspace, S the real Jordan block corresponding the stable subspace, and U the real Jordan
block corresponding to the unstable subspace. The (real) projection matrix P is

P =
[
Pc Ps Pu

]
(89)

where Pc, Ps and Pu are projection matrices onto the subspaces V c, V s and V u. Such projection matrices
are made of generalized eigenvectors (columnwise) spanning each of the subspaces V c, V s and V u. The
Jordan factorization of Jf (x

∗) takes the form

Jf (x
∗) = PKP−1. (90)

Next, define a new set of variables
q = P−1η. (91)

A substitution of (90) and (91) into (8) yields

dq

dt
= Kq + P−1g(Pq). (92)

Upon definition of

q =

c
s
u

 (93)

this system can be split as

dc

dt
= Cc+ fc(c, s,u) dynamics in V c (C has eigenvalues with zero real part)

ds

dt
= Ss+ fs(c, s,u) dynamics in V s (S has eigenvalues with negative real part)

du

dt
= Uu+ fu(c, s,u) dynamics in V u (U has eigenvalues with positive real part)

(94)

If ∥q∥ is very small then the nonlinear terms fs and fu are negligible with respect to Bs and Cu,
respectively. This leaves us with the system

dc

dt
= Cc+ fc(c, s,u)

ds

dt
= Ss

du

dt
= Uu

(95)

By using the center manifold theorem we can express the dynamics on W c as a vector map

W c = {(c, s,u) ∈ Rn : s = hs(c) and u = hu(c)} (96)
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subject to the conditions

hs(0) = 0, hu(0) = 0, (W c passes through η = 0),

∇hs(0) = 0, ∇hu(0) = 0, (W c is tangent to V s at η = 0).

(97)

With the center manifold (96) available, we can decouple the system (95) as

dc

dt
= Cc+ fc(c,hs(c),hu(c))

ds

dt
= Ss

du

dt
= Uu

(98)

This system of equations represents the generalization of the Hartman-Grobman theorem for non-hyperbolic
fixed points. From (98) we see that the dynamics on the stable and unstable subspaces of are trivial in
normal coordinates, while the dynamics on the center manifold is essentially nonlinear.

Example: Consider a 3D system in a normal form with a 2D center manifold corresponding to a eigenvalue
λc = 0 equal to zero with algebraic multiplicity two. Let the other eigenvalue λs be negative. The system
has the form5 

dc1
dt

= c2 + fc1(c1, c2, s)

dc2
dt

= fc2(c1, c2, s)

ds

dt
= λss

(99)

To identify the center manifold that is tangent to the 2D center subspace we let

s = hs(c1, c2). (100)

In normal coordinates we have

0 = hs(0, 0) and
∂hs(0, 0)

∂c1
=

∂hs(0, 0)

∂c2
= 0. (101)

Differentiating (100) with respect to time yields

ṡ =
∂hs
∂c1

ċ1 +
∂hs
∂c2

ċ2. (102)

At this point let the center manifold be represented as a power series

hs(c1, c2) = a0 + a1c1 + a2c2 + a3c1c2 + a4c
2
1 + a4c

2
2 + · · · (103)

The coefficients aj can be determined by enforcing (101) nd (102) with all time derivatives represented
using the right hand side of (99), i.e.,

λ3hs(c1, c2) =
∂hs
∂c1

fc1(c1, c2, hs(c1, c2)) +
∂hs
∂c2

fc2(c1, c2, hs(c1, c2)). (104)

5In this case the matrix C is the zero matrix
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Once the center manifold hs(c1, c2) is identified, we substitute it into (99) to obtain
dc

dt
= fc(c, hs(c))

ds

dt
= λss

(105)

