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Sampling Methods

In this lecture note we discuss sampling methods commonly used to propagate uncertainty in numerical
simulations of nonlinear systems. The samples can be randomly generated, e.g., using pseudo-random
number generators, as in Monte Carlo methods [7], or can be part of deterministic sequences as in quasi-
Monte Carlo methods [7, 4], probabilistic collocation methods [10, 5], or sparse grids [3].

The most appropriate sampling scheme depends on the problem at hand, in particular on the number and
the nature of random variables driving the system. For instance, if we are interested in approximating the
expectation of a quantity of interest in a system that depends on only one random variable

ξ(ω) : Ω → [a, b] (1)

then perhaps Monte-Carlo is not the most efficient method. In fact, given the PDF of ξ it is straightforward
to derive a Gauss quadrature rule with high degree of exactness to approximate the expectation of any
function h of ξ as

E {h(ξ)} =

∫ b

a
h(x)pξ(x)dx ≃

M∑
k=0

h
(
ξ[k]
)
wk. (2)

where ξ[k] are Gauss points generated by the PDF of ξ, and wk are integration weights. If the function h
of class C∞, then the Gauss quadrature rule (2) converges exponentially fast with M (number of Gauss
points). On the other hand, if we take N randomly generated independent samples of ξ and we use the
Monte Carlo method to approximate the integral in (2) then we get a convergence rate of 1/

√
N . If the

system is driven by a high-dimensional random input vector then Gauss quadrature on tensor product
grids is not viable (number of samples grows exponentially with the dimension), nor is sparse grids. In
this case we are often left with no choice other than MC or quasi-MC methods.

A distinctive advantage of sampling methods is that they are non-intrusive. This means that they do not
require devising problem-dependent equations (e.g., gPC propagators) or writing new codes and algorithms
from scratch perform UQ analyses, but rather simply run existing legacy algorithms and codes many times,
eventually in a massively parallel way.

Monte Carlo (MC) methods

Monte Carlo methods are a broad class of computational algorithms that rely on repeated random sampling
to obtain numerical results of various types, e.g., estimation of high-dimensional PDFs or approximation
of high-dimensional integrals representing expectation operators, etc.

PDF estimation. Suppose we are interested in estimating the PDF of a random variable Y depending
on three random variables X1, X2 and X3. We are given joint PDF of (X1, X2, X3), i.e., p(x1, x2, x3) and
the mapping

Y = g(X). (3)

In a (Markov-Chain) Monte-Carlo setting the estimation of the PDF Y proceeds as follows:

1. Determine N samples of p(x1, x2, x3), e.g., using Gibbs sampling. This yields
{
X [1], . . . ,X [N ]

}
;

2. Compute N samples of Y using (3), i.e., Y [j] = g
(
X [j]

)
;

3. Estimate the joint PDF of Y (ω) using relative frequencies, or kernel density estimation [2].
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Dynamical systems and PDEs. Suppose we are interested in approximating the mean of scalar quantity
of of interest h(x(t)) (phase space function) depending on the solution to the system of ODEs

dx

dt
= G(x, ξ(ω), t)

x(0;ω) = x0

(4)

where x0 is deterministic and ξ is a random vector. The expectation of h(x(t;ω)) can be written as

E {h(x(t;ω))} =

∫ ∞

−∞
· · ·
∫ ∞

−∞
h (x (t;y)) pξ(y)dy, (5)

i.e., as a high-dimensional integral over the PDF of ξ. In a Monte-Carlo setting, such an integral is
approximated by an equal-weight quadrature formula of the form

E {h(x(t;ω))} ≃ 1

N

N∑
k=1

h
(
x
(
t; ξ[k]

))
, (6)

where {ξ[1], . . . , ξ[N ]} are independent random samples obtained from pξ(x) using, e.g., Gibbs sampling.
Clearly, the computation of (6) requires the solution of from (4) at the N samples {ξ[1], . . . , ξ[N ]}.

Similarly, Monte Carlo can be used to sample the solution to PDEs, random eigenvalue problems (random
eigenvalues and random eigenvectors), etc.

Monte Carlo integration. Consider the following mapping between an n-dimensional random vector X
and a random variable Y

Y = g(X), (7)

where g is a measurable function from Rn into R. We are interested in computing

E{Y } =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x)pX(x)dx. (8)

To this end, we draw N independent random samples from the random vector X (from the PDF pX(x)),
i.e.,

{
X [1], . . . ,X [N ]

}
, and approximate the integral at the right hand side of (8) as

E{Y } ≃ 1

N

N∑
k=1

g
(
X [k]

)
. (9)

Note that if we approximate (8) using (9) and different sets of samples
{
X [1], . . . ,X [N ]

}
then we obtain

different results. Hence, we should really think of (9) as a sum of independent random variables g
(
X [k]

)
,

which gives different results for sums involving the same number of terms.

Remark: Clearly, (9) can be generalized to vector mappings g(X) as

E{Y } ≃ 1

N

N∑
k=1

g
(
X [k]

)
. (10)

In general, g(X) is not given explicitly but it is defined implicitly, e.g., by the solution of a nonlinear
dynamical system, a nonlinear PDE, or a random eigenvalue problem.
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Theorem 1. Let g ∈ L2
pX

(Rn). Define

I(g) =

∫
Rn

g(x)pX(x)dx (exact integral), (11)

QN (g) =
1

N

N∑
k=1

g
(
X [k]

)
(MC approximation of exact integral). (12)

For all random variables Y = g(X) with finite second-order moment we have

E {QN (g)} = I(g), (13)

E
{
|QN (g)− I(g)|2

}
=

σ2(g)

N
, (14)

where E{·} here is the expectation defined by the joint PDF of
{
X [1], . . . ,X [N ]

}
(treated as independent

random vectors), and

σ2(g) =

∫
Rn

g2(x)pX(x)dx−
(∫

Rn

g(x)pX(x)dx

)2

(15)

is the variance of Y = g(X).

Proof. We first prove that QN (g) is an unbiased estimator of I(g), i.e., that (13) holds. To this end,

E {QN (g)} =
1

N

∫
Rn

· · ·
∫
Rn

[
N∑
k=1

g (xk)

]
pX(x1) · · · pX(xN )dx1 · · · dxN

=
1

N

N∑
k=1

∫
Rn

g (xk) pX(xk)dxk

=I(g). (16)

Similarly, a rather lengthy calculation shows that

E
{
Q2

N (g)
}
=

1

N
I
(
g2
)
+

N − 1

N
I2 (g) . (17)

This implies that

E
{
|I(g)−QN (g)|2

}
=I2(g) + E

{
Q2

N (g)
}
− 2E {QN (g)} I(g)

=I2(g) +
1

N
I
(
g2
)
+

N − 1

N
I2 (g)− 2I2(g)

=
I
(
g2
)
− I2(g)

N

=
σ2(g)

N
, (18)

where σ2(g) is defined in (15).

