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Abstract. Some systems achieve aperiodic temporal behavior through the 
production of successive half subharmonics. A recursive method is presented 
here that allows the explicit computation of this aperiodic behavior from the 
initial subharmonics. The results have a character universal over specific 
systems, so that all such transitions are characterized by noise of a universal 
internal similarity. 

Introduction 

A variety of numerical experiments [1-6] on systems of differential equations have 
demonstrated that a possible route to chaotic or turbulent behavior is a cascade of 
successive half harmonics of a basic mode with turbulence commencing after an 
infinite halving has produced non-periodic behavior. Moreover, a recent experi- 
ment [7] on Rayleigh B6nard convection has also exhibited these half harmonics 
as the behavior determining the onset of turbulence in the fluid. In this paper we 
draw upon some mathematics intimately connected with period doubling, and 
determine the time fluctuation spectrum of such a system at the onset of 
turbulence [8]. This spectrum proves to be of a universal construction, so that no 
specific formulas for the differential system are ever encountered. On the other 
hand, the theory presented is asymptotic and recursive, so that it requires as input 
the specific spectrum after several stages of period doubling. We are not concerned 
with this aspect here, taking this input for granted after which the entirety of the 
behavior through the transition is computed. 

The paper is divided into three main parts. The first assumes the theory later to 
be exposited in order to present the new results with the least dedication required 
of the reader. The principal results are the formulae (10) and (17) which determine 
the subharmonic spectrum recursively. The second section reviews the universality 
theory for one-dimensional maps, and constructs the basic scaling function 
required in the first part. Finally, the last section consists of an argument 
establishing the relevance of one-dimensional maps to the original system of 
differential equations, resting upon very recent work of Collet et al. [9]. The 
correct formula to which (10) is a rough approximation is also determined. 
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Subharmonic Trajectory Scaling 

We are considering a system of differential equations 

2 i = f / (x i , . . . ,  xN, 2)i = 1,... ,  N (1) 

for which we know that at 2 n each xi(t) is periodic with period Tn=2"T o and 
2,~2oo < m. (For  each ~ there is a range of suitable 2's : 2, is chosen for each n to 
produce  identical stabilities.) As n ~  oe, xi(t ) is becoming aperiodic: it possesses a 
fundamental  at  co n = O)o/2 n with equally spaced harmonics,  with 2 ~ harmonics  up to 
co 0, so that  as n ~ o e ,  the spectrum becomes continuous.  We are, in particular, 
interested in computing this par t  of the spectrum - the subharmonics of  coo - that  
determines the noise (or fluctuations). 

Consider the system at 2 n : xi(t + T,) = xi(t), and the mot ion  can be divided into 
2" roughly similar "cycles" of durat ion T 0. At 2,l + 1, xi(t + Tn) no longer equals xi(t), 
but  "almost"  does, another  T~ "cycles" required until x~ again equals x~(t). 
Accordingly, we focus at tention on 

@")(t) -- xi~)(t) - x(n)(t + T~_ 1) (2) 

which along the entire t rajectory measures x's failure to duplicate itself after one 
half  of its true period, T,. Observe, by periodicity, that 

and (3) 

tp(~)(t + T~ _ 1) = - tP(~)(t) - 

Now imagine that  the "way" in which ~p(') fails to vanish is the same way in 
which ~p(~+ ~/will fail to vanish. More  precisely, assume that  

~p(" + 1)(0 ~ a(t/7~ + 1)~0(~)(t) (4) 

so that  ~p("+ ~) is built of  two displaced copies of  Tp(~)(t) suitably scaled. By (3) it 
follows that 

a(x  + 1) = ~(x) 

~r(x + 1/2) = - o'(x). (5) 

Also, by (4) 

rn+ 1 ( 2 0 -  @n+ 1)(20 
~p(~'(2t) ~-a(2 t /T~+l)=a( t /T~)~  tp(~(~)lllt) =r~(t) (6) 

so that  with each r, plotted against a scaled time, x, (for which T, = 1), the curves 
r~(t) should be identical and equal to ~r(x). Figure 1 depicts the degree to which this 
is true for n = 4, 5 in the case of  Duffing's equation, where 2n has been chosen to 
determine that  2~-cycle most  quickly converged to from initial conditions within 
the basin of this cycle. In fact there is a large class of systems (1) for which Eq. (4) is 
correct. So, assuming that  (4) is correct (for large n), let us see what  form of 
fluctuation spectrum is implied. 
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Fig. 1. a r;-l(t); b r 21(0; r~ 1 as obtained by the direct numerical division of solutions to Duffing's 
equation. The divergences represent slight mismatches of zeroes, and are, for smooth integrals of (4), 
irrelevant 
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First of all, the even and odd Fourier components of x (~) are fundamentally of 
different characters. This is so simply because at 2.+ 1, the odd harmonics of the 
fundamental, o)0/2 n+l, are all absent in the spectrum at 2., since at 2~ the 
fundamental is coo/2" =2coo/2 "+ 1. Thus at 2n+ 1, a set of new components beyond 
those of 2. are introduced, while those present at 2. are located coincidentally with 
the even harmonics at 2,~ + 1- In fact, to a first approximation, the even components 
at 2~+ 1 are just all the old components at 2,,, so the main task in determining the 
spectrum at 2. + 1 is the computation of the new components. Let us now formally 
render these verbal remarks, in order to see what we must compute. By definition, 
the kth Fourier component of x~")(t) is 

=- j ~ x  '(t)e- 2~ikt/r. (7) 
0 1 .  

For  our purposes, we manipulate (7) by splitting the integral into two halves, and 
shifting the upper half, producing, 

T n  1 

x~')= ~ d t - [ x ° ° ( t ) + ( - 1 ) k x t ' ) ( t +  T~ 1)]e -~ikt/T~-~. (8) 
o 2T.-1 

Consider first the even harmonics of x (n+ J). By (8), 

T,~ dt (.+ T.)]e_ 2~ikt/T~ x~] ~1)= ! ~ [ x  1)(t)+x("+l)(t+ . (9) 

However, after T., x ~+1~ has almost repeated itself (a is small), so that to first 
approximation, 

x ("-~ ~(t)-~ x~" + ~(t + T~,) ~- x("~(t) 

and by (9), 

a) ~ 7i" dt x(.)( t)e_ 2~ik/T. = X(k,,) (10) 

However, the fundamental of x ("+ 1) is 0o/2 "+1, so that its 2k th harmonic is at 
co = kcoo/2" which is the kth harmonic of the fundamental c00/2 '~ of x °'~. Thus, as 
verbally stated, to first approximation, the even harmonics at 2.+ 1 are just the 
spectrum at 2n. 

