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Stability analysis of equilibria in nonlinear systems

Consider the n-dimensional nonlinear dynamical system
dx

dt
= f(x)

x(0) = x0

(1)

where x(t) = [x1(t) · · ·xn(t)]T is a vector of phase variables, f : D → Rn, and D is a subset of Rn. In this
course note we study the behavior of the nonlinear system (1) in a neighborhood of a fixed point. As is
well known, fixed points are solutions to the nonlinear system of algebraic equations

f(x∗) = 0. (2)

To study the flow in a neighborhood of a fixed point x∗ we consider a local coordinate system centered at
x∗, i.e. we define the new phase variables

η(t,x0) = X(t,x0)− x∗. (3)

Assuming that the initial condition x0 is sufficiently close to x∗ and that f is sufficiently smooth, we
expand

f(X(t,x0)) = f(x∗ + η(t,x0)) (4)

in a neighborhood of x∗, i.e., for small η(t,x0). This yields

f(x∗ + η(t,x0)) = f(x∗)︸ ︷︷ ︸
=0

+Jf (x∗)η(t,x0) + g(η), (5)

where

Jf (x∗) =


∂f1(x

∗)
∂x1

· · · ∂f1(x
∗)

∂xn
...

. . .
...

∂fn(x∗)
∂x1

· · · ∂fn(x∗)

∂xn

 (6)

is the Jacobian1 of f(x) evaluated at the fixed point x∗, and g(η) is the reminder of the Taylor series at
x∗. Of course g(η) depends on x∗. Moreover,

g(0) = 0 and Jg(x∗) = 0. (7)

These conditions imply that η = 0 is indeed a fixed point, and that that g(η) is at least quadratic in η.
This allows us to write the nonlinear dynamical system (1) at x∗ as

dη

dt
= Jf (x∗)η + g(η)

η(0,x0) = x0 − x∗
(8)

Note that (8) is completely equivalent to (1), since we retained all nonlinearities. Such nonlinerities are
responsible for the slight variations in the local phase portraits displayed in Figure 1.

1The Jacobian of f(x) is a matrix-valued function that takes in a function f(x) and it returns a n × n matrix-valued
function. The entries of such Jacobian matrix are functions. Of course, if we evaluate the Jacobian of f(x) at a specific point
x∗ then we obtain a matrix with real entries (provided f is real).
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Figure 1: Geometric meaning of the Hartmman-Grobman Theorem 1. The trajectories of a nonlinear sys-
tem in a neighborhood of any hyperbolic fixed point are homeomorphic to the trajectories of the linearized
system at x∗. This means that the trajectories of the nonlinear and linearized system are not exactly the
same in the neighborhood of x∗, but they can be mapped to each other by a continuous transformation
that has a continuous inverse. The reason why the trajectories are not the same can be traced back to the
term g(η) in equation (8).

Theorem 1 (Hartman-Grobman). Let x∗ ∈ Rn be a fixed point of the dynamical system (1). If the
Jacobian (6) has no eigenvalue with zero real part then there exists a homeomorphism (i.e., continuous
invertible mapping with continuous inverse) defined on some neighborhood of x∗ that takes orbits of the
linear system η̇ = Jf (x∗)η and maps them into orbits of the system (8). The mapping preserves the
orientation of the orbits.

This Theorem is stating that if x∗ is a hyperbolic2 fixed point then the flow of the nonlinear dynamical sys-
tem (8) is “homemorphic” (i.e., it can be mapped back and forth by a continuous nonlinear transformation)
to the flow of the linearized system η̇ = Jf (x∗)η.

Stable, unstable, and center subspaces. In general, the eigenvalues of the Jacobian matrix Jf (x∗)
and the associated subspaces can be grouped into three main classes (see Figure 2):

• Stable subspace. We denote the subspace spanned by the eigenvectors and the generalized eigen-
vectors associated with eigenvalues with negative real part as V s. The subspace V s is called stable
subspace (or stable eigenspace if it is spanned by eigenvectors).

