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Lyapunov exponents

The orbits of a dynamical system may converge to an invariant set called attractor1 as time tends to
infinity. For example, a stable node is an attractor of dimension zero (a single point), while a stable
periodic orbit (i.e., a stable limit cycle) is an attractor of dimension one. Attractors can have intricate
geometric structure with possibly a non-integer (fractal) dimension. Such geometric sets are called strange
attractors. Dynamics on strange attractors is non-periodic and sensitive to initial conditions, meaning
that two trajectories corresponding to initial conditions that are very close tend to diverge in time, while
remaining bounded.

Lyapunov exponents are quantities designed to quantify the exponential rates of divergence (or convergence)
or nearby orbits in phase space, and can be used to provide qualitative properties such as the type of
attractor, the attractor dimension, etc. A system exhibiting bounded dynamics with at least one positive
Lyapunov exponent is defined to be chaotic, with the magnitude of the largest exponent reflecting the time
scale on which system dynamics become unpredictable (predictability horizon). Systems with attractors
are usually dissipative2, i.e., volume-contracting. For dynamical systems whose equations of motion are
explicitly known there is a straightforward technique for computing a complete Lyapunov spectrum, i.e.,
the whole set of Lyapunov exponents.

Lyapunov spectrum

Consider the n-dimensional nonlinear dynamical system
dx

dt
= f(x)

x(0) = x0

(1)

We are interested in studying the long-term evolution of an infinitesimal n-sphere of initial conditions

Sϵ(x0) = {x ∈ Rn : ∥x− x0∥ ≤ ϵ} (2)

as its center is advected by the flow.

For infinitesimal ϵ the sphere becomes a n-ellipsoid due to the locally deforming nature of the flow (see Ap-
pendix A). Such local deformation can be fully characterized by the Jacobian of the vector field Jf (X(t,x0))
evaluated on a “fiducial trajectory” solving (1). Such fiducial trajectory is the trajectory of the center x0

of the infinitesimal sphere Sϵ(x0). The i-th Lyapunov exponent for a trajectory starting at x0 is defined
in terms of the length of the ellipsoidal principal axis ei(t) relative to the initial axes

ℓi(x0) = lim
t→∞

1

t
log

(
ei(t)

ei(0)

)
i = 1, . . . , n. (3)

Equivalently,
ei(t)

ei(0)
≃ eℓi(x0)t (4)

for sufficiently large t. Hence, the Lyapunov exponents characterize the exponential rate of expansion or
contraction of different directions in phase space.

1Attractors are never reached exactly in finite time unless the initial condition lies precisely on them. Trajectories starting
off the attractor only approach it asymptotically as time tends to infinity. Attractors typically have associated basins of
attraction, i.e., subsets of the phase space whose trajectories converge to the attractor over time.

2Non-dissipative systems such as Hamiltonian systems can exhibit chaotic behavior (e.g., the double pendulum). However,
such chaotic behavior is not due to attractors but rather to level sets of invariant energy surfaces being filled.
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Clearly, we are free to choose the principal axes of the initial sphere as we like; that is, we can pick any
orthogonal basis with vectors of length ϵ, i.e., sitting on the infinitesimal sphere Sϵ(x0). We can also
normalize such basis vectors as needed. In fact, the Lyapunov exponents are invariant under simultaneous
rescaling of both ei(0) and ei(t) by the same factor. For example, let {e1, . . . , en} be vectors on the
sphere Sϵ(x0). These vectors, as well as their normalized versions ej/ ∥ej∥, evolve according to the same
ODEs 

dηj

dt
= Jf (X(t,x0))ηj

ηj(0,x0) = ej

⇔


dη̂j

dt
= Jf (X(t,x0))η̂j

η̂j(0,x0) =
ej
∥ej∥

(5)

with
η(t,x0) = ∥ej∥ η̂j(t,x0). (6)

The orientation of the infinitesimal ellipsoid centered at X(t,x0) changes continuously as time evolves.
Therefore, we cannot speak of a well-defined direction associated with a given exponent.

Properties of the Lyapunov spectrum

Let us begin with a theorem characterizing Lyapunov exponents at hyperbolic fixed points.

Theorem 1. Let x∗ be a hyperbolic fixed point of (1). The Lyapunov exponents at the fixed point coincide
with the real part of the eigenvalues of the Jacobian Jf (x

∗).

