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Conservative and gradient systems

Conservative systems. consider the n-dimensional nonlinear dynamical system
dx

dt
= f(x)

x(0) = x0

(1)

We say that the system is conservative if there exists a scalar field E(x) : Rn → R that remains constant1

along each trajectory of (1), and is not constant on any open subset D ⊆ Rn. This definition implies that
the trajectories of a conservative system are level sets of the scalar field E(x), i.e.,

E
(
X(t,x0)

)
= E(x0), (2)

where X(t,x0) denotes a trajectory of (1) corresponding to the initial condition x0.

A condition for a system to be conservative. How can we determine whether the system(1) is
conservative, that is, whether there exists a scalar field E(x) that is preserved along trajectories? By
definition, the quantity E(x) is conserved along solutions if and only if

dE

dt
= 0 =⇒ ∇E(x) · dx

dt
= 0 =⇒ ∇E(x) · f(x) = 0. (3)

Hence, the system is conservative if and only if there exists a scalar function E(x) whose gradient is
orthogonal to the vector field f(x) at every point x. In other words, the system (1) is conservative if there
exists a “global” solution to the following first-order partial differential equation (PDE)

∇E(x) · f(x) = 0, (4)

where E(x) is the unknown scalar function, and f(x) is the vector field appearing on the right-hand side
of (1).

Remark: We can always find a local function of (4) i.e., a function E(x) that solves (4) in a neighborhood
of some point x0. To this end, it is sufficient to consider any (n−1)-dimensional Poincaré section (a surface
transverse to the flow) in a neighborhood of a point x0, and define E(x) for all x on that section and
sufficiently close to x0. The values of E can then be extended to a neighborhood of x0 by advecting
the surface along the flow of the system for some time. Since E remains constant along trajectories by
construction, this procedure defines a local solution to the PDE (4). In general,

A few examples of conservative systems

Point mass moving on a line. Consider a point particle moving on a straight line under the action of
an external force F (x) depending only on the position x of the particle.

F(x)
m

⑧ Y m

ja X(t) X

1The value of E depends on the specific trajectory, i.e., on the initial condition x0(see Eq. (2)).
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The equation of motion is the Newton’s second law

m
d2x

dt2
= F (x), (5)

where m is the mass of the particle. Clearly, F (x) can be always written in terms of a potential energy
function V (x) as

F (x) = −dV (x)

dx
. (6)

Multiplying (5) by the velocity dx(t)/dt of the particle and collecting terms yields

d

dt

[
1

2
m

(
dx

dt

)2

+ V (x)

]
= 0. (7)

Hence, the quantity

E

(
x,

dx

dt

)
︸ ︷︷ ︸
total energy

=
1

2
m

(
dx

dt

)2

︸ ︷︷ ︸
kinetic energy

+ V (x)︸ ︷︷ ︸
potential energy

, (8)

is conserved along trajectories of (5). Upon definition of x1(x) = x(t) and x(t) = dx(t)/dt, we can re-write
(5) as a two-dimensional system of first-order ODEs

dx1
dt

= x2

dx2
dt

= − 1

m

dV (x1)

dx1

(9)

This allows us to write the energy function (8) as

E(x1, x2) =
1

2
mx22 + V (x1). (10)

Note that the gradient of energy function E(x1, x2) is orthogonal to the vector field at the right hand side
of (9). In fact,

∇E(x1, x2) · f(x) =
(
dV

dx1
,mx2

)
·
(
x2,−

1

m

dV

dx1

)
=

dV

dx1
x2 −

dV

dx1
x2 = 0. (11)

Therefore condition (4) is satisfied.