Accordingly, we now turn to the serious computation, that for the odd 
harmonics. By (8), 

x(.+ 1)_ ~ ~ dt 2k+ 1 - Jo ~ Ix("+ 1)(t)- x(" +l)(t + T~)]e-~i(21'+ 1)t/T,,. (1 1) 

The integrand of (11) is tp ("+ 1)(t), so that by (4), 

x(.+ 1)~ ~ dt 1)]e-~i(zk+ 1)tiT. 2k +1 = ~o ~ a(t/2T")[x(")(t)- x(")(t + T._ . (12) 

Using the inverse of (7), 

~(")(t) = E ~(;)e ~'~/~o 
k 
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we have 

x(")(t) - x(")(t + T,_ i) = 2 ~ ~2k+"("> 1 ~°2~i(2k' + 1)¢r, . (13) 
k 

Substituting (13) into (12), 

Tn At  
~(n+ 1) ~ ~ ~(n) [ ~ o. ( t /2T]e2~i[ (2k '+ i )  ~ 1/2(2k+ 1)]t/T~, 

~ 2 k + I =  k L , ; ' 2 k ' + l  ~ Tn . . . .  

which, through the substitution ~ = t/T~,, becomes 

1 
x(~+ l )~  V ,A~) ~ d~a(~/2)e2~i¢[(2k'+ 1)- 1/2(2~+ 1)] (14) 

2k+ 1 ~Z..~ ~ 2 k ' +  1 
k" 0 

Thus, the scaling law (4) allows the computation of the spectrum of x (~ + ~)(t) for all 
r >  1, given the spectrum of x(")(t). Equ/ttion (14) has two significant properties. 
First, only the odd components of x (") are required to determine the new (and odd) 
components of x ("+ ~). This is important because the "cycle" frequency, co o, is the 2" 
harmonic of co, and so even. That is, the basic "cycte"'s spectrum is decoupled from 
(14), so that the noise spectrum introduced at each n is roughly independent of the 
"coherent" spectrum of the basic "cycle". Also significant is that the recursion (14) 
is independent of n (i.e. "autonomous"). 

It should be pointed out that if (4) is asymptotically exact as n ~  0% then (14) is 
similarly exact. Formula (10) however is genuinely approximate, and we defer 
until later the correct formula, since an extra ingredient is required. 

By Fig. 1, a is marked by discontinuities (as n--, oo), roughly constant at one 
value for 0 < x < 1/4 and constant at another for 1/4 < x < 1/2, In a next approxi- 
mation, each of these quarters is decomposable into two halves, and so forth. Thus, 
a is representable as 

G(X) = Z ff iO(xi+ 1 - -  x ) O ( x - -  Xi) .  (15 )  

Let us use (15) to compute the transform integral of (14): 

i la(~/2)e2~i~[] [ l id~#(~/2)e2~i~[ 1 
I([ ]) = 0 ~ d~a({/2)e2=i¢tl- 2=i[ ] 4rci[ ] ' 

Since e 2rd[(2k' + 1 ) -  i /2 (2k+  1)1 = _ 1, 

I([ ] ) -  2~i[ ] (~(1/2-)+a(O+))+l/2jd~cr'(~/2)e2~t~o " 

By (15), 

so that 

1 i d 
1/2 j" d~a'(~/2)e 2=~[] = ~, d~ ~ d~_ 6(4/2 - xi)e 2rd{[] : E (di) e4=i~'[l" 

0 i 0 Z i 
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Accordingly, (14) becomes 

x(,+l)_~ 2 = i ~  2k'+1 2k '+l - -1 /2(2k+l )  
2k + 1 1 ~ x(n) 1 

• {(a(l/2-)+~r(0+))+ ~. dle4Zlxi[(2k'+l)-l/2(2k+l)l}. (16) 

From (16) follow various approximations by including only those discontinuities 
d i in excess of a certain amount. As a first approximation, we include only the 
largest discontinuity at x = 1/4, for which the exponential factor is 

e~i[(2k, + 1)-  1/2(2k+ 1)1 ___ i (  - 1 )  k , 

so that (16) becomes 

x(n+ 1) 2~+1--~ -- [(cr(1/2-)+cr(O+))+i(-1)k(~(1/4+)-a(i/4-))] 

x(n) 
5" 21,'+, (17) 

' U  2k'+ 1 - 1/2(2k + 1) 

[To gauge the accuracy of (17), given the n = 4 spectrum for Duffing's equation, the 
n = 5 spectrum is determined to within 5 % of the correct values for both amplitude 
and phase, with the logarithm of amplitudes determined to about 0.5%.] As 
Tn~ co (7) determines x k analytically continued in k into the lower half plane, so 
that 

P .  dk' , 
r~, j ~ 2 ~  x(k ) = x(k). 

An integral approximation to the sum of (17) immediately produces 

]x(k'~+l)l~-¼~(~{i/2-)+(z(O+))2+(~(1/4+)-(z(1/4-))e]x°°k/2[-,ulx("~k/2[. (18) 

The meaning of (18) is: smoothly interpolate the odd components of x (n) and 
rescale by #; the odd components ofx  ('+ ~) are "in the mean" the values of this new 
curve at the appropriate (odd) frequencies. Reducing by another factor of p 
determines the (n+2) spectrum and so forth ad infinitum. Accordingly, the 
fluctuation spectrum (approximately) has a simple self-similar character. 

Thus, Fig. 1 completely determines the fluctuations spectrum for Duffing's 
equation as n ~  oo. What is remarkable though, is that Fig. 1 [i.e. ~(x)l is in fact 
universal over all systems (1) possessing order 2" subharmonic production 
sequentially as 2,-+,~oo ! In the next section, we partially prove this result and 
compute o-(x) in a universal format. Anticipating this computation, let us record 
here the quantities of (17) and (18) that will follow. 

~(1/2-) = 0.3995 o'(0 +) = [~(1/2-)] 2 = 0.1596 

a(1/4+) =0.4191 a(l /4-)  = 0.1752 

#=0.1525 

- 10 loglo # = 8.17 db. 
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For log-amplitudes, (18) simply means that the new components at any level n 
define roughly the same interpolation as the previous level's new components, but 
shifted 8.2 db downwards. We now proceed with the theoretical notions and the 
computation of o-(x). 

