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Polynomial chaos

The theory of polynomial chaos dates back to Wiener [18, 1]. It was originally developed in a rather gen-
eral/abstract setting, i.e., to represent L2 functionals of the Browninan motion (Wiener) process W (t;ω).
What is a functional of the Brownian motion process? Think about the solution to the following SDE
driven by W (t;ω).

dX(t;ω) = m(X(t;ω))dt+ dW (t;ω). (1)

The solution of the ODE at final time t = T , X(T ;ω) is a functional of the Brownian motion W (t;ω), i.e.,
it depends on the whole path of W (t;ω) from t = 0 to t = T . The main result of Wiener’s theory is that
any functional of the Brownian motion can be expanded in the so-called Wiener-Hermite series involving
orthogonal1 polynomial functionals of the Brownian motion, and the expansion converges in the mean
square sense. This has important applications in nonlinear system identification. In fact, by measuring
the response of a nonlinear system to Gaussian white noise we can in principle “identify” the system,
i.e., determine a functional power series expansion that allows us to compute the output of the system
corresponding to arbitrary inputs. Denote by C0([0, T ]) the set of continuous functions on the interval
[0, T ] vanishing at zero and

F : C0([0, T ]) → R

a real-valued functional mapping functions on C0([0, T ]) onto the real line, then we have the following
series expansion [1, 2]

F ([W (t;ω)]) = lim
N→∞

N∑
n=0

Gn([W (t;ω)]), (2)

where G0 is a constant, and Gn([W (t;ω)]) are Wiener-Hermite polynomials functionals. The first two of
such functionals are2 [19, p. 32]

G1([W ]) =

∫ T

0
κ1(t1)dW (t1;ω), (4)

G2([W ]) =

∫ T

0

∫ T

0
κ2(t1, t2)dW (t1;ω)dW (t2;ω)−

∫ T

0
κ2(t1, t1)dt1, (5)

where ∫ T

0
κ1(t1)

2dt1 = 1, 2

∫ T

0

∫ T

0
κ2(t1, t2)

2dt1dt2 = 1. (6)

Note that G1 and G2 are random variables. The kernel functions κ1, κ2, etc., satisfy a number of conditions
that follow from the orthogonality requirements

E {G0, G1} = G0E {G1} = 0, E {G0, G2} = G0E {G2} = 0, E {G1, G2} = 0 (7)

and the normalization conditions (see [19, Lecture 3])

E
{
G2

0

}
= E

{
G2

1

}
= E

{
G2

2

}
= 1. (8)

Note that (4)-(6) already include (7) and (8).

1Wiener-Hermite polynomial functionals are orthogonal with respect to the Gaussian measure.
2Note that the integrals in (4)-(5) do not exist in the ordinary Stieltjes sense because W (t;ω) is nowhere differentiable.

However, we can get around this by defining the integrals such as (4) using integration by parts as

G1([W ]) =

∫ T

0

κ1(t1)dW (t1;ω) = κ1(T )W (T ;ω)− κ1(0)W (0;ω)−
∫ T

0

κ′
1(t1)W (t1;ω)dt1 = κ1(T )W (T ;ω)−

∫ T

0

κ′
1(t1)W (t1;ω)dt1.

(3)
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Computation of Wiener-Hermite kernels. The series expansion (2) allows us to identify a nonlinear
system by simply recording its response to Gaussian white noise [11, 13]. To this end, first average (2) to
obtain

G0 = E {F ([W ])} . (9)

We then multiply (2) left and right by the following first-order Hermite functional (same form as G1([W ])
but with different kernel)

Q1([W ]) =

∫ T

0
g1(s)dW (s;ω) (10)

where g1(s) is to be chosen. We then average to obtain

E
{
F ([W ])

∫ T

0
g(s)dW (s;ω)

}
=

∫ T

0
κ1(s)g1(s)ds. (11)

In fact, by construction, Q1 is orthogonal to all Gk (for all k ̸= 1). Next we choose

g1(s) =

{
1 for s ∈ [t1, t1 + dt] (t1 arbitrary in [0, T ], except t1 = T )

0 otherwise
(12)

With this choice we have

κ1(s) =
1

dt
E {F ([W ])dW (t1;ω)} , (13)

or, equivalently,

κ1(t1) = E
{
F ([W ])Ẇ (t1;ω))

}
(14)

where Ẇ (t;ω) is Gaussian white noise (derivative of Wiener process). Other kernels can be determined
in a similar way, i.e., by using the orthogonality between Qn([W ]) and Gj([W ]) (for n ̸= j), and then
choosing the kernel of Qn([W ]) appropriately (see [19, p. 42]).

Example: Consider the linear functional

F ([W ] =

∫ T

0
sin(t)Ẇ (t;ω)dt (15)

Applying (9) yields

G0 =

∫ T

0
sin(t)E{Ẇ (t;ω)}dt = 0 (16)

On the other hand, using (14) we obtain the kernel

κ1(t1) =

∫ T

0
sin(t)E

{
Ẇ (t;ω)Ẇ (t1;ω))

}
︸ ︷︷ ︸

δ(t−t1)

dt = sin(t1). (17)

Generalized Wiener-Hermite expansion. There were attempts to generalize the Wiener-Hermite
functional expansion to input processes other than the Brownian motion, e.g., more general independent
increment processes [12, 9, 2]. The reason for such generalization is obvious. For instance, such expansions
can be used to represent the solution of an ODE driven by random noise other than Brownian motion.
However, it was found in [12, 9] that expanding a given functional in terms of series of orthogonal polynomial
functionals of processes other than Brownian motion can yield non-convergent expansions. As we shall
see hereafter, this is also true in the much simpler case of systems driven by a finite number of random
variables, or even just one random variable.
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Generalized polynomial chaos expansion for systems driven by one random variable.

