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1 Executive summary

In this proposal, we address a very important research area in computational mathematics, namely the de-
sign and synthesis of optimal control strategies for high-dimensional stochastic dynamical systems. Such
systems may be classical nonlinear systems evolving from random initial states, or systems driven by ran-
dom parameters or processes. The first objective is to provide a validated new computational capability for
optimal control of stochastic systems which will be achieved at orders of magnitude more efficiently than
current methods based on spectral collocation or random sampling. To accomplish this goal, we will de-
velop a new data-driven optimal control framework based on probability density function (PDF) equations
(see Figure 1). The new framework is built upon high-order numerical tensor methods, with no specific
requirements on the structure of the continuous dynamics, cost function, or the type of uncertainties. The
18 months research plan is multidisciplinary and it involves multiple fields such as optimal control, large-
scale optimization, and uncertainty quantification. It consists of theoretical and numerical developments,
as well as a general software framework that will implement the proposed algorithms. The main research
tasks are summarized in Figure 2. The proposed research work will have a significant and broad impact in a
wide range of engineering applications such as autonomous systems, environmental defense, and control of
random networks.

Figure 1: Proposed data-driven optimal control architecture, emphasizing the role of probability density
function equations instead of nonlinear dynamics in the control loop.
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2 Project scope

Figure 2: Summary of the research tasks.

2.1 Task I(a): Parallel C++ class to compute hierarchical tensor formats

In Q1 we initiated the development of a parallel C++ class to compute hierarchical Tucker tensor formats. As
of today we have available a working serial version of the C++ code, which we tested against the htucker
Matlab softare developed at École Polytechnique Fédérale de Lausanne (EPFL - Switzerland), and available
online at https://anchp.epfl.ch/htucker. The numerical results of such tests are summerized
in Section 2.1.5).

2.1.1 Brief overview of hierarchical tensor methods

Hierarchical tensor methods were originally introduced in [27] to mitigate the dimensionality problem and
memory requirements in the numerical representation of high-dimensional functions. A key idea is to per-
form a sequence of Schmidt decompositions [64] (multivariate SVDs [23]) until the approximation problem
is reduced to a product of one-dimensional functions/vectors. To illustrate the method in a simple way, con-
sider a five-dimensional function fpx1, . . . , x5q. In a hierarchical Tucker tensor representation f is written
as

fpx1, . . . , x5q “

r
ÿ

i1,¨¨¨ ,i5“1

Cri1, . . . , i5sf
1
i1px1qf

2
i2px2qf

3
i3px3qf

4
i4px4qf

5
i5px5q. (1)

where the 5-dimensional core tensor Cri1, . . . , i5s can be factored as a product of at most three-dimensional
tensors. This is true in an arbitrary number of dimensions. The tensor components fkikpxkq and the factors of
the core tensor can be computed by employing hierarchical SVDs [23, 44, 46] of suitable tensor matriciza-
tions, which we will describe in detail in Section 2.1.3. Hierarchical tensor expansions can be conveniently
visualized by graphs (see Figure 3). This is done by adopting the following standard rules: i) a node in a
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Figure 3: Graph representation of the hierarchical Tucker decomposition of a five-dimensional tensor.

graph represents a tensor in as many variables as the number of the edges connected to it, ii) connecting
two tensors by an edge represents a tensor contraction over a certain index. The 5-dimensional function (1)
may be evaluated at grid points, e.g., defined within the 5-dimensional standardized hyper-cube r0, 1s5. This
basically converts fpx1, . . . , x5q into a 5-dimensional array (tensor), which we formally write as

Ari1, . . . , i5s “ fpxi11 , . . . , x
i5
5 q, pxi11 , . . . , x

i5
5 q P r0, 1s

5 @ij . (2)

The basic problem we aim at overcoming with hierarchical tensor methods is the storage requirements of full
tensor representations such as (2). To understand how serious such problem is, consider that in dimension
5 if we use 1000 evaluation nodes in each dimension then we need to store 10005 “ 1015 floating point
numbers (in double precision), which requires approximately 8000 terabytes of memory space. From an
algorithmic viewpoint, hierarchical tensor methods can be seen as linear algebra techniques (multivariate
SVD) to “compress” multivariate arrays of arbitrary dimension into arrays of manageable size. Due to the
great practical potential of being able to compress (big) data, we find it a high priority to develop a high
performance C++ code to implement such algorithms.

2.1.2 The C++ class

In Q1 we studied how the algebraic theory of tensors [27] can be effectively implemented in a C++ class.
There are multiple perspectives with which one may view a tensor. A particularly effective one is to view
tensors as multi-linear maps from sets of integers into the reals, i.e.,

Ari1, i2, . . . , ids P R, ik P Ik @k P 1, . . . , d. (3)

Here, Ari1, . . . , ids may correspond to the discretization of a multivariate function on a grid (see, e.g.,
equation (2)). The sets Ik are called index sets. For finite-cardinality index sets, we let each i P Ik
range from 0 to #pIkq ´ 1 (where # denotes the cardinality) to match C++ indexing conventions. A
multidimensional array may be stored in C++ in different ways. A conventional approach is to allocate arrays
of memory addresses (called “pointer pointers”). Instead, we match the convention given by LAPACK: we
allocate a single array of floating point numbers and then manage indexing through the use of “column
major form” index weights. This allows lower level control of the memory and makes for more time spent
computing and less time spent allocating and de-allocating memory.

Remark 2.1 A multi-index set I1 ˆ I2 ˆ . . . Id is also an index set. The elements of this set are tuples
of integers. Since indexed sets of real numbers form a vector space, the notion of tensor described above
satisfies the vector space axioms. i.e., tensors are vectors. Basic vector arithmetic operations one might do
in Matlab or Numpy are now implemented in the tensor class.
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Remark 2.2 (Matlab-like C++ environment) We used the memory management written for the tensor
class to implement a column major form matrix class. Moreover, since the data is stored column major,
we can now use LAPACK to add in common Matlab-like commands. Some of those included are QR
factorization, singular value decomposition (SVD), and matrix multiplication. Combined with operator
overloading, this implementation of a C++ matrix object allows for programming in a Matlab-like way,
since memory management is taken care of entirely within constructors and destructors. Additional useful
routines added in are the Kronecker and Hadamard products, which are not available in LAPACK as of the
writing of this report.

2.1.3 Matricizations

Matricization is the process of taking a tensor, and generating a matrix with the same entries. To illustrate
this, consider the following steps:

1. Start with a full tensor with an entry like so

Ari1, i2, . . . , ids (4)

2. Group the indexes by permuting them around so that

ri1, i2, . . . , ids ÞÑ

„

rr1, r2, . . . , rms, rc1, c2, . . . , cd´ms



(5)

Now we let assign each rr1, r2, . . . , rms a natural number, say r P N. Do the same for rc1, c2, . . . , cd´ms,
getting the index c P N.

What we have done is giving each element of the multi-index an order pair of integers. Pairs of integers
indexing a set of real numbers is called a matrix. Let’s call that matrix B. We have described a map from a
tensor to a matrix:

Ari1, i2, . . . , ids ÞÑ Brr, cs. (6)

The choice of permutation gives us the type of matricization we have done. For example, suppose we have
a full tensor with entries Ari1, i2, i3, i4s. If we want to matricize on indexes 1 and 3, then we permute
Ari1, i2, i3, i4s ÞÑ B

“

ri1, i3s, ri2, i4s
‰

, then we count all of the indexes one at a time, in the first two indexes
and second two indexes independently. This gives us the matrix Brr, cs. Matricization is denoted by the
subset of row index labels in a superscript. So in this case, we discussed the Ap13q matricization. This is
also called the p1, 3q-mode matricization.

Remark 2.3 Matricization requires addressing every element of a tensor and allocating multiple arrays
to define indexing, floating point storage, and the maximal bounds of an index. Doing this many times
can get computationally very expensive. Matlab/Octave get around this by using the built in command
reshape(). From the Octave documentation on this command, this calls the built in Fortran command
RESHAPE(), which is a very low level implementation of array memory shape manipulation. In order to
beat scaling performance of Matlab and Octave on a desktop computer, it is required to implement a highly
efficient array reshaping function for row column form multi-dimensional arrays. An alternative may be to
implement a Fortran call into C++, like LAPACK.
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2.1.4 Brief description of the HT algorithm

Our goal is to take a full tensor, say Ari1, . . . , ids, and then generate a tree at each node containing smaller
tensors which can be used to compute individual entries ofA. The tree has one leaf for each of the 1, 2, . . . , d
indexes of A (see Figure 3). Each leaf contains a set of basis vectors corresponding to the 1, 2, . . . , 5 mode
matricizations. The internal (non-root and non-leaf) nodes contain a 3-tensor with projection information
for generating a basis corresponding to that node’s matricization. So if node has children 1 and 2, then the
3-tensor contains coordinates for generating a basis corresponding to the p1, 2q mode matricization. The
exact formula is given in [23] and it is hereafter summarized. Let Bt denote the 3-tensor at node t and
Us1, Us2 be the matrices containing the basis vectors of the children of node t. Then the i column of the
basis Ut is given by:

Utr : , is “
ÿ

j

ÿ

l

Btri, j, ls ¨ pUs1r : , js b Us2r : , lsq , (7)

where the operator : has the Matlab/Octave meaning of “all entries in this index” and b is the Kronecker
matrix product. Then (see [23]),

Bri, j, ks “

B

Utr : , is,
`

Us1r : , js b Us2r : , ls
˘

F

. (8)

All bases are generated by taking the singular value decomposition of a matricization of the full tensor A
along the indexes which correspond to a particular node. The orthogonality of the bases from a SVD is what
allows us to use relatively simple projections to generate all reduced-order tensors on the tree. To adjust the
multi-linear rank of a HT tensor, we simply take fewer left singular vectors to generate the matrices Ut at
the leaves of the tree. Lastly, we discuss the root node (white node in Figure 3). This node is similar to the
internal nodes, but instead it is only a matrix (2-Tensor), rather than a 3-Tensor. This is because there is no
parent node of the root. The projection for the Bt array at the root is the same as the one given above, but
the i index has a maximum index of 0, making the expression Br0, j, ks. In addition, Ut is a single column
vector listing every entry of the full tensor A.

Remark 2.4 Described here is the “root-to-leaves” method for computing a HT decomposition. There is a
much faster “leaves-to-root” approach which does successive products onto a “core tensor”. It has the same
error bounds (see Theorem 2.1) as the approach we just discussed. In particular, the following theorem holds
for both HT tensor approximation algorithms.

Theorem 2.1 (HT approximation error [23]). Let A be a real valued tensor of dimension d. Let k be
the max prescribed rank on each node of the tree and ε ą 0. If there exists a tensor Abest of the same rank
and ||A´Abest|| ď ε, then the singular values of Aptq, denoted by σi for each node t can be estimated by

ÿ

iąk

σ2
i ď ε2. (9)

On the other hand, if the singular values fulfill the theoretical bound
ÿ

iąk

σ2
i ď ε2{p2d´3q, then the truncation

yields a HT tensor AH such that ||A ´ AH|| ď ε. Thus, the overall accuracy depends on how many
singular values we keep in the matrix representation at the leaves. If we drop none, then we obtain an exact
representation of the full tensor in the HT form.
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(a) (b)

Figure 4: Sine function of equation (10) in (a) 2D, and (b) 3D with level sets (iso-surfaces) corresponding
to g “ 0 (green), g “ 0.2 (magenta), g “ 0.4 (blue), g “ 0.6 (purple) and g “ 0.8 (light green).

2.1.5 Numerical results: serial C++ code

As a first test for the C++ code we developed, we generated a tensor which has entries given by sampling
the following scalar function on a uniform grid in the unit hyper-cube r0, 1sd.

gpx1, x2, . . . , xdq “ sin

˜

d
ÿ

i“1

xi

¸

. (10)

It was shown in [48] that gpx1, x2, . . . , xdq can be written as

gpx1, ..., xdq “
d
ÿ

j“1

sinpxjq
d
ź

i“1
i‰j

sinpxi ` χi ´ χjq

sinpχi ´ χjq
, (11)

for any d-tuple of distinct numbers tχ1, . . . , χdu. Therefore, in principle, gpx1, x2, . . . , xdq can be written
as a fully diagonal HT decomposition with separation rank equal to r “ d. In Figure 4 we plot the function
(10) in two and three dimensions (iso-surfaces).

Next, we perform an analysis of the performance of the HT leaves-to-root decomposition algorithm. In
particular, we consider d-dimensional functions of the form (10) and compute the HT decomposition by
using both the htucker Matlab software available online at https://anchp.epfl.ch/htucker)
and our newly developed C++ code. Our results are summarized in Figure 5. It is seen that the two imple-
mentations yield nearly identical error plots, differing only on the order of machine accuracy. This suggests
that our C++ code is mathematically correct, and relatively efficient. In fact, as easily seen from the plots
of Figure 5, our code outperforms the Matlab code by 10 times in speed for small dimensions. However,
as d increases and we need to perfom more costly matricizations, the built-in Matlab reshape() func-
tion outperforms our current implentation of the C++ matricization. We are currently investigating possible
approaches to overcome this difficulty as discussed above in Remark 2.3.

2.1.6 Parallelization of the HTucker C++ class

To parallelize the algebraic routines of tensor arithmetic we used both OpenMP and MPI communication
protocols. This allowed us to store each node of the HT tree sketched in Figure 3 in its own compute
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Figure 5: Comparison of Hierarchical HT decomposition of the sine function of equation (10) utilizing
existing software tools (b) and the serial algorithm developed in this effort (a) (see section 2.1.4).

node as in Figure 6. OpenMP is used so that whatever cores are active on each compute node can perform
parallelized linear algebra operations through the use of LAPACK and ScaLAPACK.

2.1.7 Distributed memory implementation

It is natural to attempt to place one tensor or matrix in each compute node of a parallel computer (see Figure
6). This is the approach discussed in the recent paper [24]. In this Section we will explicitly state how such a
distributed memory implementation can be done using MPI. By distributed memory computer, here we mean
a computer which has multiple instances of the same program running. Each instance has an ID number and
can send or receive data from any other instance. We will be using these IDs to define what each node does
in computing an HTucker decomposition, and how nodes communicate when performing computations on
an HTucker tensor. A standard tree data structure consists of nodes containing some data and which point
to 2 children nodes, or NULL if no children. In the context of a distributed memory machine, we replace
the concept of “pointing to do different memory locations” with storing a set of integers indicating which
compute nodes refer to the left child, right child and parent. To illustrate the concept, consider the simple
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Figure 6: Parallel implementation of the HTucker C++ class for a dimension tree corresponding to a 4-tensor.

example shown in Figure 6 of a tree corresponding to a 4-tensor. Iterating from left to right in each layer, we
correspond an index to each tree node. Each node contains a data structure with 3 integers and the relevant
tensor objects for HTucker decomposition. For example, node 1 contains a parent ID of 0, a left child ID
of 3, and a right child ID of 4. For the root, the parent ID is set to 0, which is the same as its own ID.
For the leaves, the children ID numbers are set to -1. An algorithm for assigning unique ID numbers for
all nodes for arbitrary dimension trees using the scheme outlined here is implemented as a dependency for
the HTuckerMPI C++ object. The algorithm for computing the HTucker decomposition on a distributed
tree is largely the same as the method we described in Q1. The difference lies in how the data is stored
and transferred in the computer. Any time where a matrix, tensor, or some related data (e.g. number of
components in an array) is required from a parent/child node, an MPI message is passed. Using this, we can
initialize a tensor on node 0, and then send data to the rest of the tree. To this effect, we compute all the
required matricizations simultaneously. Then SVDs are all done simultaneously and the left singular vectors
are sent to the respective parent nodes. As for how this is accomplished in C++, we store an HTuckerMPI
object on each compute node. Each object contains either the root matrix, a transfer tensor, or the leaf
basis matrices. Each node using this object as an interface to communicate with all other nodes on the
tree. Addition is accomplished by concatenating tensors as is described by the Matlab HTucker manual.
The only operations required at the time taken to copy two summands into a new HTuckerMPI object.
Truncation of an HTucker tensor to another HTucker tensor is similar to going from full tensor to HTucker
(see [44]). First, we generate a set of matrices called Gramians for each node which are roughly equivalent
to the matricizations. Then we use these matrices to generate new matrices containing left singular vectors.
Finally we only the child frames in similar manner as stated in (2.1.3). As mentioned above, OpenMP is also
used in the parallelization process. Each compute node is also given the capability to compute with shared
memory in parallel. This is to say that we can take advantage of the parallelizations used in LAPACK for
computing, e.g., the SVD and the QR factorization. On the workstation used in the tests below, we have a
Intel i9-7980XE with 18 CPU cores with Hyper-Threading of 2 processes per core. So our Linux operating
system registers a total of 36 ”logical cores.” If we are to use the 4 dimensional tensor example above, then
we need to used 7 MPI compute nodes (one for each tree node). This number tells us how many cores we
can allocate to parallelizing with OpenMP. The allocation is simple, diving 36 by 7 we have maximally 5
OpenMP processes per MPI node and then one left over.
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Figure 7: Performance of the HTucker C++ class with “root-to-leaves” [44] truncation in computing the
tensor decomposition of the function in equation (12) utilizing 7 MPI nodes with up to 5 OpenMP threads
in each node.

2.1.8 Numerical results: parallel C++ code

We consider the following non-separable function to study parallel versus serial performance of the C++
code we developed

gpx1, x2, x3, x4q “ exp

„

sinp5x1x2q cosp5x3q

1` cosp10x1x4q
2



. (12)

We sample g on a 60 ˆ 60 ˆ 60 ˆ 60 grid in r0, 1s4. This yields a 4D numerical tensor with 12.96 million
entries, which requires 103.68 Mb of storage if we use double precision floating point numbers. We tested
accuracy and computational time for several different separation ranks. We start at rank 1 and then increase
the rank by 10 every iteration, until 101. Our results are summarized in Figure 7. In particular, Figure
7(a) shows that the maximum pointwise error decays more or less exponentially fast with the separation
rank r. Such error decay, is not obviously affected by the number or OpenMP threads within each compute
node. In Figure 7(b) it is seen that the parallel HTucker code indeed outperforms the serial version by a
significant margin. Specifically, we can see a reduction by 1{2 in execution time. This is not the full 1{7 one
would expect since a large overhead is introduced by telling different processing nodes to send data back
and forth. We are currently working on optimizing (minimize) communication between the compute nodes.
Even so, with this overhead we make significant gains in speed. Also, the parallel code is more suited to
larger and larger problems. If the code spends more time computing on independent cores than passing data
between cores, then we see better performance. For this particular tensor, the two implementations scale
constant with rank. This is because the last step, which actually depends on rank, is the series of projections
explained in Section 2.1.3 . However, this step takes far less time than computing all of the matricizations
and singular value decompositions, which are not currently programmed to scale with rank. Observing the
performance of the parallel code, we also see that adding more cores per compute node has a significant
impact on compute time, going down from around 60 seconds to 50 seconds.
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2.1.9 Application to a 4D Liouville equation

Consider the following four-dimensional initial/boundary value problem for the Liouville equation on the
periodic cube D “ r´1, 1s4

$

’

’

&

’

’

%

Bppt,xq

Bt
`G ¨∇ppt,xq “ 0 t ě 0, x P D,

pp0,xq “ p0pxq “
1

p4π2σ4q
exp

„

´
x2

1 ` x
2
2 ` x

2
3 ` x

2
4

2σ2



, σ “ 2.

(13)

By using the method of characteristics, it is straightforward to obtain the following exact solution (with
constantG)

ppt,xq “ p0px´Gtq. (14)

Taking partial derivatives of ppt,xq in a discrete form is done through the use of a “µ-mode” product ˝µ,
which is performed by taking the µ-mode matricization, applying the differentiation matrix to the resulting
operator. For example, the partial derivative in x1 is:

Bp

Bx1

ˇ

ˇ

ˇ

ˇ

pt,rxi1,x
j
2,x

k
3 ,x

w
4 sq

« pD ˝1 P ptqqri, j, k, ws, (15)

where we denoted byD the one-dimensional pseudospectral (Fourier) differentiation matrix, and with P ptq
the full tensor (with all indexes) at time t. The semi-discrete form of the initial/boundary value problem 13
can be compactly written in an HTucker form as

dP ptq

dt
“ ´

4
ÿ

k“1

GkD ˝k P ptq. (16)

To integrate the ODE system (16) in time, we use the the second-order explicit Adams-Bashforth scheme

P ptn`1q “ P ptnq ´
∆t

2

4
ÿ

k“1

GkD ˝k p3P ptnq ´ P ptn´1qq . (17)

By the properties of pseudo-spectral methods, we expect that accuracy depends on differentiability in space.
In particular, since the initial condition is infinitely differentiable and numerically zero on the boundary for
sufficiently small σ, we expect exponential convergence in space. As for using HTucker to solve this prob-
lem, it can be shown that multiplying a matrix into the µ leaf in the HTucker decomposition is equivalent
to taking the µ-mode product with the full tensor; summing is simply concatenation; and scalar multiplica-
tion can be accomplished by scaling the root node’s matrix by a real number. Since the data stored at each
step grows with concatenation if we do not truncate, we truncate to a given max rank at the end of every
iteration. In Figure 8 we plot a few Sections of the solution to (13) in the x1x2-plane at different times.
The rank of the HTucker decomposition is chosen to be 1, 2, and 3. Note that since a the Gaussian initial
condition is fully separable, it can be represented exactly with a rank 1 tensor format. Thus, raising rank
does not improve accuracy, but increases computation time since more data copying for each addition and
also more vectors operations. We see all this in Figure 9, where we plot the execution time needed to advect
the solution for 106 time steps (one cycle) This number was chosen because after this many iterations the
maximum pointwise error is of order Op10´4q, small enough to be a fair estimate of the solution. Next, we
study scaling with with the number of grid points, to see how the different algorithms handle growing prob-
lem size. In Figure 9 we see the execution time of the serial C++ algorithms grows roughly with power 1{2.
On the other hand, the execution time of HTucker grows much slower. This is because essentially we don’t
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(a) (b)

(c) (d)

Figure 8: x1x2-plane solutions of the initial/boundary value problem in equation (13) with x3 and x4 both
set to 2t, at times (a) t “ 0.0, (b) t “ 0.3, (c) t “ 0.5, (d) t “ 1.0.

need to compute any of the additions, and the modal products need only to be applied to the leaves. We see
that the computing time levels off entirely for a rank 1 representation. For more complicated problems, the
optimal rank in general depends on time, suggesting that the solution may increase or reduce its separability
as time integration proceeds. In this case, we can adaptively compute such optimal rank on-the-fly based on
fast error estimators.

2.1.10 Parallel linear solvers for high-dimensional systems in the HT format

In the previous Section we studied solutions to high dimensional PDEs through the use of explicit multi-step
schemes of the form

Pn`1 “ RpPn, . . . ,Pn´mq, (18)

where R is linear in each argument, and Pn “ P ptnq However, schemes of this form are not in general
stable for all contractive R. Moreover, they have increasingly restrictive time step limitations for situations
in which the iterative schemes are stable. Thus, for increased numerical stability it is often necessary to use
implicit time stepping schemes, i.e. schemes which implicitly represent the next iterate as the solution to a
linear system of equations

LpPn`1q “ RpPn, . . . ,Pn´mq, (19)

where the (big) matrix L is assumed to be invertible. In the context of hierarchical Tucker tensor formats,
solving such an equation for the next iterate with a restricted set of ranks – i.e., on a manifold of tensors
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Figure 9: Computational time required to advect the solution back to initial position (t “ 1) for the number
of collocation points in each variable, xi, utilizing 106 time steps from t “ 0 to t “ 1.

with constant rank – is computationally difficult, as it requires Riemannian optimization.1 Perhaps, the
simplest prototype problem one can think of is an equation of the form (19), where L “

Âd
k“1Ak is a

tensor (Kronecker) product of invertible matrices. For this case there is an analytic solution of the form
L´1 “

Âd
k“1A

´1
k . An example of a more difficult non-separable case is the elliptic problem

∇2φpxq “ fpxq x P Rd, (20)

where the Laplace operator in d dimensions is defined as

∇2 “

d
ÿ

k“1

I1 b ¨ ¨ ¨ b Ik´1 bD
2
k b Ik`1 b ¨ ¨ ¨ b Id. (21)

Here D2
k denotes the second-order derivative operator on a variable xk. Written in this form we can see that

attempting to directly invert this operator is not a simple task, though such inversions do exist (see, e.g.,
[26]). A possible approach to solve high-dimensional linear systems of the form (19) by using HTucker
tensor formats is to reformulate the problem as an optimization problem. With this in mind, we aim at
computing the solution to (19) by solving the following problem

Pn`1 Ð argmin
P

||LpP q ´RpΦn, . . . ,Φn´mq||
2
2 (22)

subject to: P is a HT tensor with constant rank

It was shown in [16] that the problem above can be expressed as an optimization on a Riemannian manifold
defined by the constrained ranks of P . Roughly speaking, a Riemannian manifold is a topological space
which is locally flat and has an inner product which smoothly varies from one point to another. We can
find a local minimum to the optimization problem above by using the Riemannian line search algorithm
described in [16], which is locally convergent [2, 30]. The algorithm involves a retraction step which can
be accomplished via high-order singular value decomposition [30].

1Solving the linear system (19) on a tensor manifold with constant rank allows us to avoid the computationally intensive “rank
reduction” step, which cannot be avoided if explicit schemes are used to solve high-dimensional Liouville equations.
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Table 1: Preliminary results of the Poisson boundary value problem, equation (20) using the HTucker lin-
ear solver outlined in Section 2.1.10, with Riemann line search algorithm, 4th-order finite differences and
Dirichlet boundary conditions.

Numerical solution of∇2φ “ f with HT-tensors and Riemannian optimization
Dimension pdq Iterate Riemannian gradient Residual Max rank
2 320 3.16413e-1 4.84126e-05 4
3 124 2.61959e-2 1.51751e-05 5
4 32 4.41596e-3 5.14874e-05 3

2.1.10.1 Preliminary numerical results: To test the performance of the parallel linear solver we devel-
oped based on Riemannian line search, we have implemented a discrete form of Poisson’s equation (20)
with Dirichlet boundary conditions on the hyper-cube r0, 1sd. To construct a benchmark solution to such
problem, we take the function

φpxq “

d
ź

k“1

sinpπxkq

2` sin

˜

sπ
d
ź

k“1

xkq

¸ (23)

and compute its Laplacian ∇2φ. This gives us the forcing f , which we approximate with 4th-order finite
differences. The Riemanian optimization problem to compute the solution to the Poisson equation (20) can
be formulated as follows

argmin
P

}LP ´ f}22 subject to: P is a HT tensor with constant rank. (24)

Here L is the discrete form of the Laplace operator (21), while f is an HT tensor representing the right hand
side of (20).

In Table 1 we summarize the preliminary numerical results we obtained for d “ 2, 3, 4. The frequency
parameter s in (23) was chosen to be 1, specifically with the idea that a smoother unknown function will
yield smaller hierarchical ranks. The number of collocation points along each axis of the box r0, 1sd is set to
31. The stopping condition used is to halt the iterations when there did not exist a step size small enough (but
nonzero within floating point definition) to impact the value of the cost function within machine accuracy.
The ranks were chosen based on several numerical tests, with the results yielding lowest found residuals
given in Table 1. Based on numerical findings of these preliminary tests, it would appear that it is easier to
find a decrease step size in low dimensions. This can be seen by the fact that larger dimensions failed to
find a next viable iterate sooner, when [2] showed that such an iterate should always exist. With problems
stated, it should be emphasized that the residual was brought down to near 10´5. We are currently working
on implementing a more advanced optimization framework – such as the Gauss-Newton method derived in
[16] – to compute the solution to (22).

2.2 Task I(b): Data-driven methods to compute PDFs and flow maps

Consider the n-dimensional system of autonomous first-order ordinary differential equations,

9x “ Gpxptqq, xp0q “ x0 „ p0pxq, (25)
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where p0pxq is a given probability density function (PDF). For any fixed initial condition, the solution is
determined by the flow map

x “ Φpx0, tq, (26)

which is a function of both the initial condition x0 and time t. It can be shown [9] that the forward flow map
satisfies the flow map equation

BΦpx0, tq

Bt
´ pGpx0q ¨∇qΦpx0, tq “ 0 Φpx0, 0q “ x0. (27)

Similarly, the inverse flow map satisfies the initial value problem

BΦ0px, tq

Bt
` pGpxq ¨∇qΦ0px, tq “ 0, Φ0px, 0q “ x. (28)

When considering uncertainty, the PDF of the state vector x at time t can be found by solving the Liouville
equation

Bppx, tq

Bt
`∇ ¨ rppx, tqGpxqs “ 0. (29)

The analytical solution to (29) can be expressed with the method of characteristics as

ppx, tq “ p0pΦ0px, tqq exp

„

´

ż t

0
∇ ¨GpΦpx0, τqqdτ



, (30)

where Φ0px, tq is the inverse flow map [19] satisfying (28). From (30), we see that if the system is volume-
preserving, i.e., if∇ ¨G “ 0 then we have

ppx, tq “ p0pΦ0px, tqq. (31)

This means, in particular, that the level sets of p0 are preserved throughout the dynamics. This allows us to
track the support of the joint PDF ppx, tq by propagating forward in time the almost-zero level set.

Remark 2.5 For a large class of control systems, e.g., control affine systems, it is possible to design state
feedback control to make the system (25) divergence-free. Such property can be explored to design optimal
closed-loop controls that leverage divergence-free dynamics.

2.2.1 Data-driven approximation of probability density functions using deep neural nets

Machine learning offers an efficient way to compute data-driven solutions of partial differential equations
[57]. In Q1 we implemented several algorithms that leverage deep neural networks (designed in TensorFlow
[1]) to approximate the PDF of prototype low-dimensional dynamical systems. The algorithms are built
upon two different types of neural nets

• Data-driven neural nets;

• Physics-informed data-driven neural nets (PINN).

In the first case, the PDF of the system is estimated by training the neural net sketched in Figure 10 entirely
with sample paths2 of (25). In practice, we minimize a cost function of the form

MSEdatapθ1, ...,θM , tq “
1

Nd

Nd
ÿ

k“1

”

log
´

ppxpkq, tq
¯

´ log
´

p̂pxpkq, tq
¯ı2

, (32)

2Training the neural net as shown in Figure 10 can be done at a specific time t, e.g., at final time or at an entire sequence of time
instants between two prescribed times. In the latter case we aim at learning and the entire dynamics of the joint PDF ppx, tq, i.e.,
from t “ 0 to t “ tf .
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Figure 10: Architecture of a feed-forward neural net for approximating ppx, tq by a composition of func-
tions: p̂px, tq “ gM ˝ gM´1 ˝ . . . g1px, tq.

where ppxpkq, tq is obtained by solving (29) with the method of characteristics, p̂pxpkq, tq is the neural net
representation

p̂px, tq “ gM ˝ gM´1 ˝ . . . g1px, tq (33)

evaluated at x “ xpkq, N is the number of sample paths, and θj “ tWj , bju are the free parameters in the
j-th activation function. For example, g2 ˝ g1px, tq “ tanhrW2 ¨ g1px, tq ` b2s “ tanhrW2 ¨ tanhpW1 ¨

rx, ts ` b1q ` b2s. The parameters are optimized during model training so that the output p̂
`

xpiq, tpiq
˘

is as

close as possible, in some norm, to the training data p
`

xpiq, tpiq
˘

. In (32), xpkq “ Φpx
pkq
0 , tq denotes the the

position of the particle xpkq0 at time t, which can be easily determined by integrating system (25) from the
initial condition xpkq0 .

In the second case, i.e., in the physics-informed data-driven neural net (PINN) setting, we augment the
cost function with a penalty term that represents the magnitude of the residual we obtain when we substitute
the neural net representation (33) into the Liouville equation (29), i.e.,

Rpx, tq “
Bp̂px, tq

Bt
`∇ ¨ pGpxqp̂px, tqq . (34)

In this case, the cost functional we consider is

MSEPINNpθ1, ...,θM , tq “MSEdatapθ1, ...,θM , tq ` µMSELpθ1, ...,θM , tq, (35)

where µ is penalty parameter and

MSELpθ1, ...,θM , tq “
1

Nc

Nc
ÿ

k“1

”

Rpxpkq, tq
ı2

(36)

is the mean square error associated with the residual of the Liouville equation. As before, xpkq “ Φpx
pkq
0 , tq

(Φ is the flow map generated by (25)). The residual (34) can be easily evaluated by using automatic differ-
entiation techniques applied to (33).

2.2.1.1 Prototype dynamical system In the following Sections we study the effectiveness of PINN and
other methods to predict the PDF and the flow map of the two-dimensional divergence-free nonlinear dy-
namical system

#

9x “ 2xy ´ 1

9y “ ´x2 ´ y2 ` µ
(37)

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

15



The phase portraits of the system (37) are plotted in Figure 11 for different values of the parameter µ. We
observe that the system undergoes two saddle node bifurcations at µ “ 1.