Using Markov’s inequality, it follows from (14) that

P ({ω : |I(g)−QN (g)| ≥ ϵ}) ≤ σ(g)

ϵ
√
N

. (19)

This is a probabilistic error bound on MC integration.
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Theorem 2. Let Y = g(X) as in Theorem 1. The MC approximation (9) satisfies the following proba-
bilistic error bound.

lim
N→∞

P

({
ω : |I(g)−QN (g)| ≤ c

σ(g)√
N

})
=

1√
2π

∫ c

−c
e−y2/2dy. (20)

Proof. First, let us recall the central limit theorem. To this end, let {Y [1], . . . , Y [N ]} be a sequence of i.i.d.
random variables with mean m, variance σ2, and arbitrary PDF (with bounded moments). Define

ZN =

N∑
k=1

(Y [k] −m)√
N

=
√
N

(
1

N

N∑
k=1

Y [k] −m

)
. (21)

The central limit theorem states that the PDF of ZN converges to a normal distribution with zero mean
and variance σ2 in the limit N → ∞, i.e.,

lim
N→∞

pZN
(x) =

1√
2πσ

e−x2/(2σ2). (22)

The proof of this theorem is obtained by expanding the characteristic function of each zero mean variable
(Y [k] −m)/

√
N in a power series in a neighborhood of a = 0, i.e.,

ϕ(a) =

(
1− σ2a2

2N
+O

(
a3

N3/2

))
, (23)

taking all products, and then noting that for large N the sequence (1 + r/N)N converges to er (assuming
all moments of Y [k] −m are bounded). Equation (22) implies that

lim
N→∞

P ({ω : |ZN (ω)| ≤ cσ}) = 1√
2πσ

∫ cσ

−cσ
e−x2/(2σ2)dx =

1√
2π

∫ c

−c
e−y2/2dy. (24)

substituting Y [k] = g
(
X [k]

)
, σ2 = σ2(g) and

m =

∫ ∞

−∞
· · ·
∫ ∞

−∞
g(x)pX(x)dx. (25)

into (24) yields the bound (20).

Equation (20) is an asymptotic probabilistic error bound stating that as we increase the number of samples
the MC approximation goes to zero as1 1/

√
N . Note that (20) is independent of the dimension of the

integral (dimension of the vector x), which is a great deal that makes MC suitable for high-dimensional
integration.

Remark: While independent of the dimension of the integral, the convergence rate O(N−1/2) of the Monte
Carlo approximation (9) is not too great. Roughly speaking, to obtain a one digit increase in accuracy
we need 100 times more samples! To show this Let E1 be the integration error. We know that E1 is

proportional to N
−1/2
1 , i.e.,

E1 = CN
−1/2
1 . (26)

To obtain an error E2 = E1/10, i.e., gain one digit accuracy, we need

CN
−1/2
2 = CN

−1/2
1 /10 ⇒ N2 = 100N1. (27)

Page 4



AM 238 Prof. Daniele Venturi

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
6

10
-10

10
-5

10
0

Trapezoidal rule

Monte Carlo

Figure 1: Error in the numerical approximation of the integral (28) using the Monte Carlo rule (9) and
the trapezoidal rule versus the number of points N .

Hence, if we get the first two digits of our integral right with an MC formula involving 5000 random
samples, then we would need roughly 500000 samples to get third digit right!

Example: In Figure 1 we compare the error in the numerical approximation of the integral

I(g) =

∫ 1

−1
g(x)dx, g(x) = e−xx2 sin(10x)2 (28)

using Monte Carlo and the trapezoidal rule. For Monte Carlo, we simply compute N independent samples
of a uniform random variable X in [−1, 1] and compute the sum

IN (f) =
2

N

N∑
k=1

g
(
X [k]

)
. (29)

The factor 2 accounts for the fact that the PDF of a uniform variable in [−1, 1] is 1/2. Note that on average
the convergence rate of MC is 1/

√
N while the converge rate of the trapezoidal rule is 1/N2.

Example: The MC method can be used, e.g., to compute the area of a disk D ⊂ R2 with radius r = 1.
To this end, define

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, (30)

and the indicator function

χ(x) =

{
1 if x ∈ D

0 otherwise
(31)

The area of the disk can be written as

A =

∫
D
1dx =

∫
[−1,1]2

χ(x)dx = 4

∫
[−1,1]2

χ(x)pX(x)dx ≃ 4ND

N
, (32)

where pX = 1/4 is the jointly PDF uniform in [−1, 1]2, and ND is the number of MC samples that land
within the disk D.

1Simply set c = 3 in (20) to obtain the right hand side approximately equal to 1.
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Quasi Monte Carlo (QMC) methods

Just like Monte Carlo, quasi-Monte Carlo methods [7, 4] aim at representing multidimensional integrals
of the form (8) as equal-weights quadrature rules (9). However, in QMC the sequence of points X [k] are
not realizations of a random vector, but rather elements of a deterministic sequence called low-discrepancy
sequence. The whole point such low-discrepancy sequences is to improve the (very) slow convergence rate
of MC (i.e., O(N−1/2)) when evaluating multidimensional integrals of the form2

I(g) =

∫
[0,1]n

g(x)dx. (33)

QMC methods are usually classified based on how the points in the low-discrepancy sequences are com-
puted. In particular, we can have sequences of points that can be increased without recomputing the first
few points (open QMC formulas), and sequences of points that require recalculation of all points if N
changes (closed QMC formulas) [4]. Hereafter we provide a two examples of QMC rules leveraging the
radical inverse function.