While theoretically sound, the Wiener-Hermite expansion in terms of orthogonal polynomial functionals
does not have a great deal of practical applicability, mostly because it is an expansion relative to an infinite-
dimensional stochastic process, i.e., the Brownian motion process. However, the theory can be simplified
substantially for systems driven by a finite number of random variables [20, 2]. The simplest case is a
system driven by only one random variable, i.e., a mapping of the form

η(ω) = g(ξ(ω)). (18)

The generalized polynomial chaos (gPC) expansion of η(ω) is a series expansion of g(ξ(ω)) in terms of
polynomials of ξ(ω) orthogonal with respect to the PDF of ξ(ω). Let us write such gPC expansion as

g(ξ(ω)) =

∞∑
k=0

akPk(ξ(ω)), (19)

where ak are real numbers (they play the same role as the kernels κn in (4)-(5)), and Pk(ξ(ω)) are polyno-
mials of the random variable ξ(ω) satisfying the orthogonality conditions

E {Pk(ξ)Pj(ξ)} =

∫ ∞

−∞
Pk(x)Pj(x)pξ(x)dx = E

{
P 2
k (ξ)

}
δkj . (20)

A substitution of (20) into (19) yields

ak =
E {Pk(ξ)g(ξ)}
E
{
P 2
k (ξ)

} . (21)

Remark: The theory of orthogonal polynomials is summarized in [20, Ch. 3] and in Appendix A of this
note. One of the key elements is that there exists a one-to-one correspondence between the PDF pξ(x)
and a set of (monic) orthogonal polynomials. In other words, the function pξ(x) defines uniquely a set of
orthogonal polynomials, e.g., through the Stieltjes algorithm [4, 3] (see Appendix A).

In Table 1 we summarize the generalized polynomial chaos corresponding to continuous random variables
ξ(ω) with known probability distribution.

Theorem 1 (Convergence of gPC expansion). The set of orthogonal polynomials associated with the
random variable ξ(ω) is dense in L2(Ω,F , P ) if and only if the moment problem for ξ(ω) is uniquely
solvable3.

The proof of is given in [2]. Stated differently, Theorem 1 says that the sequence of random variables

gn(ξ) =
n∑

k=0

akPk(ξ) ak =
E {Pk(ξ)g(ξ)}
E
{
P 2
k (ξ)

} , (22)

where Pk(ξ) are orthogonal polynomials relative to the PDF of ξ, converges to the random variable η(ω) =
g(ξ(ω)) in L2(Ω,F , P ), i.e., in the mean square sense (see Appendix B), if and only if the moment problem
for ξ(ω) is uniquely solvable. In other words,

lim
n→∞

E
{
|g(ξ)− gn(ξ)|2

}
= 0. (23)

3The “moment problem” here refers to the question of whether the PDF of ξ(ω) can be uniquely identified by the sequence
of its moments.
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PDF of ξ(ω) gPC support

Gaussian Hermite (−∞,∞)

Uniform Legendre [−1, 1]

Gamma Laguerre [0,∞)

Arbitrary PDF Stieltjes algorithm [a, b]

Table 1: Correspondence between the PDF of the continuous random variable ξ(ω) and the gPC basis.

In Appendix B we show that mean square convergence implies convergence in probability and therefore
convergence in distribution. This means that the if the random variables are continuous then the PDF of
gn(ξ) converges to the PDF of g(ξ) pointwise.

An important question at this point is: under which conditions is the moment problem for a random
variable uniquely solvable?

Theorem 2 (Uniqueness of the solution to the moment problem). The moment problem for the distribution
function of a random variable ξ(ω) is uniquely solvable if one of the following conditions is satisfied:

1. The PDF pξ(x) is compactly supported;

2. The moment generating function m(a) = E{eaξ(ω)} exists and it is finite in a neighborhood of a = 0;

3. ξ(ω) is exponentially integrable, i.e.,

E{ea|ξ(ω)|} <∞ for some a > 0; (24)

4. The sequence of moments mn = E{ξn} satisfies

∞∑
n=0

(
1

m2n

) 1
2n

= ∞. (25)

The proof is given in [2].

Example: The moment problem is uniquely solvable for Gaussian PDFs, uniform PDFs, and gamma
PDFs

pξ(x) =
1

Γ(k)θk
xk−1e−x/θ, x > 0, k, θ > 0. (26)

Example: A log-normal random variable is defined as

ξ(ω) = log(X(ω)), (27)

where X(ω) is normal. It is straightforward to show that

pξ(x) =
1

x
√
2π
e− log(x)2/2 x > 0. (28)

The moments of ξ are
E{ξn} = en

2/2, (29)
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and clearly exist for all n ≥ 1. However, the moment problem is not uniquely solvable in this case. Indeed,
there are multiple PDFs with exactly the same sequence of moments. For example, for any v ∈ (0, 1) and
any k > 0 the PDF

pη(x) =
1

x
√
2π
e− log(x)2/2 [1 + v sin(2kπ log(x)] x > 0 (30)

has exactly the same moments as (28) (see [2, §4.1]). In other words,∫ ∞

0
xnpξ(x)dx =

∫ ∞

0
xnpη(x)dx for all n ≥ 1. (31)

Note that condition 4 in Theorem 2 does not hold for lognormal variables. Indeed, for lognormal variables
we have mn = en

2/2 (see Eq. (29)) and therefore

∞∑
n=0

(
1

e2n2

) 1
2n

=

∞∑
n=0

1

en
=

e

e− 1
̸= ∞ (32)

gPC expansion for systems driven by multiple random variables.

Consider the random variable η(ω) defined as a scalar function of M independent random variables
{ξ(ω), . . . , ξM (ω)}

η = g(ξ1, . . . , ξM ) (33)

We have seen that the PDF η can be represented as a multidimensional convolution of the PDFs of

{ξj}. Denote by {P (i)
ji

(ξi)} the gPC expansion associated with the random variable ξi(ω). By leveraging

the separability of L2
p(ξ) following from the independence assumption on {ξn(ω)}, we have the following

multivariate gPC expansion

g(ξ1, . . . , ξM ) =
∞∑

j1=0

· · ·
∞∑

jM=0

aj1...jMP
(1)
j1

(ξ1) · · ·P (M)
jM

(ξM ), (34)

where

aj1...jM =
E{g(ξ1, . . . , ξM )P

(1)
j1

(ξ1) · · ·P (M)
jM

(ξM )}

E
{
P

(1)
j1

(ξ1)2
}
· · ·E

{
P

(M)
jM

(ξM )2
} (35)

If the moment problem for each random variable ξi(ω) is uniquely solvable, then the tensor product gPC
expansion (34)-(35) converges in the mean square sense (see [2]), i.e., in the L2(Ω,F , P ) sense

lim
n1→∞

· · · lim
nM→∞

E

g(ξ1, . . . , ξM )−
n1∑
j1

· · ·
nM∑
jM

aj1...jMP
(1)
j1

(ξ1) · · ·P (M)
jM

(ξM )

 = 0 (36)