Figure 11: Phase portraits of the system (37) for different values of µ.

2.2.2 Brief description of the machine learning algorithms we implemented

In this Section, we outline our first implementation of the data-driven machine learning algorithms to esti-
mate the joint PDF of the solution to the dynamical system (25).

Data-driven machine learning This algorithm is purely based on data, i.e., sample trajectories of (25),
without the PDE constraint represented by the Liouville equation. Specifically, we use the bare-bones feed-
forward neural net sketched in Figure 10 with the cost function defined in (32).

Physics-informed data-driven machine learning This algorithm operates as follows:

1. Set up two deep neural nets using, e.g., TensorFlow [1].

• The first net learns an approximation of PDF, p̂px, tq « ppx, tq. To this end, we generate a train-
ing data set

 `

xpiq, tpiq
˘

, p
`

xpiq, tpiq
˘(

, i “ 1, . . . , Nd, by forward and/or backward integration
of (25) from many different spatio-temporal points

`

xpiq, tpiq
˘

and evaluation of p
`

xpiq, tpiq
˘

by

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

16



Figure 12: Training physics-informed neural nets (PINN).

Figure 13: Predicting with trained physics-informed neural nets (PINN).

(30). This is a supervised learning scenario with inputs
 `

xpiq, tpiq
˘(

and outputs
 

p
`

xpiq, tpiq
˘(

(see Figure 10).

• The second net is constructed using TensorFlow’s built-in automatic differentiation to estimate
the partial derivatives of p̂. It has the same parameters as the first net, and penalizes approxima-
tions p̂, which in general does not satisfy the Liouville equation (29).

2. The two nets are trained simultaneously with the cost function (35) (see Figure 12).

3. Once training is complete, we can use the first net to obtain fast approximations to the probability
density function at any point (see Figure 13).

2.2.3 Generating training data

Generating training data for neural nets is not exactly a straightforward process. Backward integration from
points xpiq may yield initial points with rather arbitrary positions. In this case, numerical integration will
take a very long time and may eventually fail. Forward integration from a set of points xpiq0 „ p0pxq will
always yield well-defined data with non-zero probability, so long as the dynamical system (25) meets some
basic conditions. However, this data may not be well-structured for the purpose of representing ppx, tq. For
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divergence-free systems, feed-forward sampling can provide a reasonable approximation of the support of
ppx, tq. Hence we can construct a convex hull around the points xpiq “ Φ

´

x
piq
0 , t

¯

to estimate this support.
We can then “fill in” the rest of the convex hull by backward integration. We need to find other methods
for systems with divergence, since for these it is harder to estimate the support of ppx, tq directly from
Φ
´

x
piq
0 , t

¯

.

2.2.4 Numerical results

In this Section we present the numerical results we obtained by training the feed-forward and PINN neural
nets with sample trajectories of (37) for the purpose of predicting the joint PDF of the state vector. In
particular, we tested the following different scenarios:

• Prediction of the joint PDF at final time with feed-forward neural nets;

• Prediction of the full dynamics of the joint PDF with feed-forward neural nets;

• Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN).

Hereafter, we analyze each case in detail, and discuss our numerical findings.

2.2.4.1 Prediction of the joint PDF at final time with feed-forward neural nets By using the method
of characteristics, we randomly generated PDF data points at time t “ tf (tf variable) for the two-
dimensional divergence-free test system (37) with µ “ 5. We chose the initial PDF p0px, yq to be the
product of two independent Gaussians with means µx “ µy “ 0.75 and variances σ2

x “ σ2
y “ 0.25. We

learned the final time PDF using standard TensorFlow [1] without any secondary physics-informed neural
net [57]. We used an L-BFGS [10] optimizer and a tanhpq activation function for the neural net, and var-
ied the configurations of the hidden layers to increase performance. In addition, before feeding data to the
neural net, we mapped spatial data px, yq to r´1, 1s, where tanhpq is steepest, and took the logarithm of the
probability data. Learning the log probability ensured that the model would preserve positivity of the PDF.
Where the probability was too small, we set it to a minimum threshold e´15 « 3.06 ˆ 10´7, so that there
wouldn’t be any numerical problems when we took the logarithm.

Data generation We generated initial conditions
´

x
piq
0 , y

piq
0

¯

„ p0px, yq, i “ 1, . . . , Ns, and numer-

ically integrated to t “ tf to obtain
`

xpiq, ypiq
˘

. The probability data p
`

xpiq, ypiq, t “ tf
˘

was obtained
using the solution to the Liouville equation (30). We then enclosed these points in a rectangle and built an
Nm ˆ Nm uniform grid of points

`

xpiq, ypiq
˘

, i “ 1, . . . , N2
m, from which we propagated backwards and

used the Liouville equation to get probability data. This provides a total of Nd “ Ns ` N2
m training data.

For model validation, we checked the neural net predictions on a uniform grid over the same area as the
training data.

Model training In Figure 14, we visualize the training data and neural net reconstruction of the initial
PDF p0px, yq and the final time PDF ppx, y, t “ tf q for tf “ 0.5 and tf “ 1.0. We observe that the
dynamics (37) rapidly advect the smooth Gaussian into a thin curve. In Table 2 and 3 we present speed and
accuracy results for estimating ppx, y, t “ 1.0q depending on the architecture of the neural net. For Table
4 and 5 we fixed the architecture and varied the amount of training data fed to the net. This let us test the
sensitivity of the net to data availability and determine good ratios of forward propagated data to backward
propagated data.
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Figure 14: Training data (top, 100, 200, and 2000 points, left to right) and 1000 ˆ 1000 reconstructions
(bottom) of initial PDF p0px, yq, ppx, y, t “ 0.5q, and ppx, y, t “ 1.0q, left to right, using 8 hidden layers
with 20 neurons each.

Discussion We immediately observe that the initial Gaussian is very easy to reconstruct. It can be
learned to Op10´4q accuracy in seconds with only a hundred or so training data points. At tf “ 0.5, we
can still reliably reconstruct the PDF using only 200 points. As we advance time, however, the regression
problem becomes more difficult as the approximate support of ppx, y, tq advects into a thin curve with steep
slopes. Thus we require more training data, and deeper neural nets are more reliable for learning the PDF.
Table 2 shows that deeper neural nets tended to be more accurate; in particular we should use at least 6
hidden layers for this problem. Meanwhile, there appears to be little benefit to increasing the number of
neurons per layer, except for several models which achieved Op10´4q RMSE on fortunate training sessions.
Table 3 reveals that we can make nets deeper with minimal increase in training time, whereas increasing the
width of nets is costly. At the same time, all the trained nets can produce one million outputs for plotting
in a fraction of a second. Meanwhile, generating only Nv “ 2500 validation data points by numerical
integration took around 8 seconds on average. Thus, as we expect, neural nets are slow to train but incredibly
fast once they are trained. In Table 2 we observe that, apart from a few outliers, increasing the number of
data points generally improved accuracy. However, the kinds of training points used was also relevant. As
discussed previously, using more forward propagation points provides more resolution of the PDF within
the approximate support, while using more meshgrid points yields better boundaries for this region. There
appeared to be a limit to the usefulness of increasing the fineness of the meshgrid, however. Perhaps using
too many grid points gave the net too much weight on putting zeros outside of the approximate support, and
not enough weight to learning the shape of the PDF within the approximate support. Increasing the amount
of data points had some relation to increased training time, but not as much as one might expect.

2.2.4.2 Prediction of the full dynamics of the joint PDF with feed-forward neural nets Here we
employed feed-forward deep neural nets to learn the whole temporal evolution of the joint PDF ppx, y, tq,
within the time interval t P r0, 1s.
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Table 2: Validation RMSE results for estimating the final time PDF ppx, y, t “ 1.0q for training data, Nd,
fixed at 2000, Ns “ 1100 points for forward propagation, Nm ˆNm “ 30ˆ 30 uniform grid for backward
propagation, measured for Nv “ 2500 points on a 50ˆ 50 uniform grid.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 3.27 e–02 1.29 e–02 1.68 e–02 6.66 e–03
4 1.58 e–02 1.10 e–03 1.21 e–03 2.03 e–03
6 1.42 e–03 8.18 e–04 7.50 e–04 4.75 e–03
8 1.54 e–03 4.01 e–04 1.91 e–03 5.24 e–03

10 1.08 e–03 2.33 e–03 5.44 e–03 2.21 e–03
12 2.70 e–03 5.31 e–03 2.42 e–03 7.97 e–03

Table 3: Training time for estimating the final time PDF ppx, y, t “ 1.0q for training data (Nd “ 2000) and
validation data (Nv “ 2500) using TensorFlow 1.8 [1] on a 2012 MacBook Pro with 2.5 GHz Intel Core i5
processor and 4 GB RAM.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 22 s 69 s 88 s 97 s
4 35 s 60 s 78 s 90 s
6 35 s 44 s 108 s 104 s
8 22 s 82 s 99 s 172 s

10 50 s 60 s 120 s 160 s
12 46 s 76 s 158 s 195 s

Data generation We used another heuristic data generation algorithm based off the one we used for
the final time PDF. This process is summarized in four steps below.

1. First we discretized the time interval t P rt0, tf s into Nt number of distinct snapshots. About one
third of the snapshots tk were from a uniform discretization of the interval, including the endpoints.
The remaining two thirds were randomly sampled from a half-normal distribution and mapped to the
interval so that they would cluster closer to tf . That is, we constructed a time discretization which
was coarser near t0 and finer near tf . Having higher-resolution data near tf was helpful for our test
system (37), as the dynamics advected the initially smooth Gaussian into a thin curve, and moreover,
the speed of the advection increased with time. For other systems, the distribution of time snapshots
may need to be adjusted to improve performance.

2. As before, we randomly sampled a set of Ns initial conditions
´

x
piq
0 , y

piq
0

¯

„ p0px, yq, and prop-

agated those forward to obtain data points at teach time step,
`

xpi,kq, ypi,kq, tk
˘

, i “ 1, . . . , Ns,
k “ 0, . . . , Nt ´ 1. Since the system was divergence free, it was trivial to assign probability data
ppi,kq “ p0

´

x
piq
0 , y

piq
0

¯

to each point, but even with divergence, fitting the solution to the Liouville
equation (30) in here would not be difficult.

3. Next we used two rounds of backward integration from each time snapshot tk. In the first round, we
built anNmˆNm uniform grid over the forward samples at each individual time snapshot. Backward
numerical integration and the solution to the Liouville equation again supplied probability values.
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Table 4: Validation RMSE measures for Nv “ 2500 data points on a 50 ˆ 50 uniform grid for estimating
the PDF ppx, y, t “ 1.0q using 8 hidden layers and 20 neurons per-layer.

Forward propagation points
800 900 1000 1100 1200 1300 1400

G
ri

d
po

in
ts 400 6.49 e–04 3.17 e–03 4.40 e–03 1.11 e–02 1.31 e–02 9.52 e–03 3.11 e–04

625 1.85 e–02 1.16 e–03 4.45 e–02 1.28 e–03 6.66 e–04 6.69 e–03 1.37 e–02
900 6.18 e–03 5.89 e–03 4.51 e–04 4.01 e–04 6.95 e–04 8.65 e–04 5.84 e–04
1225 1.03 e–02 9.38 e–04 9.73 e–03 7.15 e–03 7.43 e–03 1.86 e–03 3.79 e–03
1600 2.54 e–02 1.22 e–03 2.38 e–03 1.74 e–03 7.12 e–03 1.24 e–03 2.56 e–03

Table 5: Training time of a neural net with 8 layers and 20 neurons per layer, for estimating the PDF
ppx, y, t “ 1.0q.

Forward propagation points
800 900 1000 1100 1200 1300 1400

G
ri

d
po

in
ts 400 58 s 67 s 67 s 50 s 52 s 94 s 71 s

625 37 s 63 s 85 s 79 s 70 s 45 s 104 s
900 140s 62 s 83 s 82 s 75 s 75 s 79 s

1225 62 s 86 s 60 s 67 s 88 s 82 s 69 s
1600 69 s 76 s 66 s 87 s 116 s 86 s 77 s

This first grid encouraged the net to learn the boundaries of approximate support of the PDF at each
time step.

4. In the second round, for each time snapshot we constructed an additionalNmˆNm grid over the whole
spatial domain visited by the forward samples over all time t P rt0, tf s, and integrated backward from
there. This second grid supplied data further outside the approximate support at each time, which
allowed for better interpolation in between time steps as the net saw the whole spatial domain over
the whole time interval. This process yields Nd “ Nt

`

Ns ` 2N2
m

˘

total training data. For a visual
example, see Figure 15.

We did not, however, track the flows backward in time and save them at each timestep. The reason we
avoided this extension is because backwards integration faces some numerical issues making these data un-
reliable. Some unlucky data points would be flung far away from the region of interest, and training on
these outliers could cause problems. Validation data was taken from a uniform sampling on the space and
time domains trained on by the model. This appeared to give a good indication of how well the model per-
formed, as indicated by visually inspecting the plots of p̂px, y, tq at various times t. Unfortunately, all these
decisions are decidedly heuristic and based on the problem at hand (37). Data generation is undoubtedly the
main component of this method that can be improved in future work.

Model training In Figure 16, we visualize the neural net reconstruction of training data of the PDF
ppx, y, tq at time snapshots tk “ 0.0, 0.5, and 1.0. This time, instead of requiring three separate training
sessions, the neural net is trained once for the whole time interval t P r0.0, 1.0s, and we plot data only from
these points. Tables 6 and 7 include results on the training speed and accuracy of the neural net depending
on the net architecture. Tables 8 and 9 include results on the training speed and accuracy of the neural net
depending on the availability of training data.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

21



(a) (b)

Figure 15: Forward/backward sample strategy for generating PDF data at t “ 0.5 with Ns “ 100 forward
samples, and two Nm ˆNm “ 10ˆ 10 grids of backward samples shown in (a) and (b).

Discussion Tables 6 and 8 show typical Op10´3q accuracy over time and space for the time dependent
model trained without a PINN. This is not as good as the Op10´4q accuracy of the final time model. Even
so, the time dependent error takes into account all time instances in the interval r0.0, 1.0s, thus the net is
able to accurately estimate the PDF at times not represented in the training data. Moreover, we observe that
the time dependent model is able to more reliably reconstruct the PDF at later times (i.e. t Ñ 1.0). That
is, often the final time PDF model would have to be re-trained once or twice to get Op10´3q RMSE, while
we typically obtained this kind of accuracy on the first try with the time dependent model. We suspect that
having time as an additional input gave the net additional structure to learn from. The results in Table 6
indicate that accuracy is improved both by increasing the depth and width of the net. Of course, this came at
the cost of increased training time, as seen in Table 7. Finally, Table 8 shows that the net can learn the time
dependent PDF accurately with as few as around 3000 training data, which is not significantly more than
was needed for the learning ppx, y, t “ 1.0q. Increasing both the number of time snapshots and the data
points per snapshot improved accuracy somewhat, up to Op10´3q. Increasing the number of time snapshots
appeared to be more helpful than increasing the number of points in each snapshot.

2.2.4.3 Prediction of the full dynamics of the joint PDF with physics-informed neural nets (PINN)
Using the same training data generation algorithm as for the time-dependent model learned from data only,
we implemented a physics-informed neural net [57] to approximate ppx, y, tq as described previously. To
this end, we leveraged TensorFlow’s [1] automatic differentiation capabilities to compute the partial deriva-
tives Bp̂{Bt, Bp̂{Bx, and Bp̂{By and added an MSE penalty to neural net (see equation (35)). This additional
penalty was enforced on both the training data points and a set of collocation points randomly generated
by Latin hypercube sampling from the spatial domain and time interval trained. In Table 10 we summarize
accuracy results for the PINN depending on the net architecture. With the PINN, we can now reliably obtain
Op10´4q validation error with only half the number of training data we used before. These nets benefit from
having at least 20 or 30 neurons per layer, and the performance tends to improve if we make the net deeper.
Unfortunately, these nets also take around twice as long to train as the standard neural net (compare Table
11 with Table 7). With enough collocation points, we can also compensate for having only a few training
data points, as seen in Table 12. These collocation points can be generated in a small fraction of a second,
but adding more collocation points does increase the training time significantly (see Table 13), so overall
there are no time savings with this method. The improved accuracy gained by using a PINN may be worth
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Figure 16: Training data (top) and PDF reconstruction (bottom) using 8 hidden layers and 20 neurons per
layer, at times t “ 0.0, 0.5, and 1.0.

the increased training time, depending on the problem. This will be important moving forward, as some
systems may be more poorly behaved than (37), especially once we address systems with divergence and
control.

Discussion The physics-informed neural net looks to be superior to the standard deep neural net for
the time-dependent problem, and has advantages over the neural net for estimating the final time PDF. These
are, specifically, robustness to poor data, and, of course, the availability of p̂px, y, tq for all t P rt0, tf s. This
could eventually open up the possibility of using control to steer the PDF around obstacles. The disadvantage
here was increased training time (prediction was still order of magnitudes faster than numerical integration).
We expect that deploying these programs on a GPU will close this gap. Before we can successfully use this
method for control, we will need to address three challenges.

1. The current heuristic data generation scheme can be improved. Time snapshots, for example, could be
chosen adaptively to reflect the speed of the time evolution of the system (more snapshots where the
evolution is faster). Moreover, we need not generate only a fixed number of time snapshots and grids
at each snapshot – data can be distributed throughout the whole space-time domain. Also, we may be
able to improve the first round of backward sampling by choosing points in a concentrated way around
the forward samples. Specifically, we could build a convex hull around the forward samples and do
backward sampling within that hull, assigning more samples near those points identified to be close
to the boundary of the hull. This could provide both better resolution data within the approximate
support of ppx, tq, as well as a better resolution of the boundary. A method for constructing the hull
and identifying points close to the boundary was proposed in [70].

2. Aside from the PINN, the neural net architecture we used here was very bare-bones. Many sophisti-
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Table 6: Validation RMSE results measures over Nv “ 2500 data points for estimating the time dependent
PDF ppx, y, tq over the interval t P r0.0, 1.0s using Nd “ 5000 training data distributed in 10 snapshots.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 7.81 e–02 3.84 e–02 4.00 e–02 7.48 e–02
4 1.66 e–02 1.54 e–02 2.28 e–02 5.05 e–03
6 1.66 e–02 2.07 e–03 3.04 e–03 3.01 e–03
8 4.14 e–02 1.10 e–03 9.64 e–03 3.57 e–03

10 7.28 e–03 3.13 e–03 2.40 e–03 5.48 e–03
12 3.22 e–03 7.86 e–03 4.74 e–03 4.76 e–03

Table 7: Neural net training time for estimating the time dependent PDF ppx, y, tq described in Table 6.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 50 s 127 s 153 s 180 s
4 74 s 146 s 182 s 246 s
6 101 s 159 s 194 s 258 s
8 187 s 143 s 214 s 261 s
10 111 s 213 s 222 s 324 s
12 164 s 219 s 357 s 400 s

cated improvements to this basic architecture have been developed, which we can test. For example,
we can regularize the parameters θ of the net by adding an `1pθq or `2pθq penalty term to the train-
ing cost function (35). This will reduce the likelihood of having large parameters which can cause
unexpected behavior.

3. Lastly, we point out that PINNs are still rather underdeveloped methods. Here we used a direct
application of the method described in [57], which imposes the governing PDE on the model with a
single penalty term (36). Since the problem is highly non-convex, minimizing this term once is in no
way guaranteed to yield a satisfying solution. To address this, we will develop a way to enforce the
Liouville equation (29) as a constraint, which could further improve the efficacy of the PINN.

• Explicit constraints are difficult to implement in neural nets. To get around this, one possibility
is to manually encode a sort of penalty method by training in epochs. That is, we retrain the
net multiple times, each time increasing the weight of the second term (36) in the training cost
function (35). If the optimization converges, then intuitively we expect that in the limit, the
Liouville equation will be enforced as a constraint (we will need to prove this conjecture). We
can increase the weight of the constraint term either by simply scaling it, or by increasing the
number of collocation points fed to the net. The second option (or a combination of the two)
may be preferable, since using fewer points at the start will reduce computation time.

2.2.5 Refining physics-informed deep neural networks

This physics-informed neural network algorithms we described in Section 2.2.1 do not consider the relative
magnitudes of the two error terms, nor does it seek to satisfy the governing Liouville equation (29) as a
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Table 8: Validation RMSE results for estimating the time dependent PDF ppx, y, tq over the interval t P
r0.0, 1.0s using a neural net with 8 hidden layers and 20 neurons per layer.

Points per snapshot
200 300 400 500 600 700

Sn
ap

sh
ot

s 6 7.30 e–02 6.08 e–02 6.35 e–02 2.52 e–02 1.77 e–02 8.81 e–03
8 3.06 e–02 7.34 e–03 2.06 e–03 3.52 e–03 1.21 e–02 2.63 e–02

10 7.82 e–03 2.90 e–03 2.51 e–03 1.10 e–03 2.78 e–03 3.02 e–03
12 2.00 e–02 2.97 e–03 4.96 e–03 7.71 e–03 6.53 e–03 3.67 e–03
14 4.19 e–03 2.73 e–03 2.61 e–03 5.71 e–03 2.39 e–03 1.42 e–03

Table 9: Training time of a neural net with 8 hidden layers, 20 neurons per layer, for estimating the time
dependent PDF ppx, y, tq over the interval t P r0.0, 1.0s.

Points per snapshot
200 300 400 500 600 700

Sn
ap

sh
ot

s 6 106 s 101 s 84 s 141 s 139 s 125 s
8 69 s 101 s 117 s 124 s 146 s 117 s
10 86 s 108 s 133 s 143 s 159 s 131 s
12 138 s 138 s 146 s 154 s 210 s 211 s
14 109 s 128 s 193 s 310 s 256 s 248 s

constraint. In particular, since it only imposes a penalty, we often see that the training optimization gets
caught in a local minimum, which yields unsatisfying solutions. To overcome this difficulty, we tested two
refinements (and their combination) of the way MSEL in included in the optimization process.

• The first method consists in updating the weight of the penalty term MSEL, i.e., the parameter µ in
(35), as the neural network training progresses.

• The second method consists in randomizing which of the collocation points were used, and re-
sampling points as the neural network training progresses.

For both methods, we opted for a simple implementation and considered a defined number of iterations (or
“epochs”) in which we increase the penalty weight and/or re-sample the collocation points.

2.2.5.1 Increasing the penalty weight Increasing the penalty weight µ in (35) on-the-fly during the
optimization progresses turned out to not be much of an improvement at all. At the beginning we thought
that increasing the relative magnitude of the penalty term by scaling it in each iteration/epoch would lead to
better solutions of the governing PDE (29). However, the sequences of weights we tried typically made the
solution worse over time [52]. We ran 10 simulations, each with two different sequences of penalty weights,
i.e.,

tµEu “
!

a

iE´1 ` E
)

and tµEu “ tiE´1 ` Eu, (38)

where E “ 1, 2, . . . , 10 is the epoch number, and iE´1 is total number of training iterations over all the
previous epochs. In Figure 18 we plot the results we obtained. In each iteration/epoch we used the full set
of Nc “ 10000 collocation points and Nd “ 2500 data points, and trained a neural net with 8 hidden layers
of 20 neurons each.
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Figure 17: Prediction of ppx, y, tq for the system (37) using a physics-informed neural net with 8 hidden
layers, each with 20 neurons, trained on Nd “ 2000 data points and Nc “ 8000 total collocation points.

We found that the mean error for the unrefined PINN was 1.98 e–02, with a standard deviation of 5.66
e–02. Mean training time was 562 s, with a standard deviation of 248 s. For tµEu “

 a

iE´1 ` E
(

the
mean error was 3.38 e–03, with a standard deviation of 4.00 e–03. Mean training time was 794 s, with a
standard deviation of 141 s. Finally for tµEu “ tiE´1 ` Eu the mean error was 4.88 e–02 with a standard
deviation of 3.66 e–02. Mean training time was 812 s, with a standard deviation of 211 s. Of course,
the unrefined PINN is quicker to train since it requires only one iteration/epoch. Most of the time, it also
achieves better accuracy: when we ignore the two outliers at the top left of Figure 18, the mean error is 1.52
e–03 with standard deviation 1.03 e–03, mean training time is 623 seconds with standard deviation 171 s.
On the other hand, while giving the penalty term an increasing weight (in particular tµEu “

 a

iE´1 ` E
(

)
tends to make the final error worse on most runs, it might also make the optimization more robust to poor
initializations. Thus, it may be possible to tune the sequence tµEu to improve the training robustness for
particular problems. Even if the weight sequence is constant over all epochs, it will be necessary to adjust
the magnitude relative to the data loss term so as to improve training.

2.2.5.2 Randomizing collocation points Randomly choosing a subset of the collocation points to train
on in each iteration/epoch served us to both

• Decrease training time;

• Regularize the training against bad initializations.

Specifically, we defined suitable sequences tNc,Eu “ Nc,1, Nc,2, . . . , Nc, where Nc is the total number
of pre-generated collocation points, while Nc,E is the number of points used in iteration/epoch E. By
training on fewer collocation points at the beginning, we obtained an approximate solution in far less time
than training on the full set. Such solution can be subsequently refined and regularized by re-sampling
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Table 10: Validation RMSE results for estimating the time dependent PDF ppx, y, tq over the interval t P
r0.0, 1.0s with a physics-informed neural net trained on Nd “ 2000 data points and Nc “ 8000 total
collocation points.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 1.19 e–01 1.48 e–02 1.01 e–02 3.49 e–03
4 2.02 e–02 2.79 e–03 5.22 e–04 9.01 e–04
6 1.51 e–02 5.85 e–04 6.22 e–04 4.92 e–04
8 2.32 e–03 5.13 e–04 8.57 e–04 4.51 e–04

10 3.25 e–03 8.19 e–04 7.55 e–04 4.48 e–04
12 1.57 e–03 1.36 e–03 5.90 e–04 4.91 e–04

Table 11: Training time of a physics-informed neural net for estimating the time dependent PDF ppx, y, tq
over the interval t P r0.0, 1.0s with a physics-informed neural net trained on Nd “ 2000 data points and
Nc “ 8000 total collocation points.

Neurons per layer
10 20 30 40

H
id

de
n

la
ye

rs

2 53 s 188 s 419 s 403 s
4 163 s 232 s 439 s 593 s
6 64 s 368 s 538 s 676 s
8 286 s 385 s 618 s 742 s
10 270 s 578 s 635 s 907 s
12 294 s 598 s 670 s 1565 s

collocation points used in each iteration/epoch. We tested two sequences,

tNc,Euroot “

#

Nc

c

E{Emax ` 1

2

+

, (39)

tNc,Eulinear “

"

Nc
E{Emax ` 1

2

*

. (40)

With Nc “ 10000 collocation points, the first epoch was trained with Nc,1 “ 7416 (root sequence) and
Nc,1 “ 5500 (linear sequence), respectively. These were completely re-sampled in each epoch, meaning that
some points used in previous epochs were not necessarily included in following epochs. Overall we obtained
a similar maximum accuracy (that is, the best accuracy obtained over all trial runs), while driving the mean
and variance of the error down significantly. In addition, training was reliably faster than for the unrefined
PINN. In Figure 19 we summarize the performance of the randomized algorithm. Specifically, we used 10
trials for each sequence (39)-(40), and compared the results to the unrefined PINN results used before. We
notice that for the root sequence (39), the mean error is 9.15 e–04, with a standard deviation of 4.59 e–04.
The mean training time is 577 s, standard deviation was 27 s. For the linear sequence (40), the mean error is
8.64 e–04 with a standard deviation of 4.17 e–04. The mean training time is 463 s with a standard deviation
of 58 s. Randomizing collocation points over iterations/epochs made the optimization of the cost function
(35) significantly more robust, and with the sequence (40) also significantly quicker. Since this appears
to already provide good regularization, we do not attempt to make `1 or `2 weight regularization work: a
quick prototype already indicated that these added computational burden without making the training more
reliable.
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Table 12: Validation RMSE (Nv “ 2500) results for estimating the time dependent PDF ppx, y, tq over the
interval t P r0.0, 1.0s with a physics-informed neural net with 8 hidden layers and 20 neurons per layer.

Collocation points
4000 5000 6000 7000 8000 9000 10000

Tr
ai

ni
ng

da
ta

500 1.72 e–03 1.38 e–02 1.40 e–02 3.83 e–02 2.25 e–03 1.69 e–03 1.41 e–02
1000 1.46 e–03 6.04 e–03 2.23 e–03 1.82 e–03 1.29 e–03 9.74 e–04 1.78 e–03
1500 8.33 e–03 3.20 e–03 1.99 e–03 1.40 e–03 7.91 e–04 8.39 e–04 1.19 e–02
2000 6.81 e–03 4.30 e–03 7.62 e–04 5.97 e–04 6.33 e–04 8.51 e–04 6.21 e–04
2500 1.06 e–03 5.13 e–04 6.42 e–04 8.05 e–04 8.62 e–04 8.56 e–04 9.88 e–04
3000 1.03 e–03 7.22 e–04 1.04 e–03 6.89 e–04 8.46 e–04 5.87 e–04 1.02 e–03

Table 13: Training time of a neural net for estimating the time dependent PDF ppx, y, tq over the interval
t P r0.0, 1.0s using a physics-informed neural net with 8 hidden layers and 20 neurons per layer.

Collocation points
4000 5000 6000 7000 8000 9000 10000

Tr
ai

ni
ng

da
ta

500 197 s 422 s 403 s 258 s 487 s 494 s 836 s
1000 240 s 320 s 353 s 269 s 484 s 404 s 489 s
1500 335 s 352 s 351 s 387 s 360 s 558 s 425 s
2000 362 s 428 s 404 s 495 s 563 s 515 s 517 s
2500 360 s 385 s 380 s 371 s 318 s 602 s 640 s
3000 287 s 319 s 321 s 390 s 535 s 706 s 529 s

2.2.5.3 Combining randomized collocation points with evolving penalty weights To reduce the val-
idation mean squared error further, we tried to combine randomization of collocation points with evolving
penalty terms. This approach yields some improvements in training robustness and speed, but not as much
as using the randomized collocation points with constant penalty weights. Specifically, we perfomed the
same numerical experiment with both series of collocation point numbers, combined with the first set of
weights tµEu “

 a

iE´1 ` E
(

. Figure 20 shows the results. Randomizing the collocation points is the
clear winner here, though scalar penalty weights may need to be added and tuned depending on the problem
at hand. Note that if we use the randomized root sequence (39) with tµEu “

 a

iE´1 ` E
(

, the mean
error is 2.22 e–03, with a standard deviation of 2.57 e–03. This mean training time is 653 s, with a standard
deviation of 125 s. On the other hand, if we use the linear sequence (40) with tµEu “

 a

iE´1 ` E
(

, then
we obtain a mean error of 3.58 e–03 with a standard deviation of 4.18 e–03. In this case the mean training
time is 551 s and the standard deviation is 137 s.

2.2.5.4 Training physics-informed neural nets with log probability data and different cost functions
Previously, we made the decision to train on log probability data so that the net would predict only positive
probability values, since there is no other way to neatly enforce this constraint. The downside is, however,
that when p « 0, |log p| ąą 1. Consequently in log scale, the difference between small probability values
is magnified, and the difference between large probability values is made insignificant in comparison. It
follows that minimizing a mean square error term on log probabilities, as we do in (32), encourages the
model to accurately learn minute differences where p is small, but ignore relatively large differences between
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Figure 18: Performance of physics-informed neural nets(8 hidden layers with 20 neurons each) with cost
function (35) and fixed µ “ 1 (unrefined PINN) versus neural nets where we increase the penalty parameter
tµEu ( E “ 1, . . . , 10) on-the-fly as optimization proceeds.

Figure 19: Performance of physics-informed neural nets with cost function (35) and fixed µ “ 1 (unrefined
PINN) versus neural nets where we randomly select collocation points tNc,Eu according to the sequences in
(39)-(40). Here we use Nd “ 2500 training data, Nc “ 10000 total collocation points, Emax “ 10 epochs,
and 8 hidden layers with 20 neurons each.

large probability values. Thus it makes sense to consider different error metrics for the training data. We
consider and compare three different error metrics: the MSE on the true probability, a weighted MSE on the
log probability, and the symmetric Kullback-Leibler divergence.

• Mean squared error. This is possibly the most intuitive error metric we can use. Instead of (32), we
calculate

MSEdata, truepθq “
1

Nd

Nd
ÿ

i“1

”

exp log p̂
´

xpiq, t
¯

´ p
´

xpiq, t
¯ı2

. (41)

This immediately provides an error term which scales with the magnitude of the probability.

• Weighted mean squared error. Here we simply weight each term of the MSE on log probability by
the true probability value. Since this true probability is already available (it is pre-calculated), this
only requires Nd additional multiplications each time the loss is computed.