Duffing oscillator. The Duffing equation is a non-linear second-order differential equation that models
certain oscillators. In its simplest form the equation can be written as 2

d2x

dt2
= x− x3, (13)

The “potential energy” corresponding to x− x3 is

V (x) = −x2

2
+

x4

4
. (14)

2The full form of the Duffing equation has a friction term proportional to ẋ and a sinusoidal driving force

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (12)

This system can exhibit very complex dynamics, including chaotic phase similarities and recurrences (see, e.g., C. Bonatto, J.
A. C. Gallas, and Y. Ueda, “Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator” Phys. Rev. E,
77, 026217 (2008).
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Figure 1: The Duffing oscillator (13) is a conservative system. Shown are the energy function (17) and some
of its level sets. Such level sets are trajectories of the system (15). This means that we can construct the
phase portrait of the system by taking sections of the energy function and then projecting such level sets
onto the (x1, x2) plane. The Duffing oscillator has three fixed points: one saddle node at (x1, x2) = (0, 0)
and two centers at (x1, x2) = (±1, 0).

We rewrite the system (13) as 
dx1
dt

= x2

dx2
dt

= x1 − x31

(15)

Multiplying the second equation by x2 yields

x2
dx2
dt

= (x1 − x31)x2 = −dV (x1)

dt
⇒ d

dt

[
x22
2

+ V (x1)

]
= 0 (16)

Hence, the following quantity is conserved along the trajectories

E(x1, x2) =
1

2

(
x22 − x21

)
+

x41
4
, (17)

i.e., trajectories are level sets of E(x1, x2). As before the gradient of E(x1, x2) satisfies the orthogonality
condition (4). In Figure 1 we demonstrate the correspondence between the levels sets of the energy function
(17) and trajectories of the system (15).

Nonlinear pendulum. Consider the pendulum sketched in Figure 2. We know from classical mechanics
that the equation of motion is

d2θ

dt2
= − g

L
sin(θ). (18)

As before, set x1(t) = θ(t) and x2(t) = dθ(t)/dt. This allows us to write the second-order nonlinear ODE
(18) as a two-dimensional dynamical system

dx1
dt

= x2

dx2
dt

= − g

L
sin(x1)

(19)
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Figure 2: Sketch of a pendulum. The pendulum is assumed to have no friction, i.e., the only external force
acting on the point mass m is gravity.

The “potential energy” corresponding to the force F (x) = − g

L
sin(x1) is (modulus an arbitrary additive

constant)

V (x1) = − g

L
cos(x1). (20)

Multiplying the second equation in (19) by x2 we obtain

x2
dx2
dt

=
g

L

d cos(x1)

dt
⇒ d

dt

[
x22
2

− g

L
cos(x1)

]
= 0 (21)

Therefore the following quantity (total energy)

E(x1, x2) =
1

2
x22 −

g

L
cos(x1) (22)

is preserved along any trajectory of the system (19). This implies that the trajectories of the pendulum
in the phase space (x1, x2) (cylindrical phase space) are level sets of (22) (see Figure 3). As before the
gradient of E(x1, x2) satisfies the orthogonality condition (4).

Dynamics of a point mass in three-dimensional space. Consider the dynamics of a point mass m
subject to an external force field F (x). The equations of motion are obtained by applying Newton’s second
law:

m
d2x

dt2
= F (x), (23)

where x(t) ∈ R3 denotes the position of the particle at time t. The force F (x) is assumed to depend only
on the position of the particle and may arise from, for example, gravitational or electromagnetic fields.
If F (x) is a conservative vector field (see Appendix A for a review), then there exists a scalar potential
energy function V (x) such that

F (x) = −∇V (x). (24)

This allows us to write equation (23) as

m
d2x

dt2
= −∇V (x). (25)

By taking the scalar (dot) product of the vector equation (23) by dx/dt we obtain

m
dx

dt
· d

2x

dt2
= m

(
dx1
dt

d2x1
dt2

+
dx2
dt

d2x2
dt2

+
dx3
dt

d2x3
dt2

)
= −dx1

dt

∂V

∂x1
− dx2

dt

∂V

∂x2
− dx3

dt

∂V

∂x3
, (26)
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Figure 3: Nonlinear pendulum (18) for g = 9.8 m/s2, and L = 0.5 m. Shown are the energy function (22)
and some of its level sets. Such level sets are trajectories of the system (18). This means that we can
construct the phase portrait of the system by taking sections of the energy function and projecting the
corresponding level sets onto the (x1, x2) plane. The pendulum has two fixed points repeating periodically
(with period 2π): a saddle node at (x1, x2) = (π, 0) and a center at (x1, x2) = (0, 0).