It convenient to write the expansion (34) more compactly. Upon definition of ξ = (ξ1, . . . , xiM ) we
have

g(ξ) =

∞∑
k=0

akΦk(ξ), (37)

where Φk(ξ) are multivariate polynomials constructed by taking products of one-dimensional polynomials
P i
ji
(ξi). A convenient way to arrange the polynomials Φk(ξ) is to sort the tensor product in a degree lexico-

graphic order. In Table 2) we summarize such ordering for the three-dimensional polynomial chaos

Φk(ξ) = P
(1)
j1

(ξ1)P
(2)
j2

(ξ2)P
(3)
j3

(ξ3), (38)
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j1 j2 j3 k Total degree gPC basis

0 0 0 0 0 Φ0(ξ) = P
(1)
0 (ξ1)P

(2)
0 (ξ2)P

(3)
0 (ξ3)

0 0 1 1 1 Φ1(ξ) = P
(1)
0 (ξ1)P

(2)
0 (ξ2)P

(3)
1 (ξ3)

0 1 0 2 1 Φ2(ξ) = P
(1)
0 (ξ1)P

(2)
1 (ξ2)P

(3)
0 (ξ3)

1 0 0 3 1 Φ3(ξ) = P
(1)
1 (ξ1)P

(2)
0 (ξ2)P

(3)
0 (ξ3)

0 0 2 4 2 Φ4(ξ) = P
(1)
0 (ξ1)P

(2)
0 (ξ2)P

(3)
2 (ξ3)

0 1 1 5 2 Φ5(ξ) = P
(1)
0 (ξ1)P

(2)
1 (ξ2)P

(3)
1 (ξ3)

0 2 0 6 2 Φ6(ξ) = P
(1)
0 (ξ1)P

(2)
2 (ξ2)P

(3)
0 (ξ3)

1 0 1 7 2 Φ7(ξ) = P
(1)
1 (ξ1)P

(2)
0 (ξ2)P

(3)
1 (ξ3)

1 1 0 8 2 Φ8(ξ) = P
(1)
1 (ξ1)P

(2)
1 (ξ2)P

(3)
0 (ξ3)

2 0 0 9 2 Φ9(ξ) = P
(1)
2 (ξ1)P

(2)
0 (ξ2)P

(3)
0 (ξ3)

Table 2: Degree lexicographic order of the multivariate polynomial chaos Φk(ξ) = P
(1)
j1

(ξ1)P
(2)
j2

(ξ2)P
(3)
j3

(ξ3).
Shown are polynomials up to total degree 2.

p

1 2 3 4 5 6

M

1 2 3 4 5 6 7

2 3 6 10 15 21 28

3 4 10 20 35 56 84

4 5 15 35 70 126 210

5 6 21 56 126 252 462

6 7 28 84 210 462 924

Table 3: Dimensionality of multivariate gPC for different values of p (max polynomial degree in each 1D
gPC expansion) and M (number of random variables).

It is clear that the number of terms grows with the dimension M and maximum polynomial degree in each
variable quite fast (exponentially fast as a matter of fact). For instance, gPC of degree p = 2 in M = 3
random variables yields 10 basis elements {Φ0, . . . ,Φ9} (see Table 2 and Table 3). The combinatorial nature
of the tensor product basis allows us to calculate the number of terms for each fixed M and polynomial
degree p exactly. If we denote by K + 1 the total number terms, i.e., a truncation of the (37) to K terms,
then we have

K + 1 =

(
p+M

p

)
=

(M + p)!

M !p!
. (39)

Note that K + 1 chosen in this way allows a full development of total degree terms up to (and including)
p in the gPC basis {Φ0, . . . ,ΦK}. In Table 3 we summarize the dimensionality of gPC, i.e., the number of
terms K + 1 for different p (max polynomial degree in each 1D polynomial expansion) and M (number of
random variables).

Statistical properties. Once the gPC series expansion of a mapping between random variables is available
it is rather straightforward to compute statistical properties such as moments, cumulants, and even the
PDF of η (using sampling). To this end, let

η = g(ξ) ≃
K∑
j=0

ajΦj(ξ), aj =
E {ηΦj(ξ)}
E{Φ2

j}
, (40)
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be the gPC expansion of η = g(ξ). It is straightforward to show that,

E {g(ξ)} =a0, (41)

E
{
g(ξ)2

}
=

K∑
k=0

a2kE{Φ2
k}. (42)

In fact, by construction, all 1D orthogonal polynomials of degree larger or equal to one defining Φk(ξ)
average to zero as a consequence of orthogonality4. Also, the constant polynomial in each 1D expansion
is, by construction always equal to one and therefore Φ0(ξ) = 1, which implies E{Φ0} = 1. Equations
(41)-(42) allow us to express the variance of g(ξ) (second cumulant) as

var{g(ξ)} =
K∑
k=1

a2kE{Φ2
k}. (44)

Regarding the PDF of η, we recall that the gPC expansion (40) converges in the mean square sense, and
therefore in distribution (see Appendix B). This means that if we sample each random variable ξi according
to its PDF and substitute such samples into the the gPC expansion then we obtain samples of η.

Multi-element generalized polynomial chaos (ME-gPC) expansion. The ME-gPC expansion was
originally developed in [17, 16] to address the loss of accuracy of gPC simulations of certain time-dependent
problems. One of the reasons that leads to a loss accuracy in gPC simulations is related to the complexity of
the mapping being approximated by gPC, which eventually requires more and more terms as time evolves.
As a simple example consider an harmonic oscillator with random frequency ξ(ω), uniformly distributed
in [0, 1],

ẍ+ ξ2(ω)x = 0, ẋ(0) = 1, x(0) = 0. (45)

As is well known, the solution to (45) is

x(t, ξ) = sin(ξ(ω)t). (46)

It is clear that the gPC representation of the solution (46) requires Legendre polynomials with an increasing
degree as t increases. The reason is clearly explained in Figure 1, where we see that as t increases the
function ξ → sin(ξt) has more and more zeroes in [0, 1]. Another example in which gPC fails miserably is
the approximation of the solution to the simple decay problem

ẋ = −ξ(ω)x, x(0) = 1, ξ ∼ U([0, 1]), (47)

i.e.,
x(t;ω) = e−ξt. (48)

The basic idea of ME-gPC is to partition the support of the joint PDF of the random input variables,
i.e., the range of the random input variables, into non-overlapping elements and construct a local gPC
series expansion corresponding to each element. To describe ME-gPC we consider, for simplicity, only one
random input variable ξ(ω), continuous and with bounded range [a, b].