MSEdata, weightedpθq “
1

Nd

Nd
ÿ

i“1

p
´

xpiq, t
¯ ”

log p̂
´

xpiq, t
¯

´ log p
´

xpiq, t
¯ı2

. (42)
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Figure 20: Performance of physics-informed neural nets (8 hidden layers with 20 neurons each) with cost
function (35) and fixed µ “ 1 (unrefined PINN) versus neural nets where we randomly select collocation
points tNc,Eu in each iteration/epoch, along with increasing scalar penalty weights tµEu “

 a

iE´1 ` E
(

.

• Symmetric Kullback-Leibler divergence. The last error metric we test is the Kullback-Leibler di-
vergence, a well-known metric for comparing two probability distributions. So that we do not favor
large p̂, we use the symmetric version as originally proposed in [45]:

sDKLpp}p̂pθqq “ DKLpp}p̂pθqq ` DKLpp̂pθq}pq,

“

ż

ppxq rlog ppxq ´ log p̂pxqs dx`

ż

p̂pxq rlog p̂pxq ´ log ppxqs dx. (43)

Next we assume that the training data is a representative sample from the training domain and ap-
proximate the integrals by Monte Carlo integration. We let V be the volume of the training domain
(including time) so that

sDKLpp}p̂pθqq « V
1

Nd

Nd
ÿ

i“1

p
´

xpiq, t
¯ ”

log p
´

xpiq, t
¯

´ log p̂
´

xpiq, t
¯ı

` V
1

Nd

Nd
ÿ

i“1

exp
´

log p̂
´

xpiq, t
¯¯ ”

log p̂
´

xpiq, t
¯

´ log p
´

xpiq, t
¯ı

“
V

Nd

Nd
ÿ

i“1

”

p
´

xpiq, t
¯

´ exp
´

log p̂
´

xpiq, t
¯¯ı ”

log p
´

xpiq, t
¯

´ log p̂
´

xpiq, t
¯ı

.

(44)

In this formulation we need to take Nd exponents, Nd additional subtractions, and one additional
multiplication, making each cost evaluation about as expensive as the MSE on the true probability
(41).

Hereafter, we train a physics-informed neural network 10 different times with each different training data
error metric described above. This gives us an indication of how well they perform. We train for only on one
iteration/epoch using a constant weight of µ1 “ 1 on the Liouville term, and the same number of data points
and architecture as before. In other words, we examine the effects of the metric we use in the cost function
(35) for the so-called “unrefined PINN”. For validation, we still use the root mean square error (RMSE) with
respect to the benchmark probability. This is so that we can compare results of these trials to prior results,
and because this appears to be a good metric for validation (though not necessarily training). Figure 21
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Figure 21: Performance of physics-informed neural nets (8 hidden layers with 20 neurons each) with cost
function (35), fixed µ “ 1, Nd “ 2500 training data, and Nc “ 10000 collocation points.

summarizes all results we obtained. We see that if we use the cost (41), we obtain a mean validation RMSE
(on benchmark probability) of 1.76 e–02 with standard deviation 2.17 e–02. The mean training time is 888
s while the standard deviation is 332 s. On the other hand, with the cost functional (42) the mean validation
error is 6.49 e–04 with standard deviation was 2.34 e–04. The mean training time is 564 s with standard
deviation 141 s. Lastly with the symmetric Kullback-Leibler divergence (44) the mean error is 1.73 e–03
with standard deviation was 2.17 e–03, while the mean training time is 619 s with a standard deviation of
131 s. The results of Figure 21 suggest that training on the benchmark probability data (41) takes longer
and is significantly less accurate than training on the log probability data (32). This is somewhat surprising
because minimizing this error metric is equivalent to minimizing the RMSE, from which we evaluate our
trained models. Since evaluating the cost metric alone is not significantly more expensive than for a the MSE
on log probability, the long training times must be caused by the difficulty in training on this metric. On the
other hand, both the weighted MSE (42) and the symmetric Kullback-Leibler divergence (44) compare well
to MSEdata (32). The symmetric Kullback-Leibler divergence performs about as well MSEdata without the
outliers. This implies that it is somewhat more robust. The weighted MSE is the outstanding performer
here: it is reliably more accurate than all the other error metrics, without taking longer to train.

2.2.6 Application to the Van der Pol oscillator

So far we tested our algorithms to the divergence-free system (37). In this Section we study non-divergence-
free systems. In particular, we consider the Van der Pol oscillator as a model test problem. The governing
equations are

#

9x “ y,

9y “ µ
`

1´ x2
˘

y ´ x.
(45)

Since trajectories for this system are bounded (they are drawn to the limit cycle), data generation is less
complicated than for possibly unbounded systems. Typically we set the damping parameter to µ “ 1.0. The
phase portrait that corresponds to this value of µ is shown in Figure 22. While the trajectories themselves are
integrated quite easily, the density can become quite large at some points on the limit cycle. This means that
depending on where we place the initial distribution, the density can reach numerical infinity in finite time.
Thus the success of the PDF estimation is highly dependent on the particular choices of p0 and tf . Working
with PDFs with densities on different scales, in particular if the scales change over time, will be a central
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Figure 22: Phase portrait of the Van der Pol oscillator (45) for µ “ 1.

challenge when we implement this method with control. This is because, in general, the ideal control will
push the PDF into a tall, thin spike around some target point. That is, in general we would like the variance
to be small, which means the density over the desired expectation will be quite large. It is possible that
learning the flow map and inverse flow map, then using equation (30), will alleviate this problem.

2.2.6.1 Data generation We still use the existing data generation algorithm, largely unchanged. The
only difference is that we temporarily save the solutions at all time values output by the adaptive time
stepping in SciPy’sdop853 ODE integrator [28, 33]. We then used simple trapezoidal integration over the
resulting time series to approximate (30), giving us ppx, tq at all the time steps t “ tk. This additional
data was not saved for training, though we could have done so. Saving all trajectory data might have
slightly improved accuracy, at the cost of more training time. The only reason to do this was to get better
approximations of ppx, t “ tkq.

2.2.6.2 Normalized validation error To facilitate accuracy comparison between different problems, we
normalize the validation RMSE in the following way

NRMSEval “

g

f

f

e

1

Nv

Nv
ÿ

i“1

”

p
´

xpiq
¯

´ p̂
´

xpiq
¯ı2

max
i
p
´

xpiq
¯

´min
i
p
´

xpiq
¯ . (46)

For example, one trial on the two-dimensional divergence-free test system (37) with the usual problem
parameters and hyperparameters yielded a validation RMSE of 5.88 e–04, which translated to a normalized
RMSE of 9.26 e–04. For this system and initial distribution we had a normalization factor of max pval ´

min pval « 0.63, so all previous results can be similarly scaled for comparison.

2.2.6.3 Numerical results In this Section we study the random initial value problem for the Van der Pol
equation (45). We consider three different cases
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Table 14: Training time, RMSE, and NRMSE of Van der Pol oscillator, equation (45), with initial PDF
centered at origin, utilizing randomized samples and increasing penalty weights.

tf training time RMSE NRMSE
1 286 s 5.66 e–04 9.05 e–04
2 303 s 1.08 e–03 1.76 e–03
3 481 s 1.94 e–03 3.48 e–03
4 699 s 3.71 e–03 5.96 e–03

• Initial PDF centered at the origin of the phase plane (see Figure 22);

• Initial PDF centered inside the limit cycle;

• Initial PDF centered outside the limit cycle.

These cases yield similar dynamics but different time-evolving PDFs. Hereafter, we study each case in
detail.

2.2.6.4 Initial PDF centered at the origin First we let p0px, yq be the product of two independent
Gaussians centered at pµx, µyq “ p0, 0q, with standard deviations pσx, σyq “ p0.5, 0.5q. We approximate
the time-dependent solution with final times tf “ 1, 2, 3, and 4 using different neural networks. Each model
had 8 hidden layers of 20 neurons each and was trained using weighted log probabilities (42) for the training
cost and randomized collocation points according to the formula (40) with Emax “ 10 iteration/epochs. We
chose a simple penalty weight sequence tµEu “ tEu. We train the network on Nd “ 2500 training data
split among Nt “ 10 time snapshots (Ns “ 200 forward samples), along with Nc “ 10000 collocation
points. Finally, each model was validated against Nv “ 2500 data points with t P r0, tf s. In Table 14 we
summarize the training times for the final PDF at different times. In Figures 23 and 24 we plot the PDF
we obtain with two neural nets over the interval t P r0.0, 4.0s. The first net is trained only with data for
t P r0.0, 3.0s, so the two last frames are extrapolated. In both sets of predictions, we see that the initial
PDF spreads out and is attracted to the familiarly shaped limit cycle. In addition, most of the probability
mass tends to accumulate at opposite corners of the limit cycle. The extrapolation for the first net is still
fairly accurate at t “ 3.5, which we confirm by visually comparing it to the second net’s prediction, and
estimating the total probability mass at that time to be 1.0449.

2.2.6.5 Initial PDF centered inside the limit cycle (not at the origin) Now we let p0px, yq be the
product of two independent Gaussians centered at pµx, µyq “ p0.5, 0q with standard deviations pσx, σyq “
p0.5, 0.5q. This places almost all of the initial probability mass inside the limit cycle, slightly off center.
We approximate the time-dependent solution with final times tf “ 1, 2, and 3 using different networks.
The hyper-parameters were chosen as before, except for the Liouville penalty weight which we fixed at
tµEu ” 1. In Figures 25 and 26 we plot the outputs of two neural nets over the interval t P r0.0, 3.0s.
The first net is trained only with data for t P r0.0, 2.0s, so the final three frames are extrapolated. With
just this small change in the initial PDF, the density grows much faster on the limit cycle, making the
problem significantly harder than that with the initial PDF at the origin. The extrapolation with the first net
is surprisingly accurate even at t “ 2.6, but starts to break down after this point.
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Figure 23: Time evolution of ppx, y, tq for the Van der Pol oscillator, equation (45), where the initial PDF is
the product of two indepent Gaussians with means µx “ µy “ 0 and variances σ2

x “ σ2
y “ 0.25. Here the

net is trained with data in the interval t0 “ 0.0 to tf “ 3.0, so the final two frames are extrapolated.

2.2.6.6 Initial PDF centered outside the limit cycle Lastly, we let p0px, yq be the product of two in-
dependent Gaussians centered at pµx, µyq “ p0, 3q with standard deviations pσx, σyq “ p0.5, 0.5q. This
places the initial PDF outside of the limit cycle. This problem is harder since the density grows much faster
than the other problems, so we train only up to tf “ 1. Here we use Nt “ 15 time snapshots (still with
Ns “ 200 forward samples, yielding Nd “ 3750 training data) since the temporal evolution of the PDF is
much quicker, along with Nc “ 15000 total collocation points. Other hyper-parameters are the same. This
neural net took 534 s to train, reached a validation RMSE of 1.12 e–02, which scales to a NRMSE of 3.06
e–03. Qualitatively, the probability quickly moves to the corner of the limit cycle and then accumulates
there quite rapidly. Trajectory sampling beyond this time interval (to say tf “ 3) shows that the probability
mass then moves slowly along the limit cycle, with ever-increasing density reaching over 800 by tf “ 3.
This experiment shows that differently scaled probability densities are very difficult for these neural nets to
learn. Improving the behavior when faced with large density spikes will likely be a central challenge when
we add control, since most desired controls will push the density into a thin, tall spike.

2.2.7 Improved data generation with convex hull approximation and PDF support tracking

Our previous method of data generation relied heavily on backward sampling. We observed that samples
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Figure 24: Time evolution of ppx, y, tq for the Van der Pol oscillator (45) where the initial PDF is the product
of two indepent Gaussians with means µx “ µy “ 0 and variances σ2

x “ σ2
y “ 0.25. Here the net is trained

with data in the interval t0 “ 0.0 to tf “ 4.0.

generated in this way often shot back far outside the region of interest enclosing the support of the PDF,
and, even worse, numerical integration would simply fail. Thus, in higher-dimensions this strategy would
be very ineffective. Hence, we studied new ways to obtain better data from the support of the PDF, while at
the same time reducing the number of trajectories which need to be integrated.

2.2.7.1 Convex hull stratification algorithm We have observed that the support of ppx, tf q (tf final
time) often lies on a thin filament or a strange attractor, which is of relatively low dimension compared
to the overall phase space. Given just a few data points

 

xpiqptf q
(

generated by forward integration, we
wish to construct an estimate of the support of the PDF ppx, tf q. Such an estimate would allow for smarter
backward integration, i.e. picking samples in such a way as to fill in the gaps in the data. To this end,
we implemented a convex hull stratification algorithm (CHSA) similar to the one proposed in [70]. CHSA
builds an approximately convex hull of high-dimensional data by representing each data point as a linear
combination of its K nearest neighbors. For our purposes, an approximately convex hull is far better than
a truly convex hull, since in general, the support of ppx, tf q is highly non-convex. In the CHSA, the L2

norm of the weight vector roughly stratifies each data point by its distance to the boundary of the data cloud
(in this case, the trajectory tube at tf ). In addition, each point with any negative weights is picked out as
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Figure 25: Time evolution of ppx, y, tq for the Van der Pol oscillator (45) where the initial PDF is the product
of two independent Gaussians with means µx “ 0.5, µy “ 0 and variances σ2

x “ σ2
y “ 0.25. Here the net

was trained with data in the interval t0 “ 0.0 to tf “ 3.0.

a vertex of the approximate convex hull, since the only way to represent vertices as linear combinations of
other points is through negative weights [70]. There are several parameters that needs to be tuned in the
algorithm which can provide quite different representations of such approximately convex hull. With this
representation at hand, however, how exactly to generate additional data is another question. Here we use a
heuristic process wherein we sampled a few points in a Gaussian distribution centered at each vertex, as well
as a few points on the lines connecting each vertex and its n nearest neighbors. An example of the results
of the CHSA are shown in Figure 28. Each of these new samples is then integrated backwards, with results
saved at all time steps (assuming integration is successful). Most of the time integration is successful, since
the new samples tend to be near the boundary of the support of ppx, tf q.

2.2.7.2 Reducing the computational cost of numerical integration by tracking the PDF support We
previously filled in the phase space by backward integration from a grid of points at each time step. This was
expensive even in just a few dimensions, and many of these integrations were wasted either because they
provided only one data point, or failed and were then set to minimum density. To overcome this problem, at
each time snapshot we picked points

 

xpiqptkq
(

by Latin hypercube sampling. Of these points, any which
landed close enough to the center of the trajectory tube (generated by forward sampling and backward
sampling from final time as described above) were numerically integrated, while any points lying outside
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Figure 26: Time evolution of ppx, y, tq for the Van der Pol oscillator (45) where the initial PDF is the product
of two independent Gaussians with means µx “ 0.5, µy “ 0 and variances σ2

x “ σ2
y “ 0.25. Here the net

was trained with data in the interval t0 “ 0.0 to tf “ 3.0.

of a few standard deviations were set to the minimum density. This simple change drastically reduces the
number of integrations: we can typically reduce the number of samples needed by an order of magnitude or
more.

2.2.8 Application to high-dimensional problems

2.2.8.1 Forced duffing oscillator With the ability to generate high-dimensional data efficiently, we can
now test our method on high-dimensional problems. The first problem we consider here is a periodically
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Figure 27: Time evolution of ppx, y, tq for the Van der Pol oscillator (45) where the initial PDF is the product
of two independent Gaussians with means µx “ 0, µy “ 3 and variances σ2

x “ σ2
y “ 0.25. Here the net was

trained with data in the interval t0 “ 0.0 to tf “ 1.0.

(a) (b)

Figure 28: Convex hull stratification algorithm performed on Ns “ 50 forward samples of the Van der Pol
oscillator with tf “ 4: (a) forward samples with vertices picked out, color coded by L2 weight norms; (b)
as left, with additional backward samples.

forced Duffing oscillator with random parameters and random initial condition:
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x1pt “ 0q „ N p0, 1q
x2pt “ 0q „ N p0, 1q
δ „ N p0.5, 0.252q

α „ N p´1, 0.252q

β „ N p1, 0.252q

γ „ N p1, 0.252q

ω „ N p0.5, 0.252q

(47)
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Figure 29: Error and training time for different data sets.

Equation (47) is, in effect, a seven-dimensional dynamical system. We use a physics-informed neural net to
approximate the time-dependent PDF for t P r0, 2s, and test its ability to extrapolate to tf “ 2.5 and tf “ 3.
The neural net has eight hidden layers with 64 neurons each, and is trained on an NVIDIA RTX 2080Ti
GPU (this hardware upgrade was necessary to facilitate larger neural nets and data sets). In addition to the
training data set, we generate a validation set and three test data sets with tf “ 2, 2.5, and 3. The test data
set with tf “ 2 takes the place of our former validation data set, i.e. we use this to measure the accuracy
of the net within the training domain. The test sets with tf “ 2.5 and tf “ 3 include time snapshots
both in the training region t P r0, 2s and outside of it, thus allowing us to quantify how well the neural
net extrapolates forward in time. Finally, the new validation data set is used during training to measure
the error in generalization: if we change the Liouville penalty weight µE , the difference in validation and
training error can inform the choice of µE`1. Moreover, we use change in validation error as a stopping
condition: once the difference between training rounds reaches some small threshold, we stop training as
there is typically no improvement to be gained by continuing. We use the same neural net architecture and
vary the number of sample trajectories (and total size of the training set). Other data sets (validation, testing,
extrapolation (tf “ 2.5) testing, and extrapolation (tf “ 3.0) testing) are fixed among all trials:

• Nval “ 10000 validation data points from 449 total sample trajectories,

• Ntest “ 10000 test data points from 460 total sample trajectories,

• Next1 “ 10000 extrapolation (tf “ 2.5) test data points from 448 total sample trajectories,

• Next2 “ 10000 extrapolation (tf “ 3) test data points from 487 total sample trajectories.

Note that the time snapshots are for these additional data sets are different than those for the training data
set. Our numerical results are shown in Figure 29. In Figure 30 we plot the temporal evolution of the
two-dimensional conditional PDF that solves the stochastic Duffing equation (47).

2.2.8.2 Fixed-wing unmanned aerial vehicle (UAV) model Next we consider a more challenging prob-
lem, i.e., computing the flow map of the fixed-wing UAV model proposed in [59, 60]. Such model represents
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Figure 30: Neural network approximation of the conditional PDF p̂px, y, t|δ “ 0.5, α “ ´1, β “ 1, ω “
1, γ “ 0.5q based on samples of the stochastic Duffing equation (47).

the UAV as a point-mass, but it also accounts for side-slip and thrust. The nonlinear system of equations is

(UAV model)
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9x “ v cos γ cosσ

9y “ v cos γ sinσ

9z “ v sin γ

9v “
1

m
p´D ` T cosαq ´ g sin γ

9γ “
1

mv
pL cosµ` T cosµ sinαq ´

g

v
cos γ

9σ “
1

mv cos γ
pL sinµ` T sinµ sinαq

9T “ uT

9α “ uα

9µ “ uµ

(48)

where px, y, zq is the position in a flat earth reference frame, v is the velocity, pγ, σq are elevation and head-
ing angles, T is the thrust, α is the angle of attack, µ is the bank angle (see Figure 31). The three controls,
uT , uα, and uµ here are pre-computed from a deterministic minimum-time path planning problem between
the points px0, y0, z0q “ p0, 0, 600q to pxptf q, yptf q, zptf qq “ p1000, 1000, 600q subject to constraints. The
other parameters are m “ 2 (the UAV mass), g “ 9.8 gravitational acceleration, while L and D are lift and
drag forces given by

L “
1

2
ρv2SCL, D “

1

2
ρv2SCD, (49)

where ρ “ 1.21e´z{8000 is the mass density of air, S “ 0.982 is the wing area, and CL and CD are the lift
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Figure 31: Model of an Unmanned Aerial Vehicle (UAV).

and drag coefficients. These are calculated by

CL “ pCx0 ` Cxaαq sinα´ pCz0 ` Czaαq cosα, (50)

CD “ ´pCx0 ` Cxaαq cosα´ pCz0 ` Czaαq sinα. (51)

Note that CL and CD depend on the parameters Cx0, Cxa, Cz0, and Cza which are usually unknown and
must be estimated from data. Thus, we assume these have given probability distributions, and augment the
system (48) with

9Cx0 “ 9Cxa “ 9Cz0 “ 9Cza “ 0. (52)

This system we obtain in this way effectively has 13 dimensions plus time, and it is significantly more
complicated than the Duffing equation (47). We introduce uncertainty into all of the initial conditions. For
simplicity we let each variable be independently Gaussian, with
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x0 „ N p0, 52q

y0 „ N p0, 52q

z0 „ N p600, 12q

v0 „ N p27.5, 0.12q

γ0 „ N p0, 0.0012q

σ0 „ N p0, 0.0012q

T0 „ N p16.1, 0.012q

α0 „ N p´0.0088, 0.00012q

µ0 „ N p0, 0.0012q

Cx0 „ N p´0.03554, 0.0012q

Cxa „ N p0.00292, 0.00012q

Cz0 „ N p´0.055, 0.0012q

Cza „ N p´5.578, 0.012q.

(53)

The preliminary numerical result we obtained so far with neural net approximations of the 13-dimensional
joint PDF using both standard deep neural nets and physics informed neural nets, are not satisfactory. This
appears to be caused by the extremely peaked density in some regions of the phase space. In principle, we
could artificially reduce the density by increasing the initial uncertainty (to potentially physically improbable
values). However, we found that this can yield integration failure: in fact it can happen that cos γ Ñ 0 in
(48) (i.e., the UAV flies straight up or down), and thus 9σ becomes singular. Hence to solve this problem we
turned to our flow map approximators (see Section 2.2.10).
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2.2.9 Flow map prediction with deep neural networks

In this Section we develop neural network models to predict the forward and the inverse flow maps of
arbitrary nonlinear dynamical systems. With the flow map available, we can quickly predict solutionsxptq “
Φpx0, tq for any px0, tq in the training domain – without any numerical integration. Moreover, the flow map
allows us to compute any statistical property of the system, including correlation between different phase
variables and temporal correlations. For instance, we have

E tx1ptqx3psqu “

ż 8

´8

Φ1px0, tqΦ3px0, sqp0px0qdx0. (54)

On the other hand, the solution to the Liouville equation (30) allows us to compute statistical properties at
a specific time, i.e., but it does not include information on joint statistics at different times, e.g., temporal
correlations.

2.2.9.1 Neural net architecture How do we build a neural network to predict the forward and the inverse
flow maps? What inputs and outputs should the neural net take? Hereafter we discuss two architectures we
propose, which we will study in detail in subsequent Sections.

• “Jump” flow map estimator. The first possibility is to learn it exactly in the form defined in equation
(26), i.e., xptq “ Φpx0, tq. That is, we feed the net an initial condition x0 and a desired (final) time
t. The net learns to output the state xptq which evolved from that initial condition, so it “jumps” from
the initial condition to the desired time. Similarly for the inverse flow map x0 “ Φ0px, tq, we feed
in a state x and time t, and the net learns to output the initial condition x0 which would generate that
state when the system is evolved to time t.

• “Step” flow map estimator. Another possibility is to discretize the time interval of interest rt0, tf s
into Nt time steps and have the net learn to step forward to the next time step. Thus, we feed the
net inputs xptq and t, and the net outputs xpt `∆tq. Since we will soon add open-loop control, we
will need to consider non-autonomous systems, which is why we also include time-dependence in the
input. The net for learning the inverse map is much the same, with inputs xptq and t, but the output is
a step back: xpt´∆tq.

The advantages of the first option are its simplicity and flexibility in the output: once trained, getting the
map to final or initial state requires only a single evaluation of the appropriate neural net. The second option,
on the other hand, seems to be easier to train (as we will discuss shortly). Furthermore, for the application of
obtaining probability values at final time, we only need to train one neural net – i.e., that for approximating
the inverse flow map. Recall that evaluating eq. (30) for ppx, tf q requires knowledge of x0 “ Φ0px, tf q, as
well as xptq “ Φpx0, tq for enough values of t P rt0, tf s to accurately approximate the integral. A neural
net which learns to step backwards in time automatically obtains this time series as we repeatedly evaluate
it to reach x0.

2.2.9.2 Forward and inverse flow map approximation using independent neural nets We rewrote
our data generation algorithms and physics-informed neural net for PDF approximation to separately ap-
proximate the forward and the inverse flow maps. The architecture for the physics-informed neural net
approximating the forward flow map with a “jump” is sketched in Figure 32. If we use the physics-informed
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Figure 32: Architecture of the PINN for training the neural net NNx using a set of supplementary neural
netsNNL,i, i “ 1, . . . , n (n is the dimension of the system) to penalize predictions x̂ptq which deviate from
the flow map equations (27).

neural net here (often we do not need to, see discussion below), the total loss (for the forward flow map
approximator) is the sum of two terms:

lossfwdpθ;Eq “ lossdatapθq ` µE lossconstraintpθq, (55)

where θ are the shared parameters of both nets and µE is a weight which depends on the training epoch E.
Here the training data loss is a simple mean square error loss given by

lossdata “MSEdatapθq “
1

Nd

Nd
ÿ

j“1

”

xpjq
´

tpjq
¯

´ pΦ
´

x
pjq
0 , tpjq

¯ı2
, (56)

or a “logcosh” loss given by

lossdata “ logcoshdatapθq “
1

Nd

Nd
ÿ

j“1

log
”

cosh
´

xpjq
´

tpjq
¯

´ pΦ
´

x
pjq
0 , tpjq

¯¯ı

. (57)

For the constraint loss we usually use a sum of MSE losses, with one term in the sum for each dimension in
the state-space:

lossconstraintpθ;Eq “
n
ÿ

i“1

1

Nc,E

Nc,E
ÿ

j“1

”

R
´

pΦi

´

x
pjq
0 , tpjq

¯¯ı2
, (58)

where Nc,E is the number of collocation points used in the epoch E. We also have the option of a sum of
logcosh losses on these residuals. Like before, we define R as the residual when the neural net prediction
pΦpx0, tq is inserted into the set of flow map equations (27), i.e. RppΦiq “ BpΦi{Bt´G¨∇pΦi, for i “ 1, . . . , n.
The neural net architectures and loss terms for the “jump” inverse flow map estimator, as well as for the
“step” flow map estimator, are similarly defined, with small and obvious changes in the inputs and outputs.

2.2.9.3 Bi-directional autoencoders to learn simultaneously the forward and inverse flow maps We
also propose a method to join the two independent neural nets which estimate the forward and inverse flow
maps, hence deriving neural net capable of estimating simultaneously both maps. As we will discuss later,
the inverse flow map is typically much more challenging to approximate than the forward flow map. This
is associated with well-known challenges in backward numerical integration of dynamical systems. As we
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inverse autoencoder forward autoencoder

Figure 33: Diagrams representing the inverse (eq. (60)) and forward (eq. (61)) autoencoders for flow map
approximation.

will show hereafter, by using the bi-directional autoencoders we will be able to mitigate some difficulties in
the approximation of the inverse flow map, by using the forward flow map.

To accomplish this, we first pre-train both nets independently. Next we train them simultaneously using
a cost function which is the weighted sum of the cost functions (55) of the forward and inverse maps, and
two autoencoding terms which encourage the pair of neural nets to be left and right inverses of one another.
We call this pair of neural nets a bi-directional autoencoder. The total loss function for the bi-directional
autoencoder can be written as

losstotalpθfwd,θinv;Eq “ lossfwdpθfwd;Eq ` λ1 ¨ lossinvpθinv;Eq

` λ2 ¨ lossx0 autoencodepθfwd,θinvq ` λ3 ¨ lossx autoencodepθfwd,θinvq. (59)

Here we denoted by θfwd, θinv and lossfwd, lossinv as the parameters and loss functions (see eq. 55) of the
forward and inverse flow map approximators, respectively. Further, we let λ1, λ2, and λ3 be constant scalar
weights, and

lossx0 autoencodepθfwd,θinvq “
1

Nd

Nd
ÿ

j“1

”

x
pjq
0 ´ pΦ0

´

pΦ
´

x
pjq
0 , tpjq

¯

, tpjq
¯ı2

. (60)

We have written the inverse autoencoding term with MSE loss here, but a logcosh loss can also work.
Similarly, the forward autoencoding term is given by

lossx autoencodepθfwd,θinvq “
1

Nd

Nd
ÿ

j“1

”

xpjq ´ pΦ
´

pΦ0

´

xpjq, tpjq
¯

, tpjq
¯ı2

. (61)

Figure 33 helps make these loss terms more intuitive. Note that eqs. (60) and (61) are for the “jump” flow
map estimator – analogous terms for the “step” estimator can be easily defined.

2.2.9.4 Data generation for the “Jump” flow map estimator We started the data generation process by
defining a region of interest for the initial condition, in these tests we used a hypercube for convenience. We
then randomly sampled (by e.g. Latin hypercube sampling) from this region, giving us a set of points

!

x
pjq
0

)

,

j “ 1, . . . , Nf
s . We then randomly selected 2{3 of these points for training, and 1{3 for validation. Finally

from each point we numerically integrated forward to time tf , saving a set of points
´

x
pjq
0 ,xpjq

`

tpkq
˘

, tpkq
¯

for each time step tpkq P rt0, tf s used by the adaptive timestepping in the chosen integrator. For all tests
here we used SciPy’s dop853 [28, 33] ODE integrator. While this forward data can also be used for
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training the inverse approximator, we reasoned that by creating additional backward samples we could
fill in gaps in the final time data. For simplicity we used Latin hypercube sampling from the hypercube
enclosing the data points at final time to obtain a set of points

 

xpjqptf q
(

, j “ 1, . . . , N b
s . We randomly

selected 2{3 of these for training data and the remaining 1{3 for validation data. Next we numerically
integrated backwards to t0, again saving the outputs at each adaptive time step, and used xpt0q to complete
the backward data:

`

xpjqpt0q,x
pjq

`

tpkq
˘

, tpkq
˘

. Note that while forward integration is typically successful
for well-behaved systems, backward integration can yield trajectories which escape in finite time and often
fails for these same systems. Thus we only saved trajectories for which the integration was successful and
xpt0q was not too far outside of the original sampling region of x0. Collocation points txpjq0 , tpjqu, j “
1, . . . , Nc, for enforcing the flow map equations (27) consist of training data, supplemented by additional
points drawn by Latin hypercube sampling from the domain of x0 and time interval rt0, tf s. Collocation
points txpjq, tpjqu, j “ 1, . . . , Nc, for enforcing the inverse flow map equations (28) consist of the training
data, plus additional points generated by Latin hypercube sampling from the entire space-time domain of the
training region. As we will demonstrate below, using the PINN often makes results less accurate. We suspect
the collocation point sampling method is to blame: it is easy to imagine that Latin hypercube sampling (or
uniform sampling, etc.) yields many points which will be far away from the main cloud of trajectories, thus
introducing numerous outliers into the collocation data. It is possible that sampling inside a (nearly) convex
hull around the trajectory tube could make the PINN more accurate.

2.2.9.5 Data generation for the “Step” flow map estimator The major difference between the two data
generation algorithms is simply where – or more precisely, when – we save the data. For the networks which
learn to step forward or backward in time, we discretize the time interval rt0, tf s into Nt time snapshots
t0, t1 “ t0`∆t, . . . , tk “ t0` k∆t, . . . , tNt “ tf , where ∆t “ ptf ´ t0q{Nt, and have the ODE integrator
output results at those time snapshots. The kind of data we save is, of course, different. We now save
data for the forward map in the form pxptq,xpt ` ∆tq, t ` ∆tq, so that each input xptq is paired with
its value at the next time step, xpt ` ∆tq, and the time at output t ` ∆t. Recall that we include time-
dependence so that we can generalize to non-autonomous systems. The form of the backward map data is
simply pxpt`∆tq,xptq, tq. For collocation points, the form of the flow map equations differs slightly. The
components of the forward flow map satisfy3

BΦipxptq, t`∆tq

Bt
´Gpxptq, t`∆tq ¨∇Φipxptq, t`∆tq “ 0. (62)

Similarly, the components of the inverse flow map satisfy

BΦ´1
i pxpt`∆tq, tq

Bt
`Gpxpt`∆tq, tq ¨∇Φ´1

i pxpt`∆tq, tq “ 0. (63)

Here we have written Φ´1
i p¨q to denote the ith component of inverse flow map which maps back one

time step, distinguishing it from the ith component of the full (“jump”) inverse flow map, Φ0,i. Thus,
the collocation points for the forward map look like

 

xpjq
`

tpjq
˘

, tpjq `∆t
(

, for j “ 1, . . . , Nc. These
points again consist of the training data, augmented with spatial data drawn from the training region,
and time values picked from the discrete time instances t0, t1, . . . , tNt´1. For the inverse map we have
 

xpjq
`

tpjq `∆t
˘

, tpjq
(

, j “ 1, . . . , Nc, with time values also picked from t0, t1, . . . , tNt´1.