• Unstable subspace. We denote the subspace spanned by the eigenvectors and the generalized
eigenvectors associated with eigenvalues with positive real part as V u. The subspace V u is called
unstable subspace (or unstable eigenspace if it is spanned by eigenvectors).

2A fixed point x∗ is called hyperbolic if the Jacobian of Jf (x∗) has no eigenvalue with zero real part. Historically, the
definition of hyperbolic fixed point stem from the fact that the orbits nearby a particular type of fixed point (saddle node) in
two-dimensional non-dissipative systems resemble hyperbolas. This fails to hold in general.
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Figure 2: Eigenvalues of the Jacobian matrix Jf (x∗), and definition of the associated subspaces.

• Center subspace. We denote the subspace spanned by the eigenvectors and the generalized eigen-
vectors associated with eigenvalues with zero real part as V c. The subspace V c is called center
subspace (or center eigenspace if it is spanned by eigenvectors).

The Hartman-Grobman theorem applies to a fixed point x∗ with center subspace V c reducing to just one
element, i.e., V c = {0Rn}. This means that dim(V c) = 0, i.e., the center subspace is zero dimensional.
On the other hand, the center manifold3 theorem discussed hereafter provides useful information on the
stable, unstable, and center manifolds associated to a fixed point x∗.

Theorem 2 (Center manifold theorem). Let x∗ ∈ Rn be a fixed point of the dynamical system (1), and let
V s, V u and V c be the stable, unstable and center subspaces defined by (generalized) eigendecomposition
of the Jacobian matrix Jf (x∗) defined in (6). Then there exist two unique stable and unstable invariant
manifolds4 W s and W u of the same dimension of V s and V u and tangential to V s and V c at x∗, and a
(not necessarily unique5) center manifold W c of the same dimension of V c and tangential to V c at x∗. If
f in (1) is of class Ck then W s and W u are of class Ck, while W c is of class Ck−1.

It is useful to sketch the stable and unstable subspaces V s and V u together with the stable and stable
manifolds W s and W u for 2D a saddle node and for a 2D stable node. In the latter case, the stable
subspace has dimension 2, and therefore all curves in a neighborhood of x∗ are part of the stable manifold
W s.

Stability analysis of hyperbolic fixed points in two-dimensional systems. In this section we pro-
vide a few examples of stability analysis of a hyperbolic fixed point in two-dimensional nonlinear dynamical
systems.

3A manifold can be thought of as a geometric object embedded in the Euclidean space Rn. For example, a smooth (non-
intersecting) curve in R2 or a smooth surface in R3 are examples of manifolds. More generally one can define a manifold as a
space that is locally Euclidean.

4An invariant manifold W ⊆ Rn is a manifold such that for all x0 ∈W we have that X(t,x0) ∈W .
5If f(x) is C∞ then it is possible to find a Cr center manifold for each r <∞.
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Figure 3: Stable and unstable eigenspaces V s and V u, and stable and unstable manifolds W s and W u

of a two-dimensional saddle node and a two-dimensional stable node. Note that the stable and unstable
manifolds of the saddle node are one-dimensional and tangent to the stable and unstable eigenspaces at
fixed point. The stable eigenspace of the stable node is two-dimensional. Hence the the stable manifold
is two-dimensional as well. Hence the tangency condition of W s to V s in this case reduces to the trivial
statement that all trajectories belong to the stable manifold, at least locally.

Stability analysis of hyperbolic fixed points. Consider the following Volterra-Lotka model governing
the population dynamics two interacting species competing for some common resource.

dx1
dt

= x1(3− x1 − 2x2)

dx2
dt

= x2(2− x1 − x2)
(9)

The nullclines are

ẋ1 = 0 ⇒ x1 = 0, x2 =
3

2
− 1

2
x1, (10)

ẋ2 = 0 ⇒ x2 = 0, x2 = 2− x1. (11)

Fixed points are located at the intersections of the nullclines. As shown in Figure 4 we obtain

x∗A = (0, 0), x∗B = (0, 2), x∗C = (1, 1), x∗D = (3, 0). (12)

The Jacobian of (9) is easily obtained as

Jf (x) =

[
3− 2x1 − 2x2 −2x1

−x2 2− x1 − 2x2

]
(13)