First, we partition the range of ξ into two non-overlapping elements (see Figure 2)

E1 = {x ∈ R : a ≤ x ≤ c}, E2 = {x ∈ R : c ≤ x ≤ b}. (49)

4In fact, since P
(j)
0 (ξj) are constants we have

E{P (j)
0 (ξj)P

(j)
q (ξj)} = 0 for all q ̸= 0 ⇒ P

(j)
0 (ξj)E{P (j)

q (ξj)} = 0 ⇒ E{P (j)
q (ξj)} = 0 for all q ̸= 0. (43)
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Figure 1: Random frequency problem. A gPC expansion of the time-dependent function sin(ξt) requires
polynomials of higher and higher degrees as t increases. To see this, simply note that sin(ξt) has 4 zeros
in ξ at t = 10 and 32 zeros in ξ at t = 100. Therefore, at t = 4 we need a gPC expansion of degree of at
least 4 while at t = 100 we a gPC expansion of degree at least of 32. Such estimates are of course a lower
bound for the gPC degree that actually guarantees a specified accuracy.

Then we define two indicator functions

IEi =

{
1 if ξ(ω) ∈ Ei

0 otherwise
i = 1, 2. (50)

Clearly, Ai = I−1
Ei

(1) ⊂ Ω (pre-image of 1 under IEi) represents the subset of the sample space Ω such that
ξ(ω) ∈ Ei, i.e.,

A1 = {ω ∈ Ω : ξ(ω) ∈ E1} and A2 = {ω ∈ Ω : ξ(ω) ∈ E2}. (51)

Clearly A1 and A2 are non-intersecting subsets of Ω such that

Ω = A1 ∪A2. (52)

At this point, consider the input-output map

η(ω) = g(ξ(ω)). (53)

We know that the statistical properties of η are fully described by the distribution function

Fη(y) = P ({ω ∈ Ω : g(ξ(ω)) ≤ y}︸ ︷︷ ︸
set By

). (54)

The set By can be written as union of two non-intersecting5 sets

By =By ∩ Ω

=By ∩ (A1 ∪A2)

=(By ∩A1) ∪ (By ∩A2). (55)

Since (By ∩A1) and (By ∩A2) are disjoint we have

P (By) = P (By ∩A1) + P (By ∩A2). (56)

5To be more precise A1 and A2 do intersect, but the intersection set has zero measure.
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Figure 2: Basic idea of Multi-Element generalized Polynomial Chaos (ME-gPC). The range of the random
input variable ξ(ω), i.e., the support of the PDF pξ(x) is partitioned into non-overlapping elements, say E1

and E2. A local gPC expansion is then constructed relative to the conditional PDF of ξ(ω) in E1 and E2.
Such conditional PDF is obtained by simply rescaling the PDF pξ(x) restricted to each element E1 and
E2, and eventually remapping it to the standard element [−1, 1]. The latter step allows standardization of
the Stieltjes algorithm to construct the set of orthogonal polynomials corresponding to the PDFs p̂ξ|Ei

(z).

In terms of conditional probabilities this can be written as

P (By) = P (By|A1)P (A1) + P (By|A2)P (A2). (57)

Recall that P (A1) represents the probability that ξ(ω) is in the element E1, while P (A2) represents the
probability that ξ(ω) is in the element E2. Such probabilities can be expressed in terms of the PDF of ξ
as (See Figure 2)

P (A1) =

∫
E1

pξ(x)dx P (A2) =

∫
E2

pξ(x)dx. (58)

By combining (54), (57) and (58) we finally obtain

Fη(y) = Fη|ξ∈E1
(y)

∫
E1

pξ(x)dx+ Fη|ξ∈E2
(y)

∫
E2

pξ(x)dx. (59)

By differentiating this expression with respect to y we obtain the corresponding expression for the PDF of
η

pη(y) = pη|ξ∈E1
(y)

∫
E1

pξ(x)dx+ pη|ξ∈E2
(y)

∫
E2

pξ(x)dx. (60)

Based on this formula, we see that the PDF of the output η is represented as a weighted mean of two
conditional PDFs, i.e.,

pη|ξ∈E1
(y) and pη|ξ∈E2

(y). (61)

Such conditional PDFs represent the response of the system to two conditionally independent random
variables ξ|E1 and ξ|E2 with PDF that coincide with the conditionals pξ(x|ξ ∈ E1) and pξ(x|ξ ∈ E2)
(suitably normalized). Hence, if we compute two different gPC expansions of the response η = g(ξ)
corresponding to the conditionally independent random variables to ξ|E1 and ξ|E2 and combine the results
as in (60) then we can compute any statistical properties of η, including the PDF of η
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ME-gPC algorithm:

1. Partition the range of ξ(ω), i.e., the support of pξ(x) as in Figure 2, i.e., as a covering of non-
overlapping elements.

2. Determine the conditionals pξ(x|ξ ∈ Ei) and map them onto [−1, 1] using the transformation (104).
The mapping is not strictly necessary but it enhances stability especially if the measure of Ei is very
small.

3. Generate a gPC expansion relative to each mapped PDF with the Stieltjes algorihtm (Appendix B).

4. Compute the polynomial chaos coefficients relative to each local gPC expansion.

This allows us to compute an element-by-element representation of the response. For example, to generate
samples of pη(y) we can generate independent samples of pη|ξ∈Ei

(y) using the gPC expansion in terms of
the random variable ξ|Ei with PDF pξ(x|ξ ∈ E1).

Remark: Another approach to address the random frequency problem associated with the solution of
certain random dynamical systems was proposed in [8]. The key idea is to approximate with gPC the
mapping that pushes forward the solution of the random ODE in time rather than the solution itself.
With such flow map approximation and composition it is demonstrated that gPC retains accuracy as t
increases. At the same time the gPC polynomial degree naturally increases in the scheme, which makes it
essentially inapplicable for system driven by multiple random variables.

The stochastic Galerkin method

The stochastic Galerkin method is a projection operator method to solve a wide variety of UQ problems
ranging from random eigenvalue problems, to system of ordinary or partial differential equations evolving
from random initial states, with random boundary conditions, random parameters, or random forcing
terms. The basic idea it to represent the solution of the UQ problem in a polynomial chaos expansion with
unknown coefficients, substitute the expansion into the equations defining the problem, and the project
(in the sense of L2(Ω,F , P )) the resulting equation onto the gPC basis to obtain a system of deterministic
equations for the gPC coefficients. The number of such equations depends on the number of random input
and the polynomial chaos order as summarized in Table 3.