3Note that equations (62) and (63) hold for non-autonomous systems of the form 9x “ Gpx, tq, xp0q “ x0.
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Numerical results

In this Section we present numerical results of flow map estimation using the algorithms described in the
previous Sections. For consistency with previous error metrics, here we we use the normalized root mean
square validation error defined as

NRMSEval “

g

f

f

e

1

Nv

Nv
ÿ

j“1

n
ÿ

i“1

”

x
pjq
i

`

tpjq `∆t
˘

´ pΦ
pjq
i

´

x
pjq
i

`

tpjq
˘

, tpjq
¯ı2

g

f

f

e

1

n

n
ÿ

i“1

„

max
j
x
pjq
i

´

tpjq `∆t
¯

´min
j
x
pjq
i

´

tpjq `∆t
¯

2
. (64)

We tested our algorithms by approximating the flow maps generated by the Van der Pol oscillator (45) in the
time interval rt0, tf s “ r0, 4s. We conducted one set of tests with initial conditions sampled from the region
x0, y0 P r´2, 2s, i.e., within and outside the limit cycle (see Figure 22). Backward trajectories for which
xpt0q or ypt0q were not in r´3, 3s were simply discarded. We conducted another set of tests with initial
conditions sampled from the region x0 P r´1, 3s, y0 P r´2, 2s. Backward trajectories for which xpt0q were
not in r´2, 4s or ypt0q R r´3, 3s were discarded. For the “jump” neural net estimator, we used 100 forward
samples for training and 50 for validation, and 150 backward samples for training and 75 for validation.
Not all samples integrated successfully, unsuccessful integrations were not resampled. For the “step” flow
map estimator, we used 40 forward samples for training and 20 for validation, and 60 backward samples for
training and 30 for validation. Each trajectory was evaluated at Nt “ 50 time snapshots. Not all samples
integrated successfully, unsuccessful integrations were not resampled. For all tests we used 8 hidden layers
with 20 neurons each. Each test was conducted 5 times, using the same 5 random seeds to enable better
comparison. Other parameters are discussed where relevant.

2.2.9.6 Forward “jump” flow map estimator results We first tested the forward “jump” flow map
estimator. We conducted one set of tests without the physics-informed neural net, i.e., using a plain feed-
forward neural net, and another with the PINN using Nc “ 5000 total collocation points. When we used
the PINN, we kept a constant scalar penalty weight of µE “ 1.0, and randomly selected collocation points
according to (40), with Emax “ 10 iterations/epochs. All loss terms were modeled as mean square errors. In
all trials, data generation took approximately 1 second. In Tables 15 and 16 we summarize results of the tests
with x0, y0 P r´2, 2s. In particular, results of Table 16 are obtained with physics-informed “jump” forward
flow map estimators. Similarly, Tables 17 and 18 summarize results with x0 P r´1, 3s and y0 P r´2, 2s,
with and without PINN.

It is seen that the “jump” flow map estimator is consistent and relatively accurate even without the
PINN. When we use a PINN, the accuracy almost doubles, but training takes about four times as long.
Some additional tests (data not shown here) indicated that increasing the number of collocation points Nc

did not, in general, further improve accuracy, but did increase the training time. For visualization, in Figure
34 we plot the validation data and corresponding neural net predictions from one trial of each region of
initial conditions.

2.2.9.7 Inverse “jump” flow map estimator results We conducted one set of tests without the PINN,
and another with the PINN using Nc “ 5000 total collocation points. When we used the PINN, we kept a
constant scalar penalty weight of tµEu ” 1.0, and randomly selected collocation points according to (40)
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Table 15: Accuracy and training time (single CPU implementation using TensorFlow 1.8 [1]) of a plain
neural net for approximating the forward “jump” flow map of the Van der Pol oscillator (45) with x0, y0 P

r´2, 2s ˆ r´2, 2s.

Plain neural net (no PINN) with Nc “ 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 115 s 4.90 e–03 8.81 e–04
2 2506 1223 130 s 4.57 e–03 7.99 e–04
3 2523 1218 110 s 7.29 e–03 1.38 e–03
4 2570 1262 96 s 6.11 e–03 1.12 e–03
5 2622 1150 124 s 7.12 e–03 1.27 e–03

mean 2543 1210 115 s 6.00 e–03 1.09 e–03
SD 53 41 13 s 1.24 e–03 2.48 e–04

Table 16: Accuracy and training time of a PINN for approximating the forward “jump” flow map of the Van
der Pol oscillator (45) with x0, y0 P r´2, 2s ˆ r´2, 2s.

PINN with Nc “ 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 519 s 4.01 e–03 7.22 e–04
2 2506 1223 530 s 2.38 e–03 4.16 e–04
3 2523 1218 494 s 3.36 e–03 6.34 e–04
4 2570 1262 502 s 1.83 e–03 3.34 e–04
5 2622 1150 463 s 3.58 e–03 6.37 e–04

mean 2543 1210 506 s 3.03 e–03 5.49 e–04
SD 53 41 26 s 8.99 e–04 1.65 e–04

with Emax “ 10 iteration/epochs. Latin hypercube sampling created many outliers in the collocation data.
We sought to blunt the impact of these outliers by using a logcosh loss on the inverse flow map penalty term,
since logcosh can be less sensitive to outliers than MSE [51]. For the data loss we still used MSE. In Tables
19 and 20 we summarize results of the tests we performed with x0, y0 P r´2, 2s. In particular, Table 20
refers to case where we use a physics-informed neural network (residual of the forward flow map equation
added in the cost function). In Tables 21 and 22 we summarize the same kind of results, but with initial
conditions x0 P r´1, 3s and y0 P r´2, 2s.

These results have two clear implications. First, that the inverse flow map is much harder to approximate
than the forward flow map, as we expected. It is likely that we need more and better data, and perhaps
a differently structered neural net. Second, the physics-informed neural net contributes nothing in these
implementations. Moreover, when we trained the without using the PINN, it was still possible to compute
the constraint loss term (58). If we chose to do this extra computation, we saw that for the forward map the
constraint loss decreased naturally as we optimized with respect to the data only. However, in the case of the
inverse map, the constraint loss was largely unaffected by minimizing the data loss. This indicates that there
is a problem with the data generation algorithm and choices of hyperparameters. As discussed previously,
the underlying cause here could be outliers in the collocation points. In the next quarter we will take steps
to understand this behavior and experiment with different solutions.

2.2.9.8 “Jump” flow map estimator with bidirectional autoencoder results We conducted one set
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Table 17: Accuracy and training time of a plain neural net for approximating the forward “jump” flow map
of the Van der Pol oscillator (45) with x0, y0 P r´1, 3s ˆ r´2, 2s.

Plain neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 2512 1285 123 s 2.74 e–03 5.10 e–04
2 2485 1228 122 s 4.45 e–03 8.07 e–04
3 2579 1213 156 s 5.37 e–03 9.89 e–04
4 2568 1249 110 s 4.13 e–03 7.53 e–04
5 2654 1191 100 s 4.24 e–03 8.09 e–04

mean 2560 1223 122 s 4.17 e–03 7.74 e–04
SD 66 36 21 s 9.44 e–04 1.72 e–04

Table 18: Accuracy and training time of a PINN for approximating the forward “jump” flow map of the Van
der Pol oscillator (45) with x0, y0 P r´1, 3s ˆ r´2, 2s.

PINN with Nc “ 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2512 1285 428 s 2.35 e–03 4.38 e–04
2 2485 1228 491 s 1.95 e–03 3.54 e–04
3 2579 1213 508 s 3.17 e–03 5.84 e–04
4 2568 1249 518 s 2.76 e–03 5.03 e–04
5 2654 1191 559 s 2.52 e–03 4.81 e–04

mean 2560 1223 501 s 2.55 e–03 4.72 e–04
SD 66 36 48 s 4.55 e–04 8.47 e–05

of tests of the bidirectional autoencoder sketched in Figure 33 using no PINN, and another using a PINN
enforcing the forward flow map equations (27) only, with Nc “ 5000 collocation points. We didn’t go
through the trouble of testing it extensively with the inverse flow map PINN, since a few initial tests already
indicated this was ineffective. When using the PINN we kept a constant scalar penalty weight µE “ 1, and
randomly selected collocation points according to (40) withEmax “ 10. For the tests with x0, y0 P r´2, 2sˆ
r´2, 2s we used λ1 “ 10´1, λ2 “ 10´2, and λ3 “ 10´2. For the tests with x0, y0 P r´1, 3s ˆ r´2, 2s we
used λ1 “ 10´3, λ2 “ 10´4, and λ3 “ 10´4. Note that λ1 is the weight on the inverse loss term in the
cost function (59). Similarly, λ2 and λ3 are the weights on the x0 and x autoencoding terms, respectively.
In Tables 23 and 24 we summarize the results of some of our tests with x0, y0 P r´2, 2s. Tables 25 and 26
summarize similar results we obtained with x0 P r´1, 3s, y0 P r´2, 2s. These tests show some success of
the bidirectional autoencoder we proposed. We expect that modifying the training process so that only the
inverse flow map estimator is trained with the autoencoding terms will improve both accuracy and efficiency.
This scheme would leave the more accurate forward estimator (with or without the PINN) intact, and train
the inverse estimator to be the inverse of the forward estimator. This change will require some rewriting of
the code to implement.

2.2.9.9 Forward “step” flow map estimator results In this Section we present numerical results of
the feed-forward “step” flow map estimator without PINN (see Section 2.2.9). In Table 27 contains results
of the tests with x0, y0 P r´2, 2s, and Table 28 we summarize the results we obtained for x0 P r´1, 3s,
y0 P r´2, 2s. The results we obtained with plain feed-forward deep neural networks and “step” forward
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(a) (b)

Figure 34: Validation data and corresponding neural net reconstructions by a PINN which approximates the
forward “jump” flow map of the Van der Pol oscillator (45): (a) x0, y0 P r´2, 2s ˆ r´2, 2s from the model
trained in trial 1 of Table 16; (b) x0, y0 P r´1, 3s ˆ r´2, 2s from the model trained in trial 1 of Table 18.

Table 19: Accuracy and training speed of a plain neural net for approximating the inverse “jump” flow map
of the Van der Pol oscillator (45) with px0, y0q P r´2, 2s ˆ r´2, 2s.

Plain neural net (no PINN) with Nc “ 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 108 s 3.96 e–02 1.01 e–02
2 2506 1223 114 s 3.02 e–02 7.69 e–03
3 2523 1218 127 s 8.29 e–02 2.19 e–02
4 2570 1262 76 s 5.20 e–02 1.39 e–02
5 2622 1150 83 s 4.41 e–02 1.14 e–02

mean 2543 1210 102 s 4.98 e–02 1.30 e–02
SD 53 41 21 s 2.01 e–02 5.46 e–03

flow map estimators are quite good: we get more accurate models in less time than when we train the full
“jump” forward flow map. We expect that the inverse flow map will also be somewhat more accurate than
the “jump” version, once we implement it successfully. For visualization, in Figure 35 we plot the validation
data and corresponding neural net predictions from one trial of each region of initial conditions.

2.2.10 “Jump” flow map estimator for high-dimensional problems

To facilitate application of Jump flow map estimators to high dimensional problems with varying scales,
we developed two improvements to our algorithms. First, for problems with parameter uncertainty we
structured the neural net so that it would take parameter inputs, but not predict the value of the parameter
at time t (passing the value of the parameter through directly). Secondly, we scaled the training data output
xptq to the domain r´1, 1sn based on the hyper-cube bounds of the data. In this way, we were able to
overcome difficulties related to the fact that training data for different variables can have different orders of
magnitude.
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Table 20: Accuracy and training speed of a PINN for approximating the inverse “jump” flow map of the Van
der Pol oscillator (45) with px0, y0q P r´2, 2s ˆ r´2, 2s.

PINN with Nc “ 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2492 1199 483 s 4.65 e–02 1.18 e–02
2 2506 1223 308 s 3.32 e–02 8.44 e–03
3 2523 1218 355 s 1.17 e–01 3.11 e–02
4 2570 1262 361 s 3.15 e–02 8.41 e–03
5 2622 1150 528 s 4.83 e–02 1.25 e–02

mean 2543 1210 407 s 5.53 e–02 1.45 e–02
SD 53 41 94 s 3.53 e–02 9.50 e–03

Table 21: Accuracy and training speed of a plain neural net for approximating the inverse “jump” flow map
of the Van der Pol oscillator (45) with px0, y0q P r´1, 3s ˆ r´2, 2s.

Plain neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 2512 1285 41 s 2.78 e–01 7.09 e–02
2 2485 1228 33 s 3.26 e–01 8.30 e–02
3 2579 1213 28 s 4.51 e–01 1.19 e–01
4 2568 1249 24 s 3.75 e–01 1.00 e–01
5 2654 1191 36 s 2.78 e–01 7.19 e–02

mean 2560 1223 32 s 3.42 e–01 8.90 e–02
SD 66 36 7 s 7.32 e–02 2.05 e–02

2.2.10.1 Numerical results: estimation of the fixed-wing UAV flow map We integrated 200 trajecto-
ries with initial conditions sampled in the hypercube defined by µ ˘ 2σ, where µ and σ are the means
and standard deviations given in (53). We did not use backward sampling for this problem, since these
integrations often failed to converge. We took outputs at all times tk chosen by the adaptive time-stepping
of SciPy’s dopri5 [28, 33], giving us a total of 37665 data points. Validation and test data were generated
from 100 forward samples each, yielding 18673 and 18882 total data points, respectively. The time interval
was t P r0, 41.4353s, where tf “ 41.4353 was the minimum time obtained for the deterministic optimal
control problem [60]. We did not test for the ability to extrapolate, since the open-loop control was only
defined in that time interval, however extrapolation testing could be done if we trained on data only up to
some t1f ă 41.4353. For both the forward and inverse flow map, we used a plain deep neural net with four
hidden layers of 64 neurons each, and varied the number of training data used in each training epoch. We
set Nd,E “ E{Emax with Emax “ 10 epochs, and stopped training early once the difference in validation
NRMSE between rounds dropped below 10´4.

• The forward jump approximator was trained in 313 seconds on an NVIDIA RTX 2080Ti GPU, and
reached a final training NRMSE of 9.61 e–04, validation NRMSE of 9.72 e–04, and test NRMSE or
9.78 e–04. We visualize the output in Figure 36

• The inverse jump approximator was trained in 290 seconds on an NVIDIA RTX 2080Ti GPU, and
reached a final training NRMSE of 2.51 e–03, validation NRMSE of 4.20 e–03, and test NRMSE or
3.90 e–03.
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Table 22: Accuracy and training speed of a PINN for approximating the inverse “jump” flow map of the Van
der Pol oscillator (45) with px0, y0q P r´1, 3s ˆ r´2, 2s.

PINN with Nc “ 5000 total collocation points
trial Nd Nv training time RMSE NRMSE

1 2512 1285 164 s 3.39 e–01 8.62 e–02
2 2485 1228 123 s 3.20 e–01 8.15 e–02
3 2579 1213 205 s 5.17 e–01 1.37 e–01
4 2568 1249 131 s 3.40 e–01 9.06 e–02
5 2654 1191 165 s 2.66 e–01 6.87 e–02

mean 2560 1223 158 s 3.56 e–01 9.28 e–02
SD 66 36 33 s 9.47 e–02 2.60 e–02

Table 23: Accuracy and training speed of a pair of plain feed-forward neural nets for approximating the
forward and inverse “jump” flow maps of the Van der Pol oscillator (45) with px0, y0q P r´2, 2s ˆ r´2, 2s,
trained as a bidirectional autoencoder.

Vanilla neural net (no PINN)
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2492 1199 328 s 8.63 e–04 7.47 e–03
2 2506 1223 334 s 6.33 e–04 8.75 e–03
3 2523 1218 310 s 7.87 e–04 1.96 e–02
4 2570 1262 314 s 8.24 e–04 5.43 e–03
5 2622 1150 321 s 7.81 e–04 8.25 e–03

mean 2543 1210 321 s 7.78 e–04 9.90 e–03
SD 53 41 10 s 8.73 e–05 5.57 e–03

2.3 Task II: Numerical methods to solve data-driven PDF equations

The physics-informed neural network technique we studied in Section 2.2.4.3 can be viewed as a data-driven
discrete least squares approach to solve the Liouville equation. In addition to such technique, we studied
direct methods to solve reduced-order PDF equations, i.e., PDF equations for quantities of interest. To
illustrate the methodology, consider again the n-dimensional system (25). We have seen that the Liouville
equation (29) describes the exact dynamics of the joint PDF of state variables xptq. In most cases, however,
we are only interested in the dynamics of a real-valued phase space function

upxq “ Rn Ñ R (observable). (65)

In models of disease propagation, this phase space function may be represented by the population of
susceptible individuals, e.g., by the first component of a nonlinear epidemic model. In this case we set
upxptqq “ x1ptq. The probability density function of such observable can be represented as

ppz, tq “

ż 8

´8

¨ ¨ ¨

ż 8

´8

δ pz ´ upxqq ppx, tqdx, (66)

where δp¨q is the Dirac’s delta function (see [40, 65, 53]) and z is a random variable representing the value
of upxptqq. Multiplying the Liouville equation (29) by δ pz ´ upxqq and integrating over all phase variables
yields

Bppz, tq

Bt
`

ż 8

´8

¨ ¨ ¨

ż 8

´8

eiapz´upxqq∇ ¨ pGpxqppx, tqqxda “ 0. (67)
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Table 24: Accuracy and training speed of a pair of neural nets for approximating the simultaneously forward
and inverse “jump” flow maps of the Van der Pol oscillator (45) with px0, y0q P r´2, 2s ˆ r´2, 2s, trained
as a bidirectional autoencoder.

PINN with Nc “ 5000 total forward collocation points
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2492 1199 912 s 4.40 e–04 7.20 e–03
2 2506 1223 963 s 3.53 e–04 8.47 e–03
3 2523 1218 885 s 4.21 e–04 1.94 e–02
4 2570 1262 949 s 3.59 e–04 4.50 e–03
5 2622 1150 764 s 6.32 e–04 7.89 e–03

mean 2543 1210 895 s 4.41 e–04 9.49 e–03
SD 53 41 79 s 1.13 e–04 5.74 e–03

Table 25: Accuracy and training speed of a pair of plain neural nets for approximating the forward and
inverse “jump” flow maps of the Van der Pol oscillator (45) with px0, y0q P r´1, 3s ˆ r´2, 2s, trained as a
bidirectional autoencoder.

Vanilla neural net (no PINN)
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2512 1285 265 s 9.31 e–04 7.55 e–02
2 2485 1228 232 s 9.05 e–04 8.38 e–02
3 2579 1213 222 s 6.83 e–04 1.36 e–01
4 2568 1249 217 s 1.53 e–03 7.42 e–02
5 2654 1191 260 s 9.30 e–04 6.76 e–02

mean 2560 1223 239 s 9.96 e–04 8.74 e–02
SD 66 36 22 s 3.16 e–04 2.78 e–02

Here we employed the Fourier representation of the Dirac delta function. In general, equation (67) is un-
closed in the sense that there are terms at the right hand side that cannot be computed based on ppz, tq alone.
If we set upxptqq “ xkptq, i.e., we are interested in the k-th component of the dynamical system (25) then
(67) reduces to4

Bppxk, tq

Bt
`

ż 8

´8

¨ ¨ ¨

ż 8

´8

B

Bxk
pGkpxqppx, tqq dx1 . . . dxk´1dxk`1 . . . dxn “ 0. (68)

The specific form of this equation depends on the underlying dynamical system, i.e., on the nonlinear map
Gpxq. Let us provide a simple example.

Example 2.1 (Lorenz-96 system) Consider the Lorenz-96 dynamical system

dxi
dt
“ pxi`1 ´ xi´2qxi´1 ´ xi ` F for i “ 1, 2, . . . , n, (69)

4By using integration by parts and assuming that the joint PDF ppx, tq decays to zero sufficiently fast at infinity we obtain
ż 8

´8

¨ ¨ ¨

ż 8

´8

∇ ¨ pGpxqppx, tqq dx1 . . . dxk´1dxk`1 . . . dxn “

ż 8

´8

¨ ¨ ¨

ż 8

´8

B

Bxk
pGkpxqppx, tqq dx1 . . . dxk´1dxk`1 . . . dxn.
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Table 26: Accuracy and training speed of a pair of neural nets for approximating the forward and inverse
“jump” flow maps of the Van der Pol oscillator (45) with px0, y0q P r´1, 3s ˆ r´2, 2s, trained as a bidirec-
tional autoencoder.

PINN with Nc “ 5000 total forward collocation points
trial Nd Nv training time NRMSE (forward) NRMSE (inverse)

1 2512 1285 602 s 7.25 e–04 7.16 e–02
2 2485 1228 492 s 5.87 e–04 7.80 e–02
3 2579 1213 582 s 6.12 e–04 1.34 e–01
4 2568 1249 763 s 5.66 e–04 6.64 e–02
5 2654 1191 717 s 5.42 e–04 6.36 e–02

mean 2560 1223 631 s 6.06 e–04 8.27 e–02
SD 66 36 109 s 7.12 e–05 2.92 e–02

Table 27: Accuracy and training time of a plain feed-forward neural net for approximating the forward
“step” flow map of the Van der Pol oscillator (45) with px0, y0q P r´2, 2s ˆ r´2, 2s.

Vanilla neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 4214 2058 52 s 1.81 e–03 3.66 e–04
2 4018 1813 38 s 2.01 e–03 3.91 e–04
3 3675 2107 21 s 2.53 e–03 4.57 e–04
4 4214 1911 27 s 3.10 e–03 5.85 e–04
5 3626 1911 27 s 1.66 e–03 2.97 e–04

mean 3959 1960 33 s 2.22 e–03 4.19 e–04
SD 285 120 12 s 5.91 e–04 1.09 e–04

where x0 “ xd and x1 “ xn`1. The associated Liouville equation is

Bppx, tq

Bt
“ ´

d
ÿ

i“1

B

Bxi

„ˆ

pxi`1 ´ xi´2qxi´1 ´ xi ` F

˙

ppx, tq



. (70)

Suppose we are interested in the PDF of the fifth component of the system, i.e., set upxptqq “ x5ptq in
equation (65). By integrating (70) with respect to x1, . . . , x4, x6, . . . , xn and assuming that ppx, tq decays
fast enough at infinity, we obtain

Bppx5, tq

Bt
“

B

Bx5

„ˆ

x5 ´ F `

ż 8

´8

ż 8

´8

ż 8

´8

px3 ´ x6qx4ppx3, x4, x5, x6, tqdx3dx4dx6



. (71)

From this equation we see that the evolution of ppx5, tq depends on an integral involving ppx3, x4, x5, x6, tq.
In other words, to solve an equation of this nature, we must find a way to approximate the term involving
ppx3, x4, x5, x6, tq. To this end, it is convenient to first transform the integral at the right hand side by using
conditional probabilities. Specifically, we can write the joint PDF of x3ptq, x4ptq, x5ptq, and x6ptq at time t
as

ppx3, x4, x5, x6, tq “ ppx5, tqppx3, x4, x6|x5, tq, (72)

where ppx3, x4, x6|x5, tq is the conditional probability density of x3ptq, x4ptq, and x6ptq given x1ptq [9, 53].
A substitution of (72) into (71) yields

Bppx5, tq

Bt
“

B

Bx5

„ˆ

x5 ´ F ` E
 

px3 ´ x6qx4|x5, t
(

˙

ppx5, tq



, (73)
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Table 28: Accuracy and training time of a plain feed-forward neural net for approximating the forward
“step” flow map of the Van der Pol oscillator (45) with px0, y0q P r´1, 3s ˆ r´2, 2s.

Vanilla neural net (no PINN)
trial Nd Nv training time RMSE NRMSE

1 4214 2058 50 s 1.81 e–03 3.35 e–04
2 4018 1813 38 s 4.71 e–03 8.80 e–04
3 3724 2107 38 s 2.14 e–03 4.05 e–04
4 4018 1862 54 s 1.80 e–03 3.38 e–04
5 3577 1911 32 s 2.45 e–03 4.58 e–04

mean 3910 1950 42 s 2.58 e–03 4.83 e–04
SD 256 127 9 s 1.22 e–03 2.28 e–04

(a) (b)

Figure 35: Validation data and corresponding neural net reconstructions by a plain neural net which approx-
imates the forward “step” flow map of the Van der Pol oscillator (45): (a) px0, y0q P r´2, 2s ˆ r´2, 2s from
the model trained in trial 1 of Table 27; (b) px0, y0q P r´1, 3s ˆ r´2, 2s from the model trained in trial 1 of
Table 28.

where

E tpx3 ´ x6qx4|x5u “

ż 8

´8

ż 8

´8

ż 8

´8

px3 ´ x6qx4ppx3, x4, x6|x5, tqdx3dx4dx6 (74)

is the conditional expectation of the random variable px3ptq´ x6ptqqx4ptq given a realization of the random
variable x5ptq. Note that both random variables are evaluated at the same time t.

Example 2.2 (Divergence-free system) Consider the familiar example we introduced in Section 2.2.1, and
hereafter rewritten for convenience

#

9x “ 2xy ´ 1,

9y “ ´x2 ´ y2 ` µ.
(75)

The Liouville equation associated with (75) is

Bppx, y, tq

Bt
“ ´

B

Bx

`

p2xy ´ 1qppx, y, tq
˘

´
B

By

`

p´x2 ´ y2 ` µqppx, y, tq
˘

. (76)
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Figure 36: Reconstruction of 100 sample trajectories of the 13-dimensional fixed-wing UAV model (48)
with initial condition and parameter uncertainty specified in (53).

As before, we set µ “ 5. We chose the initial PDF p0px, yq to be the product of two independent Gaussians
with means µx “ µy “ 0.75 and variances σ2

x “ σ2
y “ 0.25. Suppose we are interested in the PDF of the

first component of the system, i.e., xptq. To obtain a reduced-order PDF equation for ppx, tq, integrate (76)
with respect to y. This yields,

Bppx, tq

Bt
“ ´

B

Bx

ˆ

2x

ż 8

´8

yppx, y, tqdy ´ ppx, tq

˙

. (77)

We can rewrite the joint PDF of x and y at time t as ppx, y, tq “ ppx, tqppy|x, tq. This allows us to express
the unclosed term in (77) as a conditional expectation

ż 8

´8

yppx, y, tqdy “ ppx, tq

ż 8

´8

yppy|x, tqdy “ ppx, tqEtyptq|xptqu. (78)

Equation (77) can now be rewritten in terms of Ety|x, tu

Bppx, tq

Bt
“ ´

B

Bx
p2xppx, tqEtyptq|xptqu ´ ppx, tqq . (79)

The evolution equation for ppx, tq is unclosed because it contains terms that depend on both x and y. In
order to remedy this problem, approximation of the unclosed term is necessary. This can be performed using
regression methods (as in Section 2.3) or neural networks (as in Section 2.3.2).

Remark 2.6 More generally, if we are interested in the PDF of k-th component of the system (25), then
we need to express the right hand side of (68) in terms of conditional expectations, and estimate such
expectations from data. If Gkpxq is in the form of a sum of separable functions, i.e.,

Gkpxq “
r
ÿ

l“1

n
ź

j“1

f jklpxjq, (80)
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Figure 37: Numerical estimation of the conditional expectation (84) for different number of samples of (82).
Shown are results obtained with moving averages and cubic smoothing splines.

then we can explicitly write (68) as

Bppxk, tq

Bt
`

B

Bxk

˜

ppxk, tq
r
ÿ

l“1

fkklpxkqE
!

f1
klpx1q...f

k´1
kl pxk´1qf

k`1
kl pxk`1q...f

n
klpxnq

ˇ

ˇ

ˇ
xk

)

¸

“ 0. (81)

Computing conditional expectations from data or sample trajectories is a key step in determining accurate
closure approximations of reduced-order PDF equations. A major challenge to fitting a conditional expec-
tation is ensuring accuracy and stability. More importantly, the estimator must be flexible and effective for
a wide range of numerical applications.

2.3.1 Estimating conditional expectations from data: splines and moving averages

In this Section we present two different approaches to estimate conditional expectations from data based on
moving averages and smoothing splines. The moving average estimate is obtained by first sorting the data
into bins and then computing the average within each bin. With such averages available, we can construct a
smooth interpolant using the average value within each bin. Some factors that affect the bin average approx-
imation are the bin size (the number of samples in each bin) and the interpolation method used in the final
step. Another approach to estimate conditional expectations uses smoothing splines. This approach seeks to
minimize a penalized sum of squares. A smoothing parameter determines the balance between smoothness
and goodness-of-fit in the least-squares sense [15]. The choice of smoothing parameter is critical to the
accuracy of the results. Specifying the smoothing parameter a priori is generally yields poor estimates [56].
Instead, cross-validation and maximum likelihood estimators can guide the choice the optimal smoothing
value for the data set [66]. Such methods can be computationally intensive, especially when the spline esti-
mate is performed at each time step. Other techniques to compute conditional expectations can leverage on
recent developments on deep learning [25]. In Figure 37 we compare the performance of the moving aver-
age and smoothing splines approaches in approximating the conditional expectation of two jointly Gaussian
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random variables. Specifically, we consider the joint distribution

ppx1, x2q “
1

2πσ1σ2

a

1´ ρ2
exp

ˆ

´
1

2p1´ ρ2q

„

px1 ´ µ1q

σ2
1

px2 ´ µ2q

σ2
2

´
2ρpx1 ´ µ1qpx2 ´ µ2q

σ1σ2q

˙

(82)
with parameters ρ “ 3{4, µ1 “ 0, µ2 “ 2, σ1 “ 1 σ2 “ 2. As is well known [53], given two random
variables with joint PDF ppx1, x2q, the conditional expectation of x2 given x1 is defined as

Etx2|x1u “

ż 8

´8

x2ppx2|x1qdx2 “
1

ppx1q

ż 8

´8

x2ppx1, x2qdx2, (83)

where ppx1q is the marginal of ppx1, x2q with respect to x2. In the specific case of (82) we have

Etx2|x1u “ µ2 ` ρ
σ2

σ1
px1 ´ µ1q “ 2`

3

2
x1. (84)

Such conditional expectation is plotted in Figure 37 (dashed line), together with the plots of the conditional
average estimates we obtain with the moving average and the smoothing spline approaches for different
numbers of samples. It is seen that both methods converge to the correct conditional expectation as we
increase the number of samples. Note, however, that convergence is achieved in regions where the PDF
(82) is not small (see the subsequent Remark 2.8). Both estimators require setting suitable parameters to
compute expectations, e.g., the width of the moving average window in the moving average approach, or
the smoothing parameter in the cubic spline approximant.

Remark 2.7 If the joint PDF of x1 and x2 is not compactly supported, then the conditional expectation is
defined on the whole real line. It is computationally challenging to estimate the expectation (84) in regions
where the joint PDF is very small [12]. At the same time, if we are not interested in rare events (i.e.,
tails of probability densities), then resolving the dynamics in such regions of such small probability is not
needed. This means that if we have available a sufficient number of sample trajectories, we can identify
the active regions where the dynamics are happening with high probability and approximate the conditional
expectation only within such regions [13]. Outside the active regions, we set the expectation equal to zero.

Remark 2.8 If the joint PDF of x1 and x2 is compactly supported, e.g. uniform in the square r0, 1s2,
then the conditional expectation is undefined outside the support of the joint PDF. This means, in principle,
that we are not allowed to set any value for the conditional expectation outside the domain where it exists.
However, a quick look at the structure of the reduced-order PDF equations we are considering, e.g., equation
(81), suggests that the conditional expectation plays the role of a velocity field advecting the reduced-order
PDF. Therefore, setting such velocity vector equal to zero in the regions where the reduced order PDF is
very small or even undefined, does not affect the PDF propagation process. On the other hand, setting the
conditional expectation equal to zero in low- or zero-probability regions greatly simplifies the mathematical
discretization of PDEs in the form (81).

2.3.2 Neural network estimation of conditional expectations

In this Section we describe a specific class of feed-forward neural networks, i.e., radial basis networks, to
effectively estimate conditional expectations. Radial basis neural networks have a fixed three-layer archi-
tecture consisting of an input layer, a hidden layer, and an output layer. The relationship between each layer
is depicted in Figure 38.
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Figure 38: Architecture of a radial basis neural network that receives two inputs (i.e., x and t) and returns
one output ypx, tq, i.e., the conditional expectation Erxptq|yptqs.

1. The input layer has as many neurons as there are inputs. For example, if the neural net is used to
approximate the conditional expectation Etyptq|xptqu then it takes two inputs: t and xptq. Therefore,
the input layer for this problem consists of two neurons. This layer is also responsible for scaling the
input vector xptq using input weights.

2. The hidden layer has a variable number of neurons, sayM , each with a center cm form “ 1, . . . ,M .
Generally, we choose the number of neurons, M , to be significantly smaller than the number of
training samples used. Each neuron in the hidden layer represents a radial basis function, e.g., a
Gaussian

hmpx, tq “ exp

˜

´
}xptq ´ cmptq}

2

2b2

¸

, (85)

where b is the spread (or variance) of the basis function.