Let us study the flow of the nonlinear system in a neighborhood of the fixed point x∗C = (1, 1). The
Jacobian at x∗C is

Jf (x∗C) =

[
−1 −2
−1 −1

]
, (14)

ans it has eigenvalues
λ1 = −1−

√
2 < 0, λ2 = −1 +

√
2 > 0. (15)

Therefore the fixed point x∗C is hyperbolic (saddle node). The stable and unstable eigenspaces of the saddle
node are spanned by the vectors

v1 =

[√
2

1

]
, v2 =

[
−
√

2
1

]
(16)
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Figure 4: Fixed points of the Volterra-Lotka model (9).
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Figure 5: Phase portrait of the Volterra-Lotka model (9). The stable manifold of the saddle node determines
which species is going to survive.

which are eigenvectors of (14) corresponding to λ1 and λ2. Based on Theorem 2, the stable and unstable
manifolds of the saddle node are tangent to the tangent eigenspaces stable and unstable manifolds are
tangent to the eigendirections. Proceeding similarly for the other points, it is straightforward to find that
x∗A is an unstable node, while x∗B and x∗D are stable nodes. In Figure 5 we sketch the phase portrait of
the system, and compare it with a numerically computed portrait.

Example: Consider the nonlinear system
dx1
dt

= 1− (µ+ 1)x1 + x21x2

dx2
dt

= µx1 − x21x2
(17)

where µ > 0 is a real parameter. We allow µ to vary6, since this will change the location of the fixed points

6By allowing µ in (17) to vary, we are effectively studying potential bifurcations of the system, in particular bifurcations
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and their stability properties. The nullclines are obtained by setting

{
1− (µ+ 1)x1 + x21x2 = 0

x1(µ− x1x2) = 0
⇒


x2 =

µ+ 1

x1
− 1

x21
(for x1 6= 0)

x1 = 0, or x2 =
µ

x1

The fixed points are at the intersections of the nullclines. By substituting x2 = µ/x1 into the equation
defining the nullcline ẋ1 = 0 we obtain

µ

x1
=
µ+ 1

x1
− 1

x21
⇒ x∗1(µ) = 1. (18)

Correspondingly,

x∗2(µ) =
µ+ 1

x∗1(µ)
− 1

x∗1(µ)2

=µ+ 1− 1

=µ. (19)

Therefore, we obtain the unique fixed point

(x∗1(µ), x∗2(µ)) = (1, µ). (20)

The Jacobian of the system (17) is

Jf (x1, x2, µ) =

[
−(µ+ 1) + 2x1x2 x21

µ− 2x1x2 −x21

]
. (21)

The (linear) stability of the fixed point (20) is determined by the eigenvalues of

Jf (x∗1(µ), x∗2(µ), µ) =

[
µ− 1 1
−µ −1

]
(22)

The associated characteristic polynomial

p(λ) = λ2 − (µ− 2)λ+ 1 (23)

has roots

λ1,2(µ) =
(µ− 2)±

√
(µ− 2)2 − 4

2
. (24)

In Figure 6 we plot the eigenvalues (24) as a function of µ. Based on such eigenvalue analysis, it is seen
that the fixed point (20) is:

• a stable spiral for 0 < µ < 2;

• a non-hyperbolic fixed point for µ = 2. Center manifold analysis outlined later in this course note
allows us to conclude that the non-hyperbolic fixed point is a stable spiral;

• an unstable spiral for 2 < µ < 4;

• an unstable degenerate node for µ = 4;

• a repellor for µ > 4.
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Figure 6: Eigenvalues of the Jacobian matrix (22) as a function of µ.
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Figure 7: Phase portraits of (17) for different values of µ.

For µ = 2 linear stability analysis predicts a center (λ1,2 = ±i). However, such fixed point is not hyperbolic
and therefore such conclusion does not hold. Indeed the analysis of the center manifold outlined later in
this course note allows us to conclude that for µ = 2 we have a stable spiral. For µ = 4 we have λ1,2 = 1.
The geometric multiplicity of such eigenvalue is 1, and therefore at µ = 4 we have an unstable degenerate
node. The phase portrait of the system is shown in Figure 7 for different values of µ.