Universality Theory 

An elementary class of systems exhibiting successive period doublings has been 
known to exist for some time [10, 11]. These are one-dimensional discrete 
systems : a one parameter family of (non-invertible) maps on an interval of the real 
line. For fixed parameter 2, a dynamics is determined by successive iteration of the 
map, 

x.+ 1 = f ( L  x,). 

f has the crucial property of mapping an interval several-to-one onto itself, 
accomplished by f ' s  attaining an extremum within the interval. For a large class of 
such f ' s  there exists a monotone sequence of parameter values 2,, such that at ~n a 
maximally stable 2"-cycle exists (or more generally, for any r, an r-2" cycle for 
appropriate 2,). 

Several years ago this author discovered that beyond this universal doubling 
property, the maps of this class possess a host of universal metric properties [12- 
15]. More precisely, with 2 the location of the extremum of f, all f ' s  with 

I f ( x ) -  f ( 2 ) l o c l x -  2tZ(z> l ) ,  x,-~ Yc 

(for a normal quadratic extremum, z--2) for the same z share identical metric 
properties. Thus, with 2n~2oo, it is a consequence of this theory that 

12 -)~ooloca-" (19) 

with ~ a function only of z. (For z=2,  5=4.6692016 .... ) That is, as n-.oo, 2, 
converges to 200 at a universal geometric rate independent of the global properties 
off .  

By way of review, recall that a map possesses an n-cycle if there are n points Xo, 
Xl, ---, x,_ 1 such that 

f f f f f f 
X o - - - - - ~  X l  ) . . .  - - - - +  X r - - - - >  X r +  l ) . . ,  ~. X n _  l -----> X o  . 

Denoting the n TM iterate of f by f "  : 

f ' ( x ) :  f ( f " -  l(x)); fO(x)  = x ,  

where the n elements of the cycle satisfy 

f"(xr)  = xr r = 0 . . . . .  n -  1 

i.e. each element is a fixed point of the n th iterate off. Accordingly, the stability of a 
cycle is the stability of each element of the cycle viewed as a fixed point off" .  If x* 
is a fixed point of f, stability is determined by linear approximation about x*: 
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writing x, = x* + ~,, 

~.+1 ~ f'(x*)<, 

x* is stable if x,-+x* for x 0 sufficiently close to x*. The criterion for stability is 
evidently 

tf'(x*)l < 1 

while f ' (x*) = 0 is the condition for greatest stability. For an n-cycle the condition 
for stability is then 

If"'(x~)l < t for each r. 

Indeed, by the chain rule, f" '  is independent of r with 

f"'(x~) = f ' (xo) f ' (x  1)"" f ' (x ,  _ 1). 

Accordingly, a most stable n-cycle is one containing the point 2, and the parameter 
value 2, determined as a zero of 

F,(2,) = f2-(,~,, 2 ) -  2. (21) 

Evidently 2,, r=0 ,1  ... . .  n - 1  are also zeroes of (20) together with many other 
values. Thus, ,~,, is defined recursively: 20 is in general unique; 21 is a different zero 
of F 1 closest to 20, etc. with 2. monotone in n. As n becomes large, F,  is 
increasingly time-consuming to compute while its zeroes become arbitrarily close. 
For large n, it is essentially impossible to locate 2, without knowledge of (19), 
which is used as 

2.+ 2 -  2.+1~5-1(2.+1-  )~.) 

to predict the next value given two previous values. (Indeed, a host of lengthy 
numerical studies have, in the past, observed the pattern 1, 2, aperiodic simply 
because 2~-21,-~21-2o,  while equal-parameter increment searches were 
performed.) 

The theory actually determines (19) (and 6) secondarily, with a scaling 
phenomenon on the elements of a cycle primary. At 2, a maximally stable 2" cycle 
exists. As 2 is increased through some interval, a stable 2<cycle persists until at A, 
it loses stability "bifurcating" into a 2 "+1 cycle. For 2 slightly above A,, 2" 
iterations map x 0 into a point arbitrarily near to x o for 2 arbitrarily near to A,. 
Indeed, throughout the interval of 2 up to A,+ 1, fZ(xr) is that element of the 2 "+ 1 
cycle nearest to but distinct from x~, and 

ip(n + i) -- '2~ = x r -  ] ( x ~ ) ( A , < 2 < A , + j  (22) 

is a measure of deviation from 2"-cycle behavior throughout the cycle. [The reader 
will of course realize that (22) is simply the discrete, one-dimensional version of 
(2).] The basic restflt of the theory is that 

- f2"(2, +1, 2)~ - ct- 1(2 _/2--~(2,, 2)) (23) 



Transition to Aperiodic Behavior 73 

[compare with Eq. (4)] where c~ enjoys a universality identical to a's, with value 
(for z =  2) 

a = 2.502907875 .... 

Moreover, in units of the distance between 2 and f 2"-*(.~n, X) the locations of the 
elements of the 2"-cycle about 2 are universally determined through a function 
go(X) where theory determines that 

lira ( - a)n[f2~(2n, 2 + 3/( - cO n) - 2] = Vgo(~/v) (24) 
n ~ o o  

with the magnification v the only f-dependent ingredient. [Upon remagnification, 
so that 2=f2"- l (2n ,2) -~l  (i.e. setting the scale as above), a universal limit is 
obtained.] The elements of the 2" cycle have the property of being fixed points of 
go at its extrema, while go itself can be universally computed by the theory. Related 
to go is a sequence of universal  functions g~ where 

lim ( -  a) '[fz"(2, + r, 2 + 4/( - a)") - 23 = vgr(~/v ) (25) 
t l ~ c O  

with the same v as in (24). [The universal scale is simply 9i(0) = 1.] These functions 
serve as a basis as which the operator of functional composition and rescaling 
becomes the shift: 

g~_ l (x) = - a g r ( g r ( -  x /a )  ) =- O[g~] . (26) 

Since gr is universal, and since for an f symmetric about 2, the limit in (25) is a 
function symmetric in 3, each g, is a symmetric function, so that (26) can be written 
as 

g~- 1 (x) = - ag~(g,(x/a)) .  (26') 

In particular 

g(x)- 

is the fixed-point of 0 : 

g(x)  = -- ag(g(x(a)))  . (27) 

(27) admits of a unique solution for a and g(x)  for g(x)  with z th order extremum at 0, 
symmetric, and of sufficient smoothness, g~ for large r is obtained by linearizing O 
about g and studying the spectrum. Indeed the linearized operator has a unique 
eigenvalue in excess of one, this eigenvalue ~ of (19). (References [13, 14] 
maintained the uniqueness of 6 as a necessary conjecture for the validity of the 
entirety of this theory. Recently this conjecture has been rigorously proven 
[16, 17], although only for z sufficiently close to one.) 