3. The output layer performs a linear mapping from the hidden space to the output space. For example,
if we are interested in representing the conditional expectation of yptq given xptq (see equation (79))
then the output layer takes the form

Etyptq|xptqu “
M
ÿ

m“1

wmhmpx, tq. (86)

The spread of the radial basis neural network, i.e., the parameter b in (85), acts as a smoothing parameter.
A large spread leads to a smooth function approximation, while a small spread allows for more variation
between neurons. For illustration purposes, let we consider the system (75) with random initial condition
distributed as described in Example 2.2. Let us set the spread of our radial basis neural net as b “ 1.8.
In Figure 39, we compare the conditional expectation approximation generated via the methods presented
in Sections 2.3.1 and 2.3.2 respectively. In most cases, radial basis neural networks require more many
neurons than a comparable feed-forward network or another regression method. However, the trade off is
that radial basis networks often take less time and fewer samples to train. This is demonstrated in Figure
39, were show that our radial basis neural network with 25 neurons requires only 500 sample trajectories to
approximate Etyptq|xptqu in (77), while smoothing splines and moving average regression methods require
thousands more samples to achieve the same level of accuracy. The radial basis neural network requires at
least one neuron for each pattern that appears in the training data. For large or unsmooth data sets (i.e. data
that is spiky with steep gradients), radial basis neural networks can become costly to train. This is clearly
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(a) (b)

Figure 39: Approximate Etyptq|xptqu of dynamical system, equation (75), (a) using methods from 2.3.1
with 5000 trajectories, and (b) using a radial basis network with 25 neurons in the hidden layer and 500
training samples.

Table 29: Training time of a neural net for approximating the unclosed term in (77), depending on the
availability of data.

Neurons per layer
10 25 50 100

N
o.

Sa
m

pl
es

10 1 s 1 s 1 s 1 s
50 1 s 2 s 3 s 6 s
100 2 s 4 s 7 s 14 s
500 26 s 55 s 108 s 255 s
750 70 s 143 s 264 s 710 s

demonstrated in Table 29. For this reason, the radial basis networks are appropriate for computing closure
approximations if and only if the conditional expectation being approximated is relatively smooth, which is
often the case.

2.3.2.1 Training the neural net To initialize training of the neural net, we need sample trajectories, e.g.,
of the system (75). Start by drawing P samples of the initial condition from the initial pdf, p0px, yq. Next,
we evolve each initial condition samples forward in time using a one-step method such as the Runge-Kutta
scheme with time step ∆t. This yields N “ P {∆t data points to feed into the neural network for training.
We feed N input vectors to the network along with N target values for y. For the ith sample in the training
set, xi “ pxi, tiq are the input values and yi is the target output. The algorithm iteratively creates a radial
basis network one neuron at a time. Neurons are added to the network until an error tolerance is met or
a user-defined number of neurons has been reached. We start with 0 neurons. The network is simulated,
error targets are checked. If the error target is met, the algorithm stops, otherwise new neurons are added
iteratively. Once each neuron in the network has been assigned input weights we need to adjust output
weights to minimize error. Given M centers, we define the transfer matrix ΦC as

ΦC
ij “ exp

ˆ

´
||xi ´ cj ||

2
2

2b2

˙

. (87)

The transfer matrix satisfies

ΦCw ` β “ y, (88)
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Figure 40: Data-driven smoothing spline estimation of the conditional expectations arising in the study of
the Lorenz-96 dynamical system (69).

where y is the target vector, β is the bias vector (to be found), and w is the weight vector (to be found).
Solving the least squares problem 88 yields the desired output weights and biases. We seek a global optimal
approximation to the training data in the minimum mean square error (MSE) sense.

MSE “
1

N

N
ÿ

i“1

›

›

›

›

›

yi ´
M
ÿ

m“1

wmhmpxi, tiq

›

›

›

›

›

2

.

The mean squared error of the network approximation is checked, and the algorithm will exit if the error
target is met. Otherwise the next neuron is added. This process is repeated until the error target is met or the
maximum number of neurons is reached.

2.3.3 Numerical results

2.3.3.1 Lorenz-96 system In Figure 40, we summarize the results we obtained by applying the smooth-
ing spline conditional expectation estimator to the Lorenz-96 model introduced in (69). This system has
polynomial-type nonlinearities. The quantity of interest, x5, is indicated in the x-axis of the plots. When
using this approach, we must be careful to provide enough samples for the estimator to adequately capture
the support of the underlying PDF. If we do not have enough samples, the estimator will not be consistent
with the true conditional expectation. In Figure 41 we plot the PDF dynamics we obtain by solving (71)
with an accurate Fourier spectral method. The conditional expectation is estimated based on 5000 sample
trajectories.

2.3.3.2 Divergence-free system (75) In Figure 42, we plot the PDF dynamics we obtained by sampling
(75), and then solving (79) with a Fourier spectral method. The conditional expectation here is estimated
based on the moving average regression method detailed in Section 2.3.1 and 5000 sample trajectories.
Similarly, in Figure 43, we plot the PDF dynamics we obtained by solving (79) with the conditional expec-
tation estimated using a radial basis neural network and M “ 25 neurons in the hidden layer. The network
was trained with 500 sample trajectories, i.e., an order of magnitude less than the moving average case.
In Table 30 we summarize L2 errors between the benchmark reduced order PDF ppx, tq at t “ 0.5 and the
PDF we obtained from the reduced order equation (79), with the conditional expectation computed by using
the radial basis neural network. Specifically, we show results as a function of the number of neurons of the
hidden layer and the number of samples used to train the neural network approximating Etyptq|xptqu.

2.3.4 Data-driven PDF equations as optimization constraints

Next, we consider the problem of equation-driven PDF estimation using a constrined optimization frame-
work. To demonstrate the proposed methods, we consider the simple divergence-free ODE system (37)
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Figure 41: Estimate of the Lorenz-96 dynamical system using: (a) accurate kernel density estimate of
p5px5, tq based on 2500 sample trajectories; and (b) numerical solution of (71) obtained by estimating
E
“`

x3ptq ´ x6ptq
˘

x4ptq|x5ptq
‰

with 5000 sample trajectories.

Table 30: L2 errors between the benchmark reduced-order PDF ppx, tq at t “ 0.5 in the system (75), and the
one obtained from the reduced order equation (79), with Etyptq|xptqu estimated using a radial basis neural
network.

Neurons per layer
10 25 50 100

N
o.

Sa
m

pl
es

10 7.81 e–02 3.84 e–02 4.00 e–02 3.33 e–01
50 1.66 e–02 1.54 e–02 2.28 e–02 5.36 e–02
100 1.66 e–02 2.07 e–03 3.04 e–03 4.13 e–02
500 1.35 e–01 4.01 e–02 6.4 e–02 4.43 e–02
1000 4.19 e–02 4.94 e–02 4.77 e–02 4.35 e–02

evolving from a random initial state, ppx, y, t0q. The PDF of the state variables evolves according to the
well-studied Liouville equation, (76). We obtain the marginal density function for x by integrating the joint
density function with respect to y,

Bppx, tq

Bt
“ ´

B

Bx

ˆ

2xupx, tqppx, tq ´ ppx, tq

˙

, (89)

where upx, tq “ Ery|x, ts. In this problem environment, the conditional expectation will act as a control
signal for the PDE. Ultimately, we will design the control signal to steer the PDF in the direction of the
sample data while agreeing with conditional data sampled from (37).

2.3.4.1 Discretization First, we will spatially discretize the PDE constraint using Fourier spectral meth-
ods. In this context, we seek solutions in the form pQpx, tq “

řQ
k“0 pQpxk, tqφkpxq. This leads to a system
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Figure 42: (a) Accurate kernel density estimate of ppx, tq in equation (75), and (b) numerical solution of
(79) where Etyptq|xptqu is estimated using the moving average regression method, as outlined in Section
2.3.1.

of Q ordinary differential equations defining pQ.

BpQpxj , tq

Bt
“ ´

Q
ÿ

k“1

Djk

ˆ

2xkupxk, tqpQpxk, tq ´ pQpxk, tq

˙

, (90)

where D represents the Q ˆ Q Fourier differentiation matrix. Next, we will discretize the system in time
using an explicit third-order Adams-Bashforth scheme,

ppxj , tn`1q “ ppxj , tnq `
∆t

12

ˆ

23Lpxj , tnq ´ 16Lpxj , tn´1q ` 5Lpxj , tn´2q

˙

, (91)

where Lpxj , tnq “ ´
řQ
k“1Djk

ˆ

2xkupxk, tnqppxk, tnq ´ ppxk, tnq

˙

. This temporal discretization is de-

sirable as it is consistent, strongly stable, and third-order accurate [18].

2.3.4.2 Cost Functional The cost functional at time tn will be responsible for tracking two components:
the PDF solution, ppx, tnq, and the control signal, upx, tnq. We consider a cost functional in the form,

Jrppx, tnq, upx, tnqs “ J1rppx, tnq, upx, tnqs `
`

upxi, tnq ´ yi
˘2
` λ

ż

B2upx, tnq

Bx2
dx. (92)

The first term in our cost functional, J1rppx, tnq, upx, tnqs represents a direct divergence approximation be-
tween the data-driven PDF estimator and sample trajectories of the underlying dynamical system. Several
options for J1rppx, tnq, upx, tnqs are discussed below. The second term in the cost functional determines the
goodness of fit between our control, upx, tq, and the data, tyiuMi“1. The third and final term in J penalizes
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Figure 43: (a) Accurate kernel density estimate of ppx, tq in equation (75), and (b) numerical solution of
(79) where Etyptq|xptqu is estimated using the using a radial basis neural network.

roughness in the control, upx, tq. Notice that the sum of the last two terms represents a cubic smoothing
spline with the smoothing parameter λ determining the balance between smoothness and goodness-of-fit.
Additionally, the time discretization of the problem ensures that we have an exceptional initial guess for tn
from iteration tn´1. If we design J to be convex, the problem simiplifies and a unique minimum is guaran-
teed. There are many options for measuring the divergence between our PDF approximation and samples.
We can rule out several criterion based on the problem setting. For example, the Akaike Information Crite-
rion (AIC) can be problematic if we are working with a small sample size. In cases where the sample size
is small, AIC is likely to select models with too many parameters. For the purposes of this research, AIC
will lead to an overfit model. The Anderson-Darling Test is another popular criterion that is unfit for this
setting. Similar to Kolmogorov-Smirnov test, the Anderson-Darling test focuses on whether two samples
came from the same probability distribution. This criterion does a nice job with tails of probability distribu-
tion, but we are not interested in resolving dynamics for rare events. Moving forward, we focus our efforts
on a hybridization of the Kolmogorov-Smirnov test. Such test is used to determine whether a set of samples
were drawn from a given distribution. The Kolmogorov-Smirnov statistic for a set of samples, txiptnquMi“1,
at time tn is defined

D “ sup
@xi

"

|F pxi, tnq ´ Fobspxi, tnq|

*

, (93)

where F px, tq represents the CDF of x obtained using our equation-driven PDF estimator and Fobs rep-
resents the empirical distribution of our sample set txiptnquMi“1. For each timestep, we order the sam-
ples to obtain tx̂iptnquMi“1. From the ordered dataset, we construct an empirical distribution,Fobspx, tnq “
1
M

řM
i´1 Ir´8,xs

`

x̂iptnq
˘

, where Ir´8,xs
`

x̂iptnq
˘

is equal to 1 if x̂iptnq ď x and 0 otherwise. At the 95%

level, the critical distance is approximately Dcrit,0.05 “ 1.36M´1{2. To circumvent direct computation of
the CDF at each time step, we employ a hybrid representation of the Kolmogorov-Smirnov distance. This
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Figure 44: (a) Samples of (37) plotted at t “ 0.3; (b) A histogram generated from the data on the left; (c)
The function pHpxq that will be used in the cost functional J .

hybrid measure focuses on the divergence between two PDFs,

Dhybrid “

ˇ

ˇ

ˇ

ˇ

ppx, tnq `
∆t

12

ˆ

23Lpx, tnq ´ 16Lpx, tn´1q ` 5Lpx, tn´2q

˙

´ pHpx, tnq

ˇ

ˇ

ˇ

ˇ

(94)

where pH is a simple approximation of the PDF from a histogram of the samples.
Instead of minimizing the supremum of Dhybrid, we minimize the mean integrated square error be-

tween our approximation of the PDF and pHpx, tq. The hyperbolic PDE-constrained optimization problem
associated with the hybrid Kolmogorov-Smirnov cost functional is

min
p,u

Jrp, us “

ż 8

´8

rppx, tn`1q ´ pHpx, tn`1qs
2 dx`

M
ÿ

i“1

`

upxi, tn`1q ´ yi
˘2
` λ

ż 8

´8

B2upx, tn`1q

Bx2
dx,

(95)

s.t. ppxj , tn`1q “ ppxj , tnq `
∆t

12

ˆ

23Lpxj , tnq ´ 16Lpxj , tn´1q ` 5Lpxj , tn´2q

˙

(96)

Lpxj , tnq “ ´

Q
ÿ

k“1

Djk

ˆ

2xkupxk, tnqppxk, tnq ´ ppxk, tnq

˙

. (97)

The cost functional Jrp, us depends on a state variable, p, and a control variable, u. In the context of (89),
upx, tq, mimics the conditional expectation Ety|x, tu. We use M to denote the number of samples used in
the cost functional,N to denote the number of timesteps used in the temporal discretization, andQ to denote
the number of Fourier modes used in the spatial discretization. Note that the problem at time instance tn
depends on the solution at times tn´1, tn´2, and tn´3. This temporal dependence has the desirable effect of
enforcing time-continuity in the solution of ppx, tq. The constrained optimization problem can be recast as
an unconstrained optimization problem. By replacing ppxi, tn`1q with (96) and shifting indices slightly in
the cost functional, we arrive at the following unconstrained problem

min
p,u

Jrp, us “

ż 8

´8

„

ppx, tnq `
∆t

12

ˆ

23Lpx, tnq ´ 16Lpx, tn´1q ` 5Lpx, tn´2q

˙

´ pHpx, tn`1q

2

dx

¨ ¨ ¨ `
`

upxi, tnq ´ yi
˘2
` λ

ż

B2upx, tnq

Bx2
dx,

(98)

where Lpx, tnq represents the right hand side of the discretized PDF equation defined in (91).
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Table 31: Change of variables ensuring that the Ery|xs is periodic.

x y ppx, t0q Ery|xs

x̂ ŷ expt´cx̂2u p2πq´1{2exp
 

´x2{2
(

ρ x expt´c x2u

x̂ ŷ { p1` cx̂2q p2πq´1{2exp
 

´x2{2
(

ρx{p1` cx2q

(a) (b)

-4 -2 0 2 4
-2

-1

0

1

2

-4 -2 0 2 4
-2

-1

0

1

2

Figure 45: (a) Analytical conditional expectation, (84), plotted alongside samples associated with the expo-
nential probability transformation; (b) Analytical conditional expectation plotted alongside samples associ-
ated with the Lorentzian probability tranformation.

2.3.4.3 Initialization We will need an approximation of ppx, t1q, ppx, t2q, ..., ppx, tkq to initialize the
kth-order Adams-Bashforth time stepping scheme. These pdf approximations are obtained using a linear
multistep method (Forward Euler for t0`∆t, and Adams-Bashforth for subsequent timesteps). Additionally,
we will need an approximation of the control, upx, tq at the first k time steps. Given ppx, y, t0q, we know
the exact value of upx, t0q “ Ery|x, t0s for all x. However, we must be mindful of the numerical scheme
we’ve used for spatial discretization. The control signal must be periodic with zero boundary conditions
on the numerical domain of x. This requires some care in the selection of an initial condition. If we allow
ppx, y, t0q to be a bivariate Gaussian, the resulting upx, t0q “ Ery|x, t0s is non-periodic (i.e. it is linear,
specifically Ery|x, t0s “ µy ` ρσy{σxpx´µxq where ρ is the correlation). To find a suitable initial density,
we begin by considering jointly Gaussian random variables x̂ and ŷ with means µx “ µy “ 0 and variances
σ2
x “ σ2

y “ 1. To ensure upx, t0q “ Ery|xs is periodic while leveraging on the convenient properties of
Gaussian distributions, we consider the probability transformation from px̂, ŷq to px, yq. In Table 31 we
summarize reasonable options for x and y. Both of these conditional expectations have the qualities we
desire. They are continuous, differentiable, and Ery|xs Ñ 0 as x Ñ ˘8. The parameter c ą 0 controls
how quickly the conditional expectation decays to 0. We have carefully selected the initial condition in order
to leverage on the convenient sampling properties of Gaussian distributions. To generate samples for px, yq,
we will start by sampling px̂, ŷq from a standard normal distribution. With px̂, ŷq available, we can use the
mappings presented in the Table above to convert px̂, ŷq samples to px, yq samples.

2.3.4.4 Numerical results Each of the results presented were generated using an initial condition based
on the exponential transformation y “ ŷexpt´c x2u. The smoothing parameter, λ, is fixed at 0.25 and the
value of µ in (37) is set to 5. Each simulation was run on t P r0, 1s. For the results presented in Figure
46, M “ 50 samples of (37) were used and the benchmark was constructed using a density histogram with
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(a) (b)

Figure 46: Kolmogorov-Smirnov Hybrid Cost Optimization Results: (a) Benchmark estimate of ppx, tq
generated using a traditional kernel density estimator and 5000 samples at each time step; (b) Equation-
driven PDF estimate obtained by solving (98) with M “ 50 samples.

(a) (b)

Figure 47: (a) Cost functional J versus time for M “ 50, M “ 500, and M “ 1000 samples, and (b)
control signal generated from (98) using 50 samples from (37).

midpoint interpolation. The control signal generated using 50 samples is plotted in Figure 47
Although the results presented in Figure 46 appear to indicate that few samples are needed for reasonable

accurate equation-driven PDF estimation in an optimization framework, we must be careful about the design
of our cost functional. In any case, the direct comparison between our equation-driven PDF estimator and a
benchmark introduces a suite of issues. There is, of course, the question of how to construct the benchmark
approximation. A benchmark that is not true to the data will cause the PDF approximation to evolve in
an inaccurate maner. Moreover, if our benchmark is accurate to order S, our PDF approximation may be
limited to accuracy of order S as well.

2.4 Task III-IV: Optimal control under uncertainty for high dimensional nonlinear systems

Designing efficient optimal control algorithms for stochastic dynamical systems is an extremely challeng-
ing problem. State-of-the-art probabilistic (spectral) collocation methods can handle random input vectors
with dimension up to 3 or 4. Beyond such small number of random variables, the memory requirements
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and computational cost of such methods become unacceptably large, yielding a bottleneck that hasn’t yet
been overcome. In this Section, we introduce a new potentially groundbreaking algorithm for computa-
tional optimal control under uncertainty. The new algorithm is based on interior point methods, common
sub-expression elimination, and exact gradients obtained with automatic differentiation and computational
graphs [1, 4]. The new algorithm has extremely low memory requirements (see Figure 57), which means
that it allows us to process a massive number of sample trajectories (in parallel) and determine the perfor-
mance metric and associated optimal controls in a very efficient way. The method is based on three distinct
but complementary elements:

• We implemented a multi-shooting optimal control scheme with piece-wise constant (in time) control
approximation. Multi-shooting is known for its numerical stability in solving deterministic optimal
control problems. We modified the deterministic algorithm and made it effective for uncertain optimal
control problems. This includes imposing particle-independent continuity conditions across adjacent
time segments.

• The optimization solver we developed combines an interior point method [69] with backward propa-
gation and automatic differentiation algorithms coded in TensorFlow [1]. In this way, we can compute
exact gradients of discretized cost functionals in a very efficient way, while allowing at the same time
the imposition of nonlinear constraints.

• To further improve performance and memory management, we implemented a Common Subexpres-
sion Elimination (CSE) technique that can massively reduce memory consumption during computa-
tions. As we shall see in Section 2.4.4, CSE eliminates the growth of memory requirements with
respect to the increase of the time discretization points. This feature is essential for solving high di-
mensional problems and problems with long time horizon. It also reduces the discretization error in
the control approximation, since smaller time steps can be afforded.

Hereafter, we provide technical details on the proposed stochastic optimal control algorithm, and demon-
strate its accuracy and effectiveness in applications to path-planning problems under uncertainty involving
UGVs and UAVs.

2.4.1 Multi-shooting for optimal control problems under uncertainty

Multi-shooting optimal control algorithms have been used extensively in control of deterministic systems
because of their numerical stability. To illustrate how multi-shooting works, consider a one-dimensional
deterministic optimal control problem,

min
uptq

Jprxptf q, uptqsq subject to 9x “ fpx, t, uq, xp0q deterministic, (99)

where, x P R (state variable), u P R (control).

• The first step of the multi-shooting method is to divide time horizon r0, tf s into S sub-intervals which
we will call shooting segments,

rtk, tk`1s, k “ 1, . . . , S, (100)

with t1 “ 0 and tS`1 “ tf . Each shooting segments can have different lengths. Each shooting
segment is further discretized into uniform grids

tk,j “ tk ` pj ´ 1qhk, j “ 1, 2, . . . , Nk, k “ 1, . . . , S, (101)
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Figure 48: Sketch of the multi-shooting setting for the optimal control of one-dimensional deterministic
problem.

where hk “
tk´tk´1

Nk´1 is the time step size used in the kth shooting segment rtk, tk`1s. Note that
different shooting segment can have different step size hk, depending on the size of the grid Nk. The
total number of time discretization points is therefore

Ntot “

S
ÿ

k“1

Nk, (total number of time-discretization points). (102)

• Within each shooting segment rtk, tk`1s, control uptq is approximated by a piecewise constant func-
tion over the grid ttk,ju

Nk
j“1, i.e.,

uptq « ûkptq fi uk,j , when t P rtk,j , tk,j`1q, j “ 1, . . . , Nk ´ 1. (103)

The approximation/discretization of the control variable uptq is sketched in Figure 48. The constant
variables uk,j define part of decision vector to be determined through optimization.

• To ameliorate the known sensitivity issues of single direct shooting methods, in multi-shooting the
starting point of each state trajectory withing each shooting segment rtk, tk`1s (denoted as xk,1), is
also part of the optimization variables. With the piece-wise constant control approximation available
(ûkptq), the state vector at any time instant can be computed by numerical integration

x̂ptk`1q “ xk,1 `

ż tk`1

tk

fpx̂ptq, t, ûkptqqdt. (104)

To ensure the continuity of the state across the shooting segments, we impose constraints

xk`1,1 “ x̂ptk`1q. (105)

To extend the basic idea of multi-shooting from one-dimensional deterministic optimal control problems to
high dimensional optimal control problems under uncertainty, we introduce the following notation:

x
piq
j,k “ x

pjqptj,k, ωiq uj,k “ uptj,kq (106)
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for the discretized trajectory of the state vector and control where i “ 1, . . . , N labels a specific realization
of state process, j “ 1, . . . , S, labels the shooting segment rtj , tj`1s, and k “ 1, . . . , Nj labels the time
instant within the jth shooting segment. We also denote the ith-sample of the full discretized state process
in r0, tf s as

Xpiq “

!

x
piq
1,1, . . .x

piq
1,N1

,x
piq
2,1, . . . ,x

piq
2,N2

, . . .
)

, i “ 1, ..., N. (107)

Similarly, the discretized control vector is

U “ tu1,1, . . .u1,N1 ,u2,1, . . . ,u2,N2 , . . .u . (108)

It is also convenient to define an additional vector collecting the sample values the process xpt, ωq at the
boundaries of the shooting segments, i.e.,

X
piq
b “

!

x
piq
1,1,x

piq
1,N1

,x
piq
2,1,x

piq
2,N2

. . . ,x
piq
S,NS

)

, (109)

and the full vector of states and boundary values

X “

!

Xp1q, . . . ,XpNq
)

, Xb “

!

X
p1q
b , . . . ,X

pNq
b

)

. (110)

The continuity of each sample trajectory across different shooting segments can be imposed in the same
manner as Eq. (105). However, such implementation would introduce a very large number of optimization
constraints (one for each sample path), making the optimization problem very challenging to solve, and
potentially increasing unfeasible regions. Instead, we introduce the following single constraint

S
ÿ

k“1

N
ÿ

l“1

›

›

›
x
plq
k,Nk

´ x
plq
k`1,1

›

›

›

2
“ 0, (111)

which guarantees continuity of sample trajectories across different shooting segments, while being com-
pletely agnostic on the trajectory labels. In other words, across different shooting segments the constraint
(111) might yield a reshuffling of the trajectories labels, but as we know this does not affect statistical
properties. Moreover, we have the set of constraints

x
piq
k,Nk

“ x
piq
k,1 `

Nk
ÿ

j“1

wjf
´

x
piq
k,j , tk,j ,uk,j

¯

, i “ 1, ..., N, (112)

which represent the discretized version of equation (104) in the vector setting (here wj are temporal inte-
gration weights). Using this notation we formulate the following multi-shooting ensemble optimal control
problem

min
U ,Xb

JpX,Uq subject to (111) and (112). (113)

2.4.2 Efficient gradient computation for constrained optimization

The large-scale constrained optimization problem (113) can be solved by using optimization algorithms
based on gradient information. To this end, it is very important to be able to compute the gradient of the cost
function J with respect to the decision variables pU ,Xbq, with accuracy and efficiency. In this Section we
provide technical details on how we implemented such gradient computation using automatic differentiation
functions available in TensorFlow [1] and backward propagation. Our algorithm provides exact gradients at
a negligible computational cost since all operations are performed on very efficient computational graphs.

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

69



Figure 49: Model of an Unmanned Ground Vehicle (UGV).

2.4.2.1 Dataflow graphs and gradient evaluation Modern machine learning frameworks use decen-
tralized data graphs to map computations to different nodes in a computational cluster [1]. The graphs use
data as edges and computational operations as nodes. The dataflow graph is pre-compiled, optimized and
stored as metadata in memory for the duration of the calculation. Using reverse automatic differentiation,
the computational graph of the gradients with respect to a given cost function is simultaneously formed and
similarly stored. Using these two graphs simultaneously allows the efficient computation of the gradients
with respect to the decision variables. The calculations are performed using a data event driven mechanism
allowing for nearly simultaneous calculations of gradients as the dynamical system is being integrated. To
illustrate the main idea, consider the Euler forward scheme applied to the following dynamics representing
a a real wheel driving Unmanned Ground Vehicle (UGV) (see Section 2.4.3)

$

’

’

&

’

’

%

9x1 “ u1 cospx3q

9x2 “ u1 sinpx3q

9x3 “
u1

L
tanpu2q

(114)

where px1ptq, x2ptqq is the location of the vehicle, x3ptq is the orientation angle, u1 is the forward velocity,
and u2ptq is the steering angle. Such scheme can be written as

$

’

’

&

’

’

%

x1ptk`1q “ x1ptkq ` hu1ptkq cospx3ptkqq

x2ptk`1q “ x2ptkq ` hu1ptkq sinpx3ptkqq

x3ptk`1q “ x3ptkq ` h
u1ptkq

L
tanpu2ptkqq

(115)

The generation of a data graph in this case is particularly simple. Consider, as an example the cost functional

Jprxptqsq “ x1ptN q
2. (116)

The gradient of J with respect to tu1pt1q, . . . , u1ptN qsu and tu2pt1q, . . . , u2ptN qsu can be easily computed
with backward propagation (chain rule). For instance,

BJprxptqsq

Bu1ptkq
“

Bx1ptN q

Bxj1ptN´1q

Bxj1ptN´1q

Bxj2ptN´2q
¨ ¨ ¨
Bxjk`2

ptk`2q

Bxjk`1
ptk`1q

Bxjk`1
ptk`1q

Bu1ptkq
(117)
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Figure 50: Portion of the data graph for the UGV model discretized with Euler forward time integration and
graph the compute the kth component of the gradient of the cost functional.

As clearly seen from the computational graph sketched in Figure 50, portions of the calculations for
the forward trajectory propagation as well as the backward gradient calculation are shared. Using reactive
programming, shared portions of the graphs are computed only once, while memoization realizes additional
substantial computational savings.

The exact savings depend on the efficiency of the graph compiler as well as the particular dynamics.
Once the compiler creates and compiles the data graph in memory for a single trajectory, adding a dimension
for sampling does not involve any changes to the graph or gradient calculations. By choosing a non-adaptive
integration scheme, we ensure that the operations can be performed in lock step mode across all samples,
and can utilize hardware with wide SIMD capabilities such as GPU, TPU or ASIC cards.

2.4.2.2 Integration of efficient gradient computation with constrained optimization solvers In the
previous Section we have seen that standard high-performance machine learning packages such as Tensor-
Flow [1], can be effectively utilized to compute gradients of cost functionals very efficiently. However,
such packages lacks the ability to handle constraints. In the simplest implementation, constraints can be
simply added as penalty terms in the cost functional, e.g., as we did in physics-informed neural net traning
(see Section 2.2.1 and equation 35). Such simplified is not allowed in optimal control problems, since the
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Figure 51: UML (Unified Modeling Language) diagram for the integration of IPOPT with TensorFlow
illustrating the major interface points.

constraints, which represent dynamics and physical limitations of the control systems, can only be satisfied
approximately in this setting. Also, the resulting cost function may be highly nonlinear and ill-conditioned.
On the other hand, sequential quadratic programming (SQP) and interior point methods have had great suc-
cess in computational optimal control. Optimizers such as SNOPT [22] and IPOPT [6] are widely used
in solving deterministic optimal control problems. The success of these solvers in computational optimal
control is largely due to the excellent performance of numerical optimization algorithms in handling con-
straints. Such constraint optimization algorithms are currently not available in standard machine learning
software packages. On the other hand, optimization software generally lacks effective routines to efficiently
compute accurate gradients of the cost functional. Thus, we developed new software to integrate IPOPT
[69], an optimizer that relies on interior point methods , with TensorFlow [1]. Such integration combines
fast gradient computation in TensorFlow with the efficient constrain optimization algorithms implemented
in IPOPT, making it suitable for solving high-dimensional optimal control problems under uncertainty. The
integration can be done in two ways. The first one replaces the built-in optimizers in TensorFlow with
IPOPT. This approach equips TensorFlow with the ability to handle constraints explicitly, which is cru-
cial, e.g, when training physics-informed data-driven neural nets for PDFs with Liouville equations as a
constraint. However, this requires labor intensive software development. The second way incorporates Ten-
sorFlow into IPOPT, in the sense that the IPOPT uses TensorFlow functions to compute the gradient of the
objective functional. A third party contributed python wrapper around IPOPT [69] allows for a relatively
straightforward integration.
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2.4.3 Application to a UGV stochastic path planning problem

Consider the systems of equations (114), describing the dynamics of a simple unmanned ground vehicle
(UGV) . The control objective is to drive the vehicle from a uniformly distributed random initial condition

»

–

x10

x20

x30

fi

fl „

»

–

Up0.95, 1.05q
Up0.95, 1.05q
Up´0.05, 0.05q

fi

fl (118)

to a target located precisely at px1, x2q “ p0, 0q. The parameter L, representing the distance between
the front and rear axles, is also random and following a normal distribution with mean 0.1 and variance
10´2. The controls are the forward velocity, u1ptq, and the steering angle, u2ptq, subject to the following
constraints

´1 ď u1ptq ď 1, (119)

´
π

4
ď u2ptq ď

π

4
. (120)

To represent the control objective, we define the following cost function

Jpxptf qq “ Etx1ptf q
2 ` x2ptf q

2u, (121)

where tf “ 50 is the final transfer time, and Et¨u is an expectation over all possible realizations of the initial
UGV position and distance between the front and rear axles. The expectation in (121) can be approximated
by computing the ensemble mean over N “ 1000 sample trajectories. Also, the integration period tf “ 50
is discretized in terms of S “ 2 shooting segments, t P r0, 10s and t P r10, 50s, with N1 “ 100 and
N2 “ 400 time instants respectively. Within each segment, a 4th order Runge-Kutta method with a time-
step size h “ 0.1 is used to numerically propagate the entire ensemble of realization (which can be easily
vectorized and distributed across different cores).

We solved the discretized constrained optimization problem mentioned above by using IPOPT [69], an
open source software package for large-scale nonlinear optimization. As we mentioned before, we linked
IPOPT with automatic differentiation functions coded in TensorFlow. This allowed us to compute the gra-
dient of the objective functional exacly. The optimal controls we obtain for the forward velocity, u1ptq and
the steering angle u2ptq are shown in Figure 52. The corresponding trajectories of the UGV under the opti-
mal controls are shown in Figure 53. Note that the final position of the UGV is clustered around the target
location of p0, 0q (see Figure 53b). As a comparison, we generate a different control by minimizing the
quadratic cost

Jpu1, u2q “

ż tf

0
pu2

1ptq ` u
2
2ptqqdt (122)

for the most probable scenario, i.e., setting the initial condition and parameter equal to their mean values
$

’

’

’

&

’

’

’

%

x1p0q “ 1.0

x2p0q “ 1.0

x3p0q “ 0.0

L “ 1.0

(123)

together with the final condition px1ptf q, x2ptf qq “ p0, 0q. This approach is typically used in engineering
control applications. The resulting control is defined as nominal control. To show that nominal controls are
ineffective in the presence of uncertainty, in Figure 54 we plot the stochastic dynamics of the UGV under
nominal control. By comparing Figure 53 with Figure 54, it is clear that trajectories under optimal control
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(a) Optimal forward velocity u1ptq (b) Optimal steering angle u2ptq

Figure 52: Optimal controls for the UGV stochastic path planning problem.