i.e.,
d

dt

(
1

2
m ∥ẋ∥2 + V (x)

)
= 0. (27)

Once again, the total energy (sum of kinetic and potential energy)

E(x, ẋ) =
1

2
m ∥ẋ∥22 + V (x) (28)

is conserved along trajectories if F (x) in (23) is a potential vector field.

Dynamics of a point mass on a surface. Consider a point mass moving without friction on a surface
S(x1, x2) under the effect of gravity (Figure 4). The coordinates of the point mass in the three dimensional
space are

(x1(t), x2(t), S(x1(t), x2(t))) . (29)

This implies that the velocity v(t) of the particle on the surface can be expressed as

v(t) =

(
ẋ1(t), ẋ2(t),

∂S(x1(t), x2(t))

∂x1
ẋ1(t) +

∂S(x1(t), x2(t))

∂x2
ẋ2(t)

)
(30)

Hence, the kinetic energy of the particle is

T (ẋ1, ẋ2, x1, x2) =
1

2
m

[
ẋ21 + ẋ22 +

(
∂S(x1, x2)

∂x1
ẋ1 +

∂S(x1, x2)

∂x2
ẋ2

)2
]

=
1

2
m

[
ẋ21

(
1 +

∂S(x1, x2)

∂x1

)
+ ẋ22

(
1 +

∂S(x1, x2)

∂x2

)
+ 2ẋ1ẋ2

∂S(x1, x2)

∂x1

∂S(x1, x2)

∂x1

]
.

(31)

On the other hand, the potential energy due to gravity is

V (x1, x2) = mgS(x1, x2). (32)
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Figure 4: Dynamics of a point mass on a surface S(x1, x2) under the effect of the gravity.

The total energy of the system is

E(ẋ1, ẋ2, x1, x2) = T (ẋ1, ẋ2, x1, x2) + V (x1, x2), (33)

where T and V are given in (31) and (32). Since there is no friction E(ẋ1, ẋ2, x1, x2) is conserved along
trajectories, i.e., the system is conservative. Hence, the trajectories are level sets of E(ẋ1, ẋ2, x1, x2). In
other words, the relation between the coordinates (x1, x2) and velocity (ẋ1, ẋ2) of the point mass m is fully
determined by the level sets of E(ẋ1, ẋ2, x1, x2). The value of the level set depends on the initial condition
of the particle (position and velocity).

In the case where the surface S is a sphere, this system is called spherical pendulum. In the next course
note on Lagrangian and Hamiltonian dynamics we will see how to derive the equations of motion for this
system.

Double pendulum. Consider the double pendulum sketched in Figure 5. We can can express the position
of the point masses m1 and m2 relative to the coordinate system (x, y) as{

x1 = L1 sin(θ1)

y1 = L1 cos(θ1)

{
x2 = x1 + L2 sin(θ2)

y2 = y1 + L2 cos(θ1)
(34)

The total potential energy is the sum of the potential gravitational energies of both masses

V (θ1, θ2) = (m1 +m2)gL1 (1− cos(θ1)) +m2gL2 (1− cos(θ2)) . (35)

On the other hand, the kinetic energy is

T (θ1, θ2, θ̇1, θ̇2) =
1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
m2

(
ẋ22 + ẏ22

)
=
1

2
m1L

2
1θ̇

2
1 +

1

2
m2

(
L2
1θ̇

2
1 + L2

2θ̇
2
2 + 2L1L2θ̇

2
1 θ̇

2
2 cos(θ1 − θ2)

)
. (36)