Calculation of one-dimensional local center manifolds in two-dimensional systems. Next, we
study stability of non-hyperbolic fixed points in a two-dimensional dynamical system with one zero eigen-
value. Such stability can be studied by computing the dynamics on the center manifold W c in a neighbor-
hood of the fixed point x∗ ∈ R2. To this end, we represent such local center manifold W c as a graph of a
smooth function h, i.e.,

W c = {(x1, x2) ∈ R2 such that x2 = h(x1) for all x1 in a neighborhood of x∗1}. (25)

According to the center manifold Theorem 2, there are three conditions that the function h(x1) needs to
satisfy in order to represent the center manifold in a neighborhood of the fixed point x∗:

of equilibria.
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1. (x1, h(x1)) needs to pass through the fixed point, i.e.,

x∗2 = h(x∗1) (26)

2. h(x1) needs to be tangent to V c at the fixed point x∗. This means that the slope h(x1) must be the
same as the slope7 of V c at x∗1. Such slope is identified by the “center” eigenvector of Jf (x∗).

3. W c must be an invariant manifold. This means that any trajectory trajectory (x1(t), x2(t)) on W c

must satisfy

x2(t) = h(x1(t)) ⇒ dx2
dt

=
dh(x1)

dx1

dx1
dt

, (27)

i.e.,

f2(x1, h(x1)) =
dh(x1)

dx1
f1(x1, h(x1)). (28)

These three conditions allow us to determine a power series expansion of the (one-dimensional) center
manifold W c in a neighborhood of the fixed point x∗. Let’s see some examples.

Example: Consider the nonlinear system 
dx1
dt

= x1x2

dx2
dt

= −x2 − x21
(29)

The nullclines are

ẋ1 =0 ⇔ x1 = 0 or x2 = 0, (30)

ẋ2 =0 ⇔ x2 = −x21. (31)

Hence, there exists only one fixed point at the intersection of the nullclines which is

x∗ = (0, 0). (32)

The Jacobian of the system (29) is

Jf (x) =

[
x2 x1
−2x1 −1

]
. (33)

By evaluating Jf (x) at the fixed point x∗ = (0, 0) we obtain

Jf (0) =

[
0 0
0 −1

]
. (34)

The eigenvalues of Jf (0) are
λc = 0 and λs = −1. (35)

Correspondingly, we have a center eigenspace V c and a stable eigenspace V s, both of dimension one. Such
eigenspaces are spanned by the eigenvectors

vc =

[
1
0

]
, and vs =

[
0
1

]
. (36)

In Figure 8 we sketch the nullclines and the eigenspaces V c and V s. Next, we compute the local center

7If the center subspace V s is a vertical line then we need to compute a preliminary coordinate transformation, e.g., use the
so-called normal coordinates.
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Figure 8: Nonlinear system (29). Stable (V s) and center (V c) eigenspaces associated with the fixed point
x∗ = (0, 0).

manifold W c in a neighborhood of the fixed point x∗ = (0, 0). To this end, we consider the following power
series expansion of the function h(x1) appearing in (25)

x2 = h(x1) = a+ bx1 + cx21 + dx31 + · · · , (37)

where a, b, c, etc. are coefficients to be determined. By enforcing that W c passes through the fixed point
(0, 0) and is tangent to V c at (0, 0) we obtain0 = h(0) = a ⇔ a = 0

0 = h′(0) = b ⇔ b = 0
(38)

Therefore we are left with
h(x1) = cx21 + dx31 + ex41 + · · · (39)

At this point we impose that the dynamics on the local center manifold W c is invariant, which means that
any trajectory with initial condition on W c stays on W c. This condition is expressed mathematically by
equation (28), which can written the system (29) as

−h(x1)− x21 =
(
2cx1 + 3dx21 + · · ·

)︸ ︷︷ ︸
h′(x1)

x1h(x1). (40)

Substituting h(x1) yields

−
(
cx21 + dx31 + ex41 · · ·

)
− x21 =

(
2cx1 + 3dx21 + · · ·

)
x1
(
cx21 + dx31 + · · ·

)
, (41)

i.e.,
− (c+ 1)x21 − dx31 − ex41 + · · · = 2c2x41 + 5cdx51 + · · · . (42)
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Figure 9: Nonlinear system (29). Local center manifold W c at the non-hyperbolic fixed point (0, 0).