Decay problem (linear ODE). Consider the simple linear ODE

dx

dt
= −ξ(ω)2x, x(0;ω) = 1, (62)

where ξ(ω) is a uniform random variable in [−1, 1], and the initial condition is deterministic. We expand
the solution in a Legendre polynomial chaos expansion (see Table 1)

x(t, ω) =
n∑

k=0

ak(t)Lk(ξ(ω)), (63)

where Lk(ξ) are Legendre polynomials6 of the uniform random variable ξ. Note that here the polynomial
chaos modes are function of time and defined through projection

ak(t) =
E{x(t;ω)Lk(ξ)}

E{L2
k(ξ)}

. (64)

6Legendre polynomials are defined are orthogonal with respect to the recursively in Eq. (100).
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A substitution of (63) into (62) yields

n∑
k=0

dak(t)

dt
Lk(ξ) = −ξ(ω)2

n∑
k=0

ak(t)Lk(ξ) +Rn(t; ξ),
n∑

k=0

ak(0)Lk(ξ) = x0, (65)

where Rn(t, ξ) is the residual arising from the fact that (63) does not satisfy the ODE (62) exactly.
In the stochastic Galerkin method we impose that the residual is orthogonal to the gPC space Bn =
span{L0, . . . , Ln} relative to the L2(Ω,F , P ) inner product7. In practice, we multiply (65) by Lj(ξ) and
then integrate relative to the PDF of ξ(ω), i.e., take the expectation, to obtain

n∑
k=0

dak(t)

dt
E{LkLj} = −

n∑
k=0

ak(t)E{ξ2LkLj}

n∑
k=0

ak(0)E{LkLj} = x0

(66)

Using the orthogonality of {Lk} relative to the uniform PDF of ξ and recalling that

L0(ξ) = 1 L1(ξ) = ξ L2(ξ) =
3

2
ξ2 − 1

2
, (67)

i.e.,

ξ2 =
2L2(ξ) + 1

3
. (68)

we can write (66) as
daj(t)

dt
= −aj(t)

3
− 2

3E{L2
j}

n∑
k=0

E{L2LkLj}ak(t) j = 0, . . . , n

a0(0) = 1

aj(0) = 0 j = 1, . . . , n

(69)

This is a system of n + 1 linear ODEs that can solved numerically with any discretization scheme. Once
the gPC modes {a0(t), . . . , an(t)} are available, we can substitute them back into the gPC expansion of
the solution (63), and compute statistical properties such as the mean,

E{x(t;ω)} = a0(t), (70)

the variance

var{x(t;ω)} =
n∑

k=1

a2k(t)E{L2
k}, (71)

or the PDF of x(t;ω) by sampling or transforming the polynomial chaos expansion (63).

Remark: Recall that the PDF of x(t;ω) can be also computed by solving the Liouville equation for the joint
PDF of x(t;ω) and ξ and then marginalizing out ξ. Alternatively, we can try to solve the BBGKY equation
for the PDF of x(t;ω) alone, e.g., by computing a data-driven closure for the conditional expectations
appearing in the reduced-order PDF equation.

Remark: What happens if ξ(ω) is a uniform random variable in [a, b] instead of [−1, 1]? Not much of a
difference. We simply need to generate a gPC expansion for a uniform random variable defined in [a, b].

7In numerical methods for deterministic PDEs this procedure is also known as Galerkin projection method [6, ?].
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How do we do that? We first change the coordinate system and map the support [a, b] to [−1, 1]. In such
new coordinates we generate the orthogonal polynomial basis, which is made of Legendre polynomials.
Once the polynomials are available in [−1, 1] we map them back then we map them back to [a, b]. As easily
seen, these are still orthogonal polynomials. What changes is simply that there is a scaling factor (b−a)/2
appearing when computing E{LkLj}.

The coefficients

E{LiLjLk} =

∫ 1

−1
Li(x)Lj(x)Lk(x)dx (72)

appearing in the the gPC propagator (66) can be pre-computed offline using Gauss quadrature, or can be
computed analytically using the so-called linearization formulas [15, Appendix] for orthogonal polynomials.
Such formulas basically express the product of two orthogonal polynomials in terms of polynomials that
belong to same family as

Lk(ξ)Lj(ξ) =

k+j∑
m=0

βm(k, j)Lm(ξ). (73)

Indeed a substitution of (73) (with βm known) into (72) yields

E{LiLjLk} =

k+j∑
m=0

βm(k, j)E{LmLi} = βi(k, j)E{L2
i }. (74)

Heat equation with random boundary condition. Consider the following initial/boundary value
problem 

∂u

∂t
=
∂2u

∂x2
x ∈ [0, L]

u(x, 0) = 0

u(0, t) = u0(t)

u(L, t) = A+ σξ(ω) sin(t)

(75)

where A, σ are a positive constant, and ξ(ω) is a random variable with known distribution supported in
[−1, 1]. To solve this problem we first compute the gPC expansion corresponding to the PDF of ξ. To
this end, we can use the Stieltjes algorithm summarized in Appendix B. Such algorithm produces a set of
polynomials {P0, P1, . . .} orthogonal in [−1, 1] with respect to the PDF of ξ. We expand the solution of
(75) relative to the (monic) gPC basis {P0, P1, . . .} as

u(x, t;ω) =
n∑

k=0

ak(x, t)Pk(ξ). (76)

Substituting (76) into (75) and imposing that the residual is orthogonal to Bn = span{P0, . . . , Pn} relative
to the L2(Ω,F , P ) yields the gPC propagator

∂ak(x, t)

∂t
=
∂2ak
∂x2

k = 0, . . . ,K x ∈ [0, L]

ak(x, 0) = 0

a0(0, t) = u0(t)

ak(0, t) = 0 k = 1, . . . , n

a0(L, t) = A

a1(L, t) = σ sin(t)E{P 2
1 }

ak(L, t) = 0 k = 2, . . . , n

(77)
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This is a system of n + 1 uncoupled initial/boundary value problems for the polynomial chaos modes
ak(x, t). Note that these modes are functions of space and time in the case of PDEs.