The verbal content of (23) is that points near 2 scale in successive bifurcations 
by - a. Since these points are imaged by f to a right-most cluster of points (taking 
the extremum to be a maximum), and f has a z th order extremum, it follows that 
points about f(2)  must scale by a ~, i.e. 

f (2 .  + ~, 2) - fz-(~.n + 1, f (2 ,  +a, 2)) ~ a -  ~(f (2 , ,  2) - f z . -  ~(2,, f(2,, 2))). (28) 
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The next several images of this duster of points are through a slope of an 
infinitesimal linear stretch of f ,  and so also scale with cal. Similarly, several pre 

images of the cluster about 2 scale with -c~ (several here means r, with i-logr ~ 1 
n 

for a 2"-cycle). Our immediately task is to determine this scale factor along the 
entirety of the cycle. Towards this end write 

@~+i)_ (~+l)(.). (29) r = err tPr , 

setting X o - 2 .  By (23) ~ , / =  _ a - i ,  cr!t~)=c~- L Also, a(l")=a(z") . . . .  and a(~')=a~)l 
=a~2 = ..., as n~oo.  By the definitions oftp in Eq. (22) 

- - " / ' 2 n ( 2  , X I __  ( 2 " [ ) ~  f Z n ( 2  X I'~ 
W{U+ 1 ) - -  , . + i  . . , . + 1 , -  , . + .  . ,  

= fz"(2.  + l, x~ ) -  f2.+ '(2, + l, x,) 

= f2"(2. + 1, x,) - x. 

or ,  

while 

p(,+ 2) . . . .  (,+ 1) (30) 2 n + l + r - -  tVr 

Thus, 

a(.+ 1) rr(.+ i) (31) 
2 " + r  : U - - r  

and in particular, 

a~# " =  c~- 1. (32) 

It is clear that deviations from -c~-1  e-z can occur only tbr r such that 

lim r/2" 4 = O. 
n ~ o 9  

Accordingly, choose r as 

rm =--2"-" (33) 

so that 

I p ~  ----= f 2 - -  m(2n, )~) __ f2"-1(2n ,  f 2 " -  m(J~n' 2)) 

=f2--m(2,, ~ 2--,- 2--, x ) -  f (2,, f (2., x)). (34) 

By (25), f2  . . . .  (2., x ) ~  ( _  ~)._v 1 91(0)+2  so that, again by (25), 

~ 2,,-~ ~ v [ ( - c & - "  v ] 
f 2 . -  ( Z , , f  ( 2 . , x ) ) ~ ( _ c O , _ , , g  m v ( -cO "-~ gl(O) + 2  

v 

- (_  ~).-m oAcO- ~al(0)) + ~.  
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Similarly, 

V 
fz"-'~(2,,2) ( _  c0,_,,-gm(0) + 2 

so that 

~ ( _  [om(O)--gm(~t-mgl(O))]. (35) 

At n + 1, to maintain the same number  of i terations into the cycle, r,~ must  be 
unchanged, so that  by (33) m--+m+ t, and (35) becomes 

~p(n + i) v 
r a + l  ( _  a ) . -  m [gin + i(0) - am + i( ~-  mg 1(0))] • (36) 

Finally, by (29) 

~(.+ i )~  am+ l(0) - g~+ i (a -  mgi(0)) 
,-m g.,(O)_ gm(ai -.,gi(O) ) 

which as n ~  ~ is exact. Defining x,~ =-r.,/2 " + l =  2 -m- i, a(xm)= lira a (n) 
n --~ oo rm 

a(2- .~-  ~)= gin+ i(O) - a m +  ~(~- ~a~(0)) (37) 
gin(0)-g~(a i -mgi(0)) 

(al. ~) is defined on integers r;  we have rescaled r by 2" so that  an entire cycle, for any 
n occupies x e  [0, t ] .  By (31) a(x) obeys (5) for, as n ~  0% all x e  [0, 1].) Since the g~ 
are all universal, it now follows that  a(2 -m) is universal. Fo r  m = 0 ,  (37) reads 

a(1/2) = g~(0)-  gi(g~(0)) 
go(0)- go(~g~(0))" 

But, by (24), go(0)= 0, while by (26), 

0 = g o ( 0 ) =  -- agi(gl(0)) gi(gl(O)) = 0  

go (~g t (0)) = - ~g i (gi (gl (0))) = -- ~g 1 (0) 

so that  

a(1/2) = c~- 1 

which is obviously correct  since o-(1/2)= - a ( 0 - ) = -  (-c~ i). Also for m ~  oe 

g(O)--g(a-mg~(O)) 
a(O +) = lim 

. . . .  g(O)--g(ot~-" g~(O)) 

But for x small, g(x)=g(O)+ 1/2g"(O)x2+ . . . ,  so that  a(0+)=o~ -2. However,  m =  1 
is non-trivial and represents a drastic change in scaling half-way a round  the cycle : 

o-(1/4) = g2(0) -  gz(g'(O)/a) 
gl(O)_gl(gi(O) ) " 
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This requires a computation using a numerically computed g2, with result 

a(1/4) = 0.1752 . . . .  

We now compute w (") which through interchanges of numbers of iterations 
yields 

¥,(') ,.~r{2 2 v 0 v gm(~l_mgl(O))) ...... J~ ,, + ~ g m (  ) ) - f ( 2 , , 2 +  (_~,_m 

,v, 2 
1 " ,~ ~ 2 2 1 - m  

~ s f  ( ,, x ) i ~  [gin(0) - gm(c~ gl(0))] 

so that 

2 0 2 - m (,+1) g,*+ l( )-gm+ l( a gl(0)) 
O'rm + £ ~ 2 2 i - r a  g~(O)-gm(= g~(0)) 

which produces for n ~  oo 

~ ( 2 -  m - ~ + 0) = g~  +~ (0) - -  g~  +~ (~ - ~g~ (0)) 
2 2 1-,,, (38) gm(O)--gm(O~ gl(0)) 

Special cases of (38) are 

a(1/2 + 0) = - c~- 2 

and a(1/4+0) =0.4191 .. . .  
Thus, at 1/4 an abrupt change from small to large scaling occurs : in essentially 

one iteration the string of images of the right most cluster suddenly goes over into 
the string of pre-images leading to 2. 