Proof. Consider the infinitesimal sphere Sϵ(x
∗) centered at the fixed point. The linearized flow in a

neighborhood of x∗ can be written as

X(t,x0) = x∗ + η(t,x0) (7)

where
η(t,x0) = PRe

tJRP−1
R η0, (8)

for all η0 in a neighborhood of 0. Here JR is the real Jordan form of Jf (x
∗). Of course, η(t,x0) is a linear

combination of eigenvectors/generalized eigenvectors vj (columns of PR) multiplied by the entries of etJR .
The coefficients of the linear combination are the entries of P−1

R η0.

Let us now show that the Lyapunov exponent associated with the dynamics in a generalized eigenspace
coincides with the real part of the eigenvalue corresponding to such generalized eigenspace. First let vj(0)
be a normalized eigenvector of JR corresponding to a real eigenvalue λj . We know that vj(t) = eλjvj(0).
In this case we have

ℓj(x0) = lim
t→∞

1

t
log
∥eλjtvj(0)∥
∥vj(0)∥

= lim
t→∞

log(etλj )

t
= λj .

If λj is a complex eigenvalue (with its conjugate one) then

vj(t) = etRe(λj) [cos(Im(λj)t)uj + sin(Im(λj)t)wj ] .

Here uj and wj represent the real and the imaginary parts of the complex eigenvector corresponding λj .
In this case we have

ℓj(x0) = lim
t→∞

1

t
log

(∥∥etRe(λj) [cos(Im(λj)t)uj + sin(Im(λj)t)wj ]
∥∥

∥vj(0)∥

)

= lim
t→∞

1

t
log
(
etRe(λj)

)
+ lim

t→∞

1

t
log

(
∥cos(Im(λj)t)uj + sin(Im(λj)t)wj∥

∥vj(0)∥

)
=Re(λj). (9)
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If λj is real and degenerate, then
vj(t) = etλjuj + tetλjwj .

Here uj is an eigenvector while wj is a generalized eigenvector. We have,

ℓj(x0) = lim
t→∞

1

t
log

(∥∥etλjuj + tetλjwj

∥∥
∥vj(0)∥

)
= lim

t→∞

log(eλjt)

t
+ lim

t→∞

1

t
log

(
∥uj + twj∥)
∥vj(0)∥

)
= λj .

The last equality holds because the numerator in the second term grows logarithmically (like log(t)) and
thus vanishes as t→∞. Cases involving higher-order eigenvalue degeneracies can be treated similarly.

Next, we discuss a theorem characterizing Lyapunov exponents for initial conditions x0 in an invariant set
that does not include any fixed points.

Theorem 2. Consider the dynamical system (1) and suppose that there exists a bounded invariant set3

M ⊂ Rn with no fixed points in it. Then for any initial condition x0 ∈ M, the system has at least one
zero Lyapunov exponent.

Proof. Let X(t,x0) be a trajectory the flow of (1) corresponding to x0 ∈M. Consider the evolution of a
vector v(t) centered at X(t,x0) that is tangent to the flow, i.e.,

v(t) =
∂

∂t
X(t,x0) = f(X(t,x0)).

Of course, we can rescale the vector v(t) so that ∥v(0)∥ = 1 (or rescale it to be on the infinitesimal n-sphere
Sϵ(x0)). By differentiating both sides with respect to time we obtain

dv(t)

dt
= Jf (X(t,x0))f(X(t,x0)) = Jf (X(t,x0))v(t),

by the chain rule. Thus, v(t) = f(X(t,x0)) solves the linearized system. Let us now compute the Lyapunov
exponent on the fiducial trajectory X(t,x0) corresponding to a vector that is tangent to the flow

ℓ(x0) = lim
t→∞

1

t
log

(
∥v(t)∥
∥v(0)∥

)
= lim

t→∞

1

t
log

(
∥f(X(t,x0))∥
∥f(x0)∥

)
.

Since f is smooth and X(t,x0) ∈M, i.e., X(t,x0) is bounded, we have that

ℓ(x0) = 0.