(a) Trajectories driven by optimal control (b) Endpoints of the UGV under optimal control

Figure 53: Trajectories and endpoints with optimal control for UGV example over 1000 randomly selected
samples.

(a) Trajectories driven by nominal control (b) Endpoints of the UGV under nominal control

Figure 54: Stochastic dynamics of the UGV under nominal controls.

are more concentrated around the target location than trajectories under nominal control. It is also interesting
to note that, in the case of nominal control, the trajectories keep spreading out as time advances. On the
other hand, the optimal control drives the vehicle in a more complicated forward and backward motions to
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Figure 55: Probability that the UGV is found at a distance r ě d: optimal control (orange) versus nominal
control (blue).

(a) Fixed sample size (N “ 100) and variable final time
(tf ). (b) Fixed final time (tf “ 10.0) and variable size (N ).

Figure 56: Memory storage requirement for the stochastic UGV path planning problem as a function of the
final time tf and number of samples. These graphs are obtained on a Xeon v2 processor 2.3GHz with 10
cores.

mitigate the effect of uncertainty in the trajectories. In Figure 55 we plot the probability that the UGV is
found at a distance r ě d from the target location at time tf “ 50. Calculations are based on 10000 Monte
Carlo samples. It is seen that 90% of the trajectories endpoints are within a radius of 0.15 if we the optimal
controls, while they are within a larger radius of 0.3 if we use nominal controls.

2.4.4 Common Subexpression Elimination (CSE)

We have seen in the previous Section that by combining multi-shooting, automatic differentiation, and non-
linear optimization, we can develop an effective algorithm that can handle uncertainty in the UGV path
planning problem. However, as shown in Figure 56, the memory storage required by such algorithm grows
with both the final time tf and the number of samples. Note that increasing the number of samples yields
a memory plateau at different sample sizes. This happens because the SIMD (Single Instruction, Multiple
Data) bandwith of the processing unit fills up. Utilizing processors with wide SIMD capabilities, will extent
the plateau. To further extend the applicability of the algorithm we propose, especially to high dimensional
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Figure 57: Memory savings obtained by using the Common Subexpression Elimination (CSE) technique in
the nominal case of a thirteen-dimensional UAV example. The memory usage remains independent of the
final transfer time tf . Control results are identical with or without CSE.

stochastic problems, it is highly desirable to improve the efficiency and memory management. Noting that
the integration steps constitute identical computation graphs that repeat in a daisy chained fashion, a Com-
mon Subexpression Elimination (CSE) technique can be used to optimize memory utilization for the entire
calculation. In fact only a single step needs to be kept in memory, and the gradient calculations can be
simultaneously carried forward and backwards using the chain rule.

As an example, in Figure 57 we show the effects of the Common Subexpression Elimination (CSE) in
the memory storage required by the UAV stochastic path planning problem discussed in Section 2.4.5. It is
seen that CSE reduces the memory storage by a factor 44.4. More importantly, the memory storage required
by the algorithm is constant with tf , i.e., it does not depend on the number of time instants between in r0, tf s.
This feature significantly broadens the applications to include higher dimensional systems, as well as control
problems with long time horizon. It can also be used to improve the accuracy, since smaller step size can
be afforded in piece-wise constant control approximation. Note that after application of CSE, memory
utilization still depends on the number of samples. The effect can be mitigated by utilizing hardware with
wide SIMD capabilities, or multiple cores.

2.4.5 Application to a stochastic path planning problem involving a fixed-wing UAV

Consider a stochastic path planning problem for a fixed-wing UAV with constant thrust. The control system
is described in equation (48), where uT is set to be zero (constant thrust). The state vector and parameters are
the same as those defined in Section 2.2.8. We are interested in computing the controls uαptq and uµptq, i.e.,
the controls for the pitch and the bank angles, that can steer the UAV from an uncertain initial state (position,
velocity, and other random parameters) to the final position at pxptf q, yptf q, zptf qq “ p1000, 1000, 600q,
where tf “ 60. The pitch and the bank angles controls are subject to the constraints

uα P r´0.05, 0.05s,

uµ P r´0.05, 0.05s.
(124)

Recently, Shaffer et. al considered a similar problem in the attempt to define a robust control which could
mitigate the effects of aerodynamic uncertainty in the UAV planned trajectory; such uncertainty was modeled
in terms of only one random variable, i.e., Cx0 in Eqs. (50) and (51). The main reason for studying such
simplified model was that the computational control algorithm could not handle higher-dimensional random
input vectors. Indeed, the memory requirements and computational cost of such algorithm are far beyond
the capabilities of a modern workstation. Next, we demonstrate that the computational optimal control
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algorithm we outlined in Section 2.4 can indeed handle high-dimensional random input vectors. To this end,
we consider the following set of random initial conditions

(UAV random parameters)
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xp0q „ Np0.0, 0.52q

yp0q „ Np0.0, 0.52q

zp0q „ Np600.0, 0.52q

vp0q „ Np27.5, 0.12q

Cx0 „ Np´0.0355, 0.00122q

Cxa „ Np0.00292, 0.00012q

Cz0 „ Np´0.055, 0.0012q

Cza „ Np´5.578, 0.012q

(125)

Note that this includes random initial position and velocity. Note also that all four parameters defining
lift and drag coefficients (50)-(51) are set to be random. To complete the specification of the problem we
consider the following deterministic the initial condition for elevation, heading, pitch and bank angles

$

’

’

’

’

’

&

’

’

’

’

’

%

γp0q “ 0

σp0q “
π

4
αp0q “ ´0.0088

µp0q “ 0

(126)

The thrust T is set to be 16.1(Newton). These parameters are the same as those used in [60]. By aug-
menting the parameters into the state space, the dimension of the system is 12, with 8 random variables.
The objective is to design controls uαptq and uµptqq (αptq and µptq are pitch and bank angles, respec-
tively) to steer the UAV from an uncertain initial position pxp0q, yp0q, zp0q, to a deterministic final position
pxptf q, yptf q, zptf qq “ p1000, 1000, 600q (tf “ 60) under uncertain dynamics modeled by 8 random vari-
ables. To represent the control objective, we construct the following cost function

Jpxptf qq “ Etpxptf q ´ 1000q2 ` pyptf q ´ 1000q2 ` pzptf q ´ 600q2u, (127)

which we approximate with an ensemble mean over N “ 10000 randomly drawn sample paths. In the
simulation, a single shooting segment is used, with 4th order RK time integrator and time step size h “ 0.1.

We solved the discretized constrained optimization problem by using IPOPT [69] linked to TensorFlow
(see Section 2.4). In this way we were able to compute exact gradients of the discretized objective function.
The resulting optimal controls are shown in Figure 58. To verify the the performance of the optimal controls
under random initial conditions and uncertain parameters, we propagated in time the controlled dynamics
of 1000 randomly generated trajectories, with initial conditions and parameters sampled according to (125).
Such trajectories are shown in Figure 59. It is seen that the final positions of the UAV converge to a small
region about the target location pxptf q, yptf q, zptf qq “ p1000, 1000, 600q.

Next, let us set all random parameters in (52) equal to their mean values and compute the so-called
nominal controls, i.e., the two functions uαptq and uµptqq that steer the UAV to the target location at tf “ 60.
We would like to show that such nominal controls are not effective when we switch randomness back on.
To this end, we samples 10000 realizations of (52) and propagates forward in time the dynamics of the
UAV model under nominal controls. The trajectories we obtained are shown in Figure 60. By comparing
Fig.59 with Fig.60, it is clear that trajectories under optimal controls land closer to the target location than
trajectories under nominal controls. To quantify this improvement we define a metric that measures the
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(a) Optimal control on angle of attack. (b) Optimal control on bank angle.

Figure 58: Stochastic path planning problem for a fixed-wing UAV with constant thrust. Shown are the
optimal controls we obtain to steer the UAV from an uncertain initial position pxp0q, yp0q, zp0q, to a de-
terministic final position pxptf q, yptf q, zptf qq “ p1000, 1000, 600q (tf “ 60) under uncertain dynamics
modeled by 8 random variables.

(a) Trajectories driven by optimal control (b) x-y endpoints of the UAV under optimal control

(c) y-z endpoints of the UAV under optimal control (d) x-z endpoints of the UAV under optimal control

Figure 59: Verification of the optimal controls for the stochastic path-planning problem (UAV with constant
thrust).

probability that the UAV is found at a distance ě d from the target location at final time. This probability
is easy to compute once the optimal control is available. In fact, it is sufficient to plot a 1D histogram of
cumulative frequencies. This is done in Figure 61, where we see that 90% of the trajectories now land within
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(a) Trajectories driven by nominal control (b) x-y endpoints of the UAV under nominal control

(c) y-z endpoints of the UAV under nominal control (d) x-z endpoints of the UAV under nominal control

Figure 60: Stochastic dynamics of the UAV under nominal controls.

Figure 61: Probability of the UAV being located at a distance ě r from the target location based on 10000
Monte Carlo samples.

a radius of 150 of the objective, versus a radius of over 900 for the nominal case.
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2.5 High-dimensional optimal control under uncertainty with state-space constraints

In this Section we consider a more challenging problem for the previously introduced (UAV) model (48)
under uncertain initial state (position, heading angle, angle of attack, etc) and aerodynamic forces. As
pointed out in [59], the system of equations (48) is valid only withing the region of the state space identified
by the following equations

(State-space constraints)
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13 ď vptq ď 42

´
π

6
ď γptq ď

π

6
´π ď σptq ď π

3.0 ď T ptq ď 35.0

´
π

12
ď αptq ď

π

12

(128)

These constraints apply over the entire interval 0 ď t ď tf . Outside this box of constraints, the model may
not represent the true physical system. These constraints motivate the introduction of state-space constraints
in the formulation of the optimal control problem. Without such constraints the model is invalid, and can
produce unstable or un-physical behavior.

As before, the goal is to design controls uT ptq, uαptq and uµptqq (T ptq , αptq and µptq are thrust, pitch
and bank angles, respectively) to steer the UAV from an uncertain initial state (position, velocity, and other
random parameters) to the final position at pxptf q, yptf q, zptf qq “ p1000, 1000, 600q, where tf “ 60. The
thrust, pitch and the bank angles control signals, in this case, are subject to the control constraints

uT P r´1.0, 1.0s,

uα P r´0.05, 0.05s,

uµ P r´0.05, 0.05s.

(129)

In other words, the optimal control problem we are aiming at solving has both state-space constraints (Eq.
(128)) and control constraints (Eq. (129)). We consider the following random initial condition
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r „ Up0, 0.5q θ „ Up0, πq φ „ Up0, 2πq
x0 “ r sinpθq cospφq y0 “ r sinpθq sinpφq z0 “ 600` r cospφq

v0 „ Up25.5750, 29.4250q γ0 „ Up´0.05, 0.05q σ0 „ Up3.1, 3.2q
Cx0 „ Up´0.0380,´0.0330q Cxa „ Up0.0027, 0.0031q

Cz0 „ Up´0.0589,´0.0548q Cza „ Up´5.9685,´5.1875q

(130)

and the “nominal” (deterministic) initial state
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x0 “ 0.0 y0 “ 0.0

z0 “ 0.0 v0 “ 27.5,

γ0 “ 0 σ0 “ π

T0 “ 16.1 α0 “ ´0.0088

µ0 “ 0 Cx0 “ ´0.03554

Cxa “ 0.00292 Cz0 “ ´0.055

Cza “ ´5.578

(131)

We would like to show that nominal controls are not effective when randomness is involved, even in the path-
constrained setting we consider here. In particular, instead of the point-wise constraint, we implemented an
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(a) Nominal trajectory.
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(b) Nominal trajectories under uncertainty.
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(c) Optimal trajectories under uncertainty.

Figure 62: Effects of uncertainty in the initial conditions on the nominal control and the mitigating effect of
the application of an uncertainty optimal control under ensemble state-space constraints.

ensemble path constraint of the form

(Ensemble path constraints)
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(132)

To reduce uncertainty in the optimal path planning problem, we consider the following cost functional

Jpxptf qq “ Etpxptf q´500q2`pyptf q´500q2`pzptf q´500q2u`
q

2

ż tf

0
pu2
T ptq`u

2
αptq`u

2
µptqqdt, (133)

where q “ 0.01, and we minimize it relative to uT ptq, uαptq and uµptq subject to the dynamics (48), the
ensemble path constraints (132) and the control constraints (129). To this end, we employ N “ 1000
randomly drawn sample paths. In the numerical simulation, we use a single shooting segment, with 3rd
order RK time integrator and time step size h “ 0.1. The final transfer time is experimentally increased to
tf “ 70.0 using the requirement that the altitude of the drone needs to be positive (above ground) while
maneuvering under uncertainty. Transfer times below tf “ 70.0 that do not fulfill this requirement in our
numerical experiments. In Figure 62 and Figure 64 we demonstrate that trajectories under optimal controls
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(a) Optimal thrust. (b) Optimal angle of attack.

(c) Optimal bank angle.

Figure 63: Optimal controls we obtain to steer the UAV from an uncertain initial state to the target
pxptf q, yptf q, zptf qq “ p500, 500, 500q (tf “ 50), by minimizing the objective function (133) under en-
semble path constraints (132) and control constraints (129).

land closer to the target location than trajectories under nominal controls. We solved the discretized
constrained optimization problem by using IPOPT [69] linked to TensorFlow (see Section 2.4). In this
way we were able to compute exact gradients of the discretized objective function. The resulting optimal
controls are shown in Figure 63. To verify the the performance of the optimal controls under random initial
conditions and uncertain parameters, we propagated in time the controlled dynamics ofN “ 1000 randomly
generated trajectories, with initial conditions and parameters sampled according to (130). Such trajectories
are shown in Figure 59. It is seen that the final positions of the UAV converge to a smaller region about the
target location pxptf q, yptf q, zptf qq “ p500, 500, 500q.

2.5.0.1 Common sub-expression elimination (CSE) for optimal control with path constraints Opti-
mal control with path constraints introduce the necessity of calculating gradients of the state variables with
respect to the control function at intermediate times. These gradients can be calculated by simply storing
the previously discarded intermediate values of the derivatives with respect to the control as illustrated in
Table 32.
CSE-II has memory requirements scaling as OpNdmN2

t q, where N is the number of samples, d is the
dimension of the system, m is the dimension of the control, and Nt is the number of discrete points used in
the temporal discretization. The memory requirements can be reduced further by subdividing the problem
into smaller batches.
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Figure 64: Verification of the optimal controls for the UAV stochastic path-planning problem under ensem-
ble path constraints (132), and control constraints (129): nominal endpoints are in red, optimal endpoints
are in blue.

Table 32: CSE-II algorithm

Step Calculate
Jacobian

Calculate
control
adjoint

Single
Step

Backpropagate

Store Discard

1
Bx
piq
k,1

Buk,0

Bx
piq
k,1

Buk,0

2
Bx
piq
k,2

Bx
piq
k,1

Bx
piq
k,2

Buk,1

Bx
piq
k,2

Bx
piq
k,1

Bx
piq
k,1

Buk,0

Bx
piq
k,2

Buk,1
,
Bx
piq
k,2

Buk,0

Bx
piq
k,2

Bx
piq
k,1

3
Bx
piq
k,3

Bx
piq
k,2

Bx
piq
k,3

Buk,2

Bx
piq
k,3

Bx
piq
k,2

Bx
piq
k,2

Buk,1
,
Bx
piq
k,3

Bx
piq
k,2

Bx
piq
k,2

Buk,0

Bx
piq
k,3

Buk,2
,
Bx
piq
k,2

Buk,1
,
Bx
piq
k,3

Buk,0

Bx
piq
k,3

Bx
piq
k,2

. . . . . . . . . . . . . . . . . .

2.6 Semi-stochastic optimization applied to open-loop control

It is known that for many problems with high-dimensional uncertainty, we require many sample trajectories
to compute robust open-loop controls. Since the memory requirements of the problem scale with the number
of samples (see Figure 56b), optimizing using the entire sample set can be inefficient or even cause the
program to crash. Moreover, it is difficult to guess a priori how many samples will be needed to sufficiently
characterize the uncertainty in the problem. In the machine learning community, this problem is typically
dealt with by using stochastic optimization. Such methods are almost exclusively first order methods based
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on stochastic gradient descent [8]. For the purpose of path planning, however, we require second order
optimizers which explicitly allow for bounds and arbitrary constraints. We consider a compromise between
these two extremes by applying the simple idea from 2.2.5. We can optimize in multiple rounds, and in each
round r generate a sample batch

Sr “
!

x
piq
0

)|Sr|

i“1
. (134)

Like collocation points for physics informed neural networks, the samples xpiq0 are essentially free to gen-
erate – they require no numerical integration. Thus we can generate a new batch Sr at each round r with
negligible computational cost, and the batch size |Sr| can be selected to balance control robustness with
computational efficiency.

Recently, [5] and [7] proposed multi-batch and progressive batch L-BFGS methods similar to what we
have used for PINNs. The primary difference is that these methods samples a new batch Sr is sampled at
every iteration or every few iterations, whereas we allow the optimizer to converge given a single batch.
This means that we lose some of the nice generalization properties of stochastic optimization retained by [5]
and [7], but we are able to immediately implement bounded and constrained optimization without working
out extensive new methods and theorems.

2.6.1 Development of convergence test and sample size selection scheme

For a successful implementation of constrained progressive batch optimization, we will need useful stopping
criteria and sample size selection schemes. To start, assume that the internal optimizer (for example L-
BFGS-B [10], SLSQP [43], or IPOPT [69]) converges in round r. If we suppose that none of the constraints
are active (dealing with active constraints is a significantly more complicated matter), then the first order
necessary optimality condition holds. That is, the discretized control ur satisfies

}∇uJSrpxptf q,urq} ! 1, (135)

where JSrpxptf q,urq denotes the empirical cost estimated using the batch Sr:

JSrpxptf q,urq “ E
x
piq
0 PSr

J
´

Φ
´

x
piq
0 , tf

¯

,ur

¯

“
1

|Sr|

|Sr|
ÿ

i“1

J
´

Φ
´

x
piq
0 , tf

¯

,ur

¯

. (136)

Since Sr is sampled from p0px0q, it follows that

ESr tJSrpxptf q,urqu “ Jpxptf q,urq, (137)

and ESr t∇uJSrpxptf q,urqu “ ∇uJpxptf q,urq, (138)

where Jpxptf q,urq is the true cost and ESrt¨u denotes the population average taken over all possible batches
Sr sampled from p0px0q. Note that neither of these quantitities is directly computable.

The most immediate way to test convergence is to approximate∇uJpxptf q,urq by∇uJVrpxptf q,urq,
where Vr is a validation data set with |Vr| " |Sr|. Then one might simply ask if

}∇uJVrpxptf q,urq} ă ε, (139)

for a small positive parameter ε. This and other similar tests may be prohibitively expensive for large |Vr| or
uninformative if |Vr| is too small. More importantly, this test provides no clear guidance in choosing |Vr|,
or |Sr`1| should the test fail. A similar test was proposed in [55], where we check if

›

›∇uJSr´1pxptf q,ur´1q ´∇uJSrpxptf q,urq
›

› ă ε. (140)
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If eq. (140) is satisfied for a choice of small ε, then this indicates that the sequence turu converges to a
control u˚ which is optimal for the true cost. This method still leaves us in the dark on how to properly
select |Sr|.

Instead, we now propose a more general method along the lines of [7] which provides information on
how to choose the sample size |Sr`1| and is applicable to general stochastic optimization problems. The
idea is simple: since we already assume (135) holds, then it should suffice to check if the population variance
is small. That is, we require

VarSr t}∇uJSrpxptf q,urq}u ď ε }∇uJpxptf q,urq} , (141)

for ε P p0, 1q. Evaluating the left hand side is computationally infeasible, but as in [7], we bound it by the
sample variance:

VarSr t}∇uJSrpxptf q,urq}u ď
1

|Sr|
Var

x
piq
0 PSr

!
›

›

›
∇uJ

´

Φ
´

x
piq
0 , tf

¯

,ur

¯
›

›

›

)

«
1

|S 1r|
Var

x
piq
0 PS1r

!
›

›

›
∇uJ

´

Φ
´

x
piq
0 , tf

¯

,ur

¯
›

›

›

)

, (142)

where S 1r Ď Sr.5 We make this second approximation because TensorFlow and other popular automatic
differentiation packages do not provide efficient ways to compute gradients of individual samples for large
batches. We still cannot compute the right side of (141) directly, so we approximate it by the sample gradient
and arrive at the following condition:

Var
x
piq
0 PS1r

!›

›

›
∇uJ

´

Φ
´

x
piq
0 , tf

¯

,ur

¯›

›

›

)

ď ε|S 1r| }∇uJSrpxptf q,urq} . (143)

If (143) is satisfied, then it is likely that }∇uJpxptf q,urq} is small. In other words, the solution ur
should satisfy the first order optimality conditions for the true cost Jpxptf q,uq, so we can stop optimization.
On the other hand, when (143) does not hold, it provides us guidance in choosing the sample size |Sr`1|

for the next optimization round. If we assume that the gradient variance doesn’t change significantly by
choosing a larger sample. That is, if we assume

Var
x
piq
0 PSr`1

!›

›

›
∇uJ

´

Φ
´

x
piq
0 , tf

¯

,ur

¯›

›

›

)

}∇uJSr`1pxptf q,urq}
«

Var
x
piq
0 PS1r

!›

›

›
∇uJ

´

Φ
´

x
piq
0 , tf

¯

,ur

¯›

›

›

)

}∇uJSrpxptf q,urq}
, (144)

then the appropriate choice of sample size |Sr`1| is such that

|Sr`1| ě

Var
x
piq
0 PS1r

!›

›

›
∇uJ

´

Φ
´

x
piq
0 , tf

¯

,ur

¯›

›

›

)

ε }∇uJSrpxptf q,urq}
. (145)

The convergence test (143) and batch size selection scheme (145) we have derived are quite general in
the sense that they are not specific to solving our uncertain optimal control problem. For example, we could
immediately apply these ideas to optimizing physics informed neural networks by replacing some of our
hand-tuned heuristics. We do not do this here, but rather focus on the uncertain optimal control problem.

5When |Sr| itself is too small to provide useful statistical information, say |Sr| ă M , we generate a new data set S 1r with
|S 1R| “M samples.
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Figure 65: Dynamics of the scaled low-thrust satellite (146), from [62].

2.6.2 Numerical results

We now demonstrate the viability of our method for solving a simple low-dimensional problem. Consider
the following scaled model of a satellite with low thrust from [58], [62]:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

9r “ vr,

9θ “
vt
r
,

9vr “
v2
t

r
´

1

r2
` u sinφ,

9vt “ ´
vrvt
r
` u cosφ.

(146)

Here r and θ are the scaled radius and angle with respect to the origin (orbited body, e.g. Earth), vr is
the radial velocity, and vt is the tangential velocity. u and φ are the control variables; u P r0, 0.01s is the
thrust acceleration and φ is the thrust angle. See Figure 65 for a graphical representation of the coordinates.
Suppose the initial conditions are distributed according to

$

’

’

’

’

&

’

’

’

’

%

rpt “ 0q “ r0pωq „ N p1, 0.012q,

θpt “ 0q “ θ0pωq „ N p0, 0.012q,

vrpt “ 0q “ vr0pωq „ N p0, 0.0012q,

vtpt “ 0q “ vt0pωq „ N p1, 0.0012q.

(147)

We ask that the controller take the satellite to a new orbit, while penalizing fuel consumption:

Jpuq “ E
 

prptf q ´ 4q2 ` pvrptf q ´ 0q2 ` pvtptf q ´ 0.5q2
(

` w

ż tf

0
uptqdt, (148)

where tf “ 120 and w is a scalar weight which we set at w “ 10´3. We discretize the problem with
RK4 in a single shooting segment containing Nt “ 300 time intervals. Validation loss is computed against
Nv “ 104 samples. In Table 33, we show the results of our tests of different optimizers for solving this
problem. Figure 66 shows the computed optimal controls and trajectories.
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Table 33: Comparison of optimizer configurations for minimizing (148) subject to the dynamics (146) and
initial condition uncertainty (147).

Optimizer batch size validation loss compute time
SLSQP |S| “ 1 (nominal) 8.08 e–02 423 s
SLSQP |S| “ 105 (hardware limit) 7.57 e–04 471 s
SLSQP |Sr| “ t32, . . . u (progressive using (145)) 8.17 e–04 481 s

(a) Optimal control profiles for the satellite problem with uncertainty. Note the roughly “bang-bang” structure found.

(b) A random selection of ten trajectories in pr, θq phase
space. (c) State trajectories of ten random initial conditions.

Figure 66: Optimal controls and states for the satellite problem under initial condition uncertainty.

Because this is a relatively low-dimensional problem, we can get away with using only a few samples.
However, when we attempted to use full batches with |S| ą 105, our hardware (NVIDIA RTX2080Ti GPU)
ran out of memory, and hence the largest batch size reported is |S| “ 105. For completeness, we also
attempted to solve the problem with Adam [42], a popular variant of stochastic gradient descent. Besides
not being able to incorporate bounds on uptq without changing the structure of the control (for example,
by using a limiting function to explicitly incorporate bounds), Adam completely failed for this problem,
causing the cost function to diverge to numerical infinity. The failure of popular stochastic optimizers and
the limits of hardware memory further motivate the need for a progressive batching method like we have
proposed.
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2.7 Verification and Validation based on the extended Pontryagin’s minimum principle

We also studied a method for determining convergence based on evaluating the necessary conditions for
optimality given in [54]. This involves integrating the adjoint equations backwards in time, which may be
made computationally efficient using automatic differentiation. Let us consider a problem of the form

$

’

’

’

&

’

’

’

%

min
uptq

E tF pxptf , rusqqu `
ż tf

0
rpuqdt

s.t. 9x “ fpx,uq, xp0q “ x0pωq „ ppx0q

u´ ď u ď u` (box constraints on the control)

(149)

We now define the Hamilton’s function of the constrained problem:

Hpu,x,λq “ rpuq ` λ ¨ fpx,uq. (150)

From this we obtain Hamilton’s equations
$

’

&

’

%

9x “
BH

Bλ
“ fpx,uq, xpt “ 0q “ x0pωq,

9λ “ ´
BH

Bx
“ ´

Bf

Bx
¨ λ, λptf q “

BF pxptf , rusqq

Bx
.

(151)

In theory, the optimal control u˚ptq for the true cost Jprusq can be computed by

u˚ptq “ argmin
uptq

EtHpu,x,λqu (152)

at all t P r0, tf s. Although how to solve such a problem in practice remains an open question, this offers us
a way to measure the optimality of a given control. To see this, suppose we solve (149) by approximating
Jprusq with the sample average of |S| random initial conditions to obtain a candidate control ûptq. We can
then sample a (large) data set

!

x
piq
0

)

, i “ 1, . . . , |Vr|, from p0px0q and propagate this forward and backward

through Hamilton’s equations (151) to obtain
 

λpiqptq
(

for the candidate control ûptq (see Figure 67). With
 

λpiqptq
(

available, we can evaluate

u˚ptq “ argmin
uptq

EtHpû,xpt, rûsq,λpt, rûsqu (153)

and check whether this control is close to ûptq. Note that the u˚ptq we compute is not the true optimal,
since it is estimated using the Hamiltonian computed using ûptq, but if }ûptq ´ u˚ptq} is small then ûptq
satisfies the necessary conditions for optimality. As a simple example, we use a model of a two-wheeled
UGV with differential drive given by

$

’

’

’

’

&

’

’

’

’

%

9x1 “ Ru1 cospx3q,

9x2 “ Ru1 sinpx3q,

9x3 “ Ru2,

9R “ 0.

(154)

Here R is the radius of the wheel, which we take to be uncertain. See Figure 68 for an illustration. Let
the controls be bounded by |u1ptq| ď 1 and |u2ptq| ď 1. Suppose we have initial condition and parameter
uncertainty defined by

$

’

’

’

&

’

’

’

%

x1pt “ 0q “ x10pωq „ Up´0.05, 0.05q,

x2pt “ 0q “ x20pωq „ Up´0.05, 0.05q,

x3pt “ 0q “ x30pωq „ Up´0.05, 0.05q,

R “ Rpωq „ Up1, 1.5q,

(155)
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Figure 67: Schematic of the forward-backward integration process for validation and verification of opti-
mality of computed controls.

Figure 68: Dynamics of the two-wheeled UGV model (154).

and define the cost function as

Jpuq “
1

2
E
 

px1ptf q ´ 3q2 ` px2ptf q ´ 3q2
(

`
w

2

ż tf

0

`

u2
1ptq ` u

2
2ptq

˘

dt, (156)

where tf “ 10 andw “ 10´2. This asks the controller to drive the UGV to the point p3, 3qwhile minimizing
control effort. We use Euler discretization with Nt “ 2000 time instances and |S| “ 1000 samples to
compute our candidate control. For validation and verification, we analytically derive the Hamiltonian for
this system and obtain

Hpu,x,λq “
1

2

`

u2
1 ` u

2
2

˘

` λ1Ru1 cospx3q ` λ2Ru1 sinpx3q ` λ3Ru2. (157)

The adjoint system is given by
$

’

’

&

’

’

%

9λ1 “ 0,

9λ2 “ 0,

9λ3 “ λ1Ru1 sinpx3q ´ λ2Ru1 cospx3q.

(158)

We follow the process described above to measure the optimality of the computed solution, which we plot
in Figure 69.

2.8 Task IV: Applications of data-driven optimal control strategies

As we anticipated in the quarter-by-quarter breakdown of the proposed research activities, we studied several
nonlinear models involving swarms of attacking/defending drones, as well as disease propagation models
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Figure 69: Evaluation of the compute control ûptq by comparison to u˚ptq from (153) using 107 samples.

on random networks of interacting individuals. The purpose of such study was to identify two interesting
systems which we could build upon to test the proposed data-driven optimal control architecture. Hereafter,
we describe such systems in detail.

2.8.1 Swarm of attacking/defending agents

In this Section we describe a dynamical model for planning the motion of a swarm of autonomous vehicles
(defenders) to protect a High Value Unit (HVU) which is under attack by a swarm of autonomous agents
(attackers). The core of the model was developed in a recent paper [67] on modeling combat situations with
multiple heterogeneous agents and parameter uncertainties. The goal is to optimally protect a HVU from
multiple incoming attackers. The HVU can be a stationary unit, such as a base or population center, or
a moving unit such as an aircraft carrier. The attackers are unmanned vehicles following automatic target
tracking towards the HVU while performing basic obstacle avoidance around defenders. It is assumed
that attacker fire is directed entirely towards the HVU with no fire to spare for self-defense. A swarm of
defenders is dispatched to protect the HVU at time t “ 0. The single-minded focus of the attacker means
that the survival of the defenders is not in danger, however the goal is to minimize the probability that the
HVU is destroyed. Figure 70 diagrams the attrition interactions among HVU, attackers and defenders.

Figure 70: Interception of HVU-focused attack. dk,lx pxkptq,ylptqq is the damage rate of the k-th defender
against the l-th attacker; dl,0y pylptq,x0ptqq is the damage rate of the l-th attacker against the HVU.
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2.8.1.1 Attacker and defender dynamics Each of theK defenders are modeled as Dubin’s vehicle with
dynamics

9xkptq “

¨

˝

9xk,1ptq
9xk,2ptq
9xk,3ptq

˛

‚“

¨

˝

vD sinpxk,3ptqq
vD cospxk,3ptqq

ukptq

˛

‚“ fkpxkptq,ukptqq, k “ 1, . . . ,K (159)

where vD is the modulus of the defender velocity. The control ukptq P R is subject to the constraint umin ď
ukptq ď umax. Each of the L attackers have deterministic dynamics but with uncertainty stemming from
unknown initial locations and unknown velocities. We group all uncertain parameters in the attacking swarm
into a vector ω, and assume that it has a known joint distribution φpωq. Attackers move with uncertain but
constant velocity and a heading determined by a weighted combination of their desire to evade each defender
but also to track the HVU. These dynamics are expressed as:

9yl “

ˆ

9yl,1pt,ωq
9yl,2pt,ωq

˙

“ vA
H lpRlpt,ωqq

}H lpRlpt,ωqq}
, (160)

whereH l is a two-dimensional heading vector

H lpRlpt,ωqq “

ˆ

H l
1pR

lpt,ωqq
H l

2pR
lpt,ωqq

˙

, (161)

and Rl is the vector of relative positions between attacker ylpt,ωq and the defenders at xk, k “ 1, . . . ,K
defined as

Rlpt,ωq “
`

Rl,0pt,ωq,Rl,1pt,ωq, . . . ,Rl,Kpt,ωq
˘

, Rl,kpt,ωq “

ˆ

yl,1pt,ωq ´ xk,1ptq
yl,2pt,ωq ´ xk,2ptq

˙

. (162)

The heading vector for each attacker is determined by averaging the attacker’s conflicting impulses. On the
one hand, the attacker is endeavoring to track the HVU, and it is being herded away through avoidance of
the defenders. This averaging is given by the sum

H lpRlq “

K
ÿ

k“0

αl,k
´

}Rl,k}

¯ Rl,k

}Rl,k}
(163)

where αl,k
`

}Rl,k}
˘

weights the influence of each agent based on radial distance. When k “ 0, αl,k
`

}Rl,k}
˘

returns a negative value attracting the attacker to the HVU, and when k “ 1, . . . ,K, αl,k
`

}Rl,k}
˘

returns a
positive value repelling the attacker from the defenders. These values are set, for k “ 1, . . . ,K, as

$

’

&

’

%

αl,0
`

}Rl,0}
˘

“ ´ 1
σ0
e
´}Rl,0}
σ0

αl,k
`

}Rl,k}
˘

“ 1
σk
e
´}Rl,k}
σk .