Since we are free to choose x1 as small as we like, the previous equation yields the following conditions
(match the coefficients multiplying the same power of x1 at the left and the right hand sides)

c+ 1 = 0, d = 0, −e = 2c2, (43)

i.e.,
c = −1, d = 0, e = −2. (44)

This yields the following power series expansion of the local center manifold W c

x2 = h(x1) = −x21 − 2x41 + · · · . (45)

The dynamics on this manifold can be obtained by substituting x2 = h(x1) into the first equation of the
system (29). This yields

dx1
dt

= −x31 − 2x51 + · · · (46)

Hence ẋ1 always points towards the origin when evaluated along the manifold W c, i.e., W c is stable (see
Figure 9). In Figure 10 we plot the phase portrait of (29) computed numerically.

Example: Let us provide another example of analysis of a two-dimensional non-hyperbolic fixed point. To
this end, consider the nonlinear system 

dx1
dt

= −x1x2

dx2
dt

= x1 − x2
(47)

The nullclines are

ẋ1 =0 ⇔ x1 = 0 or x2 = 0, (48)

ẋ2 =0 ⇔ x2 = x1. (49)

Hence, there exists only one fixed point at
x∗ = (0, 0). (50)
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Figure 10: Phase portrait of the dynamical system (29). Note that the numerical results indicate that
there may be an infinite number of center manifolds at x∗ = (0, 0) (all curves passing through (0, 0) with
horizontal tangent at (0, 0)). However, the Taylor series expansions of any two center manifolds at (0, 0)
agree to all orders.

The Jacobian of the system (47) is

Jf (x) =

[
−x2 −x1

1 −1

]
(51)

By evaluating Jf (x) at the fixed point x∗ = (0, 0) we obtain

Jf (0) =

[
0 0
1 −1

]
. (52)

The eigenvalues of Jf (0) are
λc = 0 and λs = −1. (53)

Correspondingly we have a center eigenspace V c and a stable eigenspace V s, both of dimension one. Such
eigenspaces are spanned by the eigenvectors

vs =

[
0
1

]
, and vc =

[
1
1

]
. (54)

To study stability of the non-hyperbolic fixed point x∗ = (0, 0), we compute the local center manifold W c

at x∗. Based on Theorem 2, W c is a C∞ one-dimensional manifold and therefore it can be represented
locally as a graph of a C∞ one-dimensional function h as

x2 = h(x1). (55)

The function h must satisfies the conditionsh(0) = 0 W c passes through the fixed point x∗ = (0, 0),

h′(0) = 1 W c is tangent to V c at the fixed point x∗ = (0, 0).
(56)
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Expanding h(x1) in a power series at x∗ = (0, 0) yields

h(x1) = a+ bx1 + cx21 + dx31 + · · · . (57)

By enforcing conditions (56) we obtain
a = 0, b = 1. (58)

Hence,
h(x1) = x1 + cx21 + dx31 + · · · . (59)

As before, the other coefficients can be obtained by imposing that W c is an invariant manifold, i.e., that
trajectories starting in W c stay in W c. This is equivalent to imposing that the dynamical system (47) has
(55) as trajectory, i.e.,

x2(t) = h(x1(t)) for all t ≥ 0, (60)

where (x1(t), x2(t)) is a solution of (47). Differentiating (60) with respect to time yields and using (47)
yields

x1 − h(x1) = −dh(x1)

dx1
x1h(x1). (61)

Substituting the power series (59) into the previous equation we obtain

x1 − x1 − cx21 − dx31 − · · · = −x1
(
1 + 2cx1 + 3dx21 + · · · .