To study stability of the nonlinear equation for c(t) describing the flow on the center manifold we could
take perturbations as we did before for the case of complex conjugate eigenvalues, or proceed numerically.
Specifically, if the geometric multiplicity of the λ = 0 is one (i.e., degenerate eigenvalue), it can be shown
that after a suitable near-identity change of coordinates, the system can transformed into the formu̇1 = u2,

u̇2 = au21 + bu1u2 + · · · ,
(106)

where a, b are determined by the system’s nonlinearities. To fully explore the local behavior of the system in
a neighborhood of the degenerate eigenvalue we need two parameters (in the complex conjugate eigenvalue
case the second eigenvalue is fully determined by the first). To fully explore all possible local dynamics we
need two parametersµ1 and µ2. The system can be written in the Takens–Bogdanov canonical formu̇1 = u2,

u̇2 = µ1 + µ2u1 + au21 + bu1u2 + · · · ,
(107)
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Lyapunov stability theory

Stability of hyperbolic and non-hyperbolic fixed points can be also studied using Lyapunov functions,
without finding the trajectories of (8). A typical Lyapunov Theorem has the form: “if there exists a
function V (x) that satisfies some conditions on V (X(t,x0)) and dV (X(t,x0))/dt, then the trajectories of
the system satisfy some property”.

Theorem 4. Let f(x) be a Lipschitz function defined over a domain D ⊂ Rn which contains a fixed point
x∗, i.e., f(x∗) = 0. Let V (x) be a continuously differentiable function defined over D such that

V (x∗) = 0 and V (x) > 0 for all x ∈ D \ {x∗}, (108)

and
dV (X(t,x0))

dt
≤ 0 ∀x0 ∈ D. (109)

Then, x∗ is a stable equilibrium point of ẋ = f(x). If

dV (X(t,x0)))

dx
< 0 ∀x0 ∈ D \ {x∗}. (110)

then x∗ is asymptotically stable6. Finally if D = Rn and (110) holds then x∗ is globally asymptotically
stable.

The Lyapunov function V (x) depends on the vector field (and the flow) generated by a dynamical system.
In fact,

dV (X(t,x0))

dt
= ∇V (X(t, x0)) · f(X(t,x0)). (112)

Remark: The conditions in Theorem 4 are only sufficient. Failure of a particular Lyapunov function
candidate to satisfy the conditions for stability or asymptotic stability does not mean that the equilib-
rium point is not stable or asymptotically stable. It only means that such stability property cannot be
established by using that particular Lyapunov function candidate. Whether the equilibrium point is stable
(asymptotically stable) or not can be determined only by further investigation.

The following theorem shows that if we can find a Lyapunov function in a domain D about the fixed point
x∗ whose derivative along the trajectories satisfies (109), and if we can establish that no trajectory can
stay identically at points where dV (X(t,x))/dt = 0, except at x∗, then x∗ is asymptotically stable. This
idea follows from La Salle’s invariance principle, which we discuss below.

Theorem 5 (La Salle). Let f(x) be a Lipschitz function defined over a domain D ⊂ Rn and Ω ⊂ D be
a compact set that is positively invariant with respect to the flow generated by ẋ = f(x). Let V (x) be
a continuously differentiable function defined over D such that dV (X(t,x0))/dt ≤ 0 for all x0 ∈ Ω. Let
x0 ∈ E be the set of all points in Ω where dV (X(t,x0))/dt = 0, and M be the largest invariant set in E.
Then every trajectory X(t,x0) starting x0 ∈ Ω approaches M as t → ∞.

Unlike Lyapunov’s theorem 4, Theorem 5 does not require the function V (x) to be positive definite. Note
also that the construction of the set Ω does not have to be tied in with the construction of the function
V (x).

Converse Lyapunov Theorems. Theorem 4 guarantees the asymptotic stability of the fixed point x∗

under the existence of a Lyapunov function V (x) satisfying certain conditions. However, such a function

6Note that the conditions (109) and (110) can be equivalently formulated in an integral form as

V (X(t,x0)) ≤ V (X(s,x0)) and V (X(t,x0)) < V (X(s,x0)) for all t > s, (111)

respectively. In other words, the Lyapunov function is non-increasing (or monotonically decreasing) along trajectories of the
system
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is typically not known in advance, and no general method exists for systematically constructing it. This
naturally raises the question: does such a function at least exist? The answer is provided by converse
Lyapunov theorems.