Radical inverse function. Let b ≥ 2 be a natural number. As is well known, any integer number can
be represented relative to the base b as

i =
∞∑
k=1

ikb
k−1 (34)

where ik can take values in {0, 1, . . . , b − 1}. For example, the number 11 can be written in base 2 and
base 3 as c

11 =1× 20 + 1× 21 + 0× 22 + 1× 23 = [· · · 01011]2, (35)

=2× 30 + 0× 31 + 1× 32 = [· · · 0102]3. (36)

We define the radical inverse function corresponding to an integer number i ∈ N0

ϕb(i) =

∞∑
k=1

ik
bk

. (37)

The function (37) operates as follows:

i = [· · · i3i2i1]b ⇒ ϕb(i) = [0.i1i2i3 · · · ]b. (38)

With reference to (35)-(36) we have, for example,

ϕ2(11) =1× 2−1 + 1× 2−2 + 1× 2−4 =
1

2
+

1

4
+

1

16
=

13

16
, (39)

ϕ3(11) =2× 3−1 + 1× 3−3 =
2

3
+ 1

1

27
=

19

27
. (40)

Halton’s sequence. The Halton’s sequence is a point set in the hypercube [0, 1]n defined as

X
[i]
Hl = (ϕp1(i), . . . , ϕpn(i)) i = 1, 2, . . . , N, (41)

where {p1, . . . , pn} are the first n prime numbers, and ϕpj (i) is the radical inverse function (37). For
example, in dimension n = 5 we have

X
[i]
Hl = (ϕ2(i), ϕ3(i), ϕ5(i), ϕ7(i), ϕ11(i)) i = 1, 2, . . . , N. (42)

2Any integral involving a probability density function can be rewritten as a integral in [0, 1]n using the probability trans-
formation. In fact, if y ∼ pY (y) then x = F−1

Y (y) is uniform in [0, 1]d.
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Figure 2: (a) Sketch of the upper bound of the approximation error of the quasi-Monte Carlo quadradure
rule based on the Halton’s sequence applied to an n-dimensional integral versus the number of samples N .
(b) Comparison between the decay rate for of Halton QMC and MC for n = 3.

By using the Halton’s sequence we can approximate integrals relative to uniform PDFs in [0, 1]n as∫
[0,1]n

g(x)dx ≃ 1

N

N∑
k=1

g
(
X

[k]
Hl

)
. (43)

It can be shown that (see [4])∣∣∣∣∣
∫
[0,1]n

g(x)dx− 1

N

N∑
k=1

g
(
X

[k]
Hl

)∣∣∣∣∣ ≤ Cn
(log(N))n

N
VHK(g), (44)

where VHK(g) is the variation of g(x) in the sense of Hardy and Krause (see [4]). For fixed g we have
that VHK(g) is a number depending only on g. The function (log(N))n /N defining the upper bound in
(44) has an asymptote at N = 0, a minimum at N = 1 (equal to zero), a maximum at N = en (equal
to (n/e)n), and goes to zero faster than N−1/2 as N goes to infinity (see Figure 2. In dimension n = 10
we have en = 22026. Hence, to go past the “hump” in dimension n = 10 we need N > 22026 samples.
Clearly, the Halton’s sequence defines an open qMC rule. In fact, if we change N in (41) we do not need
to recompute the whole sequence.

Hammersley’s sequence. The Hammersley’s sequence is a point set in the hypercube [0, 1]n defined
as

X
[i]
Hm =

(
i

N
ϕp1(i), . . . , ϕpn(i)

)
i = 1, 2, . . . , N − 1 (45)

where {p1, . . . , pn} are the first n prime numbers, and ϕpj (i) is the radical inverse function (37). Note that
the first column in (45) needs to be recomputed if we change N , i.e., Hammersley’s point set defines a
closed QMC formula. It can be shown (e.g., [4]) that∣∣∣∣∣

∫
[0,1]n

g(x)dx− 1

N

N∑
k=1

g
(
X

[i]
Hm

)∣∣∣∣∣ ≤ Cn
(log(N))n−1

N
VHK(g), (46)

which represents a slight improvement over (44).

Remark: To further improve the convergence rate of quasi-Monte Carlo one can introduce randomizations
of the QMC point sets, e.g., in the form of random shifts or point scrambling. The randomization allows us
derive probabilistic error bounds similar to MC, and at the same time can improve the convergence rate
of QMC (see [7, 4]).
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Probabilistic collocation method (PCM)

The probabilistic collocation method is a high-order method based on deterministic point sets that allows
us to compute expectation operators involving low-dimensional integrals. The method leverages high-order
interpolatory quadrature rules [9], in particular, Gaussian quadrature. We have seen in previous lecture
notes that orthogonal polynomials play a fundamental role in the approximation of smooth functions. As we
shall see hereafter, orthogonal polynomials play also a crucial role in devising interpolants and quadrature
formulae with maximal degrees of exactness3. These formulae are known as Gaussian quadrature formulae
[9, §10.2].

To introduce Gaussian quadrature in the context of UQ, suppose we are given a random variable X with
range [a, b] and PDF pX(x). For every measurable function g : [a, b] → R the expectation of g(X) is defined
as

E {g(X)} =

∫ b

a
g(x)pX(x)dx. (47)

By using the coordinate transformation

x =
b− a

2
z +

b+ a

2
z =

2

b− a

(
x− b+ a

2

)
z ∈ [−1, 1] (48)

we can rewrite the expectation in (47) as∫ b

a
g(x)pX(x)dx =

b− a

2

∫ 1

−1
f(z)µ(z)dz, (49)

where

f(z) = g

(
b− a

2
z +

b+ a

2

)
, µ(z) = pX

(
b− a

2
z +

b+ a

2

)
. (50)

For the approximation of the weighted integral at the right hand side of (49), we consider the interpolatory
quadrature rule ∫ 1

−1
f(z)µ(z)dz ≃

M∑
k=0

f(zk)wk, (51)

where {z0, . . . , zM} are quadrature points in [−1, 1] while {w0, . . . , wM} are quadrature weights.

If we approximate f(z) by the Lagrange interpolation polynomial ΠMf(z) at the M+1 nodes {z0, . . . , zM}
then (51) is a quadrature formula that has degrees of exactness at least equal to M , and explicit expression
for the quadrature weights wk. This follows from∫ 1

−1
f(z)µ(z)dz ≃

∫ 1

−1
ΠMf(z)µ(z)dz =

M∑
k=0

f(zk)

∫ 1

−1
lk(z)µ(z)dz︸ ︷︷ ︸

wk

, (52)

where

lk(z) =
M∏
j=0
j ̸=k

z − zj
zk − zj

(53)

are the Lagrange characteristic polynomial associated with the grid {z0, . . . , zM}.

At this point the question is whether suitable choices of the nodes exist such that the degree of exactness
is greater than M , say, equal to r = M + m for some m > 0. The answer is given by the following
theorem.

3The degree of exactness of a quadrature formula is the maximum degree of the polynomial that can be integrated exactly
by the formula. In other words, we say that a quadrature formula has degree of exactness p if it can integrate exactly
polynomials of degree p or less.
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Theorem 3 (Gauss quadrature - Jacobi’s theorem). For any given m > 0 the interpolatory quadrature
rule (51) has degree of exactness M +m if and only if the polynomial

qM+1(z) =

M∏
j=0

(z − zj) (54)

associated with the nodes {z0, . . . , zM} satisfies the orthogonality conditions∫ 1

−1
qM+1(z)b(z)µ(z)dz = 0 (55)

for all polynomial b(z) of degree at most m− 1.