Burgers equation with random initial condition. Consider the following initial/boundary value
problem 

∂u

∂t
+ u

∂u

∂x
=
∂2u

∂x2
x ∈ [0, 2π]

u(x, 0) = u0(x) + σ
M∑
j=1

ξj(ω)ψj(x)

Periodic B.C.

(78)

The random initial condition here assumed to be a correlated Gaussian random process represented in
terms of a Karhunen-Loéve expansion with M independent Gaussian random variables ξ = {x1, . . . , ξM}.
To construct a gPC basis, we first build the gPC basis for one Gaussian random variable, which is known
to be made of Hermite polynomials (see Table 1), and then build a tensor product basis using the degree
lexicographic ordering summarized in Table 2. Once the multivariate gPC basis {Φ0, . . . ,ΦK} is available,
we expand the solution of (78) as

u(x, t;ω) =
K∑
k=0

ak(x, t)Φk(ξ). (79)

A substitution of (79) into (78) and subsequent projection onto the gPC basis {Φj} yields

∂ak
∂t

+
1

E{Φ2
k}

∑
i,j

E{ΦkΦiΦj}ai(x, t)
∂aj(x, t)

∂x
=
∂2ak(x, t)

∂x2
k = 0, . . .K x ∈ [0, 2π]

a0(x, 0) = u0(x)

a1(x, 0) = σψM (x)

a2(x, 0) = σψM−1(x)
...

aM (x, 0) = σψ1(x)

ak(x, 0) = 0 k =M + 1, . . . ,K

Periodic B.C. for each ak(x, t)

(80)

Note that if the KL expansion of the random initial condition in (78) involves just 6 random variables,
and we use a gPC expansion of degree 5 then K + 1 = 462 (see Table 3). This means that the number of
coupled PDEs in the gPC propagator (80) is 462!

Stochastic thermal convection. Consider the system of PDEs system

∂u

∂t
+ (u · ∇)u =−∇p+ Pr∇2u+ RaPr Tj (81)

∂T

∂t
+ u · ∇T =∇2T (82)

∇ · u =0 (83)

describing the motion of an incompressible fluid within the square cavity shown in Figure 3. The fluid
motion is sustained by buoyancy forces (natural convection) induced by the the temperature difference
between the horizontal sides of the cavity. In (81)-(83) u(x, t) is the (dimensionless) velocity field, T (x, t)
is the (dimensionless) temperature field, j is the upward unit vector, Pr = ν/α2 is the Prandtl number,
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Figure 3: Schematic of the geometry and dimensionless temperature boundary conditions. The velocity
boundary conditions are of no-slip type, i.e. u = 0 at the walls.

and Ra = gβL3∆τ/(να2) is the Rayleigh number. The bifurcation analysis of the PDE system near the
onset of convective instability is shown in Figure 4.

Next, we assume that the Rayleigh number in (81) is a uniform random variable centered at Rac = 2585
(onset of convective instability), i.e.,

Ra = Rac (1 + σξ) , ξ ∼ U([−1, 1]) σ = 0.05. (84)

We are interested in computing the velocity, pressure and temperature fields corresponding to such random
Rayleigh number (see [14]). To this end, consider the gPC expansions

u (x, t; ξ) =
n∑

i=0

ûi (x, t) Φi (ξ) , (85)

p (x, t; ξ) =
n∑

i=0

p̂i (x, t) Φi (ξ) , (86)

T (x, t; ξ) =
n∑

i=0

T̂i (x, t) Φi (ξ) . (87)

where, Φi (ξ) are Legendre polynomials of the uniform random variable ξ. A substitution of (85)-(87)) into
the system (81)-(83) and subsequent projection onto the basis {Φi} yields the gPC propagator

∂ûk

∂t
+

n∑
i,j=0

E{ΦiΦjΦk}
E{Φ2

k}
(ûi · ∇) ûj =−∇p̂k + Pr∇2ûk + RacPr

T̂k + σ

n∑
i,j=0

E{Φ1ΦjΦk}
E{Φ2

k}
T̂j

 ĵ, (88)

∂T̂k
∂t

+

n∑
i,j=0

E{ΦiΦjΦk}
E{Φ2

k}
ûi · ∇T̂j =∇2T̂k, (89)

∇ · ûk =0. (90)

This is a system in 3(n + 1) coupled PDEs of the form (81)-(83), where n is the gPC order. In Figure 5
we compare the performance of gPC and ME-gPC in predicting the mean and standard deviation of the
velocity and temperature fields at y = 0.5.
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Figure 4: Bifurcation analysis of the cavity flow near the onset of convective instability.

Random eigenvalue problems

Consider a random matrix A(ξ) whose entries depend on the components of a random variable ξ. The case
where the entries of A depend on a random vector ξ can be treated similarly. Suppose we are interested
in computing the (random) eigenvalues and (random) eigenvectors of A, i.e., solve the random eigenvalue
problem

A(ξ)vk(ξ) = λk(ξ)vk(ξ). (91)

The eigenvalues λj(ξ) are known to be at least continuous functions of coefficients of the characteristic
polynmomial, which in turn are functions of the matrix entries. Hence, if A depends continuously on ξ
then λ is at least continuous in ξ the entries – see [7] for a thorough characterization of the eigenvalues as
a function of perturbation parameters. Let us expand the matrix, the eigenvalues and eigenvectors in (91)
in a gPC series expansion as

A(ξ) =

M∑
j=0

AjPj(ξ), (92)

λk(ξ) =
M∑
j=0

λkjPj(ξ), (93)

vk(ξ) =

M∑
j=0

vkjPj(ξ). (94)
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Figure 5: Stochastic convection near the onset. Shown are means (first row) and standard deviations
(second row) of velocity and temperature fields along the crossline y = 0.5. We plot different results: MC
benchmark (−), gPC order 3 (−−), ME-gPC 2 elements of order 3 (· · · ), ME-gPC 8 elements of order 3
(−·).

A substitution of (92)-(94) and subsequent projection onto {Pq} yields

M∑
j,l=0

E{PqPjPl}Alvkj =

M∑
j,l=0

λkjvkqE{PqPjPl} (95)

This system can be written as
KVk = ΛkVk, (96)

where Vk is a (M + 1) × n-dimensional vector (vertical stack of {vk0 . . . ,vkM} and K, Λk are matrices
depending on Al, λjk and E{PqPjPl}. For the full definition of such matrices see [5, Eqs (10)-(11)].