Note that the kinetic energy is a quadratic form in θ̇1 and θ̇2. In this case, the total energy of the system
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Figure 5: Sketch of a double pendulum. Gravity acts on both masses. There is also an interaction between
m1 and m2 through the rod of length L2.

can be written as

E(θ1, θ2, θ̇1, θ̇2) =T (θ1, θ2, θ̇1, θ̇2) + V (θ1, θ2)

=
1

2
m1L

2
1θ̇

2
1 +

1

2
m2

(
L2
1θ̇

2
1 + L2

2θ̇
2
2 + 2L1L2θ̇

2
1 θ̇

2
2 cos(θ1 − θ2)

)
+

(m1 +m2)gL1 (1− cos(θ1)) +m2gL2 (1− cos(θ2)) . (37)

Remarkably, the trajectories of the double pendulum can be chaotic. Yet, they are level sets of the four-
dimensional energy function (37). In the next course note on Lagrangian and Hamiltonian dynamics we
will see how to derive the equations of motion for this system.

Properties of conservative systems. Trajectories of conservative systems are level sets of some energy
function E(x) (see Equation (2)). Based on this observation it is straightforward to prove the following
properties

• Relative maxima and relative minima of the energy function E(x) are fixed points of the system.
Moreover, trajectories nearby such fixed points are necessarily closed. In two dimensions maxima and
minima of the energy function E(x) are centers (see Figure 1 and Figure 3). In higher dimensions
such local maxima and minima define a closed trajectory on a high-dimensional torus.

• Conservative systems cannot have stable/unstable nodes, stable/unstable spirals, limit cycles, and
any other attracting or repelling set (e.g., fractal attractors) that contract/expand volume in its
neighborhood. Note that conservative system can have lines of repelling or attracting fixed points
though. For instance, the system 

ẋ1 = − sin(x2)x1

ẋ2 =
2x21x2 sin(x2)

x21 + 1

(38)

is conservative, with energy function E(x1, x2) = x21x2+x2. Trajectories are level sets of E but there
can be lines of fixed points (zero velocity) that transverse such levels sets.

• Saddle nodes in 2D conservative system are saddle points of the energy function. This is clearly
demonstrated in Figure 1 and Figure 3.
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Figure 6: Geometric meaning of the gradient −∇V (x1, x2).

Gradient systems. We say that the n-dimensional dynamical system (1) is a gradient system if it can
be written in the form

dx

dt
= −∇V (x), (39)

for some scalar function V (x) : Rn → R. In other words, a gradient system is a first-order dynamical
system whose vector field f(x) is conservative3 (see Appendix A for a review of conservative vector fields).
The flow generated by a gradient system is called gradient flow.

The function V (x) in (39) is called the potential energy associated with the vector field f(x). Note that
V (x) differs by a sign from the potential function φ(x) discussed in Appendix A. To determine whether
a given dynamical system is a gradient system, it is sufficient to check whether the vector field f(x) is
conservative, i.e., whether it satisfies the conditions for path-integral independence (see Appendix A).

As shown in Figure 6, the vector −∇V (x) is orthogonal to the level set of V (x) passing through the point
x, and it points in the direction of steepest descent, i.e., the direction in which V (x) decreases most rapidly.
To prove that ∇V (x) is orthogonal to the level set V (x) = c, let us parameterize such level set locally near
the point x using a smooth curve s(λ) such that s(0) = x, where λ ∈ R is the parameter of the curve.
Expanding s(λ) in a Taylor series about λ = 0 gives

s(λ) = s(0) +
ds

dλ
(0)λ+ · · · . (40)

Evaluating V (x) along the curve s(λ) yields

V (s(λ)) = V (s(0)) +∇V (s(0)) · ds
dλ

(0)λ+ · · · . (41)

Since the curve s(λ) lies entirely within the level set V (x) = c, the function V (s(λ)) is constant for all λ,
and thus its derivative at λ = 0 must vanish

d

dλ
V (s(λ))

∣∣∣∣
λ=0

= ∇V (x) · ds
dλ

(0) = 0.