For dissipative systems it can be shown that one of the principal axes of the infinitesimal ellipsoid locks
in the direction of the flow, i.e., at least of the singular values of the matrix F in Appendix A converges
to one. For energy-preserving systems there are are usually multiple zero Lyapunov exponents and the
ellipsoid semi-axies may not necessarily align with the direction ofthe flow.
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Theorem 3. Let X(t,x0) be the flow generated by a smooth vector field f(x), and let

J(t,x0) = det

(
∂X(t,x0)

∂x0

)
(11)

denote the Jacobian determinant of the flow with respect to the initial condition. Then the sum of the
Lyapunov exponents at x0 satisfies

n∑
i=1

ℓi(x0) = lim
t→∞

1

t
log(J(t,x0)). (12)

Proof. Let X(t,x0) be the flow generated by the vector field f(x), and let

F (t,x0) =
∂X(t,x0)

∂x0
(13)

be the Jacobian matrix of the flow with respect to the initial condition. We have seen that

d

dt
F (t,x0) = Jf (X(t,x0))F (t,x0), F (0,x0) = I,

where Jf (X(t,x0)) is the Jacobian matrix of the vector field f(x). Consider an infinitesimal sphere of
initial conditions Sϵ(x0) centered at x0. In Appendix A we show that this sphere is mapped by the flow to
an ellipsoid whose principal semi-axes are determined by the singular values σ1(t) ≥ σ2(t) ≥ · · · ≥ σn(t) > 0
of F (t,x0). Using the change of variable theorem in multivariate integration we have

V (t) = V (0)J(t,x0) (14)

where V (0) is volume of the infinitesimal n-sphere. and V (t) is the volume of the ellipsoid. The Jacobian
determinant J(t,x0) is the product of the singular values of F (t,x0). This yields

V (t) = V (0)

n∏
i=1

σi(t).

Moreover, σj(t) represents the length of the j-th semi-axis of the infinitesimal ellipsoid (Corollary 1 in
Appendix A). Therefore,

ℓj(x0) = lim
t→∞

1

t
log σj(t), j = 1, . . . , n

Taking the logarithm of V (t)/V (0) yields

log(J(t,x0)) =

n∑
i=1

log σi(t).

Dividing by t and taking the limit yields

lim
t→∞

1

t
log(J(t,x0)) =

n∑
j=1

lim
t→∞

1

t
log σj(t),

where the interchange of limit and summation is justified because each limit exists individually. Therefore,

n∑
j=1

ℓj(x0) = lim
t→∞

1

t
log(J(t,x0)),

which completes the proof.
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Recalling the Liouville theorem

J(t,x0) = exp

[∫ t

0
∇ · f(X(τ,x0))dτ

]
(15)

we can write (12) as
n∑

i=1

ℓi(x0) = lim
t→∞

1

t

∫ t

0
∇ · f(X(τ,x0))dτ. (16)

Hence, for any dissipative (volume contracting) dynamical system, we have that at least one Lyapunov
exponent must be negative, and the sum of all Lyapunov exponents is strictly negative.

The exponential expansion associated with a positive Lyapunov exponent is incompatible with motion on a
bounded attractor unless some sort of folding process merges widely separated trajectories. Each positive
exponent reflects a “direction” in which the system experiences the repeated stretching and folding that
decorrelates nearby states on the attractor.

Computation of Lyapunov exponents

The Lyapunov exponents are defined by the long-term evolution of the axes of an infinitesimal sphere of
states. To compute them we proceed as follows:

1. We first compute a fiducial trajectory X(t,x0) by integrating the nonlinear equations of motion (1)
for some “post-transient” initial condition x0. This allows us to make sure that we pick an initial
condition that is reasonably close to the attractor.

2. Simultaneously, we integrate the linearized equations of motion (5), hereafter rewritten for conve-
nience,

dηj

dt
= Jf (X(t,x0))ηj (17)

for initial conditions defining an arbitrarily oriented frame of n-orthonormal vectors {η1(0), . . . ,ηn(0)}.
Each vector ηj(t) may diverge in magnitude and will tends to fall along the local direction of most
rapid growth (see Figure 2 and Figure 6). The collapse toward a common direction causes the ori-
entation of all axis vectors ηj(t) to eventually become indistinguishable. These two problems can be
overcome by the repeated use of the Gram- Schmidt (or QR) orthonormalization procedure on the
vector frame. To this end, we integrate (17) forward in time for some time and then we orthonormalize
the vectors ηj(t) relative an arbitrary vector4 η1

η̂1 = η1, w1 =
η̂1

∥η̂1∥
, (18)

η̂i = ηi −
i−1∑
j=1

⟨ηi,wj⟩wj wi =
η̂i

∥η̂i∥
, for i = 2, . . . , n. (19)

The frequency of re-orthonormalization is not critical, so long as neither the magnitude nor the
orientation divergences have exceeded computer limitations.