So far, the largest discontinuity of a(x) has been computed, as well as 
successively smaller discontinuities at x = 2  -~-1.  It is now straight forward to 
compute the discontinuities at any rational x given its binary representation. All 
that is necessary is to write 

( n ) _  n-rex n - m 2  
r { m  } - -  2 + 2 + ... 

and observe that 

v . ( n )  / ' 2  n - rr t  1 ~ ( ' 2 n  -- m 2 
= J  o F  o (~) ~{m} . . .  

where o denotes functional compositions. Repeated use of (25) then produces 

a(2-m~- t + 2-m~- 1 + ...) 

= [ "  " ' am2  + 1( Nml - m 2 g m l +  1(0))  "" " ) ]  - -  [ "  " 'am2+ 1( ~m'  - m Z g m l +  l ( o ~ - m ' g  1(0))t  "" " ) ]  

["'g2(a~l-m2gl(O))~'")]-['"g2(~1-m2gl(a~-m*g(O)))l'")] (39) 

for the value of a to the left of its discontinuity at x, while cr to the right of the 
discontinuity is simply (39) with each bracketed term squared. (These "composite" 
discontinuities rapidly decrease in amplitude.) Accordingly, a(x) is discontinuous 
on the rationals with successively milder strength in successive half fractions of 
intervals, but universal. Figure 2 depicts the universally computed a(x) which upon 
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comparison with Fig. 1 is evidently the n--* 0o limit of the differential equation's a. 
Indeed the quoted values for/~, etc. are precisely the values of the universal 
computed on the previous few pages. At this point it is computer-experimentally 
plausible that a(x) is universal over systems (1) -Duffings's  equation was drawn at 
random as an example. Indeed we are asserting that a arises in Lorenz' system, in a 
five mode truncation of Navier-Stokes on the torus, the "three wave" prob- 
lem and probably, based on the spectral test for the B6nard flow experiment, 
in the Navier-Stokes field equations with whatever corrections to these equations 
that are required to determine physical Bhnard flow! 

It now remains to establish why the one-dimensional universality theory 
presented in this section should apply to these higher dimensional flows. 

7 

6 

Fig. 2. ~- ~ as universally computed 

The Extension of Universality to High Dimensional Flows 

Our first task is to extend the previous section to N dimensional maps [18]. Next 
the connection between these maps and the flow of a system of differential 
equations is to be drawn. Finally several details will be fixed. 

The first task has been performed by Collet et al. [9]. The basic result is that if 
a one parameter family of maps (after a coordinate transformation if necessary) 
passes near to the map 

N 
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then it will go through 2 ~ bifurcations ad infinitum, and exhibit essentially one 
dimensional behavior. That is, about a given element of a cycle, the iterated map 
collapses about a definite (local) ray in the N-dimensional space, and along this 
ray the mapping is one-dimensional and obeys the universality theory of the 
previous section. In contrast to the one-dimensional case, it is difficult in N 
dimensions to know ifa  map will be of this nature by a casual perusal of its explicit 
form. Numerically, however~ a large variety of interesting systems exhibit this 
behavior. 

We next turn to the connection between maps and flows. The basic idea here is 
the "Poincar6 map". The solution to (1) is a trajectory in N dimensions which, for 
motions of interest here, lies in a compact region performing a "noisy" periodic 
motion. A map is defined by slicing transversally across the trajectory with an 
N -  1 dimensional plane: each time the orbit crosses this plane in the same sense 
(e.g. from "below") mark its N -  1 coordinates. The image of one such point in the 
plane is by definition the location of its next crossing. This map is called the 
Poincar6 map and by elementary properties of (1) is invertible and differentiable. 
Should the orbit close on itself after one intersection with the plane, then the 
map has a fixed point ; should it close after n crossings (or "basic cycles") then the 
map has an n-cycle. Finally, should it never close, then the map has no periodic 
cycle. Also, should an n-cycle of the map be stable, then by uniqueness and 
smoothness of the solution to (1), the orbit will converge to a definite stable orbit 
with identical convergence around the entire orbit. Accordingly all stability and 
periodicity aspects of the trajectory can be deduced from the map. It now follows 
by the previous paragraph that the universality theory can apply to (1). To be 
precise, for an appropriate 2, the trajectory returns every 2 p times successively 
closer to an original point along a certain ray in the N -  1 dimensional plane. At 
2,, after 2 n- 1 crossings the trajectory has returned to the nearest adjacent point to 
its original crossings, and the points at 2", 2 "  1, 2n-2 . . . . .  2 " - "m~  n all lie along 
this special ray at spacings determined by g0- By linearity, the same is true for any 
one-dimensional projection of the N - 1  dimensional plane. Accordingly, we 
immediately have (19) satisfied for the parameter, and in each projection, a scaling 
of the form (23) from one bifurcation to the next. Now, consider two adjacent 
points y, z in the N - 1  plane such that their spacing scales by %. After one 
iteration of the map, they are adjacent points y', z' also scaling by % [i.e. they are 
not located at a large discontinuity of a(x)]. Issuing out of y is a trajectory "cycle" 
linking it to y'; adjacent to this "cycle" is the trajectory linking z to z'. It now 
follows by the differential flow that these two trajectories have a spacing that also 
scales with a 0 along its entire length from y to y'. Now the z adjacent to y is 
f2--  ~(y). But 2"- 1 crossings later require a time 2"- 1 To __= T,_ i where T O is the time 
of a "basic cycle". Accordingly, @")(t) of Eq. (2) is precisely the spacing of the two 
adjacent trajectories linking y, y' and z, z'. From (29) we now immediately 
conclude (4) where a(x) is the universal scaling function of the previous section. 
Accordingly, if (1) has successive half-subharmonic behavior, then the spectrum of 
each projection xi(t ) is determined by (16) with the universal function a. [The map 
restricted to the special ray must generically be of quadratic sort, since it is 
differentiable, and z=t=2 implies that f " (2 )=0  which is non-generic.] These 
remarks, then, establish the general applicability of the one-dimensional theory. 
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Let us comment on some mathematical features of o-. Recall that 

V/'+ 1)(0 
v~(,)(t) ~ o ( t / r o  + 1).  

Denoting x( ')(0)-2, ,  x(")(mTo)= Pro(2) where P is the Poincar6 map at 2,, so that 

V/"÷ 1)(m T0)= P ' ( x ,  + 1) -  pm op2-(2" + 1). 