3It is important to distinguish second-order dynamical systems with potential forces (e.g., (25)) from first-order gradient
systems of the form (39). Gradient systems are, in general, not conservative dynamical systems.
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Figure 7: Gradient systems cannot have limit cycles (a), homoclinic orbits (b), or heteroclinic cycles (c).

This shows that the gradient ∇V (x) is orthogonal to the level set of V (x) passing through x. Indeed, ṡ(0)
is the tangent vector to the curve s(λ) at the point s(0) = x, and therefore tangent to the level set at x.
Moreover, in gradient systems of the form ẋ = −∇V (x), the trajectories follow the direction of steepest
descent of V , and hence are orthogonal to its level sets4.

Remark: Gradient systems play a pivotal role in numerical optimization, e.g., when computing the (local)
minimum of a scalar function V (x). In this context, the continuous-time gradient flow (39) represents a
continuous analog of the well-known gradient descent algorithm, where the minimum of a cost function
V (x) is approximated iteratively via

xk+1 = xk − γ∇V (xk), (42)

where γ > 0 is a real number referred to as the learning rate. Equation (42) can be thought of as an Euler
forward scheme applied to the gradient system (39).

Clearly, the critical points of V (x), i.e., maxima, minima, saddles, and any other point x∗ satisfying

∇V (x∗) = 0

are fixed points of the system (39). Moreover, V (x) decreases monotonically along trajectories of the
system (39) (recall that ∇V is orthogonal to the level sets of V ). This can be also shown by a direct
calculation,

V (x(t2)) =V (x(t1)) +

∫ t2

t1

dV (x(t))

dt
dt t2 ≥ t1

=V (x(t1)) +

∫ t2

t1

∇V (x(t)) · dx(s)
dt

dt

=V (x(t1))−
∫ t2

t1

∇V (x(t)) · ∇V (x(t))dt

=V (x(t1))−
∫ t2

t1

∥∇V (x(t))∥22 dt

≤V (x(t1)), (43)

where the equality sign holds if and only if ∥∇V (x(t))∥2 = 0, i.e., only at fixed points of (39). Equation
(43) rules out the possibility of any closed orbit in gradient systems, including limit cycles, homoclinic
orbits, and heteroclinic cycles (see Figure 7).

The Jacobian matrix of a gradient system is necessarily symmetric (see Eq. (45)). Therefore it can only
have real eigenvalues. This implies that the flow of a gradient system nearby a hyperbolic fixed points
cannot have any rotating component due to complex conjugate eigenvalues, i.e., no spirals. In other words,
hyperbolic fixed points of gradient systems can only be sources, sinks, or saddle nodes!

4In contrast, for conservative systems, trajectories are themselves confined to level sets of an energy function.
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Figure 8: Sketch of a simply connected domain D ⊆ Rn. Shown are two points x0,x1 ∈ D, a path s(λ)
connecting x0 = s(0) to x1 = s(1) the vector field F (x) along the path, and the velocity vector ds(λ)/dλ.
If F (x) is conservative, then the line integral (46) does not depend on the path connecting x0 to x1.

Appendix A: Conservative vector fields

Let F (x) be a continuously differentiable vector field defined in a simply connected domain5 D ⊆ Rn. We
say that F (x) is conservative if it can be written as a gradient of some function φ : D ⊆ Rn → R, i.e.,

F (x) = ∇φ(x). (44)

There are several equivalent conditions that characterize conservative vector fields in a simply connected
domain:

a) The Jacobian of F (x) is symmetric, i.e.,

∂Fi(x)

∂xj
=

∂Fj(x)

∂xi
for all x ∈ D and for all i, j = 1, . . . , n. (45)

In two and three dimensions this condition is equivalent to the well-known condition expressing the
fact that F (x) is “irrotational” or curl-free.

b) The line integral of F (x) along a smooth curve s(λ) in D connecting two arbitrary points x0,x1 ∈ D

φ(x1) = φ(x0) +

∫ 1

0
F (s(λ)) · ds(λ)

dλ
dλ (46)

does not depend on the path connecting x0 to x1 (see Figure 8).

c) The line integral of F (x) along any smooth closed curve6 s(λ) is zero, i.e.,∫ 1

0
F (s(λ)) · ds(λ)

dλ
dλ = 0 (47)

This follows immediately from (46) if we set x1 = x0.