3. The projection of the vectors ηj onto the new orthonormal frame correctly updates the rates of growth
of each of the ellipsoid principal axes. Such projections are given by η̂j (before normalization). Each
time we perform Gram-Schmidt we record the stretching factors

Si ← Si + log ∥η̂i∥2 , for each i = 1, . . . , n (20)

4The Gram Schmidt orthogonalization procedure never affects the direction of the first vector in the system. Hence this
vector tends to seek out the direction which is most rapidly growing.
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and restart integration of both the fiducial trajectory and the linearized equation (17) from the new
orthonormal initial condition {w1, . . . ,wn}.

4. After evolving the system up to total time T , the Lyapunov exponents are approximated by

ℓi ≈
Si

T
, for each i = 1, . . . , n. (21)

Each exponent ℓi corresponds to the average logarithmic growth rate along an orthogonal direction.

Remark: This procedure ensures that the first vector η̂1 (or w1) aligns with the direction of maximal
expansion, corresponding to the largest Lyapunov exponent. In dissipative systems, the dynamics naturally
cause one of the other orthonormal vectors to lock onto the flow direction asymptotically in time (see Figure
2). Such direction is characterized by neither expansion nor contraction (zero Lyapunov exponent).

Remark: To better understand step 3 of the algorithm, let Q0 denote the initial orthonormal frame (for
example, Q0 = I). Let A1 be the linear operator (propagator) that evolves the frame Q0 according to
the linear equation (17), producing the matrix Y1 whose columns are the solutions at time t1 obtained by
integrating the initial condition Q0. We have

Y1 = A1Q0. (22)

The columns of Y1 are the vectors ηj(t1) defined in equation (17). Let us do a QR of Y1

Y1 = Q1R1,

and use Q1 as the new orthonormal initial frame to integrate the system forward from t1 to t2. The
columns of Q1 are wj(t1) (orthonormal) in previous notation. The diagonal entries of R1 are the norms
of η̂(t1) (prior to normalization), i.e.,

[R1]jj = ∥η̂j(t1)∥2 . (23)

Let A2 denote the propagator from t1 to t2. Then the resulting matrix Y2 is given by

Y2 = A2Q1R1.

We now compute a second QR decomposition of A2Q1, yielding

Y2 = Q2R2R1. (24)

The columns of Y2 are the vectors ηj(t2). The diagonal entries of R2 represent the scaling factors by which
the corresponding directions grow in that step, i.e.,

[R2]jj = ∥η̂(t2)∥2

Furthermore, the product R2R1 is upper triangular and has as diagonal entries the product of the diagonal
entries of R1 and R1. Hence,

log ([R2]jj [R1]jj) = log ([R2]jj) + log ([R1]jj) . (25)

For the first vector (the one pointing towards the direction of largest stretching) (24) reduces to

η1(t2) = w1(t2) ∥η̂1(t2)∥ ∥η̂1(t1)∥ , (26)

which implies
log(∥η1(t2)∥) = log(∥η̂1(t2)∥) + log(∥η̂1(t1)∥). (27)
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This justifies why summing the logarithms of the norms of the vectors in the orthonormal frame (prior to
normalization), as in (20), provides an approximation to the logarithm of the norm of ηj(t) for arbitrary
t. In particular, for long times

N∑
k=1

log ([Rk]jj)

approximates log ∥ηj(t)∥2, where t = tN .

Remark: Lyapunov exponents are not local quantities in either the spatial or temporal sense. Each
exponent arises from the average of the local deformation of various phase space directions. Each is
determined by the long-time evolution of a single volume element.

Lyapunov time and predictability horizon

The Lyapunov exponents, in particular the largest postitive one ℓ1, measure the rate at which nonlinear
systems destroy information. In fact, if an initial point is specified with an accuracy δ0, then the future
behavior of the system could not be accurately predicted if t exceeds a certain value know as predictability
horizon. If two trajectories in phase space are initially separated by a small perturbation δ0 and the system
has a positive Lyapunov exponent, then their separation tends to grow exponentially in time

δ(t) ≈ δ0e
ℓ1t.

• The Lyapunov time TL is defined to be the time after which the separation grows by a factor e =
2.718281828, i.e., δ(TL) ≈ δ0e. This yields

TL =
1

ℓ1
.

• The predictability horizon Tp is defined as the maximum time up to which predictions remain accurate,
given a maximum acceptable error δmax. Using the same steps as above, we obtain

δmax ∼ δ0e
ℓ1Tp ,

i.e.,

Tp ≈
1

ℓ1
log

(
δmax

δ0

)
.

Remark: Larger (positive) Lyapunov exponents correspond to shorter predictability horizons. Note that
the units of TL and Tp depend on the units of time used in the system. If ℓ1 is measured in inverse seconds
then TL and Tp will be in seconds.

