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Liouville theorem

In this course note, we study how the volume of a compact region D0 ⊂ Rn evolves over time as its points
x0 ∈ D0 are advected by the flow generated by the n-dimensional nonlinear dynamical system

dx

dt
= f(x),

x(0) = x0.

(1)

where f(x) is at least continuously differentiable in x. To this end, recall that the volume of a region D(t)
advected by the flow generated by (1) can be expressed as (see Figure 1)

V (t) =

∫
D(t)

1dx (2)

where dx = dx1 · · · dxn. Since the flow X(t,x0) is invertible, we can transform the coordinates back to x0

and write the integral (2) as

V (t) =

∫
D0

|J(t,x0)| dx0, (3)

where

J(t,x0) = det

(
∂X(t,x0)

∂x0

)
= det



∂X1(t,x0)

∂x01
· · · ∂X1(t,x0)

∂x0n
...

. . .
...

∂Xn(t,x0)

∂x01
· · · ∂Xn(t,x0)

∂x0n


 (4)

is the Jacobian determinant of the coordinate change1 X(t,x0) ↔ x0 at each time t.
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Figure 1: Illustration of how a domain D0 ⊂ R2 is transported over time to a region D(t) ⊂ R2 by the
flow X(t,x0) generated by the dynamical system (1). The rate of change of the area (or volume) of D(t),

denoted dV (t)
dt , is governed by Liouville’s Theorem 2.

1We know that the flow map X(t,x0) generated by a smooth dynamical system is invertible at each point where the
solution to (1) exists and is unique.
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Theorem 1. Let X(t,x0) be the flow generated by (1). The Jacobian determinant of X(t,x0) satisfies
the linear differential equation

∂J(t,x0)

∂t
= ∇ · f(X(t,x0))J(t,x0) (5)

Proof. Let us first prove the theorem for two-dimensional dynamical systems. In this case, the determinant
(4) can be written explicitly as

J(t,x0) = det

(
∂X(t,x0)

∂x0

)
=

∂X1

∂x01

∂X2

∂x02
− ∂X2

∂x01

∂X1

∂x02
. (6)

Differentiate (6) with respect to time to t to obtain

∂J(t,x0)

∂t
=

∂

∂x10

(
dX1(t,x0)

dt

)
∂X2(t,x0)

∂x20
+

∂X1(t,x0)

∂x10

∂

∂x20

(
dX2(t,x0)

dt

)
−

∂

∂x20

(
dX1(t,x0)

dt

)
∂X2(t,x0)

∂x10
− ∂X1(t,x0)

∂x20

∂

∂x10

(
dX2(t,x0)

dt

)
. (7)

At this point we recall that

dXi(t,x0)

dt
= fi (X1(t,x0), X2(t,x0)) , i = 1, 2, (8)

which implies that

∂

∂x10

(
dX1(t,x0)

dt

)
=

∂f1 (X1(t,x0), X2(t,x0))

∂x10
=
∂f1
∂x1

∂X1

∂x10
+

∂f1
∂x2

∂X2

∂x10
,

∂

∂x20

(
dX1(t,x0)

dt

)
=

∂f1 (X1(t,x0), X2(t,x0))

∂x20
=
∂f1
∂x1

∂X1

∂x20
+

∂f1
∂x2

∂X2

∂x20
,

∂

∂x10

(
dX2(t,x0)

dt

)
=

∂f2 (X1(t,x0), X2(t,x0))

∂x10
=
∂f2
∂x1

∂X1

∂x10
+

∂f2
∂x2

∂X2

∂x10
,

∂

∂x20

(
dX2(t,x0)

dt

)
=

∂f2 (X1(t,x0), X2(t,x0))

∂x20
=
∂f2
∂x1

∂X1

∂x20
+

∂f2
∂x2

∂X2

∂x20
.

A substitution of these expressions back into (7) yields

∂J(t,x0)

∂t
=
∂f1
∂x1

∂X1

∂x10

∂X2

∂x20
+

∂f1
∂x2

∂X2

∂x10

∂X2

∂x20
+

∂f2
∂x1

∂X1

∂x20

∂X1

∂x10
+

∂f2
∂x2

∂X2

∂x20

∂X1

∂x10
−

∂f1
∂x1

∂X1

∂x20

∂X2

∂x10
− ∂f1

∂x2

∂X2

∂x20

∂X2

∂x10
− ∂f2

∂x1

∂X1

∂x10

∂X1

∂x20
− ∂f2

∂x2

∂X2

∂x10

∂X1

∂x20
,

=

(
∂f1
∂x1

+
∂f2
∂x2

)
︸ ︷︷ ︸

∇·f

J(t,x0),

which proves the theorem in two dimensions. To prove the theorem in n dimensions, let

F (t,x0) =
∂X(t,x0)

∂x0
,

so that J(t,x0) = det(F (t,x0)). The matrix F satisfies the equation

dF (t,x0)

dt
= Jf (X(t,x0))F (t,x0),

Page 2



AM 224 Prof. Daniele Venturi

where Jf (X(t,x0)) is the Jacobian matrix of f evaluated along the flow X(t,x0). Using Jacobi’s formula
for the derivative of a determinant:

d

dt
J(t,x0) =J(t,x0) trace

(
F (t,x0)

−1dF (t,x0)

dt

)
=J(t,x0) trace

(
F (t,x0)

−1Jf (X(t,x0))F (t,x0)
)
. (9)

Since similarity transformations do not change the matrix trace2 we have

trace
(
F (t,x0)

−1Jf (X(t,x0))F (t,x0)
)
= trace (Jf (X(t,x0))) = ∇ · f(X(t,x0)).