) (
x1 + cx21 + dx31 + · · ·

)
, (62)

i.e.,
−cx21 − dx31 − · · · = −x21 − 3cx31 + · · · ⇒ c = 1, d = 3. (63)

Hence, the power series expansion of the center manifold W c in a neighborhood of x∗ = (0, 0) is

x2 = h(x1) = x1 + x21 + 3x31 + · · · . (64)

The dynamics on the manifold W c is obtained by substituting (60) into (47). This yields

ẋ1 = −x1(x1 + x21 + 3x31 + · · · ) = −x21 − x31 − 3x41 + · · · . (65)

The right hand side suggests of this equation that the x1 component of the velocity on the center manifold
W c always points left (see Figure 11). Hence the fixed point (0, 0) is unstable. In Figure 12 we plot the
phase portrait of (29) computed numerically.

Non-uniqueness of center manifolds. We’ve mentioned in Theorem 2 that center manifolds need not
be unique. This can be seen from the following simple example. Consider the dynamical system

dx1
dt

= x21

dx2
dt

= −x2
(66)

clearly, (x1, x2) = (0, 0) is a fixed point. The stable manifold W s is the vertical axis x1 = 0. Moreover,
x2 = 0 is an invariant center manifold, but there are other center manifolds. In fact, eliminating t as the
independent variable in (66), we obtain (for x1 6= 0)

dx2
dx1

= −x2
x21

⇒ x2(x1) = βe1/x1 β ∈ R. (67)

Thus, the curves given by

h(x1) =

{
βe1/x1 x1 < 0

0 x1 ≥ 0
(68)
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Figure 11: Nonlinear system (47). Stable and center eigenspaces V s and V c, and local center manifold W c

at the non-hyperbolic fixed point (0, 0).

are a one-parameter (parametrized by β) family of center manifolds of (x1, x2) = (0, 0). These center
manifolds are shown in Figure 13. It is easy to verify indeed that x2(t) = βe1/x1(t) is an invariant manifold
for the system (66). Moreover it is tangent to V c (x1 axis), and it passes through (0, 0) (for x1 → 0−).

This example immediately brings up the following question: In approximating the local center manifold
via power series expansions, which center manifold is actually being approximated? It can be shown that
any two center manifolds of a given fixed point differ by (at most) transcendentally small terms. Thus, the
Taylor series expansions of any two center manifolds at a given fixed point agree to all orders. Moreover,
it can be shown that for an analytical system, if the series expansion of h converges, then there exists a
unique analytical center manifold.

Two-dimensional center manifolds. Let us consider the case where the Jacobian matrix Jf (x∗) in (8)
has two imaginary (complex conjugate) eigenvalues, i.e.,

λ1 = iω λ2 = −iω, (69)

where ω is a nonzero real number. In Appendix A we show that the real Jordan form of Jf (x∗) is

A =

[
0 ω
−ω 0

]
. (70)

Such real Jordan form is obtained by a real similarity transformation P that has the real and the imaginary
part of one eigenvector as columns. By defining new variables

q = P−1η (71)

it is straightforward to transform the dynamical system (8) to
dq1
dt

= ωq2 +H1(q1, q2)

dq2
dt

= −ωq1 +H2(q1, q2)

(72)

To study stability of the fixed point x∗, we need to study the orbits of the nonlinear dynamical system
(72) nearby q = 0. A rather lengthy calculation establishes the local equivalency of (72) to the following
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Figure 12: Phase portrait of the dynamical system (47).

dynamical system in polar coordinates (r and θ are radius and angle of the phase vector with components
(q1, q2) 

dr

dt
= ar3

dθ

dt
= −ω + br2

(73)

where a a suitable constant. Therefore the trajectories nearby the fixed point fixed point x∗ are either
spirals or centers, depending on the parameter a. It can be shown (see, e.g., the book by Guckenheimer and
Holmes, “Nonlinear oscillations, dynamical systems and bifurcations of vector fields”, p. 154) that

a =
1

16

[
∂3H1

∂q31
+

∂3H1

∂q1∂q22
+

∂3H2

∂q21∂q2
+
∂3H2

∂q32

]
+

1

16ω

[
∂2H1

∂q1∂q2

(
∂2H1

∂q21
+
∂2H1

∂q22

)
− ∂2H2

∂q1∂q2

(
∂2H2

∂q21
+
∂2H2

∂q22

)
−

∂2H1

∂q21

∂2H2

∂q21
+
∂2H1

∂q22

∂2H2

∂q22

]
, (74)

where all derivatives of H1(η1, η2) and H2(η1, η2) are evaluated at (0, 0). Hence, if a < 0 we get a stable
spiral and if a > 0 we get an unstable spiral. The case a = 0 requires higher order Taylor expansions.