Attractor dimension

The geometry of an attractor in a dissipative system, and in particular a strange attractor, can be charac-
terized using various notions of fractal dimension, such as the box-counting dimension, the Kaplan–Yorke
dimension, the Housdorff dimension, and the information dimension. Under certain technical assumptions,
these different notions of fractal dimension coincide.

Box dimension. Let A ⊂ Rn be and invariant set that is attracting trajectories of a dynamical system.
The box dimension (also called the box-counting dimension) of A ⊂ Rn is defined by the following limiting
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Figure 1: Example calculation of box dimension for a circle. The smallest number of boxes to cover the
circle is illustrated in blue. The ratio log(N(ε))/ log(1/ε) is {1.3, 1.18, 1.13} from left to right .

procedure: Cover the set A with a grid of boxes (cubes) Bi(ε) of side length ε > 0; Let N(ε) be the smallest
number of boxes needed to cover A. The box dimension of A is defined as

Dbox(A) = lim
ε→0

logN(ε)

log(1/ε)
,

if the limit exists (otherwise, use the lim sup or lim inf). For a smooth curve (e.g., a periodic orbit),
N(ε) ∼ 1/ε (see Figure 1). For a smooth surface, N(ε) ∼ 1/ε2, so Dbox = 2. For a fractal, N(ε) ∼ 1/εd

with non-integer d, leading to a non-integer box dimension.

Kaplan-Yorke (Lyapunov) dimension. The Kaplan-Yorke (KY) dimension of an attractor is defined
in terms of the Lyapunov spectrum as follows

DKY = j +
1

|ℓj+1|

j∑
i=1

ℓi, (28)

where j is defined by the condition that

j∑
i=1

ℓi ≥ 0

j+1∑
i=1

ℓi < 0. (29)

The calculation of dimension from this equation requires knowledge of all but the most negative Lyapunov
exponents.

It has been shown that for smooth flows on uniformly hyperbolic attractors, the Kaplan–Yorke (KY)
dimension coincides with several other notions of fractal dimension, such as the box-counting dimension,
the Hausdorff dimension, and the information dimension5. A compact invariant set M ⊂ Rn is called

5The information dimension of an attractor, denoted by Dinfo, quantifies how the probability mass is distributed over the
attractor with respect to scale. Let µ be an invariant probability measure supported on the attractor, and consider a cover of
the attractor by boxes {Bi(ε)} of side length ε. Define

µi = µ(Bi(ε)),

the measure of the i-th box. The information dimension is given by

Dinfo = lim
ε→0

H(ε)

log(1/ε)
, where H(ε) = −

∑
i

µi logµi

is the Shannon entropy of the coarse-grained measure at scale ε.
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uniformly hyperbolic if for each x ∈M, the tangent space admits the splitting

TxM = Es
x ⊕ Eu

x ⊕ E0
x,

where Es and Eu are the stable and unstable subspaces, and E0 is the flow direction. Vectors in Es

are contracted under the flow, and vectors in Eu are expanded. Uniformly hyperbolic attractors admit
a Sinai–Ruelle–Bowen (SRB) measure, that is, an invariant probability measure µ on M such that for
almost every initial condition x0 ∈ M (except for sets with zero Lebesgue measure), the time averages
of continuous observables φ converge to space averages with respect to µ. Formally, for every continuous
function φ :M→ R

lim
T→∞

1

T

∫ T

0
φ(X(t,x0)) dt =

∫
M

φ(x) dµ(x),

for almost every initial condition x0 ∈M, where X(t,x0) denotes the flow starting at x0.

Qualitative description of attractors using Lyapunov exponents. Lyapunov exponents can be
used to describe qualitatively attractors. For instance, in a three-dimensional dissipative dynamical system
the only possible cases Lyapunov spectra (hereafter summarized by the signs of the exponents), and the
attractors they describe, are as follows:

• strange attractor (+, 0,−)

• stable limit cycle (0,−,−)

• stable node (−,−,−)

In four dimensions there are, in principle, three possible “attractors” (+, 0, 0,−), (+,+, 0,−), and (+, 0,−,−).
The first one may be either a dissipative system or a Hamiltonian system.

Numerical examples

In this section, we present three numerical examples illustrating the computation of Lyapunov expo-
nents.