In other words, if we can find a set of nodes {z0, . . . , zM} such that qM+1(z) is orthogonal in L2
µ([−1, 1])

to any polynomial of degree m− 1 then the quadrature rule (51) has degree of exactness M +m.

Proof. Suppose that f(z) in (51) is a polynomial of degree m+M . Divide f(z) by (54) to obtain

f(z) = qM+1(z)︸ ︷︷ ︸
divisor

dm−1(z)︸ ︷︷ ︸
quotient

+ rM (z)︸ ︷︷ ︸
reminder

. (56)

As an example, consider the polynomial division of f(z) = z3 + z2 − 3z+4 by q2(z) = z2 − 3z+2. To this
end, we first multiply q2(z) by z to obtain z3 − 3z2 + 2z. Subtracting this from f(z) yields the reminder
4z2 − 5z + 4. At this point we multiply q2(z) by 4, i.e., 4q2(z) = 4z2 − 12z + 8 and subtract it from
4z2 − 5z + 4 to obtain the final remainder 7z − 4. Hence, we obtained the factorization

z3 + z2 − 3z + 4 = (z2 − 3z + 2)︸ ︷︷ ︸
divisor

(z + 4)︸ ︷︷ ︸
quotient

+(7z − 4)︸ ︷︷ ︸
reminder

. (57)

Note that if f(z) in (56) has degree M +m then the degree of the quotient is (m+M)− (M +1) = m− 1
while the degree of the remainder is (M + 1) − 1 = M (i.e., a polynomial that cannot be divided by
qM+1(z)). Since rM (z) is a polynomial of degree M it can be integrated exactly by the quadrature rule
with M + 1 nodes. This yields,

M∑
k=0

wkrM (zk) =

∫ 1

−1
rM (z)µ(z)dz =

∫ 1

−1
f(z)µ(z)dz −

∫ 1

−1
qM+1(z)dm−1(z)µ(z)dz. (58)

If hypothesis (55) holds true then the last term at the right hand side vanishes. This allows us to conclude
that ∫ 1

−1
f(z)µ(z)dz =

M∑
k=0

wkrM (zk), (59)

i.e., that the polynomial f(z) of degree M +m can be integrated exactly on the grid with M + 1 points
{z0, . . . , zM} satisfying the condition (55).

Example (Gauss-Legendre quadrature): Let {z0, . . . , zM} the zeros of the Legendre orthogonal poly-
nomial LM+1(z), i.e., LM+1(zj) = 0. Clearly, the nodal polynomial qM+1(z) in theorem (3) coincides
(modulus sign or rescaling if LM+1(z) is not monic) with LM+1(z). In fact, qM+1(z) and LM+1(z) have
the same zeros. Setting µ(z) = 1 in (55) (Legendre polynomials are orthogonal in [−1, 1] with respect to
µ(z) = 1) yields ∫ 1

−1
LM+1(z)b(z)dz = 0. (60)
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At this point we write the polynomial b(z) (of degree m− 1) in terms of a linear combination of Legendre
polynomials

b(z) =

m−1∑
j=0

bjLj(z). (61)

Next, substitute (61) into (60) to obtain

m−1∑
j=0

bj

∫ 1

−1
LM+1(z)Lj(z)dz = 0. (62)

By using orthogonality of the Legendre polynomials we see that the maximum degree m − 1 of the poly-
nomial b(z) that satisfies equation (62) is m − 1 = M (i.e., m = M + 1). Hence, the degree of exactness
of Gauss-Legendre quadrature is M +m = 2M + 1. This means that with M + 1 points we can integrate
exactly polynomials up to degree 2M + 1!

Regarding the integration weights for the Gauss-Legendre quadrature, it can be shown that

wj =
2

(1− z2j )
[
L′
M+1(zj)

]2 j = 0, . . . , n. (63)

Moreover, for every f ∈ Hs([−1, 1]) we have the following spectral convergence result4 [9, p. 437]∣∣∣∣∣
∫ 1

−1
f(z)dz −

M∑
k=0

f(zk)wk

∣∣∣∣∣ ≤ CM−s ∥f∥Hs([−1,1]) . (64)

In Appendix A, we discuss similar results for Chebyshev-Gauss-Lobatto quadrature. If f is infinitely
differentiable then convergence is exponential. As an example, in Figure 3 we compare the error in the
numerical approximation of the integral

I(f) =

∫ 1

−1
f(z)dz f(z) = e−zz2 sin(10z)2 (65)

using the Gauss-Lobatto rule and the trapezoidal rule.

Lemma 1. The maximum degree of exactness of the interpolatory quadrature formula (51) is 2M + 1.

Proof. The proof is very simple. Suppose we could choose the max degree of b(z) to be m = M + 2.
Following what we just said for the Gauss-Legendre quadrature this would imply∫ 1

−1
q2M+1(z)µ(z)dz = 0, (66)

i.e., q2M+1(z) = 0 which is impossible (see [9, Corollary 10.2]).

Gauss quadrature points have excellent properties when used for polynomial interpolation (see Appendix
B).

4The error estimate holds for Gauss-Legendre-Lobatto quadrature (see Table 1), which has degree of exactness 2M − 1.
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Figure 3: Error in the numerical approximation of the integral (65) using the Gauss-Legendre quadrature
rule and the trapezoidal rule versus the number of collocation points M . Note that the Gauss-Legendre
rule converges exponentially fast. In particular, with only 25 points the Gauss-Legendre rule achieves error
1.3× 10−15. On the other hand, the trapezoidal rule with 300 points achieves error 10−4.

Gauss-Legendre Gauss-Legendre-Lobatto

nodes {z0, . . . , zM} LM+1(z) = 0 (1− x2)L′
M (z) = 0

Lagrange polynomials li(z) =
LM+1(z)

(z − zi)L′
M+1(z)

li(z) = − 1

M(M + 1)

(1− z2)

(z − zi)

L′
M (z)

L′
M (zi)

Integration weights wi(z) =
2

(1− z2i )
[
L′
M+1(zi)

]2 wi(z) =
1

M(M + 1)LM (zi)2

Table 1: Gauss-Legendre (GL) and Gauss-Lobatto-Legendre (GLL) quadrature and interpolation rules.
The GL rule has degree of exactness 2M + 1, while the GLL rule has degree of exactness 2M − 1.

Computation of Gaussian quadrature points and weights. With the exception of a few special
cases, e.g. Chebyshev polynomials, no closed form expressions for the quadrature points and weights are
known (see, e.g., Table 1).