It can be shown that (44), (45), and path independence of (46) all imply each other. For example, if the
symmetry condition (45) is satisfied for all x ∈ D then there exists a potential φ(x) satisfying (44).

5A domain D ⊆ Rn is called simply connected if any closed curve in D can be shrunk to a point without getting out of D.
6A closed curve satisfies x0 = s(0) = s(1) = x1.
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The potential φ(x) can be determined by computing the line integral (46) along any path connecting two
points in D. In particular, if D is convex we can consider a simple line as a path

s(λ) = (1− λ)x0 + λx1 λ ∈ [0, 1]. (48)

Example: Consider the two dimensional vector field F (x) = (F1(x1, x2), F2(x1, x2)) where

F1(x1, x2) = 2x1x2, F2(x1, x2) = x21. (49)

It is straightforward to show that F (x) conservative. In fact, the Jacobain of F is symmetric for all
x ∈ R2

∂F1(x1, x2)

∂x2
= 2x1 =

∂F2(x1, x2)

∂x1
. (50)

Therefore the symmetry condition (45) is satisfied. To compute a potential φ(x), we are free to choose any
curve we like to evaluate the integral (46). So here we consider a line (48) connecting an arbitrary point
x ∈ R2 to the origin, i.e.,

s(λ) = λx
ds(λ)

dλ
= x. (51)

We have,

φ(x) =φ(0) +

∫ 1

0
F (s(λ)) · ds(λ)

dλ
dλ

=φ(0) +

∫ 1

0
F (λx) · xdλ

=φ(0) +

∫ 1

0

(
2λ2x21x2 + λ2x21x2

)
dλ

=φ(0) + x21x2. (52)

The additive constant φ(0) does not change the gradient representing F (x) in (44). Therefore we can set
it to zero. This yields the potential

φ(x) = x21x2. (53)

Let us verify that the gradient of (53) coincides with F (x). We have

φ(x) =

(
∂φ

∂x1
,
∂φ

∂x2

)
. (54)

yields the vector field (49). We have,

∂φ

∂x1
=2x1x2 (same as F1(x1, x2)),

∂φ

∂x2
=x21 (same as F2(x1, x2)).

Path invariance implies symmetry of the Jacobian. It is useful to show how (45) follows directly from
(46). To this end, consider a point x and its infinitesimal neighborhood. All points in such neighborhood
can be connected via two straight lines as follows

By imposing that the line integral of F (x) along the paths A and B above are identical we obtain7

ϵF (x) · η + νF (x+ ϵη) · ξ = νF (x) · ξ + ϵF (x+ νξ) · ξ. (57)

7Note that along the infinitesimal path (line) s(ϵ) = x+ ϵη∫ ϵ

0

F (s(ϵ)) · ds(ϵ)
dϵ

dϵ = ϵF (x) · η. (55)
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FISTresist~-⑳-- B
This equation can be simplified further by expanding F (x + ϵη) and F (x + νξ) in a first-order Taylor
series, i.e.,

F (x+ ϵη) ≃F (x) + ϵJF (x)η,

F (x+ νξ) ≃F (x) + ϵJF (x)ν. (58)

A substitution of these expansions into (57) yields

[JF (x)η] · ξ = [JF (x)ξ] · η. (59)

This condition implies (for ξ and η arbitrary) that the Jacobian of F (x) must be a symmetric matrix at
x.

Similarly, along the path s(ν) = x+ ϵη + νξ connecting x+ ϵη to x+ ϵη + νξ we have, for small ν,∫ ν

0

F (s(ν)) · ds(ν)
dν

dν = νF (x+ ϵη) · ξ. (56)
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