Van der Pol oscillator. Consider the Van der Pol Oscillator

ẍ− µ(1− x2)ẋ+ x = 0 (30)

As is well known, this system can be written as a system of two first-order ODEs asẋ1 = x2,

ẋ2 = µ(1− x21)x2 − x1,
(31)

In Figure 2 we plot the phase portrait associated with this system, together with the temporal dynamics
of a circle volume of initial conditions close to the globally attracting stable limit cycle that attracts all
orbits. The circle evolves according to equation (17). As easily seen, as time increases, the circle becomes
an ellipse which then shrinks to zero, and two vectors in black (initially orthogonal) tend to align with the
direction of the largest Lyapunov exponent, which in this case is zero (see Figure 3. In other words, the
vectors tend to align to the flow as time increases, as clearly demonstrated in Figure 2. In Figure 3 we
plot the Lyapunov exponents computed with the Gram-Schmidt algorithm described above. We perform
re- orthogonalization every 0.5 time units. The Lyapunov exponents we obtained with this procedure
are

ℓ1 = 0.000345 ℓ2 = −1.060644. (32)
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t = 0 t = 0.5 t = 1

t = 2 t = 5 t = 10

Figure 2: Phase portrait of the Van der Pol oscillator (31) for µ = 2. It is seen that as time increases
the initial circle of initial conditions (governed by (17)) becomes an ellipse and shrinks to zero. The two
vectors in black (initially orthogonal) tend to align with the direction of the largest Lyapunov exponent,
which in this case is zero (see Figure 3). This implies that the vectors tend to align to the flow as time
increases. This motivates the Gram-Schmidt orthogonalization procedure.

The dimension of the attractor can be estimated using the Kaplan–Yorke formula (28), which in this case
yields

DKY ≃ 1.

This means that the attractor is one-dimensional, i.e., the curve in R2 representing the limit cycle shown
in Figure 2.

Lorenz-63 system. Consider the Lorenz-63 system
Ẋ = −σX + σY

Ẏ = rX − Y −XZ

Ż = XY − bZ

(33)

with parameters σ = 10 and b = 8/3 and r = 28. We set the initial condition6 as (X0, Y0, Z0) =
[
5 5 5

]
.

With these parameters the Lorenz system (33) exhibits an aperiodic behavior that is very sensitive to
initial condition (see Figure 4).

6The Lyapunov exponents are independent of the set of initial condition
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Figure 3: Lyapunov exponents for the Van der Pol system (31). The Kaplan–Yorke dimension of the
attractor, computed using (28), is DKY ≃ 1.

t = 0.4 t = 0.8 t = 1.2

Figure 4: Lorenz’s attractor for r = 28, σ = 10 and b = 8/3, sensitivity to initial conditions. Shown are
trajectories of (33) corresponding to an infinitesimal ball of initial conditions placed nearby the attractor.
As time increases such small ball of red initial conditions paints the entire attractor.

In Figure 5 we plot the Lyapunov exponents computed with the Gram-Schmidt algorithm described above.
We perform re-orthogonalization every 0.5 time units. The Lyapunov exponents we obtained with this
procedure are

ℓ1 = 0.901 ℓ2 = 0.001 ℓ3 = −14.566. (34)

This indicates that the system has a strange attractor characterized by a strongly contracting direction
associated with ℓ3, a zero Lyapunov exponent corresponding to the vector tangent to the flow, and an
expanding direction. The sum of all Lyapunov exponents equals the time average of the divergence of the
vector field (see Eq. (16)). Specifically, we obtain

3∑
j=1

ℓj = −13.6631 (35)

which is in excellent agreement with the analytical value7 −13.666. The dimension of the strange attractor

7The divergence of the vector field for the Lorenz system (33) is given by

∇ · f(x) = −(σ + b+ 1). (36)
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Figure 5: Lyapunov exponents for the Lorenz system (33). The Kaplan–Yorke dimension of the Lorenz
attractor, computed using (28), is DKY = 2.057. The plot also shows the sum of all Lyapunov exponents,
which corresponds to the temporal average of the divergence of the vector field f(x) (see Eq. (16)).

t = 0 t = 0.1 t = 21

Figure 6: Lorenz system (33). Temporal evolution of an orthonormal basis of vectors (using (17)) along a
trajectory of (33). It is seen that as time evolves all vectors collapse to the direction of largest expansion
which, in this case is transverse to the flow.

can be estimated using the Kaplan–Yorke formula (28), yielding

DKY = 2.062.

Thus, the attractor of the Lorenz 63 system is “almost a surface”. If we take a section of the attractor
that is transverse to the flow we see indeed that there is a tiny bit of roughness (see Figure 7), i.e., we do
not have a smooth curve. Such roughness is responsible for the fractal dimension of the attractor.