Therefore,
dJ(t,x0)

dt
= J(t,x0)∇ · f(X(t,x0)),

which completes the proof.

Note that at t = 0 we have X(0,x0) = x0 and therefore

det

(
∂X(0,x0)

∂x0

)
= det(I) = 1. (11)

With this initial condition we integrate the (separable) ODE (5) to obtain

J(t,x0) = exp

[∫ t

0
∇ · f(X(τ,x0))dτ

]
(12)

We now have all element to prove the following theorem.

Theorem 2 (Liouville’s theorem). The volume V (t) of a compact region D(t) ⊂ Rn advected by the flow
X(t,x0) generated by the smooth dynamical system (1) satisfies

dV (t)

dt
=

∫
D(t)

∇ · f(x)dx (13)

Proof. The volume of D(t) can be expressed as (see equation (3))

V (t) =

∫
D0

|J(t,x0)| dx0. (14)

Thanks to (12), we have that J ≥ 0. Therefore we can disregard the absolute value in |J(t,x0)|. Differen-
tiating with respect to time and using (5) yields

dV (t)

dt
=

d

dt

∫
D0

J(t,x0)dx0

=

∫
D0

∂J(t,x0)

∂t
dx0

=

∫
D0

∇ · f (X(t,x0)) J(t,x0)dx0

=

∫
D(t)

∇ · f (x) dx. (15)

2Recall that for any two square matrices A and B of the same size we have

trace(AB) = trace(BA) (10)
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Figure 2: Phase portrait of the system (17) together with two temporal snapshots howD0 = [−1, 1]×[−1, 1]
looks like at t = 1 and t = 3 under the flow generated by the nonlinear system.

Hence, if the divergence of the vector field f(x) is negative for all x ∈ Rn then the volume of any phase
space domain D0 shrinks to zero (volume contracting) as time evolves. Similarity, if the divergence is zero,
i.e., ∇ · f (x) = 0 then the system is volume-preserving3.

A substitution of (12) into (14) yields

V (t) =

∫
D0

exp

[∫ t

0
∇ · f(X(τ,x0))dτ

]
dx0. (16)

This formula allows us to calculate the time evolution of the volume of any domain D0 in the phase
space.

Example: Consider the nonlinear dynamical system{
ẋ1 = 2− x22 − x21 cos(x2)

ẋ2 = x1x2 − cos(x1x2)
(17)

3As we will see, Hamiltonian dynamical systems are volume-preserving.
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The phase portrait is shown in Figure 2 together with two temporal snapshots representing the position
of D0 = [2, 3]× [−11] at two different times. The divergence of the vector field is

∇ · f = x1 (1− 2 cos(x2) + sin(x1x2)) (18)

and it can be positive or negative, suggesting that there are regions of the phase plane that are contracting
and some other that are expanding.

Lemma 1. The divergence ofthe vector field f(x) = Ax equals the trace of the matrix A. Hence, for
linear dynamical system equation (16) reduces to

V (t) = V0e
trace(A)t. (19)

Proof. We only need to show that ∇ · f(x) = trace(A). To this end,

∇ · f(x) =
n∑

j=1

∂fj(x)

∂xj
=

n∑
j=1

n∑
k=1

∂(Ajkxk)

∂xj
=

n∑
j=1

n∑
k=1

Ajk
∂xk
∂xj

=
n∑

j=1

Ajj = trace(A). (20)

Example: Consider the linear dynamical system{
ẋ1 = −x1 + x2
ẋ2 = −3x1 − 2x2

(21)

The eigenvalues of matrix A associated with the system are

λ1,2 =
−3

2
± i

√
11

2
.

Therefore the origin is a stable spiral. We aim to determine the time it takes for the unit squareD0 = [0, 1]2,
which initially has area V0 = 1, to contract to an area of 1/3 under the flow generated by (21). Using
formula (19), and noting that trace(A) = −3, we obtain

V (t∗) =
V0

3
=

1

3
= e−3t∗ ⇒ t∗ =

log(3)

3
. (22)
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t = 0 t = 0.1 t = log(3)/3
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Figure 3: Dynamics of the unit square D0 = [0, 1]2 under the flow generated by (21). At time t = log(3)/3
the area of D(t) is exacly 1/3.