With the solution of the (deterministic) eigenvalue problem (96) available, we derive the gPC modes vkj
and λkj , and compute the gPC expansions (93)-(94). This allows us to compute statistical properties of
the random eigenvalues and random eigenvectors we may be interested in.
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Appendix A: Orthogonal polynomials

A polynomial of degree n can be written as

Qn(x) = bnx
n + · · ·+ b1x+ b0, bn ̸= 0. (97)

We denote by πn(x) = Qn(x)/bn the monic version of Qn(x), i.e., a polynomial with leading coefficient
equal to one. A system of polynomials {Qn(x)} is said to be orthogonal in L2

µ with respect to a real positive
weight function µ(x) if∫

supp(µ)
Qn(x)Qm(x)µ(x)dx = δnmγn where γn =

∫
supp(µ)

Qn(x)
2µ(x)dx, (98)

where δnm is the Kronecker delta. The weight function µ(x) defines the set of orthogonal polynomials
uniquely. It is well-known that all orthogonal polynomials {Qn(x)} satisfy a three-term recurrence relation
(see, [4, 6]) 

Qn+1(x) = (Anx+Bn)Qn(x)− CnQn−1(x)

Q0(x) = 1

Q−1(x) = 0

(99)

where An ̸= 0, Cn ̸= 0 and CnAnAn−1 > 0 for all n (Favard’s theorem [20, p. 26]).

Legendre polynomials: Legendre polynomials are orthogonal in [−1, 1] with respect to the weight
function µ(x) = 1, and they satisfy the three-term recurrence relation

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)−

n

n− 1
Ln−1(x). (100)

Hermite polynomials: Hermite polynomials are orthogonal in (−∞,∞) with respect to the weight
function

µ(x) =
1√
2π
e−x2/2 (101)

and they satisfy the three-term recurrence relation

Hn+1(x) = xHn(x)− nHn−1(x) (102)

For monic orthogonal polynomials the three-term recurrence relation simplifies to
πn+1(x) = (x− αn)πn(x)− βnπn−1(x)

π0(x) = 1

π−1(x) = 0

(103)

The coefficients αn and βn are uniquely determined by the weight function µ(x).

Stieltjes algorithm. The coefficients αn and βn in (103), which define monic orthogonal polynomials
corresponding to a given weight function, can be computed numerically using a simple algorithm known
as Stieltjes algorithm. To this end, suppose that µ(x) ≥ 0 is continuous and supported8 on [−1, 1]. Define

8If the measure µ(x) is supported on a general interval [a, b] then we can map it to the standard interval [−1, 1] by using
the transformation

x =
b− a

2
z +

b+ a

2
z ∈ [−1, 1]. (104)
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the inner product

(p, q) =

∫ 1

−1
p(x)q(x)µ(x)dx. (105)

Multiplying (103) by πn(x) and imposing orthogonality yields

αn =
(xπn, πn)

(πn, πn)
n = 0, 1, 2, . . . (106)

βn =
(πn, πn)

(πn−1, πn−1)
n = 1, 2, 3, . . . (107)

This allows us to derive the following algorithm (known as Stieltjes algorithm) to compute the recurrence
coefficients αk and βk in (103):

1. Set n = 0 and π0(x) = 1 in (106). Compute α0.

2. With α0 and π0(x) = 1 available compute

π1(x) = (x− α0)π0(x)− β0 π−1(x)︸ ︷︷ ︸
=0

= (x− α0). (108)

3. With π1(x) and π0(x) available compute β1 form (107).

4. Compute α1 from (106), π2(x) from (103), β2 from (107), and so on so forth.

In practice, we can compute αn and βn to machine precision by replacing the inner product (105) with,
e.g., a Gaussian quadrature rule [10]

(p, q) ≃
M∑
j=0

wjp(xj)q(xj)µ(xj), (109)

wj being the Gaussian quadrature weights. This yields a numerical approximation for the coefficients αn

and βn.

Polynomial approximation theory. Denote by

Pn([a, b]) = span{1, x, . . . , xn} (110)

the space of polynomial of degree at most n defined on the interval [a, b]. It is well-known that any
continuous function f(x) defined on [a, b] can be approximated by a polynomial pn(x) ∈ Pn([a, b]) as close
as we like, where “close” here means in the uniform (i.e., L∞([a, b])) norm. This is summarized in the
following theorem.

Theorem 3 (Weierstrass). Let f ∈ C0([a, b]). Then for any ϵ > 0 there exists nϵ ∈ N and a polynomial
pnϵ(x) ∈ Pn([a, b]) such that

∥f − pnϵ∥L∞([a,b]) = sup
x∈[a,b]

|f(x)− pnϵ(x)| ≤ ϵ. (111)

This theorem does not provide a constructive way to determine pnϵ(x). It just states the existence of such
a polynomial.
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However, if we consider the polynomial approximation problem of a function f(x) in the function space
L2
µ([a, b]) (which is a Hilbert space) rather than the Banach space C0([a, b]) then it is rather straight-

forward to develop a constructive approximation theory, i.e., a systematic way to build the approx-
imating polynomial with estimated on the convergence rate of the approximation. To this end, let
{Q0(x), Q1(x), . . . , Qn(x)} be a set of polynomials orthogonal with respect to the inner product

(Qi, Qj) =

∫ b

a
Qi(x)Qj(x)µ(x)dx, (112)

i.e., (Qi, Qj) = δij ∥Qj∥2L2
µ
. For each function f(x) ∈ L2

µ([a, b]) we define the orthogonal projection operator

onto the span of {Q0(x), Q1(x), . . . , Qn(x)}

Pn : L2
µ([a, b]) → Pn([a, b]) (113)

as

Pnf(x) =
n∑

k=0

akQk(x), ak =
(f,Qk)

(Qk, Qk)
. (114)

It is straightforward to show that Pnf(x) is the best polynomial of degree n approximating f(x) in the
sense of L2

µ([a, b]), i.e.,

∥f − Pnf∥2L2
µ
= inf

p∈Pn([a,b])
∥f − p∥2L2

µ
. (115)

It can be shown that polynomials are dense in L2
µ([a, b]), meaning that every function f ∈ L2

µ([a, b]) can
be approximated as a limit of a convergent sequence of polynomials (the limit being in L2

µ). Since every
polynomial of degree n is in the span of {Q0(x), Q1(x), . . . , Qn(x)} this implies that

lim
n→∞

∥f − Pnf∥2L2
µ
= 0. (116)

An important question is how fast Pnf converges to f . This depends on the smoothness of f , and on the
specific class orthogonal polynomials. In particular, for Legendre polynomials (100) we have the following
approximation result (see [6, p. 109] or [20, p. 33]).