The Lyapunov time is TL = 1.11 (in Lorenz-63 time units). The predictability horizon, defined as the
time required for an initial error δ0 to grow to δmax = 100δ0 (a one-hundred-fold amplification), is given

Hence,
3∑

j=1

ℓj = lim
t→∞

1

t

∫ t

0

∇ · f(X(τ,x0))dτ = −(σ + b+ 1) = −
(
10 +

8

3
+ 1

)
= −13.666 (37)
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Figure 7: Poincaré section (plane X = −5) of the Lorenz attractor . It is seen that points on the section
(right) have a tiny bit of roughness, i.e., they do not exactly sit on a one-dimensional manifold but rather
on a very thin set.

by

Tp =
log(100)

ℓ1
= 4.19

This means that two trajectories corresponding to initial conditions that are 10−3 apart (length of the
vector that connects the two initial conditions) will be approximately 10−1 apart after Tp = 4.19 time
units.

Kuramoto-Sivashinsky equation. Consider the initial-boundary value problem for the Kuramoto-
Sivashinsky equation in the periodic spatial domain [−L,L]

∂u

∂t
+ u

∂u

∂y
+

∂2u

∂y2
+

∂4u

∂y4
= 0 t ≥ 0 y ∈ [−L,L]

u(y, 0) = sin(y)e−(y−10)2/2

Periodic boundary conditions

(38)

We approximate the solution to this PDE using finite differences on the spatial grid

yk = −L+ (k − 1)∆y k = 1, . . . , n,
2L

n
. (39)

This yields the n-dimensional nonlinear dynamical system

dxj
dt

= −xj
xj+1 − xj−1

2∆y
− xj−1 − 2xj + xj+1

∆y2
− xj−2 − 4xj−1 − 6xj + 4xj+1 + xj−2

∆y4
j = 1, . . . , n (40)

In Figure 8(a) we show one trajectory of this system for L = 25 and n = 200 (i.e., a 200-dimensional
system) corresponding to the initial condition

x0k = u(yk, 0). (41)

In Figure 8(b) we show all Lyapunov exponents for this system. The system is clearly contracting (sum of
Lyapunov exponents is negative), and it has three positive Lyapunov exponents

ℓ1 = 0.1022, ℓ2 = 0.0972, ℓ3 = 0.0595. (42)
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Figure 8: Kuramoto-Sivashinsky equation (38). In (a) we show one trajectory of the dynamical system
(40) approximating the solution of (38) for L = 25 and n = 200. In (b) we show all Lyapunov exponents
for this system. The system has a strange attractor with Kaplan–Yorke dimension DKY = 8.67, computed
using (28).

Hence, the system is approaching a strange attractor with Kaplan–Yorke dimensionDKY = 8.67, computed
using (28).

Lyapunov spectra for Hamiltonian systems. In general, the Lyapunov spectrum of Hamiltonian
systems is constrained by time-reversal invariance (reversibility) to have all of the exponents in posi-
tive/negative pairs with the same modulus. Moreover, because of time-translation invariance (vector
tangent to the flow) and conservation of energy, there are at least two exact zero exponents8. The number
of zero exponents can be higher than two, and equal to the number of integrals of motion, i.e., the number
of conserved quantities. Hamiltonian systems preserve in phase space volume and therefore they do not
have an attractor in the dissipative sense. The chaotic dynamics is instead due to invariant energy surfaces
being filled by trajectories as time evolves. The dimension of the “attractor” is essentially the dimension
of energy level set being filled. For instance, the level sets of the double pendulum Hamiltonian are three-
dimensional manifolds (level set of a scalar function in 4 variables). Trajectories of the double span a three
dimensional energy manifold, sometimes densely, sometimes on complicated lower-dimensional structures
inside the manifold.

Appendix A: Dynamics of infinitesimal n-spheres

In this appendix we show that an infinitesimal sphere is mapped to an infinitesimal ellipsoid along a
trajectory, and that the singular values of the Jacobian of the flow coincide with length of the ellipsoid
semi-axes.