Liouville equation

Let the initial condition of the system (1) be random with probability density function (PDF) p(0,x0).
Our goal is to derive an equation that describes the evolution of the PDF associated with X(t,x0), the
flow generated by the system (1). This flow transforms the random vector x0, distributed according to
the initial PDF, into a new random vector X(t,x0). The regularity of this transformation depends on the
smoothness of the vector field f(x).

Theorem 3. Let p(0,x0) = p0(x0) be the PDF of the initial condition in (1). The PDF of X(t,x0), where
X(t,x0) is the flow generated by the ODE (1), satisfies the linear first-order transport PDE

∂p(x, t)

∂t
+∇ · (f(x)p(x, t)) = 0 x ∈ Rd t ≥ 0

p(x, 0) = p0(x)

(23)

Proof. We provide a proof based on the principle of mass conservation. To this end, let D(t) ⊆ Rn be a
domain large enough to contain the support of the probability density function p(x, t). Then,∫

D(t)
p(x, t) dx = 1 for all t ≥ 0. (24)

Let

J(t,x0) = det

(
∂X(t,x0)

∂x0

)
(25)

be the Jacobian determinant of the flow map. Differentiating both sides of (24) with respect to time gives

d

dt

∫
D(t)

p(x, t)dx =

∫
D0

∂

∂t
(p(X(t,x0), t)J(t,x0)) dx0

=

∫
D0

(
∂p(X(t,x0), t)

∂t
+ f(X(t,x0)) · ∇p(X(t,x0), t)+

p(X(t,x0))∇f(X(t,x0))

)
J(t,x0)dx0

=

∫
D(t)

[
∂p(x, t)

∂t
+∇ (f(x)p(x, t))

]
dx

=0. (26)
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t = 0 t = 0.5 t = 1

Figure 4: Temporal evolution of a uniform PDF on D0 = [−1, 1]× [−1, 1] under the flow generated by the
system (17) (see Figure 2 for the phase portrait).

Since D(t) is arbitrary, the integrand must vanish pointwise. Therefore,

∂p(x, t)

∂t
+∇ · (f(x) p(x, t)) = 0, (27)

which completes the proof.

By integrating (23) with the method of characteristics we obtain the following formal solution

p(x, t) = p0(X0(t,x)) exp

[
−
∫ t

0
∇ · f(X(s,x0))ds

]
x0=X0(t,x)

(28)

where X(t,x0) and X0(t,x) denote the forward and inverse flow, respectively. Clearly, if the flow is
generated by a divergence-free vector field, i.e. the flow is volume-preserving, then

p(x, t) = p0(X0(t,x)). (29)

Example: In Figure 4 we plot the time evolution of a uniform PDF on D0 = [−1, 1] × [−1, 1] under the
flow generated by the system (17)

Appendix A: Solving the Liouville equation with the method of characteristics

The Liouville equation (23) can be written as
∂p(x, t)

∂t
+ f(x) · ∇p(x, t) = −p(x, t)∇ · f(x) x ∈ Rd t ≥ 0

p(x, 0) = p0(x)

(30)

As is well-known, this equation can be transformed into an ODE along the flow generated by the nonlinear
dynamical system

dX(t,x0)

dt
= f(X(t,x0)), X(0,x0) = x0. (31)

To this end, define
p(t) = p(X(t,x0), t), (32)
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Figure 5: Sketch of the method of characteristics applied to the Liouville equation (30).

that is, the probability density function (PDF) evaluated along the flow generated by (31). Differentiating
p(t) with respect to time yields

dp(t)

dt
=

∂p(X(t,x0), t)

∂t
+ f(X(t,x0)) · ∇p(X(t,x0), t) = −p(t)∇ · f(X(t,x0)), (33)

which gives
dp

dt
= −p(t)∇ · f(X(t,x0)), p(0) = p0(x0). (34)

For each fixed x0 and initial density p0(x0), the system

dX(t,x0)

dt
= f(X(t,x0)),

dp(t)

dt
= −p(t)∇ · f(X(t,x0)),

X(0,x0) = x0,

p(0) = p0(x0),

(35)

allows us to compute the probability density function p(x, t) along a trajectory of the dynamical system (1)
(see Figure 5). If we are interested in the solution of (30) at a particular point in space, say x∗ (e.g., a
point on a spatial grid), and at a specific time t∗, we can proceed as follows:

1. Integrate the characteristic equation (31) backward in time from t = t∗ to t = 0 with initial condition
x∗. This yields the point x∗

0, as illustrated in Figure 6.

2. With x∗
0 known, integrate equation (34) forward in time from t = 0 to t = t∗.

This procedure allows us to compute the solution of (30) at time t = t∗ for all points on a given spatial
grid. To do so, we simply apply the above method at each grid point: solve (31) backward in time, followed
by solving (34) forward in time.
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Figure 6: Sketch of the process used to compute the solution of the Liouville equation (30) at a particular
point x∗ and particular time t∗. Essentially, we can just integrate the characteristic system (31) backward
in time from t = t∗ and position x∗ to t = 0. This gives us the point x∗

0. Then we integrate (34) forward
in time with initial condition p(0) = p(x∗

0) along the same characteristic curve.
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