Theorem 4. Let Hs([−1, 1]) be the Sobolev space of degree s, and f(x) ∈ Hs([−1, 1]). Then there exists
a constant C, independent of n, such that

∥f − Pnf∥2L2([−1,1]) ≤ Cn−s ∥f∥Hs([−1,1] (117)

where Pnf is the orthogonal projection of f onto the space of Legendre polynomials (Eq. (114)).

This theorem demonstrates that the error, as measured in the L2([−1, 1]) norm, decays spectrally, i.e., as
n−s. Moreover, the rate of decay (the exponent s), is defined by how smooth f is. Indeed, the statement
f ∈ Hs means that f is differentiable s times, and that all derivatives up to the order s are in L2([−1, 1]). If
f is of class C∞, i.e., infinitely differentiable in [−1, 1] then the convergence rate becomes exponential

∥f − Pnf∥2L2([−1,1]) ∼ e−βn. (118)
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Appendix B: Modes of convergence of sequences of random variables

In this appendix we briefly review the basic modes of convergence of sequences of random variables.

Convergence in distribution. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the
probability space (Ω,F , P ). We say that the sequence {Xj(ω)} converges to the random variable X(ω) in
distribution if for all bounded continuous functions h : R → R we have that

lim
j→∞

E {h(Xj)} = E {h(X)} . (119)

This equation can be equivalently written as

lim
j→∞

∫ ∞

−∞
h(x)dFXj (x) =

∫ ∞

−∞
h(x)dFX(x) for all bounded continuous functions h(x), (120)

where FXj (x) and FX(x) are the distribution functions of Xj(ω) and X(ω), respectively. For continuous
random variables we know that FXj (x) and FX(x) are continuous. In this case, it follows from (120) that
FXj (x) converges to FX(x) pointwise, i.e.,

sup
x

∣∣FXj (x)− FX(x)
∣∣ −−−→

j→∞
0. (121)

Moreover, if FXj (x) and FX(x) admit PDFs pXj (x) and pX(x), i.e.,

dFXj (x) = pXj (x)dx, dFX(x) = pX(x)dx, (122)

then (120) implies that
sup
x

∣∣pXj (x)− pX(x)
∣∣ −−−→

j→∞
0, (123)

i.e., the PDF of Xj converges to the PDF of X pointwise as we increase j.

Convergence in probability. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the
probability space (Ω,F , P ). We say that the sequence {Xj(ω)} converges to the random variable X(ω) in
probability if for every ϵ ≥ 0

P ({ω ∈ Ω : |Xj(ω)−X(ω)| > ϵ}) −−−→
j→∞

0. (124)

Theorem 5. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the probability space
(Ω,F , P ). If {Xj(ω)} converges to X(ω) in probability then {Xj(ω)} converges to X(ω) in distribution.

Proof. We first notice that for every pair of random variables Xj and X, every a ∈ R and every ϵ ≥ 0 we
have (see Figure 6)

{ω : Xj(ω) ≤ a} ⊆ {ω : X(ω) ≤ a+ ϵ} ∪ {ω : |Xj(ω)−X(ω)| > ϵ}. (125)

Since the two set at the right hand side of (125) do intersect, we have9

P ({ω : Xj(ω) ≤ a})︸ ︷︷ ︸
FXj

(a)

≤ P ({ω : X(ω) ≤ a+ ϵ})︸ ︷︷ ︸
FX(a+ϵ)

+P ({ω : |Xj(ω)−X(ω)| > ϵ}). (127)

9Recall that for every pair of events A and B in the σ-algebra we have:

P (A ∪B) = P (A) + P (B)− P (A ∩B) ≤ P (A) + P (B). (126)

Moreover, recall that if A ⊆ B then P (A) ≤ P (B).
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Figure 6: Sketch of the sets in equation (125). Clearly, {Xj ≤ a} is a subset of {X ≤ a+ϵ}∪{|Xj−X| > ϵ},
and {X ≤ a− ϵ} is a subset of {Xj ≤ a} ∪ {|Xj −X| > ϵ}.

Similarly,
{ω : X(ω) ≤ a− ϵ} ⊆ {ω : Xj(ω) ≤ a} ∪ {ω : |Xj(ω)−X(ω)| > ϵ} (128)

(see Figure 6), and therefore

P ({ω : X(ω) ≤ a− ϵ}) ≤ P ({ω : Xj(ω) ≤ a}) + P ({ω : |Xj(ω)−X(ω)| > ϵ}). (129)

Combining (127)-(129) yields

FX(a− ϵ)− P ({ω : |Xj(ω)−X(ω)| > ϵ}) ≤ FXj (a) ≤ FX(a+ ϵ) + P ({ω : |Xj(ω)−X(ω)| > ϵ}). (130)

If {Xj(ω)} converges to X(ω) in probability then for every ϵ ≥ 0

lim
j→∞

P ({ω : |Xj(ω)−X(ω)| > ϵ}) = 0. (131)

This implies that in the limit j → ∞

FX(a− ϵ) ≤ FXj (a) ≤ FX(a+ ϵ). (132)

If we send ϵ to zero we obtain (under continuity assumptions for FX and FXj ) that FXj (a) converges to
FX(a) for every a ∈ R, i.e., {Xj(ω)} converges to X(ω) in distribution.

Mean square convergence. Let {Xj(ω)}j=1,2,... be a sequence of random variables defined on the
probability space (Ω,F , P ). We say that the sequence {Xj(ω)} converges to the random variable X(ω) in
the mean square sense (or in L2(Ω,F , P )) if

lim
j→∞

E
{
|Xj(ω)−X(ω)|2

}
= 0. (133)

By using the Markov inequality

P ({ω : |Xj(ω)−X(ω)| > ϵ}) ≤ 1

ϵ2
E
{
|Xj(ω)−X(ω)|2

}
, (134)

we see that if {Xj(ω)} converges to the random variable X(ω) in L2 then it converges in probability, and
therefore in distribution.

Hence, mean square convergence implies convergence in distribution. In other words, X and {Xj} have
PDFs then (134) implies that the PDF of Xj converges to the PDF of X pointwise (see (123)).
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