Nevertheless, there is a simple and elegant way of computing these nodes as well as the correspond-
ing weights based on the eigenvalues suitable tridiagonal matrices [6, §11.2]. The method relies on the
three-term recurrence relation for orthogonal polynomials, written hereafter for monic orthogonal polyno-
mials

πn+1(z) = (z − αn)πn(x)− βnπn−1(x). (67)

We have seen that the coefficients αn and βn can be computed for every measure µ(z) using the Stieltjes
algorithm (see Appendix B of course note 5). Equation (67) can be rewritten as

zπn(z) = πn+1(z) + αnπn(x) + βnπn−1(x), (68)
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or in the following convenient matrix-vector form

z



π0(z)

π1(z)

π2(z)
...

πn−1(z)

πn(z)


︸ ︷︷ ︸

π(z)

=



α0 1 0 0 · · · 0

β1 α1 1 0 · · · 0

0 β2 α2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 βn−1 αn−1 1

0 · · · 0 0 βn αn


︸ ︷︷ ︸

Jacobi matrix J



π0(z)

π1(z)

π2(z)
...

πn−1(z)

πn(z)


︸ ︷︷ ︸

π(z)

+



0

0

0
...

0

πn+1(z)


. (69)

At this point, it is clear that the zeros of πn+1(z) are eigenvalues5 of the Jacobi matrix J . In fact, if zj is
such that πn+1(zj) = 0 then

Jπ(zj) = zjπ(zj). (70)

This eigenvalue problem may be solved using the QR algorithm. This yields the Gauss quadrature points
{z0, . . . , zn}. The corresponding quadrature weights can be computed, e.g., by expanding each Lagrange
polynomial lj(z) in (52) in terms of πj(z), and using orthogonality of πj(z) relative µ(z) to we obtain

wk =

∫ 1

−1
lk(z)µ(z)dz =

M∑
j=0

akj

∫ 1

−1
πj(z)µ(z)dz = ak0

∫ 1

−1
µ(z)dz (integration weights). (71)

Alternatively, one can consider the following symmatric tridiagonal matrix S similar to J (i.e., with the
same eigenvalues).

S =



α0
√
β1 0 0 · · · 0

√
β1 α1

√
β2 0 · · · 0

0
√
β2 α2

√
β3 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0
√

βn−1 αn−1
√
βn

0 · · · 0 0
√
βn αn


. (72)

Now, if vj is the normalized eigenvector corresponding to the eigenvalue (quadrature point) zj then it can
be shown that

wj = (v1j)
2
∫ 1

−1
µ(z)dz, (73)

where v1j is the first component of vj .

Probabilistic collocation method (PCM). With the Gauss points and weights available, we can
construct an high-order interpolant of any deterministic function of a random variable ξ as

g(ξ) =
M∑
k=0

g
(
ξ[k]
)
lk(ξ), (74)

where lk(ξ) are Lagrange characteristic polynomials of the random variable ξ and ξ[k] are Gauss quadrature
points defined by the PDF of ξ, i.e., they are the zeros of the M -degree orthogonal polynomial PM (ξ)

5This procedure is known as Golub-Welsh algorithm.
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Figure 4: Tensor product of two one-dimensional Chebyshev grids (112) of 8 points.

associated with pξ. Such polynomial can be constructed using the Stieltjes algorithm. With g
(
ξ[k]
)

(function g evaluated at Gauss quadrature points of pξ) available, we have an extremely efficient sampler
for the PDF of g(ξ) defined by (74). Also, we can compute all statistical moments of g(ξ) very efficiently
using Gaussian quadrature.

Quadrature and interpolation on tensor product grids. Suppose we are interested in approxi-
mating the integral of a two-dimensional function g(x, y) in [−1, 1]2 relative to the separable integration
weight

µ(x, y) = µ1(x)µ2(y), (75)

i.e., ∫
[−1,1]2

g(x, y)µ1(x)µ2(y)dxdy. (76)

By leveraging the isomorphism

L2
µ([−1, 1]2) = L2

µ1
([−1, 1])⊗ L2

µ2
([−1, 1]) (77)

we see that we can represent g(x, y) in terms of a tensor product of one-dimensional bases involving
functions of x alone and y alone. In particular, such bases could be Lagrange characteristic polynomials
corresponding to appropriate one-dimensional grids in x ∈ [−1, 1] and y ∈ [−1, 1]. Let us denote by

{x0, . . . , xM} and {y0, . . . , yN} (78)

the aforementioned one-dimensional grids, and by {lj(x)} and hi(y) the corresponding Lagrange polyno-
mials. Then 2D polynomial interpolant of the dataset {g (xi, yj)} can be written as

Πg(x, y) =

M∑
i=0

N∑
j=0

g (xi, yj) li(x)hj(y). (79)

Clearly, Πg(x, y) is a polynomial of total degree M+N . In Figure 4 we show a tensor product of two Gauss-
Chebyshev-Lobatto one-dimensional grids (112). In Figure 5 we plot a few 2D Lagrange characteristic
polynomials li(x)hj(y) associated with the Chebyshev grid shown in Figure 4. The convergence rate of
the interpolant (79) is determined by the tensor product interpolation grid. In particular, for each fixed
x = xj or y = yk it is clear that the spectral convergence results summarized in Appendix B hold. With
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Figure 5: 2D Lagrange characteristic polynomials li(x)hj(y) associated with the 2D Chebyshev grid shown
in Figure 4.

the 2D interpolant (79) available, it is straightforward to derive a 2D interpolatory quadrature rule. In
fact, ∫ 1

−1

∫ 1

−1
g(x, y)µ1(x)µ2(y)dxdy ≃

∫ 1

−1

∫ 1

−1
Πg(x, y)µ1(x)µ2(y)dxdy

=

M∑
i=0

N∑
j=0

g (xi, yj)

∫ 1

−1
li(x)µ1(x)dx︸ ︷︷ ︸

wi

∫ 1

−1
hj(y)µ2(y)dy︸ ︷︷ ︸

qj

=
M∑
i=0

N∑
j=0

g (xi, yj)wiqj . (80)

Next, consider the random variable
η(ω) = g(ξ1, . . . , ξn) (81)

and assume that all random variables {ξ1, . . . , ξn} are i.i.d. with PDF pξ(x) supported in [−1, 1]. We
have

E{η(ω)} =

∫ 1

−1
· · ·
∫ 1

−1
g(x1, . . . , xn)pξ(x1) · · · pξ(xn)dx1 · · · dxn. (82)

We approximate this integral using tensor product PCM. To this end, we first construct a one-dimensional
quadrature rule with high-degree of exactness (i.e., Gauss or Gauss-Lobatto) using the methods described
in previous sections. With the one-dimensional quadrature points {x0, . . . , xM} and quadrature weights
{w0, . . . , wM} available we approximate the integral in (82) as

E{η(ω)} =
N∑

j1=0

· · ·
N∑

jn=0

g (xj1 , . . . , xjn)wj1 · · ·wjn . (83)
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Figure 6: Chebyshev-Gauss-Lobatto (GCL) nested point sets χ1
i , χ

2
i , and χ3

i .

