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Abstract The Koopman operator is a linear but infinite-dimensional operator that
governs the evolution of scalar observables defined on the state space of an autonomous
dynamical system and is a powerful tool for the analysis and decomposition of non-
linear dynamical systems. In this manuscript, we present a data-driven method for
approximating the leading eigenvalues, eigenfunctions, and modes of the Koopman
operator. The method requires a data set of snapshot pairs and a dictionary of scalar
observables, but does not require explicit governing equations or interaction with a
“black box” integrator. We will show that this approach is, in effect, an extension
of dynamic mode decomposition (DMD), which has been used to approximate the
Koopman eigenvalues and modes. Furthermore, if the data provided to the method
are generated by a Markov process instead of a deterministic dynamical system, the
algorithm approximates the eigenfunctions of the Kolmogorov backward equation,
which could be considered as the “stochastic Koopman operator” (Mezic in Nonlinear

Communicated by Oliver Junge.

B Matthew O. Williams
mow2@princeton.edu

Ioannis G. Kevrekidis
krevrekidis@princeton.edu

Clarence W. Rowley
cwrowley@princeton.edu

1 Program in Applied and Computational Mathematics (PACM), Princeton University, Princeton,
NJ 08544, USA

2 Chemical and Biological Engineering Department & PACM, Princeton University, Princeton,
NJ 08544, USA

3 Mechanical and Aerospace Engineering Department, Princeton University, Princeton, NJ 08544,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-015-9258-5&domain=pdf
http://orcid.org/0000-0002-9896-2958
http://orcid.org/0000-0002-9099-5739


1308 J Nonlinear Sci (2015) 25:1307–1346

Dynamics 41(1–3): 309–325, 2005). Finally, four illustrative examples are presented:
two that highlight the quantitative performance of the method when presented with
either deterministic or stochastic data and two that show potential applications of the
Koopman eigenfunctions.

Keywords Data mining · Koopman spectral analysis · Set oriented methods ·
Spectral methods · Reduced order models

Mathematics Subject Classification Primary: 65P99 · 37M25 · Secondary: 47B33

1 Introduction

In many mathematical and engineering applications, a phenomenon of interest can be
summarized in different ways. For instance, to describe the state of a two-dimensional
incompressible fluid flow, one can either record velocity and pressure fields or stream
function and vorticity (Hirsch 2007). Furthermore, these states can often be approx-
imated using a low-dimensional set of proper orthogonal decomposition (POD)
modes (Holmes et al. 1998), a set of dynamic modes (Schmid 2010; Schmid et al.
2012), or a finite collection of Lagrangian particles (Monaghan 1992). A mathemati-
cal example is the linear time-invariant (LTI) system provided by x(n + 1) = Ax(n),
where x(n) is the system state at the nth timestep. Written as such, the evolution of x
is governed by the eigenvalues of A. One could also consider the invertible but nonlin-
ear change in variables, z(n) = T (x(n)), which generates a nonlinear evolution law
for z. Both approaches (i.e., x or z) describe the same fundamental behavior, yet one
description may be preferable to others. For example, solving an LTI system is almost
certainly preferable to evolving a nonlinear system from a computational standpoint.

In general, one measures (or computes) the state of a system using a set of scalar
observables, which are functions defined on state space, and watches how the values
of these functions evolve in time. As we will show shortly, one can write an evolution
law for the dynamics of this set of observables, and if they happen to be “rich enough,”
reconstruct the original system state from the observations. Because the properties of
this new dynamical system depend on our choice of variables (observables), it would
be highly desirable if one could find a set of observables whose dynamics appear to be
governed by a linear evolution law. If such a set could be identified, the dynamicswould
be completely determined by the spectrum of the evolution operator. Furthermore,
this could enable the simple yet effective algorithms designed for linear systems, for
example controller design (Todorov 2007; Stengel 2012) or stability analysis (Mauroy
and Mezic 2013; Lehoucq et al. 1998), to be applied to nonlinear systems.

Mathematically, the evolution of observables of the system state is governed by
the Koopman operator (Koopman and Neumann 1932; Koopman 1931; Budišić et al.
2012; Rowley et al. 2009), which is a linear but infinite-dimensional operator that is
defined for a given dynamical system. Of particular interest here is the “slow” sub-
space of the Koopman operator, which is the span of the eigenfunctions associated
with eigenvalues near the unit circle in discrete time (or near the imaginary axis in
continuous time). These eigenvalues and eigenfunctions capture the long-term dynam-
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ics of observables that appear after the fast transients have subsided and could serve
as a low-dimensional approximation of the otherwise infinite-dimensional operator
when a spectral gap, which clearly delineates the “fast” and “slow” temporal dynam-
ics, is present. In addition to the eigenvalues and eigenfunctions, the final element
of Koopman spectral analysis is the set of Koopman modes for the full-state observ-
able (i.e., the identity operator) (Budišić et al. 2012; Rowley et al. 2009) which are
vectors that enable us to reconstruct the state of the system as a linear combination
of the Koopman eigenfunctions. Overall, the “tuples” of Koopman eigenfunctions,
eigenvalues, and modes enable us to: (a) transform state space so that the dynamics
appear to be linear, (b) determine the temporal dynamics of the linear system, and
(c) reconstruct the state of the original system from our new linear representation. In
principle, this framework is quite broadly applicable and useful even for problems
with multiple attractors that cannot be accurately approximated using models based
on local linearization.