8In practice, if the set of initial perturbation vectors ηj(0) does not include a component along f(x0), the numerical
procedure for computing Lyapunov exponents may fail to detect the zero exponent corresponding to time-translation symmetry.
To guarantee that this neutral direction is captured, it is important to explicitly include f(x0) as one of the initial perturbations
when computing the full Lyapunov spectrum, i.e., set η1(0) = f(x0) as initial condition for the linearized equation (17). The
reason is that the zero Lyapunov exponent in Hamiltonian systems is associated with a neutral subspace that is at least
two-dimensional (flow direction + energy conservation). Unlike dissipative systems, where the neutral direction is unique and
alignment along the flow is natural, in Hamiltonian systems perturbations do not preferentially align along the flow direction
alone. The alignment tends to be arbitrary within the entire neutral subspace, reflecting the higher-dimensional symmetry
and conservation properties of the system.
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Theorem 4. Let X(t,x0) be the flow generated by a smooth vector field f(x) , and let

F (t,x0) =
∂X(t,x0)

∂x0
(43)

denote the Jacobian matrix of the flow with respect to the initial condition. Consider the SVD

F = U(t)ΣV T , (44)

and an infinitesimal sphere centered Sϵ(x0) centered at x0. Then the image of the sphere under F (t,x0)
is an ellipsoid centered at x0 with

1. Principal axes aligned with the columns of U (the left singular vectors of F ),

2. Semi-axis lengths equal to rσ1, . . . , rσn.

Proof. Consider the infinitesimal sphere Sϵ(x0) defined in (2) and centered at x0 in the phase space. Under
the flow, the image of Sϵ(x0) at time t can be approximated (for infinitesimal ϵ) by the linearized map
F (t,x0). To this end, let ηj(0) be such that ∥ηj(0)∥ ≤ ϵ. The image of the n-sphere Sϵ(x0) under the flow
X(,x0) is represented by the vectors

η(t) = X(t,x0 + ηj(0))−X(t,x0), for all ηj(0) ∈ Sϵ(0). (45)

Using Taylor expansions we have
ηj(t) = F (t,x0)ηj(0) + o(ϵ),

Higher-order terms can be neglected as ϵ → 0. The matrix F (t,x0) can be always decomposed onto a
symmetric part representing a pure deformation and a skew-symmetric part representing a rotation as
follows

F (t,x0) =
1

2

[
F (t,x0) + F T (t,x0)

]
+

1

2

[
F (t,x0)− F T (t,x0)

]
. (46)

To first-order in ϵ, the infinitesimal sphere Sϵ(x0) is mapped into an infinitesimal ellipsoid by F (t,x0)
(rotation + stretching). This can be also seen by computing the SVD of F = F (t,x0)

F = UΣV T ,

where U , V are matrices with orthonormal columns, Σ is a diagonal matrix of nonzero singular values s

Σ = diag(σ1σ2, . . . , σn),

For each fixed t and x0, the action of F (t,x0) on a vector η ∈ Sϵ(0) can thus be described as

i) Rotation (or reflection) by V T ;

ii) Stretch along the coordinate axes by factors σi;

iii) Rotation (or reflection) by U .

Let us express η relative to the orthonormal basis given by the columns of V , i.e., {v1, . . . ,vn}.

η =

n∑
i=1

αivi.

We have,

∥η∥22 =
n∑

i=1

α2
i ≤ ϵ2. (47)
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If η is on the surface of the infinitesimal sphere then ∥η∥22 = ϵ2 Applying F (t,x0) to η yields

Fη = UΣV Tη

with

ΣV Tη =

σ1α1
...

σnαn

 . (48)

Thus, each component αi is stretched by the corresponding singular value σi. In particular, if η is on the
surface of the the sphere Sϵ(0) then after rotation by V T , rescaling by Σ, and rotation by U we obtain a
vector on the surface of an ellipsoid. To show this, let us write y = Fη as

y = UΣα ⇔ α = Σ−1UTy. (49)

Let z = UTy (canonical coordinates – projection of y onto the orthonormal basis U) and let αj satisfy

n∑
j=1

α2
j = ϵ2. (50)

Substituting equation (49) into (50) yields

ϵ2 = ∥α∥2 = (Σ−1z)T (Σ−1z) = zΣ−2z. (51)

Therefore, the image of any point η on the sphere of radius ϵ satisfies (in normal coordinates z)

zTΣ−2z = ϵ2, (52)

which is an ellipsoid with semi-axes of length σjϵ. Such semi-axes are directed along the column vectors
of U (left singular vectors of F ).

Corollary 1. Let σ1(t), . . . , σn(t) be the singular values of the Jacobian matrix (43). Then the Lyapunov
exponents can be expressed as

ℓj(x0) = lim
t→∞

1

t
log(σj(t)). (53)

The proof of this corollary follows immediately from the previous Theorem and definition (3).
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