For instance, a converse theorem for asymptotic stability asserts that if x∗ is asymptotically stable, then
there exists a Lyapunov function satisfying the conditions of Theorem 4. Most converse theorems are
proved by explicitly constructing auxiliary functions that meet the required conditions. Unfortunately,
these constructions almost always rely on prior knowledge of the solution to the differential equation,
limiting their practical use in finding such functions. Nevertheless, converse Lyapunov theorems remain
valuable for drawing conceptual insights into the behavior of dynamical systems. One example is presented
below.

Theorem 6. Let x∗ be an asymptotically stable equilibrium point for the n-dimensional system˙ x = f(x),
where f is Lipschitz on D ⊂ Rn and x∗ ∈ D. Let Ω ⊂ D be the basin of attraction of x∗. Then, there is a
smooth, positive function V (x) such that V (x∗) = 0 and a continuous, positive function W (x) such that
W (x∗) = 0, both defined for all x ∈ Ω, that satisfy

V (x) → ∞ as x → ∂Ω (113)

and
∇V (X(t,x0)) · f(X(t,x0)) ≤ −W (X(t,x0)) ∀x0 ∈ Ω (114)

Moreover for each V (x) ≤ c defines a compact subset of Ω for each c > 0.

Basin of attraction of fixed points. Quite often, it is not sufficient to determine that a given system
has an asymptotically stable equilibrium point. Rather, it is important to find the region of attraction of
that point (see, e.g., Figure 5), or at least an estimate of it.

Theorem 7. The region of attraction of an asymptotically stable equilibrium point is an open, connected,
invariant set, and its boundary is formed by trajectories.

This suggests that one way to determine the region of attraction is to characterize the trajectories that
lie on its boundary. This process can be quite difficult for high-dimensional systems, but can be easily
done for two-dimensional systems by examining phase portraits in the phase plane (see the shaded area in
Figure 5).

Page 22



AM 224 Prof. Daniele Venturi

Appendix A: Real Jordan form of a 2D matrix with imaginary eigenvalues

In this Appendix we briefly describe the procedure to compute the real Jordan form of a 2 × 2 matrix
with complex conjugate eigenvalues. The generalization to n×n matrices with real and complex conjugate
eigenvalues is straightforward and can be built based the technique discussed hereafter and in the Appendix
A of the course note 4. Let us illustrate how to compute the real Jordan form of a 2 × 2 matrix using a
simple example. To this end, consider the matrix

A =

[
1 2
−2 −1

]
. (115)

The eigenvalues of A are
λ1,2 = ±

√
3i, (116)

while the eigenvectors are

v1 =

[
2

−1 +
√
3i

]
, v2 =

[
2

−1−
√
3i

]
. (117)

Denote by λi,vi the complex conjugates of the eigenvalues and eigenvectors. Clearly, for i = 1, 2

Avi = λivi ⇒ Avi = λivi ⇒ Avi = λivi, (118)

i.e., if vi is an eigenvector corresponding to λi then vi is an eigenvector corresponding to λi. So, in practice,
we just need to compute one eigenvector of A, since the other one is going to be the complex conjugate of
such vector. To compute the real Jordan form, we simply replace the complex eigenvectors (117) with the
real and imaginary component of one vector7, i.e., we consider the real basis

P =

[
2 0

−1
√
3

]
(120)

We have

AP =

[
1 2
−2 −1

]
︸ ︷︷ ︸

A

[
2 0

−1
√
3

]
︸ ︷︷ ︸

P

=

[
0 2

√
3

−3 −
√
3

]
=

[
2 0

−1
√
3

]
︸ ︷︷ ︸

P

[
0

√
3

−
√
3 0

]
︸ ︷︷ ︸

J

(121)

Hence the real Jordan form8 is the skew-symmetric matrix

J =

[
0

√
3

−
√
3 0

]
(124)

and the similarity transformation (120) has real entries. Of course, we are also allowed to consider the
transformation

P =

[
−2 0

1 −
√
3

]
, (125)

7Note that the real component of both vectors v1 and v2 in (117) is[
2
−1

]
, while the imaginary component is

[
0√
3

]
. (119)