There are several algorithms in the literature that can computationally approxi-
mate subsets of these quantities. Three examples are numerical implementations of
generalized Laplace analysis (GLA) (Budišić et al. 2012; Mauroy and Mezić 2012;
Mauroy et al. 2013), the Ulam Galerkin method (Froyland et al. 2014; Bollt and San-
titissadeekorn 2013), and dynamic mode decomposition (DMD) (Schmid 2010; Tu
et al. 2014; Rowley et al. 2009). None of these techniques require explicit governing
equations, so all, in principle, can be applied directly to data. GLA can approxi-
mate both the Koopman modes and eigenfunctions, but it requires knowledge of the
eigenvalues to do so (Budišić et al. 2012; Mauroy and Mezić 2012; Mauroy et al.
2013). The Ulam Galerkin method has been used to approximate the eigenfunctions
and eigenvalues (Froyland et al. 2014), though it is more frequently used to gener-
ate finite-dimensional approximations of the Perron–Frobenius operator, which is the
adjoint of the Koopman operator. Finally, DMD has been used to approximate the
Koopman modes and eigenvalues (Rowley et al. 2009; Tu et al. 2014), but not the
Koopman eigenfunctions.

Even in pairs instead of triplets, approximations of these quantities are useful. DMD
and its variants (Wynn et al. 2013; Chen et al. 2012; Jovanović et al. 2014) have been
successfully used to analyze nonlinear fluid flows using data from both experiments
and computation (Schmid 2010; Muld et al. 2012; Seena and Sung 2011). GLA and
similar methods have been applied to extract meaningful spatio-temporal structures
using sensor data from buildings and power systems (Eisenhower et al. 2010; Susuki
and Mezić 2011, 2012, 2014). Finally, the Ulam Galerkin method has been used to
identify coherent structures and almost invariant sets (Froyland et al. 2007; Froyland
and Padberg 2009; Froyland 2005) based on the singular value decomposition of (a
slight modification of) the Perron–Frobenius operator.

In this manuscript, we present a data-driven method that approximates the leading
Koopman eigenfunctions, eigenvalues, andmodes from a data set of successive “snap-
shot” pairs and a dictionary of observables that spans a subspace of the space of scalar
observables. There are many possible ways to choose this dictionary, and it could be
comprised of polynomials, Fourier modes, spectral elements, or other sets of functions
of the full-state observable. We will argue that this approach is an extension of DMD
that can produce better approximations of the Koopman eigenfunctions; as such, we
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refer to it as extended dynamic mode decomposition (EDMD). One regime where the
behavior of both EDMD and DMD can be formally analyzed and contrasted is in the
limit of large data. Following the definition of DMD in Tu et al. (2014), we consider
the case where this large data set consists of a distribution of snapshot pairs rather than
a single time series. In this regime, we will show that the numerical approximation of
the Koopman eigenfunctions generated by EDMD converges to the numerical approx-
imation we would obtain from a Galerkin method (Boyd 2013) in that the residual
is orthogonal to the subspace spanned by the elements of the dictionary. With finite
amounts of data, we will demonstrate the effectiveness of EDMD on two deterministic
examples: one that highlights the quantitative accuracy of the method and other a more
practical application.

Because EDMD is an entirely data-driven procedure, it can also be applied to data
from stochastic systems without any algorithmic changes. If the underlying system
is a Markov process, we will show that EDMD approximates the eigenfunctions of
the Kolmogorov backward equation (Givon et al. 2004; Bagheri 2014) which has
been called the stochastic Koopman operator (SKO) (Mezić 2005). Once again, we
will demonstrate the effectiveness of the EDMD procedure when the amount of data
is limited, by applying it to two stochastic examples: the first to test the accuracy
of the method and the second to highlight a potential application of EDMD as a
nonlinear manifold learning technique. In the latter example, we highlight two forms
of model reduction: reduction that occurs when the dynamics of the system state
are constrained to a low-dimensional manifold and reduction that occurs when the
evolution of statistical moments of the stochastic dynamical system are effectively
low dimensional.