(164)

2.8.1.2 System attrition The damage rate of the k-th defender against the l-th attacker is defined by

dk,lx pxkptq,ylpt,ωqq “ λD

«

1`

“

θk,l
‰2

3

ff´3{2

¨ Φ

ˆ

´rk,lptq

σD

˙

(165)

where rk,lptq is the distance between the k-th defender and the l-th attacker and Φ is the cumulative Normal
distribution function. The damage rate of the l-th attacker against the HVU is defined by

dl,0y pylpt,ωq,x0q “ λAΦ

ˆ

´rl,0ptq

σA

˙

, (166)
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Figure 71: Averaged herding heading example for one attacker and two defenders

where, as with the defenders rl,0ptq, is the distance between the l-th attacker and the HVU while λA and
σA are constants that calibrate intensity and range. Based on damage rates, it can be shown [67] that the
probability of survival of the l-th attacker satisfies differential equation

dQlpt,ωq

dt
“ ´Qlpt,ωq

K
ÿ

k“1

dk,lx pxkptq,ylpt,ωqq (167)

with initial condition Qlp0,ωq “ 1, while the probability of survival of the HVU is obtained by solving

dP0pt,ωq

dt
“ ´P0pt,ωq

L
ÿ

l“1

Qlpt,ωqd
l,0
y pylpt,ωq,x0q, (168)

with P0p0,ωq “ 1. The following control problem yields optimal defenders’ paths, maximizing the proba-
bility of survival of the HVU.

2.8.1.3 HVU attack/interception problem ForK defenders andL attackers with uncertainty prescribed
by the joint probability density function φ, determine the control u : r0, tf s Ñ U P RK that maximizes the
probability of survival, i.e., minimizes

J “

ż

Ω
r1´ P0ptf ,ωqsφpωqdω (169)

subject to
$
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’

’

’

’

’

’

’

’
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’

’

’

’

’

’

’

’

’

%

9xkptq “ fkpxkptq, ukptqq, xkp0q “ xk0,

9ylpt,ωq “ glpx1ptq, . . . ,xKptq,ylpt,ωqq, ylp0,ωq “ γlpωq,

9Qlpt,ωq “ ´Qlpt,ωq
K
ÿ

k“1

dk,lx pxkptq,ylpt,ωqq, Qlp0,ωq “ 1,

9P0pt,ωq “ ´P0pt,ωq
L
ÿ

l“1

Qlpt,ωqd
l,0
y pylpt,ωq,x0q, P0p0,ωq “ 1,

(170)

DISTRIBUTION STATEMENT A. Approved for Public Release. Distribution is Unlimited.

92



Variable Description
S Proportion of population that is healthy and susceptible to HIV
X Proportion of population infected with HIV
R Proportion of population that is protected from HIV
si Probability that vertex i is susceptible
xi Probability that vertex i is infected
ri Probability that vertex i is protected

Parameter Description
β Probability that transmission will occur between two connected individuals
γ Probability that an infected individual will recover
p Occupation probability
pk Degree distribution
K Mean degree

Table 34: Definition of all phase variables and parameters appearing in the nonlinear system (173).

and additional geometric constraints. Here, l “ 1, . . . , L (attackers) and k “ 1 . . . ,K (defenders).

The HUV attach interception problem is ideal for testing the proposed data-driven optimal control archi-
tecture. In particular, in [67] we were able to generate numerical solutions (in low dimensions) by using the
collocation method. However, our experience shows that as we include more realistic sources of uncertain-
ties, existing state-of-the-art computational control methods fail to produce optimal solutions. The proposed
new schemes can open a new path for solving this type of optimal control problems.

2.8.2 Disease propagation on random networks

We will consider a model to describe and predict HIV/AIDS transmission through a random network of
individuals. The objective is to minimize the probability, xi, that a given individual in the network will be
infected with HIV. The network has n nodes (vertices), representing n indivinuals. Edges between vertices
represent interactions between individuals. The degree of a vertex is the number of edges connected to it.
The degree distribution pk of the graph is an ordered list of vertex degrees. All these quantities are defined
in Table 34. Each individual in the network falls into one of three categories: susceptible, infected, removed.
The probability that the vertex i belongs to one of these three categories is governed by the equations

dsi
dt
“ ´si

n
ÿ

j“1

AijBijxj , (171)

dxi
dt
“ si

n
ÿ

j“1

AijBijxj ´ γxi, (172)

dri
dt
“ γxi, (173)

where si ` xi ` ri “ 1, and i “ 1, . . . , n. The matrices A and B are known as the adjacency matrix and
the transmission matrix respectively. They are both set to be random. Notice that the evolution of each
component si depends on all components of x, i.e., the system is fully coupled. Similarly, the evolution of
xi and ri depend on all components of x or s. This makes the system (173) too complex to solve exactly
in its full form. Instead, we focus on some vertex (or subset of vertices) of interest and approximate the
unclosed terms using the methods we outlined in Section 2.3.
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(a) (b) (c)

Figure 72: Sample configurations of a Poisson random graph (a), a Watts-Strogatz random graph (b), and
an exponential random graph (c) with N “ 25 vertices.

The components of the adjacency matrix are determined by the underlying network model. The structure
of the network has a large impact on the dynamics of disease propogation. For the purposes of this research,
we will employ a configuration network model with a given degree distribution, pk. Hereafter we will
describe several common choices for the degree distribution for a social network.

• Poisson degree distribution The Erdös-Rényi model, otherwise known as a Poisson random graph,
is a network model in which we fix the number of vertices and the occupation probability. Edges be-
tween vertices are present with probability p and absent with probability 1´p. The degree distribution
for this graph is

pk “

ˆ

n´ 1

k

˙

pkp1´ pqn´1´k (174)

where n is the number of vertices on the graph and pk is the probability that a given vertex is connected
to exactly k other vertices.

• Watts-Strogatz graph The Watts-Strogatz model, otherwise known as the small world model, is an
undirected graph with n vertices and nK{2 edges, where K is the mean degree. Edges between
vertices are present with probability p and absent with probability 1 ´ p. The degree distribution for
this graph is

pk “

minpk´K{2,K{2q
ÿ

n“0

ˆ

K{2

n

˙

p1´ βqnβK{2´n
pβK{2qk´K{2´n

pk ´K{2´ nq!
e´βK{2, (175)

where pk is the probability that a given vertex on the graph is connected to exactly k other vertices.

• Exponential degree distribution Exponential random graphs are a popular choice due to their abil-
ity to represent complex structural tendencies that commonly arise in social networks. The degree
distribution for this graph is

pk “ p1´ e
´λqe´λk, (176)

where λ ą 0 is the exponential parameter and pk is the probability that a given vertex is connected to
exactly k other vertices.

The components of the transmission matrix, B, are determined as follows
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Bij “

$

’

&

’

%

0, pi_ jq practiced safe sex_ pi_ jq is protected
_ pi^ jq are susceptible_ pi^ jq are infected

1´ p1´ βqη, otherwise

. (177)

Each element, Bij , represents the probability of transmission between vertices i and j. Partner selection is
a complex process with many social, cultural, and behavioural influences. Social nuances can be encoded
in either the adjacency matrix, A, or the transmission matrix B. Characteristics such as partner preference
(heterosexual and homosexual), relationship stability, age difference, and social status can contribute to the
formation of a partnership. Long-term, stable relationships are characterized by high η while short-term,
casual partnerships are characterized by low η. The disease propagation model is initialized with a small
number, c, of infected individuals placed randomly amongst the population. The initial conditions for (173)
are

sip0q “ 1´ c{n, xip0q “ c{n, rip0q “ 0. (178)

2.9 Solution of Hamilton-Jacobi-Bellman equations with physics-informed neural networks

In Q1-Q4, we focused our effort on developing computational algorithms for open-loop control under un-
certainty. Such open-loop controls were designed to explicitly account for and mitigate uncertainty, but
for implementation in real systems one would still prefer closed-loop (feedback) controls which are inher-
ently robust to initial condition uncertainty and disturbances. To calculate optimal feedback controls, in
Q5 we studied the possibility of solving the Hamilton-Jacobi-Bellman (HJB) equation. Such equation is a
hard-to-solve nonlinear PDE in n dimensions (n is the dimension of the dynamical system) plus time, that
arises naturally from the optimal control problem and allows to compute directly feedback controls (once
the solution is know). The HJB equation has been challenging the computational mathematics community
for decades. One of the main difficulties is related its high-dimensionality. Classical numerical discretiza-
tions based on tensor product representations cannot be in practice, since the number of degrees of freedom
grows exponentially fast with the dimension of the system. There is an extensive literature on methods of
finding approximate solutions for HJB equations. We have no intention to give a full review of existing
results except for a short list of some related publications, [3, 11, 17, 20, 32, 36, 38, 47, 50, 61]. In addition
to suffering from the curse of dimensionality, most existing methods suffer one or more of the following
drawbacks: the accuracy of the solution cannot be verified for general systems; the solution is valid only
in a small neighborhood of a point; or the system model must have certain special algebraic structure, the
solution to the HJB equation is rough function in the presence of optimization constraints.

In [37, 38], semi-global solutions to HJB equations are computed by constructing sparse discretization
of the state space, then solving a two-point boundary value problem (TPBVP) to obtain the solution at
each point on the grid. We previously studied the TPBVP in a different context in Section 2.7. Critically,
the TPBVP is causality-free, i.e. the solution at each grid point is computed without using the value of
the solution at other nearby points. Causality-free algorithms have been used to solve various types of
PDEs, such as conservation laws [39], HJ and HJB equations [31, 14], and semilinear parabolic PDEs
[29]. The causality-free property is achieved by means of Hopf formula and convex optimization in [14],
backward stochastic differential equations in [29], and Pontryagin’s minimum principle in [38]. Causality-
free algorithms are attractive because the computation does not depend on a grid, and hence can be applied
to high dimensional problems. Some causality-free methods are slow for online computation, but they are
perfectly parallel so can be used to generate large data sets offline. Such data sets can then be used to
construct faster solutions such as sparse grid interpolation [37, 38] or neural networks, as we do here.
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In this Section, we develop a new computational method for solving high-dimensional HJB equations
and for calculating fully nonlinear optimal feedback controls. Although the problem we solve is somewhat
different than in our previous work, our computational algorithm utilizes many of the same elements in a
different context. At the core of our method is a type of physics-informed neural network (PINN), first
discussed in Section 2.2, trained to model the value function which is the solution to the HJB PDE. Data
to train the NN is generated by solving the TPBVP derived from Pontryagin’s minimum principle. In
addition, we apply the semi-stochastic optimization technique introduced in Section 2.6 to generate data
adaptively. With the aid of the partially-trained NN, we use this strategy to start from a tiny initial data set
and progressively build up large, enriched data sets.

We demonstrate the effectiveness of the PINN-HJB technique we developed by applying it to the optimal
attitude control of a rigid-body satellite equipped with momentum wheels. The associated HJB equation has
n “ 6 spatial dimensions and m “ 3 control signals . This example allows us to demonstrate several
advantages and potential capabilities of the method we propose, including solving HJB equations with high
dimensions with validated levels of accuracy, computationally efficient NN-based feedback control for real-
time applications, and progressive generation of rich data sets. Similar to [38], our method is semi-global,
i.e., the solution is computed and validated over an entire region rather than a local neighborhood around
an operating point. Further, we achieve a comparable level of accuracy to that in [38], but require far fewer
data points to do so.

2.9.1 A causality-free method for HJB

Consider the open-loop optimal control problem
$

’

’

&

’

’

%

minimize
uptq

F pxptf qq `

ż tf

t0

Lpt,x,uqdt

subject to 9x “ fpt,x,uq, xp0q “ x0

(179)

Here xptq : rt0, tf s Ñ X Ď Rn is the state of the system, uptq : rt0, tf s Ñ U Ď Rm is the control,
fpt,x,uq : rt0, tf sˆX ˆU Ñ Rn is the vector field ( Lipschitz continuous), F pxptf qq P R is the terminal
cost, and Lpt,x,uq P R is the running cost. For simplicity we let the final time tf be fixed. This identifies a
well-defined control time horizon rt0, tf s. For a given initial condition xpt0q “ x0, many methods exist to
compute the optimal open-loop solution

u˚ “ u˚ptq. (180)

For instance one can use the multi-shooting algorithm we developed in Q3-Q4 (see Section 2.4.1). It is
well-known, however, that open-loop controls are not robust to model uncertainty or disturbances, and must
be recomputed for each new initial condition in a deterministic setting. For slowly evolving systems, it is
possible to use open-loop model predictive control [21] by recomputing (180) within small time intervals in
rt0, tf s, but for most applications one typically desires optimal feedback controls

u˚ “ u˚pt,xq. (181)

which solves the close-loop (feedback) optimal control problem
$

’

’

’

’

&

’

’

’

’

%

minimize
upt,xq

F pxptf qq `

ż tf

t
Lpτ,x,uqdτ

subject to 9xpτq “ fpτ,x,uq
xptq “ x

(182)
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Using dynamic programming, it can be shown that computing the optimal feedback control (181) using
(182) is equivalent to solving the following Hamilton-Jacobi-Bellman (HJB) equation

$

’

&

’

%

BV pt,xq

Bt
` min
upt,xq

tLpτ,x,uq `∇V pt,xq ¨ fpτ,x,uqu “ 0

V ptf ,xq “ F pxq

(183)

The field V pt,xq is the optimal cost of (182) and is called the value function. Since Eq. (183) is a par-
tial differential equation (PDE) in n dimensions plus time, the size of the discretized equation increases
exponentially with n, making even moderately high dimensional problems computationally intractable.

In [37, 38], the authors make efforts to overcome the curse of dimensionality by avoiding direct dis-
cretization the solution of the HJB equation. Instead, they construct a sparse grid of initial conditions and,
for each point in the grid, solve the open-loop optimal control problem (179) as a TPBVP. Then they inter-
polate the cost and apply Pontryagin’s Maximum Principle (PMP) to obtain the feedback control. However,
even using a sparse grid collocation method the number of points grows as

O
`

NplogNqn´1
˘

, (184)

where n is the state dimension and N is the number of points in each dimension. Thus, using the method
of characteristics on sparse grids [37, 38], could yield a prohibitively large number of BVPs, especially
in high-dimensions. In addition, even with the solution available, evaluating the feedback control requires
interpolation of the n-dimensional cost. This can be expensive and inaccurate for large n, making such
feedback implementation infeasible. Hereafter, we adopt the same TPBVP and its computational algorithm
in [37, 38], but instead of sparse grid interpolation we use data to train a NN to approximate the value
function V pt,xq.

2.9.2 Dynamic programming and two-point boundary value problems for feedback control

Let us provide a brief overview of the connection between dynamic programming and the TPBVP, as well
as techniques to solve it numerically. Following the standard procedure in optimal control, we first define
the Hamiltonian

Hpt,x,λ,uq “ Lpt,x,uq ` λTfpt,x,uq, (185)

where λptq : rt0, tf s Ñ Rn is the co-state. It is well-known that the optimal control satisfies

u˚pt,x,λq “ arg min
u

Hpt,x,λ,uq. (186)

Next, we define the value function

V pt,xq “ inf
u

"

F pxptf qq `

ż tf

t
Lpτ,x,uqdτ

*

. (187)

The value function satisfies the HJB equation (183), or equivalently
$

&

%

BV pt,xq

Bt
`H˚ pt,x,∇V pt,xqq “ 0,

V ptf ,xq “ F pxq,
(188)

where H˚pt,x,λq “ Hpt,x,λ,u˚q is the Hamiltonian evaluated at the optimal control (assuming it is
available). If (188) can be solved, then the optimal control can be computed by substituting

λptq “ ∇V pt,xq (189)
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into (186), i.e.,
u˚pt,xq “ u˚ pt,x,∇V q “ arg min

u
H pt,x,∇V,uq . (190)

This means that with ∇V available, the optimal feedback control is obtained as the solution of a (usually
straightforward) optimization problem.

To implement (190), we need an efficient way to calculate the value function and its gradient. Rather than
solving the full HJB equation (188) on a grid in the state space, we leverage the fact that its characteristics
curves evolve according to

$

’

’

’

’

&

’

’

’

’

%

9xpτq “
BH

Bλ
“ fpτ,x,u˚pτ,x,λqq,

9λpτq “ ´
BH

Bx
pτ,x,λ,u˚pτ,x,λqq,

9vpτq “ Lpτ,x,u˚pτ,x,λqq,

(191)

with two-point split boundary conditions
$

’

&

’

%

xpt0q “ x0,

λptf q “ ∇F pxptf qq,
vpt0q “ 0.

(192)

For any given initial condition x0, the optimal control and value function along that characteristic are then
given by

u˚pτ,xq “ u˚pτ ;x0,λq, V pt0,x0q “ vptf q ` F pxptf qq. (193)

The necessary condition (191-192) is well-known in optimal control theory. However, numerically
solving such TPBVP numerically is often very difficult. So far, there is no general algorithm that is reliable
and fast enough for real-time applications. However, in our approach the real-time computation is done
by a pre-trained NN. In practice, we solve the TPBVP offline to generate a data set which we use to train
and validate NN. The computational algorithm to solve (191-192) is based on a four-point Lobatto IIIA
discretization. This is a collocation formula which provides a solution that is fifth-order accurate (see [41] for
more detail). But the algorithm is highly sensitive to the initial guess: there is no guarantee of convergence
with an arbitrary initial guess. Furthermore, convergence is increasingly dependent on a good initial guess
as we increase the length of the time interval.

To overcome this difficulty, to generate the initial data set we employed the time-marching trick from [37,
38] in which the solution grows from an initially short time interval to the final time tf . More specifically,
we choose a time sequence

t0 ă t1 ă t2 ă ¨ ¨ ¨ ă tk “ tf ,

in which t1 is small. For the short time interval rt0, t1s, the TPBVP solver converges given most initial
guesses near the initial state x. Then, the resulting trajectory is rescaled over the longer time interval rt0, t2s.
The rescaled trajectory is used as the initial guess to find a solution of the TPBVP for t0 ď t ď t2. We repeat
this process until tk “ tf , at which we obtain the full solution. To achieve convergence, it is necessary to
tune the time sequence ttiu1ďiďtk while maintaining acceptable efficiency. Computing many solutions in
this ways becomes expensive, which means that generating the large data sets needed to efficiently train
a NN can be hard to obtain. Therefore, we begin by generating a small data set and adaptively adding
more points during training. The key to doing this efficiently is simulating the system dynamics, using the
partially-trained NN to close the loop. This quickly provides good guesses for the optimal state x˚pτq and
co-state λ˚pτq over the entire time interval rt0, tf s, so that we can immediately solve (191-192) for all of
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rt0, tf s. Details are presented in Section 2.9.3, and numerical comparisons between this method and the
time-marching trick are given in Section 2.9.5.

2.9.3 Neural network (NN) approximation of the value function

2.9.3.1 Physics-informed learning of the value function The method we propose to compute the solu-
tion to the HJB equation relies on modeling the value function (187) over the domain X Ă Rn. This is done
using PINNs similar to those use in Section 2.2. To this end, let us denote by V p¨q the value function which
we want to approximate, and let V NN p¨q be its NN representation, and denote by θ the parameters (weights
and biases) of the NN which need to be optimized. We again use hyperbolic tangent function as activation
function in all the hidden layers. By solving the TPBVP (191-192) for a set of (randomly sampled) initial
conditions, we get a data set of the form

D “
!´´

tpiq,xpiq
¯

, V piq
¯)Nd

i“1
, (194)

where
`

tpiq,xpiq
˘

are the inputs, V piq “ V
`

tpiq,xpiq
˘

are the outputs to be modeled, and i “ 1, 2, . . . , Nd

are the indices of the data points. This data set is obtained by solving many instances of the two-point BVP
(191) with randomly sampled initial conditions. In the naı̈ve implementation, the NN is trained by solving
the nonlinear regression problem,

min
θ

1

Nd

Nd
ÿ

i“1

”

V piq ´ V NN
´

tpiq,xpiq
¯ı2

. (195)

Motivated by the success of using PINNs for approximating data-driven solutions of PDF equations, we
expect that we can improve on the rudimentary loss function in (195) by incorporating information about
the underlying dynamics. Although it is possible to impose the HJB equation (188) by means of a residual
penalty term as was done in Section 2.2 (see also [61]), the residual must be evaluated over a large number
of collocation points and can be rather expensive to compute. Instead, we take the simpler approach of
modeling the co-state λpt;xq along with the value function. Specifically, we know that the co-state must
satisfy (189), so we encourage the NN to minimize

›

›λpt;xq ´∇V NN pt,xq
›

› , (196)

where ∇V NN p¨q is the gradient of the NN representation of the value function with respect to the state.
Co-state data λpt,xq is obtained for each trajectory as a natural product of solving the TPBVP (191-192).
Hence, we have the augmented data set

Dλ “
!´´

tpiq,xpiq
¯

,
´

V piq,λpiq
¯¯)Nd

i“1
, (197)

where λpiq “ λ
`

tpiq;xpiq
˘

. We now define the physics-informed learning problem,

min
θ
L
´

θ;Dλ
¯

, where L
´

θ;Dλ
¯

“ lossV
´

θ;Dλ
¯

` µlossλ
´

θ;Dλ
¯

. (198)

In (198) µ ě 0 is a scalar weight, the loss with respect to data is

lossV
´

θ;Dλ
¯

“
1

Nd

Nd
ÿ

i“1

”

V piq ´ V NN
´

tpiq,xpiq
¯ı2

, (199)
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and the co-state gradient loss regularization term is defined as

lossλ
´

θ;Dλ
¯

“
1

Nd

Nd
ÿ

i“1

›

›

›
λpiq ´∇V NN

´

tpiq,xpiq
¯
›

›

›

2
. (200)

We randomly partition the given data set (197) into a training set Dλtrain and validation set Dλval. During
optimization, the loss functions (199) and (200) are calculated with respect to the training data Dλtrain. We
then evaluate the network’s performance against the validation data Dλval, which we did not observe during
the training phase. We emphasize that a NN trained to minimize (198) learns not just to fit the value data,
but it is rewarded for doing so in a way that respects the underlying structure of the problem. This physics-
informed regularization takes the known problem structure into account, so it is preferable to the usual L1 or
L2 regularization, which are based on the (heuristic) principle that simpler representations of data are likely
to generalize better. Furthermore, by using information about the co-state we make the most use out of a
potentially small data set.

2.9.3.2 Closed-loop system Once the NN is trained, evaluating ∇V NN at new inputs pt,xq points is
extremely efficient – and since we minimized the gradient loss (200) during training, we also expect∇V NN

to approximate the exact gradient well. At runtime, whenever the feedback control needs to be computed,
we evaluate∇V NN pt,xq using our physics-informed neural net, and then solve (190) based on this approx-
imation. For many problems of interest, the optimization problem (190) admits a semi-analytic solution. In
particular, for the important class of control affine systems with running cost convex in u, we can solve
(190) analytically. To show this, suppose that the system dynamics can be written in the form

9x “ fpt,xq ` gpt,xqupt,xq, (201)

where gpt,xq is a matrix nˆm. Further, suppose that the running cost is of the form

Lpt,x,uq “ hpt,xq ` uTWu, (202)

for some function hpt,xq and some positive-definite weight matrix W P Rmˆm. The Hamiltonian (185)
corresponding the the affine control system (201) can be written as

Hpt,x,λ,uq “ hpt,xq ` uTWu` λTfpt,xq ` λTgpt,xqu. (203)

Next we apply the Pontryagin stationary principle, which requires that

0 “
BH

Bu

ˇ

ˇ

ˇ

ˇ

u“u˚
“ 2Wu˚ ` gT pt,xqλ. (204)

Letting λ “ ∇V pt,xq and solving for u˚ gives us the feedback optimal control in an analytic form

u˚pt,xq “ ´
1

2
W´1gT pt,xq∇V pt,xq. (205)

Plugging this expression into the forward/backward system (191) yields an explicit two point boundary
value problem which can be solved using the methods outlined in the next Section. Alternatively, we can
consider the HJB equation (188) with Hamiltonian (203) evaluated at the optimal feedback signal (205).
This makes (188) explicit, and it yields a nonlinear evolution equation for the value function V pt,xq which
can be solved, e.g., using numerical tensor methods (see Section 2.1).
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2.9.4 Adaptive sampling and fast solution of the two-point BVP

Generating just a single data point
 

tpiq,xpiq, V piq,λpiq
(

requires solving the TPBVP (191), which is not a
straightforward task. Hence, it is difficult to generate large data sets by repeatedly solving (191). On the
other hand, we need lots of data points to adequately represent the value function V pt,xq, especially in high
dimensions. Hence, we developed a new approach that allows us to train the NN with small data sets and
simultaneously generate new data points in a smart way. We accomplished effective training with small data
sets by incorporating information about the co-state as discussed in Section 2.9.3, but also by combining
progressive batching with an efficient adaptive sampling technique.

To illustrate the method, suppose we are given a small initial data set, denoted by D1. We begin by
training a low-fidelity NN model of the value function. It is not necessary to use first-order optimization
methods like SGD or Adam, since for small data sets and NNs second-order optimization methods like L-
BFGS tend to converge more quickly. After allowing the internal optimizer to converge, we apply (143) to
estimate how many samples are needed for convergence. In particular, the convergence condition in case
can be written as

Varptpiq,xpiqqPDr

!›

›

›
∇θL

´

θr;
´

tpiq,xpiq
¯¯›

›

›

)

ď ε|Dr| }∇θL pθr;Drq} , (206)

where∇θp¨q is the gradient with respect to the NN parameters, θ, r is the training round, Lp¨q is the physics-
informed loss defined in eq. (198), ε ą 0 is a parameter, and |Dr| is the cardinality (number of elements)
of Dr. If failed, the test leads to a criterion for selecting the next round’s sample size |Dr`1|, which should
satisfy

|Dr`1| ě

Varptpiq,xpiqqPDr
 ›

›∇θL
`

θr;
`

tpiq,xpiq
˘˘›

›

(

ε }∇θL pθr;Drq}
. (207)

This allows us to generate only the minimum number of samples necessary to successfully complete the
training of the NN The estimates (206) and (207) are developed by assuming a uniform sampling from the
domain. However, in practice all the data we generate will be new, so we can choose to generate new data
where it is needed most. We shall call this strategy adaptive sampling. The condition “where it is needed
most” for generating new data can be interpreted in many ways. In the following, we simply sample points
where

›

›∇V NN
›

› is large. In fact, regions of the phase space where of the value function has large gradients
usually benefit from having more data to learn from. Moreover, this sampling scheme is easy to implement
and efficient. Suppose we aim at generating Nr`1 “ |Dr`1| ´ |Dr| new data points with locations denoted
by

!

tpiq,xpiq
)|Dr`1|

i“|Dr|`1
. (208)

To choose where to put these points, we first randomly sample a large set of Nc ą Nr`1 candidate initial
locations from the phase space X . Then a quick pass through the NN can give us the predicted gradient at
each candidate point,

!

∇V NN
´

0,xpiq
¯)Nc

i“1
. (209)

We then simply pick the Nr`1 points with largest norm. For each of these points, we then simulate the
system dynamics using the partially-trained NN as the closed-loop controller. In most all cases, this yields
a solution which is fairly close to the optimal state x˚ptq and co-state λ˚pt;xq. By using this solution as an
initial guess for the BVP solver, we then quickly obtain a solution to the TPBVP (191-192) for the full time
interval r0, tf s without the need for the time-marching trick proposed in [37, 38] (see Section 2.9.1).

This algorithm enables us to build up a rich and informative data set, from which we develop a high-
fidelity model of V p¨q at reduced computational cost. Moreover, this data set is not constrained to be within
a small neighborhood of some nominal trajectory - it will contain points from the entire domain of X , and
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we can adjust the process as described to generate more data near complicated features of the value function.
As we progressively refine the NN model, we can enforce stricter convergence tolerances for the internal
optimizer, as well as adjust hyperparameters like the gradient loss weight µ or the number of terms in the
L-BFGS Hessian approximation. As the NN is already partially-trained, fewer iterations are needed for
convergence.

2.9.4.1 Correction to derivation of convergence conditions We regretfully made some errors in the
derivation of the convergence conditions and sample size selection scheme developed previously in Section
2.6.1. While in practice, the same results can be obtained with some different hyperparameter tunings, for
future work it is necessary to build our algorithms on a solid mathematical foundation. We present a revised
derivation here in the context of training PINNs for solving HJB equations.

To start, suppose that the internal optimizer (e.g. L-BFGS) converges in optimization round r. Let
D̄rtrain be the available training data set and θr denote the NN parameters at the end of this round. Given
convergence of the internal optimizer, the first order necessary condition for optimality holds, so

›

›∇θL
`

θr; D̄rtrain
˘
›

› ! 1. (210)

Here Lp¨q is the physics-informed loss defined in eq. (198), and ∇θLp¨q is its gradient with respect to the
NN parameters θ. For true first order optimality, we would like the gradient to be small when evaluated over
the entire continuous domain of interest, rt0, tf s ˆ X . In other words, we want

}∇θL pθr; rt0, tf s ˆ X q} ! 1, (211)

where the Monte Carlo sums in eqs. (199-200) become integrals in the limit as the size of the data set
approaches infinity.

The simplest way to see if (211) holds is to generate a validation data set D̄val. Then using the fact that
∇θL

`

θr; D̄val
˘

Ñ ∇θL pθr; rt0, tf s ˆ X q in the limit as
ˇ

ˇD̄val
ˇ

ˇÑ8, one checks if, for example,
›

›∇θL
`

θr; D̄val
˘›

› ă ε, (212)

for some small parameter ε ą 0. Convergence tests like (212) are standard in machine learning, and are
useful for measuring generalization accuracy. But for many practical problems including optimal control
problems studied in this work, it may be too expensive to generate a large-enough validation data set. More
importantly, such tests provides no clear guidance in selecting the sample size

ˇ

ˇD̄r`1
train

ˇ

ˇ should they not be
satisfied.

We do use validation tests to quantify model accuracy after training is complete. Indeed, the ability to
empirically validate solutions is a key benefit of the causality-free approach. However, for the purpose of
determining convergence between training rounds, we propose a different statistically motivated test which
provides information on choosing

ˇ

ˇD̄r`1
train

ˇ

ˇ. The idea is simple: since we already assume (135) holds, then to
ensure that (211) is also satisfied, it suffices to check that the population variance is relatively small.