8On the other hand, the complex Jordan form is obtained by the methods we studies in the course note 4. In fact the
matrix A is diagonalizable Hence, we have

J =

[√
3i 0

0 −
√
3i

]
(122)

and the (complex) similarity transformation

P =

[
−2 −2

1−
√
3i 1 +

√
3i

]
. (123)
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which yields the real Jordan form

J =

[
0 −

√
3√

3 0

]
. (126)

If a 2× 2 matrix A has complex conjugate eigenvalues of the form

λ1,2 = µ± iω (127)

then the real Jordan form of A is

J =

[
µ ±ω
∓ω µ

]
. (128)

Appendix B: Proof of Theorem 3

We consider the complex differential equation (78), hereafter rewritten for convenience

ż = (α+ iβ)z +N(z, z̄;µ),

where z ∈ C, and the nonlinear term N is analytic and satisfies N(z, z̄;µ) = O(|z|2). We expand N up to
cubic order

N(z, z̄;µ) =
1

2
n1z

2 + n2zz̄ +
1

2
n3z̄

2 +
1

6
n4z

3 +
1

2
n5z

2z̄ +
1

2
n6zz̄

2 +
1

6
n7z̄

3 +O(|z|4),

where all coefficients nj = nj(µ) ∈ C depend smoothly on the parameter µ. We now apply a quadratic
near-identity transformation

η = z + S(z, z̄;µ), S(z, z̄;µ) =
1

2
a1z

2 + a2zz̄ +
1

2
a3z̄

2,

with unknown coefficients a1, a2, a3 ∈ C. Differentiating and substituting for ż, we have:

η̇ = ż +DzS(z, z̄) · ż +Dz̄S(z, z̄) · ˙̄z +O(|z|3)
= (α+ iβ)z +N(z, z̄;µ) + (a1z + a2z̄)ż + (a2z + a3z̄) ˙̄z +O(|z|3)

Now substitute the inverse transformation

z = η − 1

2
a1η

2 − a2ηη̄ − 1

2
a3η̄

2 +O(|η|3)

and use it to rewrite η̇ in terms of η, η̄. The result is

η̇ = (α+ iβ)η

+
1

2

(
n1 + (α+ iβ)a1

)
η2 +

(
n2 + (α+ iβ)a2

)
ηη̄ +

1

2

(
n3 + (α+ 3iβ)a3

)
η̄2

+
1

6
n4η

3 +
1

2
n5η

2η̄ +
1

2
n6ηη̄

2 +
1

6
n7η̄

3 +O(|η|4)

To eliminate the terms η2 and η̄2 we set

a1 = − n1

α+ iβ
, a3 = − n3

α+ 3iβ
.

This gives the “intermediate” normal form

η̇ = (α+ iβ)η + n̂2ηη̄ +
1

6
n4η

3 +
1

2
n5η

2η̄ +
1

2
n6ηη̄

2 +
1

6
n7η̄

3 +O(|η|4),
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where n̂2 = n2 + (α+ iβ)a2. We now apply a second near-identity transformation

ξ = η +R(η, η̄;µ), R =
1

3
r1η

3 + r2η
2η̄ + r3ηη̄

2 +
1

3
r4η̄

3.

Differentiating again and substituting as before yields

ξ̇ = (α+ iβ)ξ

+
1

3
(n4 + 2r1(α+ iβ))ξ3 + (n̂2 + 2r2α)ξ

2ξ̄

+ (n6 + 2r3(α+ iβ))ξξ̄2 +
1

3
(n7 + 2r4(α+ 4iβ))ξ̄3 +O(|ξ|4)

Now choose

r1 = − 1

2(α+ iβ)
n4, r3 = − 1

2(α+ iβ)
n6, r4 = − 1

2(α+ 4iβ)
n7, (129)

and leave r2 = 0. This yields

ξ̇ = (α+ iβ)ξ + (γ + iδ)|ξ|2ξ +O(|ξ|4),

where γ + iδ = n̂2 = n2 + (α+ iβ)a2. This completes the proof.
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