Computational cost To compute all sums in (83) we need to evaluate all g(ξ1, . . . , xn) at (N + 1)n

points, which grows exponentially with n (dimension). In dimension n = 10 with just N + 1 = 10 points
per dimension this yields 1010 collocation points! Each “point” is a vector with n components. Hence, to
store the grid in double precision floating point (64 bits, 8 Bytes per floating point number) we need

1010 × 10× 8 = 800GB. (84)

To store g (xj1 , . . . , xjn) we need an extra 80 GB, and 1.25 Bytes for the vector of weights. Hence, similarly
to polynomial chaos, tensor product PCM suffers an exponential growth of degrees of freedom with the
dimension of the problem. However, differently than polynomial chaos, PCM is a non-intrusivemethod that
allows us to perform UQ calculations on legacy codes in a straightforward way, without coding polynomial
chaos propagators or PDF equation solvers from scratch.

Sparse Grids (SG)

Sparse grids are numerical techniques to represent, integrate or interpolate high dimensional functions.
They were originally developed by the Russian mathematician Sergey A. Smolyak, and are based on a
sparse tensor product construction [3]. The fundamental building block of sparse grids is a one-dimensional
nested points set, e.g., the Gauss-Chebyshev-Lobatto grid (112) for M = 2, 4, 8, . . ., 2s, or any other
nested point sets. To describe how sparse grids are constructed, let

χs
i = {x1i . . . , xns

i } (85)

be the nested points set in the variable xi where

n1 = 1, ns = 2s−1 + 1 (s ≥ 2), (86)

is the total number of points in the nested point set, e.g., in the Gauss-Chebyshev-Lobatto grid. In Figure
6 we provide a graphical representation of the GCL nested point set.

The level q sparse grids in d dimensions is defined as the multidimensional point set

Hd
q =

⋃
q+1−d≤i1+···+id≤q

χi1
1 × · · · × χid

d , (87)

i.e., the union of suitable Cartesian products of one-dimensional grids. As we will see sparse grids follow
naturally from the definition of Smolyak interpolant of a multivartiate function, which we will discuss in
detail in the next section. For now, we simply notice that the point set (87) is nested in the sense that

Hd
q−1 ⊂ Hd

q (88)
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Figure 7: Construction of two-dimensional Chebyshev-Gauss-Lobatto (GCL) sparse grids of level 4 (see
Eq. (89)). The final point set is denoted by H2

4 .

if χs
i is a nested point set.

Example (Level 4 Gauss-Chebyshev-Lobatto (GCL) sparse grids in two-dimensions): To derive the level 4
GCL sparse grids in two dimensions we set q = 4 and d = 2 in (87). This yields

H2
4 =

⋃
3≤i1+i2≤4

χi1
1 × χi2

2

=
(
χ2
1 × χ1

2

)
∪
(
χ1
1 × χ2

2

)
∪
(
χ3
1 × χ1

2

)
∪
(
χ1
1 × χ3

2

)
∪
(
χ2
1 × χ2

2

)
. (89)

The Cartesian product grids appearing in this expression can be easily derived by taking Cartesian products
of the elementary 1D grids shown in Figure 6. Such product grids are shown in Figure 7 In Figure 8 we
plot CGL sparse grids of level 5 and 6 in 2D and 3D.

Interpolation on sparse grids. Let Πs
i be the interpolation operator in the variable xi corresponding to

the 1D point set (85). Note that for s = 1 we have that χ1
i has only one point (see Figure 6). Therefore that

Π1
i is an interpolant at one point only (for polynomial this is the constant function). Define the difference

between two interpolation operators as6

∆0
i = 0 ∆s

i = Πs
i −Πs−1

i . (90)

The Smolyak interpolant of a multivariate function f(x1, . . . , xd) is defined as

Sd
q (f) =

∑
i1+···+id≤q

∆i1
1 ⊗ · · · ⊗∆id

d , (91)

where ij ≥ 1, and q ≥ d is a parameter called sparse grids level. To clarify the meaning of (91), let us
compute the two-dimensional Smolyak interpolant of level 3 of a two-dimensional function f(x1, x2). By

6In equation (90) Πs
i denotes the one-dimensional interpolant of a function f(x) on a grid in the variable xi.
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Figure 8: Chebyshev-Gauss-Lobatto (GCL) sparse grids of level 5 (first row) and 6 (second row) in dimen-
sion 2 (left column) and 3 (right column).

definition,

S2
3(f) =

∑
i1+i2≤3

∆i1
1 ⊗∆i2

2

=∆1
1 ⊗∆1

2 +∆2
1 ⊗∆1

2 +∆1
1 ⊗∆2

2

=Π1
1 ⊗Π1

2 +
(
Π2

1 −Π1
1

)
⊗Π1

2 +Π1
1 ⊗

(
Π2

2 −Π1
2

)
=Π2

1 ⊗Π1
2 +Π1

1 ⊗Π2
2 −Π1

1 ⊗Π1
2. (92)

The interpolant (92) is built upon the sparse gridH2
3 as shown in Figure 9. Note that each point is accounted

for only once in the final grid H2
3 (the origin is summed up twice and subtracted once). Specifically, we

have

S2
3(f) =

[
f(−1, 0)l

(1)
1 (x1) + f(0, 0)l

(1)
2 (x1) + f(1, 0)l

(1)
3 (x1)

]
l
(2)
1 (x2)+[

f(0,−1)l
(1)
1 (x2) + f(0, 0)l

(1)
2 (x2) + f(0, 1)l

(1)
3 (x2)

]
l
(2)
1 (x1)−

f(0, 0)l
(2)
1 (x1)l

(2)
1 (x2), (93)

where l
(i)
j are the Lagrange polynomials shown in Figure 9. By substituting (90) into (91) we can rewrite

the Smolyak interpolant in terms of elementary one-dimensional interpolants as

Sd
q (f) =

∑
q+1−d≤i1+···+id≤q

(−1)q−i1−···−id

(
d− 1

q − i1 − · · · − id

)
Πi1

1 ⊗ · · · ⊗Πid
d . (94)

Page 17



AM 238 Prof. Daniele Venturi

IT?☒ti + t.io/Ti-Ti-oxTL- = 5:( f)

1×2 1×2 1×2 1×2
Mm mm

mm mm mm > + • > - .=o m • >
✗
a

✗
a ✗

±

Mm mm

1
(a) + f- 10,0)l ✗a) l (a) +Ñ☒T{ = f- (-1,01%9×1) f

'"

f- 11,0 )f%×,)f
")

3 1
( Xz ) .

lÉx± ) 1^1%1×1 ) f'%, )
^

e
'"

3 1 1
( Xz )

Io

-1

,

1 -1-81
✗2

Figure 9: Construction of the Smolyak interpolant (92) and corresponding grids. Similar expression can
be derived for Π1

1 ⊗Π2
2 and Π1

1 ⊗Π1
2.