(P is always understood to be the map at the 2 value corresponding to the 
subscript of 2 j  Thus, 

Pro(2, + 1)-- Pm°P2~(2,+ i) 
(r(m T o / T  n + 1) = ~7(m/2n +1 ) -~' pm(~n)  __ pmo p2,-  ~(2,) 

That is, a is determined at the n+  1 s t  level of bifurcation at the rationals whose 
denominator is 2 "+1 purely by the Poincar~ map, and as n-*oo at the rationals 
generally purely by the Poincar6 map with (r determined at all reals by its 
continuous extension. Moreover, at m = 2~-r+ 2" - s+  ... for a finite such sum and 
r, s.. .  ~ n, as n-* ooa converges to the universality values (and discontinuities) of 

1 

(39). Also, for m = 2 " - ~ + 2 " - s +  ... +p  for p=1 ,2 ,  ... while - l n p ~ l ,  a is inde- 
n 

pendent of p. Thus as n--,oo the continuous extension of a has the property of 
d(x) = 0 almost everywhere with discontinuities at the rationals such that if c~ has a 
discontinuity d at a rational r, then for rationals arbitrarily close to r, the 
associated discontinuities are arbitrarily smaller than d. 

It is important to point out that not all scaling laws deduced from the 
associated map can extend to the trajectories. For example it is a direct 
consequence of the meaning of o~ that 

lim PZm(2"+ t) - PZm(2n) 1 = c~- for all m. 
.-+~ pm(2 , ) -p"(2 ,_ i )  

However, the analogous trajectory formula 

x("+l)(2t)-x(")(2t) *c~ -1 for all t 
x(')(O- x('- 1)(0 

is necessarily false. Rather, it is correct for t m = m T  o, but widely oscillates over the 
duration of a basic cycle. Only map scaling-laws pertaining to the same time can be 
lifted by the flow to become trajectory laws. For  example, let us formally deduce 
this property for a. By (1), 

k("+ 1)(t) = f ( x  ("+ t)(t), 2,+ 1) 

and 

k ("+ i)(t+ T , )= f (x  ('+ 1)(t+ T,), 2,+ i), 

so that 

(p('+ 1)~-Df(x ('+ 1)(t), 2,+ i).@ "+ l )_M(,+  i)(t). ~p(,+ 1). (40) 
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By definition, 

F('+~)=a~(t)~¢ ") (% is a scalar). (41) 

Differentiating (41) and utilizing (40) and the analogous formula for n + 1 ~n ,  

M(,  + 1 ). ~p(, ÷- 1 ) = ~ M  (, + 1). tp(~) = &n~(,) + a~(~) = &,tp(~) + ~,M(,) .  @,3 

or~ 

d. ~p(~) ~ o_,,(M(~ + 1) _ M(,)). ~(,). (42) 

However, A n + 1 - L, ~ 5-"  and also x °' + 1 ) ( t )  - x(n)(t) ~ ~ -" ,  SO that 

6,tp (') ~ (3 - ~a,N(t).  ~p(") 

for an appropriate N(t).  Accordingly, as n-÷oo, d-,-~0 for ~p(')(t)=t=O. Thus, cr is 
preserved at the value set by the map, readjusting to its new values at those points 
during the basic cycle at which ~p(') vanishes. (These are, of course, the discon- 
tinuities of o- occurring precisely where the ratio cr is undefined.) Had @~) and 
~p(~+ 1) been evaluated at different times in particular at a ratio of two - then the 
right hand side of (42) would be oscillating at a scale of x(t) and the corresponding 
ratio could not remain constant. It is worthy to mention at this point that the 
traiectory constancy of ~ implies that the basic spectral recursion (16) holds for all 
spectral components, and not just below co o - the purely subharmonic components 
would still obey (16) had a merely averaged to the map value over each basic cycle, 
while the harmonics of these components at and above the basic frequency would 
fail to do so. Thus, the way  in which the basic cycle i tself  metamorphoses  as n-~ o9 is 
also determined by the theory. 

We now turn to the recursion for the even spectral components. By (9) 

~,(,+1) ~(~)_ _ _ [ X ( , +  l)(t) + x(,+ l)(t + T)_2X(,) ( t )]e--  2~ikt/T~ 
- o 2 T .  

or,  

x(n+ 1) .,.(n)__ ~ dt (n+ 1 n 2~zikt/Tn 
- o y Ix  )(t)]e 

- i ~ T [ x ( " + ~ ) ( t ) - x ( ' + l ) ( t + T , ) ] e  -2~kt/T~. (43) 

The second term of (43) is, of course, determined through o-, so that the new 
ingredient necessary to obtain a recursion is the function 

x x(')(t) 
x(,)(t) _ x( ~_ 1)(t ) ~- O(t/Tn + 1)" (44) 

Formula (44) anticipates that the ratio of the left hand side has a dependence 
purely through the scale for t (as n-~ oo) and, as the reader has no doubt guessed, 
has a universal limit. Now, for that t one cycle, To, after x(")=2, ,  (19) implies that 
0 = 5 1 ; also ~ will persist at 5-1 for some range of t above this value, lending 
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evidence to the correctness of (44). To go further, consider once more 

t,.=2"-~T o 

so that 

o(2-1-,.)~ P (x.+j-p2°-"(~.) 
2 n - r  A 2 n - r  ~ • e (x.)-e (x~_1) 

Again, employ the universality formulae (25) to obtain 

(x. +1 - x . )  + ( _  cO.-~ (G +1 (0) - g,.(O)) 
0(2-* -r) ~ (45) 

v 
( ~ -  ~ -  1)+ (_ ~)o-~ (g~(0)- g~_ 1(0)) 

Now the value 2 of the "extremal" point of the map is determined by some 
condition analogous to 

DJ(2,, 2~) = 0 

in the 1-dimensional case. It thus follows from (19) that 

Xn+ 1 - - 2 n ~ 5  -n 

for some t/. Thus, (45) becomes 

t//v (--~)~ + ( -  c0~(G+ ~(0)- G(0)) 

0(2- i -9  ---- 
(~tl/V q- ( - -  ~)r(gr(0)  - -  gr- 1(0)) 

Since ~=2.5 . . . .  , 6=4 .6  . . . .  , :t/6 < 1 and so, as n~oo,  

0(2- * ' " )=  g~+ 1(0)- G(O) (46) 
g~(0)-~_~(0)" 

By an analysis identical to that that led to (39), it is clear that 0 is again universally 
determined at the rationals. However, should we attempt the deduction that led to 
the discontinuities of a [e.g. Eq. (38) derivation], the c5 -~ term remains in 
numerator and denominator, while instead of a-",  we now have a 2,: 

P.P (x~+I)-P.P (x . )~P 2~+1+ ( _ ~ - ) ~ g . + l ( )  

t 
2 

~'a-o +½P"(~) ~ ( d + ~ ( 0 ) -  d(0)). 