Example: Consider the dynamical system
dx1
dt

= −x2 − (x21 + x22) + x1x2

dx2
dt

= x1 − (x21 + x22)− x1x2
(75)

The system has a fixed point at x∗ = (0, 0). The Jacobian of (75) at (0, 0) is

Jf (x) =

[
−2x1 + x2 −1− 2x2 + x1

1− 2x1 − x2 −2x2 − x1

]
⇒ Jf (0, 0) =

[
0 −1
1 0

]
(76)
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Figure 13: Non-uniqueness of center manifold for the fixed point x∗ = (0, 0) of the dynamical system (66).

The eigenvalues of Jf (0, 0) are
λ1,2 = ±i. (77)

Hence, x∗ = (0, 0) is a non-hyperbolic fixed point with an associated two-dimensional center manifold.
To study the dynamics nearby x∗ = (0, 0) we use the normal form (73) and calculate the coefficient (74)
for

H1(x1, x2) = −(x21 + x22) + x1x2 H2(x1, x2) = −(x21 + x22)− x1x2 (78)

Note that in this case ω is equal to one (compare (75) and (72)) and the third derivatives of (H1, H2) are
both equal to zero. Moreover,

∂2H1

∂x1x2
= 1,

∂2H2

∂x1x2
= −1,

∂2Hi

∂x2j
= −2, (i, j = 1, 2). (79)

Substituting these derivatives in (74) we yields

a =
1

16
[1× (−2− 2)− (−1)× (−2− 2)− (−2)× (−2) + (−2)× (−2)]

=
1

16
[−4− 4− 4 + 4]

=− 1

2
(80)

Hence, we conclude that the non-hyperbolic fixed point (0, 0) is a stable spiral. The phase portrait is for
this system is shown in Figure 14. Note that the stable spiral is enclosed by a homoclinic orbit, i.e., a
trajectory that connect the unstable manifold and the stable manifold of the saddle node located nearby
the spiral.

Normal form of nonlinear dynamical systems at fixed points. The center manifold Theorem 2
allows us to write any dynamical system in a neighborhood of an equilibrium point in a “normal form”.
Such normal form differs from a standard linearization in that the dynamics on the subspace V c is nonlinear.
To obtain such normal form let us start from the nonlinear system (8), which represents (1) at the fixed
point x∗. We group the eigenvalues of the Jacobian J(x∗) as in Figure 2, and denote by

K =

A B
C

 (81)
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Figure 14: Phase portraint of the system (75). The system has a non-hyperbolic fixed point at x∗ = (0, 0),
which turns out to be a stable spiral. The stable spiral is enclosed by a homoclinic trajectory, i.e., an
trajectory that connect the unstable manifold and the stable manifold of the saddle node that is located
nearby.

The Jordan form of the Jacobian matrix J(x∗). The projection matrix P is

P =
[
Pc Ps Pu

]
(82)

where Pc, Ps and Pu are projection matrices onto V c, V s and V u. Such projection matrices are made
of generalized eigenvectors (columnwise) spanning each of the subspaces V c, V s and V u. The Jordan
factorization of J(x∗) takes the form

J(x∗) = PKP−1. (83)

Next, define a new set of variables
q = P−1η. (84)

A substitution of (83) and (84) into (8) yields

dq

dt
= Kq + P−1g(Pq). (85)

Upon definition of

q =

cs
u

 (86)

this system can be split as

dc

dt
= Ac+ fc(c, s,u) dynamics in V c (A has eigenvalues with zero real part)

ds

dt
= Bs+ fs(c, s,u) dynamics in V s (B has eigenvalues with negative real part)

du

dt
= Cu+ fu(c, s,u) dynamics in V u (C has eigenvalues with positive real part)