Hereafter we summarize an error estimate obtained in [1, Remark 11].

Theorem 4. Let Hs
µ([−1, 1]d) be the weighted Sobolev space of order s, with weight7

µ(x1, . . . , xd) =
[
(1− x21) · · · (1− x2d)]

]−1/2
. (95)

Then, ∥∥∥f − Sd
q (f)

∥∥∥
L2
µ([−1,1]d)

≤ C(s, d)n−s log(n)(s+1)(d−1) ∥f∥Hs
µ([−1,1]d) , (96)

where C(s, d) is a constant that depends on s and d, and n is the total number of sparse grids points
(which depends on d and q).

As easily seen, convergence is no longer spectral (unless d = 1) because of the factor log(n)(s+1)(d−1).

Integration on sparse grids. The Smolyak algorithm can be used to construct cubature formulas to
integrate high-dimensional functions. The key idea is very simple: replace the function with the Smolyak
interpolant on a sparse grid and then integrate. Assuming that the integration weight is separable as in
Theorem 4 we ∫

[−1,1]d
f(x)

d∏
j=1

µj(xj)dx ≃
∫
[−1,1]d

Sd
q (f)(x)

d∏
j=1

µj(xj)dx︸ ︷︷ ︸
Idq (f)

. (97)

7Note that the weight (95) corresponds to a tensor product of Chebyshev polynomials

Page 18



AM 238 Prof. Daniele Venturi

This yields an interpolatory quadrature rule with high degree of exactness [8]. In particular, by substituting
(94) into (97) we obtain

Idq (f) =

∫
[−1,1]d

Sd
q (f)(x)

d∏
j=1

µj(xj)dx

=
∑

q+1−d≤i1+···+id≤q

(−1)q−i1−···−id

(
d− 1

q − i1 − · · · − id

)
U i1
1 ⊗ · · · ⊗ U id

d , (98)

where

U
ij
j =

∫ 1

−1
Π

ij
j µj(xj)dxj . (99)

Example: To illustrate (98), let us integrate the two-dimensional interpolant S2
3(f) defined in (93) on

[−1, 1]2. This yields the interpolatory quadrature formula

I23 (f) =f(−1, 0)w1
11w

2
12 + f(0, 0)

[
w1
21w

2
12 + w1

22w
2
11 − w1

11w
1
12

]
+

f(0,−1)w1
12w

2
11 + f(1, 0)w1

31w
2
12 + f(0, 1)w1

32w
2
11, (100)

where

wj
ip =

∫ 1

−1
l
(j)
i (xp)µ(xp)dxp. (101)

Note that the integration weights in sparse grids are not necessarily all positive. For example, the weight
multiplying f(0, 0), i.e., w1

21w
2
12 +w1

22w
2
11 −w1

11w
1
12, could be negative. Regarding the degree of exactness,

for CGL sparse grids we have the following result (see [8, Corollary 3])

Theorem 5. Let q = σd+ τ , σ ∈ N, τ ∈ {0, . . . , d− 1} Then Idq (f) has degree of exactness{
2(q − d) + 1 if q < 4d

2σ−2(d+ 1 + τ) + 2d− 1 if q ≥ 4d
(102)

Other convergence estimates for interpolatory quadrature rules on sparse grids can be derived based on
convergence estimates of one-dimensional quadrature (see [1, Remark 11]).
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Appendix A: Chebyshev-Gauss-Lobatto quadrature

Let briefly review the main ingredients of the Gauss-Lobatto Chebyshev expansion. For more details we
refer to [6]. We first recall that the Chebyshev polynomials of the first kind are defined as8

Tk(x) = cos(k arccos(x)) x ∈ [−1, 1] (trigonometric representation). (106)

It can be shown that Tk(x) (like any other orthogonal polynomial) satisfy the three-term recurrence rela-
tion

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x).

(107)

and the orthogonality conditions∫ 1

−1
Tk(x)Tj(x)

1√
1− x2︸ ︷︷ ︸
µ(x)

dx = δkj ∥Tk∥2L2
µ
. (108)

Note that the first polynomials which gives

T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x T4(x) = 8x4 − 8x2 + 1, . . . . (109)

The Chebyshev-Gauss-Lobatto nodes are zeros of the polynomial

QM+1(x) = (1− x2)
dTM (x)

dx
, (110)

i.e., x0 = −1, xM = 1 and all maxima and minima of TM (x). By differentiating (106) with respect to x
we obtain

dTM (x)

dx
=

sin(M arccos(x))√
1− x2

. (111)

Hence QM+1(x) = 0 implies that

xj = − cos

(
kπ

M

)
j = 0, . . . ,M (Chebyshev-Gauss-Lobatto points). (112)

These points are obtained by dividing half unit circle in evenly-spaced parts and projecting them onto the
x-axis. Note also that Chebyshev grid points are nested for M = 2, 4, 8, . . ., 2s.

It can be shown that the Lagrange characteristic polynomials associated with the Gauss-Chebyshev-Lobatto
nodes are

lj(x) =
(−1)M+j+1(1− x2)

djM2(x− xj)

dTM (x)

dx
=

(−1)M+j+1
√
(1− x2)

djM2(x− xj)
sin(M arccos(x)), (113)

where xj is given in (112) and

d0 = dM = 2 d1 = d2 = · · · = dM−1 = 1. (114)

8Note that (106) are indeed polynomials. For example,

cos(arccos(x)) =x, (103)

cos(2 arccos(x)) =2 (cos(arccos(x)))2 − 1 = 2x2 − 1, (104)

cos(3 arccos(x)) =4 (cos(arccos(x)))3 − 3 cos(arccos(x)) = 4x3 − 3x. (105)
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Figure 10: Nested property of Chebyshev grids for M = 2s (s = 1, 2, 3, . . .).