To motivate this more rigorously, we observe that – by design – for any sample set D̄, the sample gradient
∇θL

`

θr; D̄
˘

is an unbiased estimator for the true gradient,∇θL pθr; rt0, tf s ˆ X q “ E r∇θL pθr; pt,xqqs.
That is,

ED̄
“

∇θL
`

θr; D̄
˘‰

“ ∇θL pθr; rt0, tf s ˆ X q , (213)

where ED̄r¨s denotes the population mean over all possible sample sets D̄ with fixed size |D̄|. Intuitively,
this means that if (210) holds, then on average we also have (211), as desired. But we must control the mean
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square error (MSE) of the estimator, which is given by

MSE
“

∇θL
`

θr; D̄
˘‰

:“ED̄

”

›

›∇θL
`

θr; D̄
˘

´∇θL pθr; rt0, tf s ˆ X q
›

›

2
ı

“ED̄

«

M
ÿ

m“1

ˆ

BL
Bθm

pθr; D̄q ´
BL
Bθm

pθr; rt0, tf s ˆ X q
˙2

ff

(214)

Now by linearity of the expectation we have

MSE
“

∇θL
`

θr; D̄
˘‰

“

M
ÿ

m“1

Var
„

BL
Bθm

pθr; D̄q


(215)

Then by construction of the loss,

MSE
“

∇θL
`

θr; D̄
˘‰

“

M
ÿ

m“1

Var

»

–

1
ˇ

ˇD̄
ˇ

ˇ

|D̄|
ÿ

i“1

BL
Bθm

´

θr;
´

tpiq,xpiq
¯¯

fi

fl (216)

Using the fact that the samples
`

tpiq,xpiq
˘

are i.i.d., we get

MSE
“

∇θL
`

θr; D̄
˘‰

“
1

ˇ

ˇD̄
ˇ

ˇ

2

M
ÿ

m“1

|D̄|
ÿ

i“1

Var
„

BL
Bθm

pθr; pt,xqq



“
1

ˇ

ˇD̄
ˇ

ˇ

2

M
ÿ

m“1

ˇ

ˇD̄
ˇ

ˇVar
„

BL
Bθm

pθr; pt,xqq



“
1
ˇ

ˇD̄
ˇ

ˇ

M
ÿ

m“1

Var
„

BL
Bθm

pθr; pt,xqq



, (217)

where M is the number of parameters θ. If the estimation error is small, then the sample mean is likely to
be a good approximation of the true mean. Hence we expect that }∇θL pθr; rt0, tf s ˆ X q} is also small, as
desired. To this end, we require

MSE
“

∇θL
`

θr; D̄
˘‰

ď ε }∇θL pθr; rt0, tf s ˆ X q}1 , (218)

for some parameter ε ą 0.
In practice, evaluation of (218) is computationally intractable, but we can approximate the true popu-

lation variance terms on the left hand side by the sample variance6 taken over all data
`

tpiq,xpiq
˘

P D̄rtrain,
which we denote by VarD̄rtrain

r¨s:

MSE
“

∇θL
`

θr; D̄
˘‰

«
1

ˇ

ˇD̄rtrain

ˇ

ˇ

M
ÿ

m“1

VarD̄rtrain

„

BL
Bθm

´

θr;
´

tpiq,xpiq
¯¯



. (219)

Similarly, we approximate the true gradient on the right hand side by the sample gradient and arrive at the
following practical convergence criterion:

M
ÿ

m“1

VarD̄rtrain

„

BL
Bθm

´

θr;
´

tpiq,xpiq
¯¯



ď ε
ˇ

ˇD̄rtrain
ˇ

ˇ

›

›∇θL
`

θr; D̄rtrain
˘
›

›

1
. (220)

6In practice, computing a large number of individual gradients can be expensive, so we often evaluate the sample variance over
a smaller subset of the training data.
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If (220) is satisfied, then it is likely that }∇θL pθr; rt0, tf s ˆ X q} is small. In other words, the solution
θr should satisfy the first order optimality conditions evaluated over the entire domain, so we can stop
optimization. Satisfaction of (220) does not imply that the trained model is good – merely that seeing more
data would probably not improve it significantly. On the other hand, when the criterion is not met, it still
guides us in selecting the next sample size

ˇ

ˇD̄r`1
train

ˇ

ˇ. To see this, suppose that the sample variance doesn’t
change significantly by increasing the size of the data set, i.e.

řM
m“1 VarD̄r`1

train

”

BL
Bθm

`

θr;
`

tpiq,xpiq
˘˘

ı

›

›∇θL
`

θr; D̄r`1
train

˘›

›

1

«

řM
m“1 VarD̄rtrain

”

BL
Bθm

`

θr;
`

tpiq,xpiq
˘˘

ı

›

›∇θL
`

θr; D̄rtrain

˘›

›

1

. (221)

Then the appropriate choice of
ˇ

ˇD̄r`1
train

ˇ

ˇ to satisfy (220) after the next round is such that

ˇ

ˇD̄r`1
train

ˇ

ˇ ě

řM
m“1 VarD̄rtrain

”

BL
Bθm

`

θr;
`

tpiq,xpiq
˘˘

ı

ε
›

›∇θL
`

θr; D̄rtrain

˘
›

›

1

. (222)

2.9.5 Application to rigid body satellite rotation

As a practical test of of NN-HJB solver, we consider the six-dimensional rigid body model of a satellite
studied by Kang and Wilcox [37, 38]. Using the method of characteristics on sparse grids, they demonstrate
the feasibility of interpolating the value function V pt “ 0,xq in six dimensions, and use this for model
predictive feedback control (MPC) [21] of the nonlinear system. In [38], this is accomplished even for
the under-actuated case. Hereafter, we provide a comparison of the results in [38] with the results of the
proposed NN-HJB method. To this end, we first describe in more detail the feedback control system. Let
te1, e2, e3u be an inertial frame of orthonormal vectors and te11, e

1
2, e

1
3u be a body frame. The state of the

satellite is then written as x “
`

v ω
˘T . Here v represents the Euler angles,

v “
`

φ θ ψ
˘T
, (223)

in which φ, θ, and ψ are the angles of rotation around e11, e12, and e13, respectively, and ω is the angular
velocity relative to the body frame,

ω “
`

ω1 ω2 ω3

˘T
. (224)

The state dynamics are given by
ˆ

9v
J 9ω

˙

“

ˆ

Epvqω
SpωqRpvqh`Bu

˙

. (225)

Here Epvq,Spωq,Rpvq : R3 Ñ R3ˆ3 are matrix-valued functions defined as

Epvq “

¨

˝

1 sinφ tan θ cosφ tan θ
0 cosφ ´ sinφ
0 sinφ{ cos θ cosφ{ cos θ

˛

‚, Spωq “

¨

˝

0 ω3 ´ω2

´ω3 0 ω1

ω2 ´ω1 0

˛

‚, (226)

and

Rpvq “

¨

˝

cos θ cosψ cos θ sinψ ´ sin θ
sinφ sin θ cosψ ´ cosφ sinψ sinφ sin θ sinψ ` cosφ cosψ cos θ sinφ
cosφ sin θ cosψ ` sinφ sinψ cosφ sin θ sinψ ´ sinφ cosψ cos θ cosφ

˛

‚, (227)
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J P R3ˆ3 is a combination of the inertia matrices of the momentum wheels and the rigid body without
wheels, h P R3 is the total constant angular momentum of the system, and B P R3ˆm is a constant
matrix where m is the number of momentum wheels. To control the system, we apply a torque in each
of the momentum wheels. Such torque represents the feedback control of the system, which we denote as
upt,v,ωq : rt0, tf s ˆ R3 ˆ R3 Ñ Rm. In particular, we consider the fully-actuated case with m “ 3
momentum wheels. Following [38], we set

B “

¨

˝

1 1
20

1
10

1
15 1 1

10
1
10

1
15 1

˛

‚, J “

¨

˝

2 0 0
0 3 0
0 0 4

˛

‚, h “

¨

˝

1
1
1

˛

‚. (228)

The optimal control problem is
$

’

’

’

’

&

’

’

’

’

%

minimize
upt,xq

ż 20

0
Lpv,ω,uqdτ `

1

2
}vptf q}

2 `
1

2
}ωptf q}

2

subject to 9v “ Epvqω
J 9ω “ SpωqRpvqh`Bu

(229)

where
Lpv,ω,uq “

1

2
}v}2 `

10

2
}ω}2 `

1

4
}u}2. (230)

We sample Nd initial values
 

xpiq
(Nd
i“1

from the domain

D2 “

!

v,ω P R3
ˇ

ˇ´
π

3
ď φ, θ, ψ ď

π

3
, and ´

π

4
ď ω1, ω2, ω3 ď

π

4

)

, (231)

and solve the two-point BVP (191) at each initial value xpiq, i “ 1, . . . , Nd, using a four-stage Lobatto
IIIA integration method [41]. It is important to note that in [38], this problem is solved at t “ 0. Hence, we
generate data only for V p0,v,ωq and λp0;v,ωq. This means that the system is controlled for the whole time
interval t P r0, 20s by uNN p0,v,ωq. Consequently, the control is implemented as model-predictive-control
(MPC) rather than time-dependent optimal control. In other words, at each time t when the integrator needs
to evaluate the control, instead of computing uNN pt,v,ωq, we assume t “ 0 and return uNN p0,v,ωq.
This is justifiable because the optimal control problem (229) is time-invariant.

2.9.5.1 Learning the value function Here we present numerical results of our implementation of a NN
for learning the value function of the rigid body rotation problem (229). We experiment with changing the
number of training data and the weight µ on the value gradient loss term (200), and compare the results to
those obtained in [38]. Notably, we demonstrate that we can match the accuracy of the sparse grid charac-
teristics method using a data set which is over 40 times smaller, and at minimal additional computational
cost.

To this end, we implemented a simple feed-forward NN in TensorFlow [1] and trained it to approximate
V p0,v,ωq. Many different configurations of numbers of hidden layers and neurons work for this problem,
but we found that three hidden layers with 64 neurons in each hidden layer produce reasonably accurate
results. We optimize using the SciPy interface for the L-BFGS optimizer [33, 10]. For validation, we
generate a data set containing

ˇ

ˇDλval

ˇ

ˇ “ 10, 000 data points, and keep this fixed throughout all the tests. As a
baseline, the sparse grids characteristic method with

ˇ

ˇG13
sparse

ˇ

ˇ “ 44, 698 grid points achieves a relative mean
absolute error (RMAE) of 7.3ˆ 10´4 on this data set. This error metric is defined as

RMAEpθ;Dq “ 1

|D|

|D|
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

V NN
`

tpiq,xpiq
˘

´ V piq

V piq

ˇ

ˇ

ˇ

ˇ

ˇ

. (232)
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Figure 73: Accuracy measured as relative mean absolute error (RMAE) and computation time, depending
on data set size and for a range of weights µ.

Figure 73 displays the results of a series of tests in which we fix the value gradient loss weight µ and
vary the size of the training data set. In this experiment, we do not do adaptive sampling: training is
conducted only for one round using the full data set provided, which is fixed for each different value of µ.
However, we find that we need only a small amount of data to get reasonable results. We highlight that
with just 1024 data points, we can match the accuracy of the sparse grid characteristics method which uses
ˇ

ˇG13
sparse

ˇ

ˇ “ 44, 698 points. With 8192 data points, the trained NN is three times as accurate as the sparse grid
method. In addition, these NNs need only a couple minutes to train, so minimal computational effort beyond
data generation is required. This level of accuracy for small data sets is only reached by properly tuning µ.
In particular, we are unable reach a level of accuracy comparable to that of the sparse grid method by pure
regression – i.e., by minimizing the loss (195). For this problem, we can improve accuracy by about an order
of magnitude by choosing µ around 10´1 to 101. Finding a good choice of µ is problem-dependent, which
generally dictates the ratio of sizes of the two loss terms (199) and (200), as well as the size of the data set
and other hyperparameters. In addition, results can vary depending on randomly drawn data sets and NN
parameter initializations. Even so, since training is fast, it is usually not difficult to find good hyperparameter
settings and NN initializations.

2.9.5.2 Adaptive sampling results Performing a systematic study of the adaptive sampling and model
refinement technique we proposed in Section 2.9.4 is rather difficult, since a successful implementation
depends on various hyperparameter settings (which can change each optimization round) as well as random
events, since data points are chosen partially in a random way and the randomly-initialized NN training
problem is highly non-convex. For this reason, in this Section we report on a few conservative results
which we feel can demonstrate the potential of the proposed method. Figure 74 displays the progress of the
validation error during training when using adaptive sampling starting from a random initial data set with
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Figure 74: Progress of adaptive sampling and model refinement for training a NN to model the HJB value
function, compared to training on a fixed data set D and the sparse grid characteristics method.

|D1| “ 512 points. This is the same data set with 512 points used in Figure 73. We also keep the gradient
loss weight constant and set to µ “ 101, set the convergence tolerance in (206) to ε “ 10 to compensate for
the large gradients, and we use |D2| “ 1024 and |D3| “ 4096 data points in the following rounds. The data
set sizes are selected to be the smallest power of 2 which is larger than the number of points recommended
by Eq. (207). Results are compared to the progress when training on a fixed data set with |D| “ 4096
points (the same as used in Figure 73). To fully realize the potential of the method, one needs to adjust
hyperparameters like µ, ε, and internal optimizer parameters in each round. How to do this in an effective
and efficient way remains a topic for future research. Still, even with a naı̈ve implementation, the final
accuracy is just as good as that obtained when training on a fixed data set with |D| “ 4096, even though
training started with only |D1| “ 64 points.

Next, we study convergence of the BVP solver. First, we use the time-marching trick discussed in
Section 2.9.1. Second, instead of time-marching we take initial guesses generated by simulating the closed-
loop dynamics with a NN controller and solve the full TPBVP (191). Results are given in Tables 35 and
36. For the tests, we use 1,000 initial conditions with the largest predicted gradient norm,

›

›V NN
x

›

›, picked
from a set of 100,000 randomly sampled candidate points. The set of initial conditions is fixed for all tests.
When we attempt to solve the TPBVP with no time-marching (the line k “ 1 in Table 35), the proportion
of convergent solutions is extremely small. This obviates the need for good initial guesses. As shown in
Table 35, we reliably obtain solutions for this problem when we use at least k “ 4 time intervals. We
note that the initial conditions are purposefully chosen to be difficult – if we simply take random samples
from the domain D2, the proportion of convergent solutions increases considerably. We see from the results
presented in Table 36, using initial guesses generated by even a poorly-trained NN (18% validation RMAE),
the chance of convergence is just as high as when using k “ 2 time intervals for time-marching. Moreover,
we find that by training even slightly more accurate NNs we easily get over 95% convergence. We also
see that these solutions take less time than equivalently reliable solutions obtained with time-marching.
While the difference is insignificant for individual data points, when building large data sets this can result
in significant time savings. Together, these results suggest that the proposed adaptive sampling and model
refinement framework has the potential to be useful in solving other, more difficult problems.

2.9.5.3 Closed-loop feedback control performance Lastly, we show that the trained NN is capable of
stabilizing the nonlinear system dynamics. The control is calculated using Eq. (205) to get

uNN pt,v,ωq “ ´2
`

J´1B
˘T
V NN
ω pt,v,ωq. (233)
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Table 35: Convergence of the BVP solution when using the time-marching trick, depending on the number
of time steps.

number of time steps % BVP convergence mean solution time
1 0.8% 0.70 s
2 45.4% 0.64 s
4 93.0% 0.60 s
8 97.6% 0.72 s

Table 36: Convergence of the BVP solution when using an initial guess generated by NNs.

|D| µ validation RMAE % BVP convergence mean solution time
64 0 1.8ˆ 10´1 54.7% 0.61 s
64 10´4 1.8ˆ 10´2 95.4% 0.57 s
64 101 1.2ˆ 10´2 97.9% 0.55 s
512 0 8.1ˆ 10´3 98.8% 0.55 s
512 10´4 5.1ˆ 10´3 98.6% 0.54 s
512 101 1.1ˆ 10´3 98.9% 0.55 s

Figure 75: Typical closed-loop trajectory of the fully-actuated rigid body satellite system, controlled with
model predictive feedback control generated by a neural network. Solid blue: φ, ω1, and u1. Dashed orange:
θ, ω2, and u2. Dotted yellow: ψ, ω3, and u3.

Since J and B are constant matrices, we pre-compute the product ´2
`

J´1B
˘T . Hence evaluation of the

control requires only a forward pass through the computational graph of the gradient V NN
ω and a matrix mul-

tiplication. Recall that we are implementing MPC, so the control is actually computed as u “ uNN p0,v,ωq
for all times t P r0, 20s. In Figure 75, we plot a typical closed-loop trajectory from a randomly sampled ini-
tial condition, clearly showing asymptotic stabilization. We also note that short computation time is critical
for implementation in real systems, and this is achieved here as each evaluation of the control takes only
Op10´7q seconds.
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Figure 76: Validation accuracy and training time of NNs for modeling initial time value function V p0,v,ωq
of the rigid body optimal attitude control problem (229).

2.9.6 Learning time-dependent value functions

In this section, we compare the performance of NNs which model the initial time value function, V p0,v,ωq,
and the full time-dependent value function, V pt,v,ωq, of the rigid body rotation problem (229). In Section
2.9.5, we previously concentrated on learning the initial time value function to facilitate comparison with
the sparse grid characteristics method [37, 38]. We now demonstrate that learning the value function with
time dependence presents no difficulties for our method, and in fact, can be more data-efficient in the sense
that fewer BVPs need to be solved.

For comparison, we construct a validation data set with
ˇ

ˇD̄val
ˇ

ˇ “ 1, 000 data points (at t “ 0), and
keep this fixed throughout all the tests. As a baseline, the sparse grid characteristic method with

ˇ

ˇG13
sparse

ˇ

ˇ “

44, 698 grid points achieves a mean absolute error (MAE) of 3.7 ˆ 10´3 on this data set. The MAE is
defined as

MAEpθ;Dq “ 1

|D|

|D|
ÿ

i“1

ˇ

ˇ

ˇ
V NN

´

tpiq,xpiq
¯

´ V piq
ˇ

ˇ

ˇ
. (234)

We use this error metric instead of the RMAE defined previously because the magnitude of the value function
can be very small for larger t, and even if the NN is quite accurate and good for control purposes, the RMAE
can still be shockingly large. Thus the MAE provides a better error metric in this case.

First we train NNs to learn the initial time value function only, as we did in Section 2.9.5. Thus while
each integrated BVP yields a time series with about 100 data points, we use only the initial point of each.
Thus the number of integrated trajectories is equal to the size of the data set. Figure 76 displays the numerical
with the new validation data set and error metric. We recover similar results: best results are obtained for µ
between 10´1 and 101; with 1024 trajectories we match the accuracy of the sparse grid method; and with
8192 points the HJB-NN method is twice as accurate.
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Figure 77: Validation accuracy and training time of NNs for modeling the time-dependent value function
V pt,v,ωq of (229).

2.9.6.1 Time-dependent results We now train NNs to model the value function of (229) over the whole
time interval t P r0, 20s. These NNs take t, v, and ω as inputs, and output V pt,v,ωq. A surprising outcome
of our experiments is that including time improves data-efficiency. That is, fewer trajectories need to be
integrated to train NNs with performance comparable to NNs approximating only V p0,v,ωq.

For training data, we keep the entire time series generated by the BVP solver. As each time series
consists of about 100 points on average, the resulting data sets can be rather large. Thus we train on ran-
domly selected subsets of the data with 16 times as many points as the number of trajectories integrated,
corresponding to about 20% of the available data. Preliminary tests indicated that training on subsets of this
size yields results which are comparable to those obtained when training on the full data set, but at reduced
computational cost. For validation, we use the set of full trajectories corresponding to the validation data
generated for Figure 76. The NN architecture is identical to that used before, except with an additional input
dimension for time. Although more specialized architectures like recurrent NNs have been developed for
modeling time series, we find that standard feedforward NNs do well for this task and are able to make fast
predictions, which is essential for feedback control.
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In Figure 77, we plot experimental results for learning the value function with time dependence. Training
time for these NNs is generally longer than those in Figure 76 because the data sets are much larger, but the
difference is not too extreme. The MAE for predicting the value function for validation data is given over all
t P r0, 20s and at t “ 0 for comparison with Figure 76. Again with the help of physics-informed learning,
we obtain NN models which are accurate over the whole time interval trained. This time, best results are
obtained with µ “ 10´1. Interestingly, we find that the accuracy in predicting V p0,v,ωq is comparable to
that of a NN trained specifically for this purpose. This equivalence is especially true for the smallest data
sets tested, which suggests that when little data is available, it can be more efficient to train a NN to learn
the full time-dependent value function.

Remark 2.9 A NN which models the time-dependent value function can be used either for optimal control
or MPC: at each time t when the control needs to be computed, such a NN can predict either uNN pt,xq for
optimal control, or assume t “ 0 and return uNN p0,xq for MPC instead. Thus there is no disadvantage to
training a NN to learn the time-dependent value function. Furthermore, if a higher-fidelity model for MPC
is desired, one can simply use the time-dependent NN to gather enough data to train a NN to approximate
V p0,xq only.

2.9.7 Robust control of a nonlinear advection-reaction-diffusion PDE

In this section we study both open-loop control and Deep Neural Net based feedback of the nonlinear PDE,
under uncertainty. The problem is identical to the system developed in section 2.4 but with uncertainty in
the initial condition. The problem is restated briefly here in a concise form.

$

’

’

’

&

’

’

’

%

Bψ

Bt
“ ψ

Bψ

Bx
`

1

5

B2ψ

Bx2
`

3

2
ψe´ψ{10 ` IΩpxquptq,

ψpt,´1q “ ψpt, 1q “ 0,

ψp0, xq “ ψ0pxq,

(235)

where ψpx, tq : r´1, 1s ˆ r0, tf s ÞÑ R is a random field that is a functional of ψ0 (random initial condition)
and uptq : r0, tf s Ñ R (control). Note that uptq is actuated only on the spatial domain Ω “ r´0.5,´0.2s,
which is the support of the indicator function IΩpxq. We aim at determining the optimal control uptq that
minimizes the cost functional

Jprψs, rusq “
1

2
E
"
ż 1

´1
ψptf , xq

2dx` 2

ż tf

0

ż 1

´1
ψpτ, xq2dxdτ

*

`
1

20

ż tf

0
upτq2dτ, tf “ 8, (236)

where Et¨u is an expectation over the probability distribution of the initial state ψ0pxq. To this end, we
first discretize (235) in space using a Chebyshev pseudo-spectral method [63]. This yields the semi-discrete
form

$

&

%

9ψ “ ψ ˝Dψ `
1

5
D2ψ `

3

2
ψ ˝ e´ψ{10 ` IΩuptq,

ψp0q “ ψ0,

(237)

where ψptq “ rψpt, x1q, ..., ψpt, xnqs
T collects the values of the solution ψpt, xq at the (inner) Chebyshev

nodes

xj “ cos

ˆ

jπ

n` 1

˙

j “ 1, ..., n. (238)
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Figure 78: Solution samples of the initial-boundary value problem (235) corresponding to different initial
conditions, with control uptq “ 0 (uncontrolled dynamics).

Figure 79: Open loop control of the nonlinear PDE (235). Shown is the nominal control minimizing (236)
for the deterministic initial condition ψ0 “ 2 sinpπxq and the corresponding solution dynamics. It is seen
that the control uptq sends ψpt, xq to zero after a small transient.

In equation (237), the circle “˝” denotes element-wise multiplication (Hadamard product), IΩ is the dis-
crete indicator function, while D and D2 P Rnˆn are, respectively, the first- and second-order Chebyshev
differentiation matrices. These matrices obtained by deleting the first and last rows and columns of the full
differentiation matrices. In Figure 78 we plot two solution samples of the initial-boundary value problem
(235) we obtained by integrating the discretized system (237) in time. The cost functional (236) can be
discretized as

J “
1

2M

M
ÿ

i“1

wT

„

ψpiqptf q
2 ` 2

ż tf

0
ψpiqpτq2dτ



`
1

20

ż tf

0
upτq2dτ, (239)

where w are Clenshaw-Curtis quadrature weights (column vector), and M is the total number of samples.
To quantify the effectiveness of the ensemble optimal control algorithm we propose, we first determine

the nominal control corresponding to the deterministic initial condition ψ0pxq “ 2 sinpπxq. Such control
minimizes the functional (239) with M “ 1 and ψp1qj p0q “ 2 sinpπxjq, and sends ψpt, xq to zero after a
small transient (see Figure 79).

Next, we introduce uncertainty in the initial condition. Specifically, we set

ψ0j “ 2 sinpπxjq ` εj εj „ N p0, 001q. (240)
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Figure 80: Comparison between the mean and the standard deviation of the stochastic solution to the PDE
(235) under (a) nominal control and (b) optimal control.

This makes the solution to (235) and (237) stochastic. As seen in Figure 80 the introduction of this small
uncertainty, causes large perturbations to the system solution under nominal control especially at t=8. To
compute the optimal control, we minimized the functional (239) subject to M “ 1000 replicas of the
dynamical system (237). Specifically, we considered the single-shooting setting described in section 2.4.1
with ∆t “ 0.0005, Euler time integrator, and CSE gradient algorithm. In Figure 80 we compare the mean
and the standard deviation of the solution we obtain by using nominal and optimal controls. It is that the
optimal control is more effective is driving the solution ensemble to zero. In fact, both the mean and standard
deviation of the optimally controlled dynamics are closer to zero. Note also that the optimal control differs
substantially from the nominal control.

2.9.8 Closed loop control

We next consider a Deep Neural Net feedback scenario for the closed loop control problem (237)-(239),
where the control uptq depends also on the state ψ.

2.9.8.1 Learning high dimensional value functions Using the proposed adaptive deep learning frame-
work, we approximate solutions to (237)-(239) in n “ 10, 20, and 30 dimensions. We focus on demonstrat-
ing what is possible using our approach, rather than carrying out a detailed study of its effectiveness under
different parameter tunings. Indeed, in [35] the infinite-horizon version of the problem is solved only up
to twelve dimensions, and the accuracy of the solution is not readily verifiable. The ability to conveniently
measure model accuracy for general high dimensional problems with no known analytical solution is a key
advantage of our framework. For each discretized optimal control problem, n “ 10, 20, and 30, we ap-
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Table 37: Validation accuracy of NNs trained to approximate solutions to the HJB equation associated with
the collocated Burgers’-type optimal control problem (237)-(239), depending on the state dimension n.

n num. trajectories training time value accuracy co-state accuracy

10 132 10.1 min 2.4ˆ 10´3 1.8ˆ 10´2

20 60 9.2 min 8.9ˆ 10´4 2.1ˆ 10´2

30 59 13.3 min 5.0ˆ 10´4 2.0ˆ 10´2

Table 38: Convergence of BVP solutions for (237)-(239) when using the time-marching trick, depending on
the problem dimension, n, and the number of time steps k.

n k % BVP convergence mean integration time

10
6 68% 1.0 s
8 90% 1.1 s

20
8 3% 5.9 s
10 99% 8.5 s

30
10 49% 33.4 s
12 100% 52.4 s

ply the time-marching strategy to build an initial training data set D̄1
train from 30 uniformly sampled initial

conditions, ψpiq0 for i “ 1, . . . , 30. For each initial condition ψpiq0 , the BVP solver outputs an optimal trajec-
tory ψpiq

`

tpkq
˘

and associated co-state λpiq
`

tpkq
˘

, where tpkq P r0, tf s are collocation points chosen by the
solver. Typically this can be a few hundred or even thousand points per initial condition, depending on the
state dimension n and the BVP solver tolerances. As such, we train the NN on a subset of the available data,
randomly selected before each round r. We manually tune the hyper-parameter schedules, e.g. µ “ µprq,
but we omit these minor implementation details to focus on the outcomes. In Table 37, we present vali-
dation accuracy results for the trained NNs. We include the MAE in predicting the value function and the
mean relative L2 error in predicting the costate, λpt;ψq « V NN

ψ pt,ψq. Accuracy is measured empirically
on independently generated validation data sets comprised of trajectories from 50 randomly selected initial
conditions. We find that the trained NNs have good accuracy in both value and co-state prediction, even
in 30 dimensions. Table 37 also shows the total number of sample trajectories seen by the NN, including
the initial data D̄1

train. It may seem surprising that the number of sample trajectories decreases with the
dimension n. This happens because the BVP solver usually needs more collocation points for higher di-
mensional problems, thus producing more data per trajectory. Consequently, fewer trajectories need to be
integrated to fulfill the data set size recommendation (145). Similarly, in Section 2.9.5 we use data only
for t “ 0, so we need thousands of trajectories to fill in the state space and train the NN. This suggests
that learning the time dependent value function can be more efficient than a MPC implementation. Lastly,
Table 37 shows the training time for each NN, including time spent generating additional trajectories on the
fly but not time spent generating the initial data. Generating the initial data set quickly becomes the most
expensive computation as n increases, but once some data is available, we find that computational effort
scales reasonably with the problem dimension. This demonstrates the viability of the proposed method for
solving high dimensional optimal control problems.

2.9.8.2 Adaptive sampling and fast BVP solutions In our experience, generating the initial training
data set can be the most computationally expensive part of the process, especially as the problem dimension
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Table 39: Convergence of BVP solutions for (237)-(239) when using initial guesses generated by NNs with
varying costate prediction accuracy (measured as mean relative L2 error on validation data).

n µ co-state accuracy % BVP convergence mean integration time

10
10´2 1.4ˆ 10´1 89% 0.6 s
102 4.3ˆ 10´2 92% 0.5 s

20
10´2 3.1ˆ 10´1 98% 2.4 s
102 4.0ˆ 10´2 100% 2.3 s

30
10´2 4.2ˆ 10´1 99% 6.6 s
102 3.5ˆ 10´2 100% 6.7 s

0 2 4 6 8
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0

1

0 2 4 6 8
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0

1

Figure 81: Comparison of true optimal control (open-loop BVP solution) and NN control profiles for two
different initial conditions: ψp0, xq “ 2 sinpπξq (left) and ψp0, xq “ ´2 sinpπξq (right).

n increases. Consequently, for difficult high dimensional problems it may be infeasible to generate a large-
enough data set from scratch. This obstacle can be largely overcome by using partially-trained/low-fidelity
NNs to aid in further data generation. In this section, we briefly compare the consistency and speed of BVP
convergence between our two strategies: time-marching and NN warm start. These experiments demonstrate
the importance of NN guesses for high dimensional data generation. For each of n “ 10, 20, and 30, we
randomly sample a set of 1,000 candidate points from the domain r´2, 2sn, from which we pick 100 points
with the largest predicted value gradient. The set of initial conditions is fixed for each n. Next we proceed as
in Section 2.9.5, solving each BVP by time-marching with various k. Results are summarized in Table 38.
We then solve the same BVPs directly over the whole time interval t P r0, 8swith NN warm start. These NNs
are trained only for a single round on fixed data sets, but with different gradient weights, µ, and thus have
varying costate prediction accuracy. Results are given in Table 39. As before, we find that even NNs with
relatively large costate prediction error enable consistently convergent BVP solutions. Time-marching also
works once the sequence of time steps tk is properly tuned, but the speed of this method scales poorly with
n. Now the advantage of utilizing NNs to aid in data generation becomes clear: the average time needed for
convergence when using the NN approach is drastically lower than that of the time-marching trick. Because
low-fidelity NNs are quick to train, training such a NN and then using it to aid in data generation is the most
efficient strategy for building larger data sets.

2.9.8.3 Closed-loop performance Now we show that the feedback control output by the trained NN not
only stabilizes the high dimensional system, but that it is close to the true optimal control. The optimal
feedback control law can again be calculated with (205), from which we obtain

upt,ψq “ ´
1

2
rIωs

T Vψpt,ψq. (241)
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In Figure 78 we plot the uncontrolled dynamics and closed-loop controlled dynamics 79 starting from the
conditions, ψp0, xq “ 2 sinpπξq where the dimension of the discretized system is n “ 30. For both of
these initial conditions (and almost all others tested), the NN controller successfully stabilizes the open-loop
unstable origin. Figure 81 compares the NN-generated controls with the true optimal controls, calculated by
solving the associated BVP problems. From this we can see that the NN controls are very close to optimal.
Finally, the speed of online control computation is not sensitive to the problem dimension: each evaluation
still takes just Op10´3q seconds on both an NVIDIA RTX 2080Ti GPU and a 2012 MacBook Pro.

2.9.8.4 Discussion Solving HJB equations in six dimensional domains is a very difficult problem. Our
method makes no compromises in the simplicity of the model (in particular we use the full nonlinear dy-
namics), and is able to efficiently generate solutions to a good degree of accuracy. Thus, we believe that it
has the potential to be useful in tackling high-dimensional problems with more complicated value functions.
We expect that adaptive sampling along with strategies for adjusting hyperparameters will be key tools in
addressing such problems, and we hope to address this in future work. Dealing with bound-constrained con-
trols and free final time problems will also require further developments of the framework, leaving a wide
range of research topics to explore. This approach to solving HJB equations can also easily be combined
with an unscented Kalman filter (UKF, see [34, 68]) for control of systems with parameter uncertainty, pro-
cess noise, and measurement noise. In particular, in combination with a reduced order UKF [49] or other
reduced-order estimators, our method may be especially effective in the case where noise is negligible and
there is only parameter uncertainty. This provides solutions which converge to the optimal solution for any
initial distribution. Thus we can solve all the kinds of problems solved previously with open-loop control
but with feedback control. It is important to note that the NN is trained offline, but this feedback control is
evaluated online in real-time and is valid for any initial distribution which is similar enough to that which
the NN was trained on, and any initial condition in the training domain.
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[8] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

[9] C. Brennan and D. Venturi. Data-driven closures for stochastic dynamical systems. J. Comput. Phys.,
372:281–298, 2018.

[10] Richard H. Byrd, Peihang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing, 16:1190–1208, September 1995.

[11] Simone Cacace, Emiliano Cristiani, Maurizio Falcone, and Athena Picarelli. A patchy dynamic pro-
gramming scheme for a class of Hamilton–Jacobi–Bellman equations. SIAM Journal on Scientific
Computing, 34(5):A2625–A2649, 2012.

[12] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 2001.

[13] A. J. Chorin and X. Tu. Implicit sampling for particle filters. PNAS, 41:17249–17254, 2009.
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