(87)
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If ‖q‖ is very small then the nonlinear terms fs and fu are negligible with respect to Bs and Cu,
respectively. This leaves us with the system

dc

dt
= Ac+ fc(c, s,u)

ds

dt
= Bs

du

dt
= Cu

(88)

By using the center manifold theorem we can express the dynamics on W c as a vector map

W c = {(c, s,u) ∈ Rn : s = hs(c) and u = hu(c)} (89)

subject to the conditions

hs(0) = 0, hu(0) = 0, (W c passes through η = 0),

∇hs(0) = 0, ∇hu(0) = 0, (W c is tangent to V s at η = 0).

(90)

With the center manifold (89) available, we can decouple the system (88) as

dc

dt
= Ac+ fc(c,hs(c),hu(c))

ds

dt
= Bs

du

dt
= Cu

(91)

This system of equations represents the generalization of the Hartman-Grobman theorem for non-hyperbolic
fixed points. From (91) we see that the dynamics on the stable and stable subspaces of are trivial in normal
coordinates, while the dynamics on the center manifold is essentially nonlinear.

Appendix A: Real Jordan form of a 2D matrix with imaginary eigenvalues

In this Appendix we briefly describe the procedure to compute the real Jordan form of a 2 × 2 matrix
with complex conjugate eigenvalues. The generalization to n×n matrices with real and complex conjugate
eigenvalues is straightforward and can be built based the technique discussed hereafter and in the Appendix
A of the course note 4. Let us illustrate how to compute the real Jordan form of a 2 × 2 matrix using a
simple example. To this end, consider the matrix

A =

[
1 2
−2 −1

]
. (92)

The eigenvalues of A are
λ1,2 = ±

√
3i, (93)

while the eigenvectors are

v1 =

[
2

−1 +
√

3i

]
, v2 =

[
2

−1−
√

3i

]
. (94)

Denote by λi,vi the complex conjugates of the eigenvalues and eigenvectors. Clearly, for i = 1, 2

Avi = λivi ⇒ Avi = λivi ⇒ Avi = λivi, (95)
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i.e., if vi is an eigenvector corresponding to λi then vi is an eigenvector corresponding to λi. So, in practice,
we just need to compute one eigenvector of A, since the other one is going to be the complex conjugate of
such vector. To compute the real Jordan form, we simply replace the complex eigenvectors (94) with the
real and imaginary component of one vector8, i.e., we consider the real basis

P =

[
2 0

−1
√

3

]
(97)

We have

AP =

[
1 2
−2 −1

]
︸ ︷︷ ︸

A

[
2 0

−1
√

3

]
︸ ︷︷ ︸

P

=

[
0 2

√
3

−3 −
√

3

]
=

[
2 0

−1
√

3

]
︸ ︷︷ ︸

P

[
0

√
3

−
√

3 0

]
︸ ︷︷ ︸

J

(98)

Hence the real Jordan form9 is the skew-symmetric matrix

J =

[
0

√
3

−
√

3 0

]
(101)

and the similarity transformation (97) has real entries. Of course, we are also allowed to consider the
transformation

P =

[
−2 0

1 −
√

3

]
, (102)

which yields the real Jordan form

J =

[
0 −

√
3√

3 0

]
. (103)

If a 2× 2 matrix A has complex conjugate eigenvalues of the form

λ1,2 = µ± iω (104)

then the real Jordan form of A is

J =

[
µ ±ω
∓ω µ

]
. (105)

8Note that the real component of both vectors v1 and v2 in (94) is[
2
−1

]
, while the imaginary component is

[
0√
3

]
. (96)

9On the other hand, the complex Jordan form is obtained by the methods we studies in the course note 4. In fact the
matrix A is diagonalizable Hence, we have

J =

[√
3i 0

0 −
√

3i

]
(99)

and the (complex) similarity transformation

P =

[
−2 −2

1−
√

3i 1 +
√

3i

]
. (100)
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