For any function f(x) defined in [−1, 1] we have the following Lagrangian interpolant

ΠMf(x) =

M∑
k=0

f(xk)lk(x), x ∈ [−1, 1]. (115)

At this point we integrate (115) to obtain the quadrature formula∫ 1

−1
f(x)

1√
1− x2

dx ≃
M∑
k=0

f(xk)wk, (116)

where

wk =

∫ 1

−1

lk(x)√
1− x2

dx =
π

Mdj
(117)

and dj is defined in (114).
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Appendix B: Lagrangian interpolation at Gauss points

The quadrature rule (51) defines a discrete inner product that can be used to establish correspondence
between series expansions in terms of orthogonal polynomials9 and Lagrangian interpolation formulas. To
show this, let

f(z) ≃
M∑
k=0

akPk(z) ak =
(f, Pk)L2

µ([−1,1])

(Pk, Pk)L2
µ([−1,1])

(118)

be a polynomial expansion of f(z) in [−1, 1], where {P0, . . . , PM} is a set of polynomials orthogonal relative
to the weight function µ(z). Consider the following Gauss approximation the inner product

(f, Pk)L2
µ([−1,1]) =

∫ 1

−1
f(z)Pk(z)µ(z)dz

≃
M∑
j=0

f(zj)Pk(zj)wj , (discrete inner product) (119)

where
{z0, . . . , zM} and {w0, . . . , wM} (120)

are M +1 Gauss quadrature points and quadrature weights, respectively. Recall that the Gauss rule (119)
has degree of exactness 2M + 1 and therefore it can be used to compute

γk = (Pk, Pk)L2
µ

(121)

exactly up to k = M . A substitution of (119) into (118) yields

f(z) ≃
M∑
j=0

f(zj)

M∑
k=0

wj

γk
Pk(zj)Pk(z)︸ ︷︷ ︸
lj(z)

. (122)

In this form, we recognize that the Lagrangian interpolation formula, where

lj(z) =
M∑
k=0

wj

γk
Pk(zj)Pk(z) (123)

are Lagrange characteristic polynomials associated with the Gauss nodes (120).

The identification of the approximation (118) with the Lagrangian interpolant (122) at Gauss nodes (120)
suggests a mathematically equivalent but computationally different way of representing the function f(z).
Regarding the approximation error in (118), the following general estimate in terms of the uniform norm
holds true.

Theorem 6. Let f ∈ C0([−1, 1]) and ΠMf(z) the polynomial of degreeM interpolating f(z) at {z0, . . . , zM}.
Then

∥f(z)−ΠMf(z)∥∞ ≤ (1 + ΛM ) inf
Ψ∈PM

∥f(z)−Ψ(z)∥∞ (124)

where

ΛM = max
z∈[−1,1]

λM (z) (Lebesgue constant), (125)

λM (z) =

M∑
j=0

|lj(z)| (Lebesgue function). (126)

9We have seen in course note 5 that orthogonal polynomial expansions exhibit spectral convergence.
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Proof. The proof for the upper bound (124) is very simple. Let Ψ ∈ PM be the best approximating
polynomial

∥f(z)−ΠMf(z)∥∞ ≤∥f(z)−Ψ(z)∥∞ + ∥Ψ(z)−ΠMf(z)∥∞ . (127)

At this point, we represent Ψ(z) and Πf (z) in terms of the same set of Lagrange polynomials associated
with the grid {z0, . . . , zM} to obtain

∥Ψ(z)−ΠMf(z)∥∞ =

∥∥∥∥∥∥
M∑
j=0

[Ψ(zj)− f(zj)] lj(z)

∥∥∥∥∥∥
∞

≤∥Ψ(z)− f(z)∥∞ max
z∈[−1,1]

M∑
j=0

|lj(z)|︸ ︷︷ ︸
ΛM

. (128)

A substitution of (128) into (127) yields (124).

Note that the Lebesgue constant depends only on the set of grid points. Clearly, the smaller the Lebesgue
constant, the smaller the interpolation error in the uniform norm. It can be shown that, no matter how we
choose the points, the Lebesgue constant grows at least logarithmically with M , i.e. (see [6, p.102]),

ΛM ≥ 2

π
log(1 +M) + C as M → ∞. (129)

Note that this does not mean that the interpolation error necessarily grows with M . It just means that the
upper bound in (124) diverges as M → ∞, i.e., that we cannot grant uniform convergence of Lagrangian
interpolation using (124). For any given set of grid points there exist continuous functions for which the
polynomial interpolant exhibits non-uniform convergence. On the other hand, one can also show that for
any given continuous function one can always construct a set of grid points that will result in a uniformly
convergent polynomial approximations.

It is possible to bound the Lebesgue constant corresponding to various types grids. For instance, for
evenly-spaced grids of M + 1 points in [−1, 1] we have

2M−2

M2
≤ ΛM ≤ 2M+3

M
. (130)

Similarly, for the Gauss-Chebyshev-Lobatto (GCL) grid (112) we have (e.g., [6, p. 105])

ΛM ≤ 2

π
log(M) +B (finite M), (131)

where B is a suitable constant independent of M .

Example: In Figure 11 we plot the Lagrangian interpolant of

f(z) =
1

1 + 10z2
(132)

computed at 17 evenly-spaced nodes or 17 Gauss-Chebyshev-Lobatto (GCL) nodes (M = 16). In the same
Figure we plot the Lebesgue functions of both interpolation problems. The Lebesgue constants for the
evenly-spaced grid and the GCL grid are obtained, respectively, as

Λeq
M = 934.532 ΛGCL

M = 2.468. (133)
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evenly-spaced grid GCL grid
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Figure 11: Lagrangian interpolation of f(z) = (1 + 10z2)−1 using 17 evenly-spaced nodes (left), and 17
GCL nodes (right). The Lebesgue functions λM (z) associated with the evenly-spaced grid and the GCL
grid have maxima Λeq

M = 934.532 and ΛGCL
M = 2.468, respectively.

If we measure the interpolation error in terms of the L2
µ([−1, 1]) (instead of the uniform norm we used

in Theorem (6)) then by leveraging the correspondence between orthogonal polynomial expansions and
the Lagrangian interpolant in Eq. (122) is possible to obtain spectral convergence results. For example,
the following convergence result holds for Gauss-Legendre and Gauss-Legendre-Lobatto interpolation (see
Table 1 and [6, p. 114]).

Theorem 7. Let f(z) ∈ Hs([−1, 1]), p ≥ 1. Then∥∥∥∥∥f(z)−
M∑
k=0

f(zk)lk(z)

∥∥∥∥∥
L2([−1,1])

≤ CM−s ∥f(z)∥Hs([−1,1]) (134)

where {z0, . . . , zM} are either Gauss-Legendre points or Gauss-Legendre-Lobatto points (see Table 1).
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