Since ~2> h, we now have 

0(2 1 - r + 0 ) = ~ - I .  
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Thus, the discontinuities at the rationals are now determined purely by Q's 
deviations from 6-1, which are vanishing as r ~  o% growing as x departs from 0. 
[As r ~  o% (46) is simply the convergence rate of gr(0) which is 6-1.] On the other 
hand, for several iterations after this first quadratic imagining, only a slope is 
involved, so that Q remains at 6 - 1  Similarly several iterates prior to 2 -1-~, 0 
remains at 0 ( 2 - 1 - r  0). Next, when we consider the second generation rationals 
2 - 1 - r + 2-1 - ~, so that 

p p ( xn )~p  ( v ) ( : ) . - ~ g s ( ( -  = x . +  _ cQ~- ~g~(O)) 

then for s>~n/2 the g terms again dominate as n--.oo, so that 

e(2-"- + 2-  1) = a +  1( %+ 1(o))- 
r - - s  r - - s  0 gs(  g , - t ( ) )  

and the discontinuity is now correctly given by the same formula with each term 
replaced by its square. Thus, at all rationals arbitrarily close to those of large 
discontinuity, small discontinuities reign. However, 0 for these large values of s is 
by the formula 

g~(x) ~ g(x) - ~5 - ~h(x) 

(h has quadratic extremum at x = 0  and is universal) also just b-~. Accordingly, 
0'(x) = 0  almost everywhere, and up to x = 1/4 is "fairly" close to 6-  ~' 0 can also be 
shown to have this "constancy" to 6-1 for 3/4 < x < 1. Figure 3 depicts the 0 of (44) 
for Duffings equations, while Fig. 4 depicts 0 as determined by the quadratic 
recursion as the interval 

X n + l = a - - x  2 

for a 256-cycle. (In these figures, x = 0  has been displaced to x =  1/4 in order to 
about the "well-behaved" quarters of 0 to tbrm its first half-cycle.) As the cycle 
length is increased, convergence is of an oscillating sort as higher r values with 
their discontinuities are exposed. Nevertheless, since 0 is used only as a functional 
(in an integral) with the large excursions occurring where the numerator and 
denominator are crossing zero, it is clear that for half the cycle, 0 = 6 - ~ is a very 
good approximation. Accordingly, the phase of  x(")(O in (43) must be set to be 3/4 
through the cycle in order to have 0 < t < T, as the "smooth" half cycle of  Q. 

We now return to (43) and substitute the fourier expansions of the x(t)'s: 

1)_ X(k,) ~ X~ ) ~" dt t 2T  2ni(k'-k,t/T 
= ~ o T O (  / ~)e " 

- -  V' x("- 1) Tie dt ,~(t/2T~e2~i(2k,_ k),/:r. 
k" 0 ~n 

r .  dt 2,~(2k'  + i - k)t/T., - ~ Xt;)k'+ 1 ~ - -  a(t/2T.)e 
• o T .  

= V (x (") - x("- 1)~ T~ dt nlt/2T~e2~i(2k,-k)t/r. 
Z-~ ", 2k"  " k '  ] J T ~ \  / n] 
k' 0 *n 
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Fig. 3. ~- 1 of (44) for n = 4  by numerical division of solutions to Duffing's equation 
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Fig. 4. 0 1 for n = 7 by numerical division of iterates of a -  x 2 
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o r ,  

1 

~'2k ~'(" + i )  _ XCk.) = y '  [X~)k, _ Xk ' I) 3 ~ d~Q(#/2)e2~,~(2k ' -  k) 
0 

1 

+ ~V x (.)2k,+1 ~ d~[o(#/2) - a(~/2)]e  >~i~(2k'+ 1 -k) . (47) 
k' 0 

It is immediately clear from (47) that the even spectrum is now compatible, and 
again through an autonomous universal recursion. However, the recurrence is 
now second order with superficially two levels of spectrum required to compute 
the next. Observe that the index in the first term (containing the second order term) 
is even in k', while odd in the second. With the - 1 / 4  phasing, by the above 
discussion, O can be approxirnated by 6-1 in the first integral, so that 

1 

~. d# o( # /2  )e2,,i~( 2k" - k) ~ c~- 1 ~ Zk'. k" (48) 
0 

Thus to good approximation [since (47) is small to begin with] the recursion is 
second-order only for k even. In particular, consider the "new" components, x (") 2 k +  I~ 

at the nth level : at the n + 1st level, the first term of (47) does not contribute, so that 
at the n + 1st level its value is determined by a first order recurrence: 

1 

x(,+ 1) -/") ~ V' x (.) ~. d ~ [ Q ( ~ / 2 ) -  a(~/2)]e  ~'~i(k'- k). (49) 2 ( 2 k + l ) - - ~ 2 k + l  ~ Z-a 2 k ' + l  
k'  0 

It is easy to obtain a good approximation to (49), recalling, though, that the - 1/4 
phasing determines a to be - 0{- 1 on the first half of the integration, and + 0{-- 2 on 
the second : 

1 1/2 

d~[o(~/2)- a(~ /2 ) ]e  4~i~(k'-k) ~ -6 -16~,  k, + 0{- i ~ d#e4~i~(k'-k) 
0 0 

i / 2  
_ 0{- 2 5 d @  '*r~i¢(k'- k) 

0 

=(~-1 1 . - 1  +~(~ -0{-2))ak,  k. 

Accordingly, we have the good approximation 

x(.+,) ~, i _0{ 2))x~+ 1 2 ( 2 k +  1).~_ ~ ,  "~- 6 + 1 ( 0 { - 1  - 

= 1"33x~k)+ 1- (50) 

Thus, after a given component appears at some level, it maintains its phase and 
grows in amplitude by a universal  factor of 

# '=1.33 

or 101Oglo#'~ 1.24db. 
Next consider even k, to determine the future growth of this component:  

x (n+  1) ~ -  1 [-~.(n) __ v ( n -  
L ~ 2 k  ~v k 

1 

+ ~2k'+V -A") 1 j" d#[6. - 1 _ a(#/2)]e2,~i¢(2k'+ 1 - 2k) (51) 
k" 0 
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But, 

1 1 
d ~ [ a  - 1 _ 6(~/2)]eZ,~ig(2k'  + ~. - 2k) = _ 5 d{cr({/2)e2,~<(2k" + , - 2k) 

0 0 
1/2 1 

~-Cg - 1  ~ d~e2r~i{(2k" + l -  2k)--O~ - 2 ~ d ~ e  2r~i~(2k' + l -  2k) 

0 1/2 

1/2 
= ( c C 1 + c _ 2 )  5 d { e 2 ~ i ~ ( 2 ~ , + l _ 2 k ) _ - - ( c C l + e  -2) 1 

o ~i 2k' + 1 - 2k 

so that 

X~k+ 1)_ .~(,)~,~_ 1 r , . ( , ) , . ( , _  1)_1_ .1 ( .  1 + c .  2)y. _., 1 ,.(,) (52) 
~2k : ~ t-~2k ~k a 7tZ k' 2/~ + 1 -- 2k ~2k' + t" 

TO estimate the second term, use the principal value approximation to obtain 

2t  .,-(n) ~ _ l ( n t -  1 -}- 1 ( ~  - 1 -{- 0{-- ,~,,2k,, = 2 ~,~ -t- 0~" 2 ) X ~ ) +  1 . 

(X!,~)k ,, is the interpolation of the o d d  nth order components, and so of magnitude of 
the closest of these.) But, by (18), 

x(n)2k+ 1 ~ 0 " 1 5 X ~  ) 

when k is odd, and smaller otherwise. Altogether, then, the second term of (52) is 
< n ha,,(.) and so roughly negligible compared to the first term. Thus, ~ ' ~ 2 k ,  

x(,+ *~ ,.~.~ ~ , s -  lr, ,( ,~-x~"- ~)] (53) 4k - -  ~ 2 k  ~ ~ k ~ 2 k  

Combined with (50) we now see that at the next levels the component  under 
question grows first another ~ 5 %, then ~ 1% for a total further increase of several 
tenths of a decibel. 

Altogether, we now summarize the construction of the spectrum. Start at the 
nth level, and smoothly interpolate the o d d  components. Shifted down by 8.2 db, 
this curve is the local average of the locations of the o d d  components of the n + 1st 
level Next, shift up each of the odd components of the nth level by 1.4 db to this 
new (and final) location. Finally, all the even components of the nth level remain in 
place. This (very good) approximation requires o n l y  the components at the nth 
level and now recursively determines the spectrum for n ~  oo. Whatever approxi- 
mation is chosen, it is clear that the spectrum at the transition point is determined 
and our task is completed. 

Conclusions 

Our result is that given a system known to become erratic through a cascade of 
subharmonic bifurcations, after the spectrum is determined through some appro- 
priate analysis through the first several bifurcations, the behavior down through 
the transition is determined. At the transition itself, the spectrum of any mode is 
comprised of 2 n- 1 components at the odd multiples of the 2 n subharmonic of the 
"original" frequency each of magnitude roughly 8.2 n db below the basic com- 
ponent. The phases of these components are determined ultimately by the phases 
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of  the  first b i f u r c a t i o n s ' c o m p o n e n t s ,  a l t h o u g h  the  bas ic  f o r m u l a  (14) e n d o w s  these  
h igh  level  c o m p o n e n t s  w i th  r ap id  phase  va r i a t ions ,  so tha t  they  h a v e  a sor t  o f  

r a n d o m  charac te r .  T h e  to ta l  p o w e r  in this s p e c t r u m  ( taken  as the  squares  of  the  
spec t ra l  ampl i tudes )  is easi ly e s t i m a t e d  at  ~ 2 . 5  % of  the p o w e r  in the  bas ic  
f requency ,  to give a r o u g h  idea o f  the  t r an s i t i on  noise.  

Acknowledgements. The author has greatly profited from discussions with Jean-Pierre Eckmann, and 
accordingly thanks D. Bessis and NATO under whose auspices, at Carg6se, this contact occurred. A 
seminal discussion with my colleague Harvey Rose issued directly into the research of this paper. 
Finally, I am grateful to P. Carruthers, E. Lieb, and A. Jaffe for their enthusiastic reception of this work 
and facilitation of its rapid publication. 

References 

1. Franceschini, V., Tebaldi, C. : Sequences of infinite bifurcation and turbulence in five-modes 
truncation of the Navier-Stokes equations. Istituto Matematico, Univ. di Modena preprint 

2. Franceschini, V.: A Feigenbaum sequence of bifurcations in the Lorenz model, Istituto Matematico, 
Univ. di Modena preprint, to be published in J. Stat. Phys. 

3. Computations by the author on Duffing's equation, following Ueda, Y. : J. Stat. Phys. 20 (2), 181 
(1979) 

4. Holmes, P. : A nonlinear oscillator with a strange attractor. Department of Theoretical and 
Applied Mechanics, Cornell University (preprint) 

5. Huberman, B., Crutchfield, J.: Chaotic states of anharmonic systems in periodic fields. Xerox 
Corp., Palo Alto Research Center (preprint) 

6. Marzec, CJ., Spiegel, E.A. : A strange attractor. Astronomy Department, Columbia University 
(preprint) 

7. Libchaber, A., Maurer, J. : Une exp6rience de Rayleigh-B6nard de g6om6trie r6duite, l~cole 
Normale Sup6rieure (preprint) 

8. Feigenbaum, M.J. : Phys. Lett. 74A, 375 (1979) 
9. Cotlet, P., Eckmann, J.-P., Koch, H. : Period doubling bifurcations for families of maps on C". 

Department of Physics, Harvard University (preprint) 
10. Metropolis, N., Stein, M.L., Stein, P.R. : Combinatorial Theory 15 (1), 25 (1973) 
11. May, R., Oster, G. : Amer. Naturalist 110 (974), 573 (1976). This paper independently of myself, 

discovers the first clue of a universal metric property 
12. Feigenbaum, M.J. : Annual Report 1975-76, LA-6816-PR, Los Alamos 
13. Feigenbaum, MJ. : J. Stat. Phys. 19 (1), 25 (1978) 
14. Feigenbaum, MJ. : J. Stat. Phys. 21 (6) (1979) 
15. Feigenbaum, M.J.: Lecture Notes in Physics 93, 163 (1979) 
16. Collet, P., Eckmann, J.-P., Lanford III, O. : Universal properties of maps on an interval (in 

preparation) 
17. Collet, P., Eckmann, J.-P. : Bifurcations et groupe de renormalisation. IHES/P/78/250 (preprint) 
18. Derrida, B., Gervois, A., Pomeau, Y. : J. Phys. A 12, 269 (1979). This paper contains the first 

numerical observation of ~ in a 2-dimensional map 

Communicated by A. Jaffe 

Received April 7, 1980; in revised form May 12, 1980 