In the remainder of the manuscript, we will detail the EDMD algorithm and show
(when mathematically possible) or demonstrate through examples that it accurately
approximates the leading Koopman eigenfunctions, eigenvalues, and modes for both
deterministic and stochastic sets of data. In particular, in Sect. 2, the EDMD algorithm
will be presented, and we will prove that it converges to a Galerkin approximation
of the Koopman operator given a sufficiently large amount of data. In Sect. 3, we
detail three choices of dictionary that we have found to be effective in a broad set of
applications. In Sect. 4, we will demonstrate that the EDMD approximation can be
accurate even with finite amounts of data and can yield useful parameterizations of
common dynamical structures in problems with multiple basins of attraction when the
underlying system is deterministic. In Sect. 5, we experiment by applying EDMD to
stochastic data and show it approximates the eigenfunctions of the SKO for Markov
processes. Though the interpretation of the eigenfunctions nowdiffers,we demonstrate
that they can still be used to accomplish useful tasks such as the parameterization of
nonlinear manifolds. Finally, some brief concluding remarks are given in Sect. 6.

2 Dynamic Mode Decomposition and the Koopman Operator

Our ambition in this section is to establish the connection between the Koopman
operator and what we call EDMD. To accomplish this, we will define the Koopman
operator in Sect. 2.1. Using this definition, we will outline the EDMD algorithm in
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Sect. 2.2 and then show how it can be used to approximate the Koopman eigenvalues,
eigenfunctions, and modes. Next, in Sect. 2.3, we will prove that the EDMD method
almost surely converges to a Galerkin method in the limit of large data. Finally, in
Sect. 2.4, we will highlight the connection between the EDMD algorithm and standard
DMD.

2.1 The Koopman Operator

Because the Koopman operator is central to all that follows, we will define it along
with the properties relevant to EDMD in this subsection. No newmathematical results
are presented here; our only objective is to include for completeness the terms and
definitions we will require later in the paper. In this manuscript, we consider the
case where the dynamics of interest are governed by an autonomous, discrete-time
dynamical system (M, n, F), where M ⊆ R

N is the state space, n ∈ Z is (discrete)
time, and F : M → M is the evolution operator. Unlike F, which acts on x ∈ M,
the Koopman operator, K, acts on functions of state space, ψ ∈ F with ψ : M → C.
The action of the Koopman operator is

Kψ = ψ ◦ F, (1)

where ◦ denotes the composition ofψ with F. We stress once again that the Koopman
operator maps functions of state space to functions of state space and not states to
states (Koopman and Neumann 1932; Koopman 1931; Budišić et al. 2012).

In essence, the Koopman operator defines a new dynamical system, (F , n,K), that
governs the evolution of observables, ψ ∈ F , in discrete time. In what follows, we
assume that F = L2(M, ρ), where ρ is a positive, single-valued analytic function
with ‖ρ‖M = ∫

M ρ(x) dx = 1, but not necessarily an invariant measure of the
underlying dynamical system. This assumption, which has been made before in the
literature (Budišić et al. 2012; Koopman 1931), is required so that the inner products
in the Galerkin-like method we will present can be taken. Because it acts on functions,
K is infinite dimensional even when F is finite dimensional, but provided that F is
a vector space, it is also linear even when F is nonlinear. The infinite-dimensional
nature of the Koopman operator is potentially problematic, but if it can, practically,
be truncated without too great a loss of accuracy (e.g., if the system has multiple
timescales), then the result would be a linear and finite-dimensional approximation.
Therefore, the promise of the Koopman approach is to take the tools developed for
linear systems and apply them to the dynamical system defined by the Koopman
operator, thus obtaining a linear approximation of a nonlinear system without directly
linearizing around a particular fixed point.

The dynamical system defined by F and the one defined by K are two differ-
ent parameterizations of the same fundamental behavior. The link between these
parameterizations is the identity operator or “full-state observable,” g(x) = x and
{(μk, ϕk, vk)}NK

k=1, the set of NK “tuples” of Koopman eigenvalues, eigenfunctions,
and modes required to reconstruct the full state. Note that NK could (and often will)
be infinite. Although g is a vector-valued observable, each component of it is a scalar-
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valued observable, i.e., gi ∈ F where gi is the i th component of g. Assuming gi is in
the span of our set of NK eigenfunctions, gi = ∑NK

k=1 vikϕk with vk j ∈ C. Then, g can
be obtained by “stacking” these weights into vectors (i.e., v j = [v1 j , v2 j , . . . , vN j ]T ).
As a result,

x = g(x) =
NK∑

k=1

vkϕk(x), (2)

where vk is the kth Koopman mode and ϕk is the kth Koopman eigenfunction. In doing
this, we have assumed that each of the scalar observables that comprise g are in the
subspace of F spanned by our NK eigenfunctions, but we have not assumed that
the eigenfunctions form a basis for F . In some applications, the Koopman operator
will have a continuous spectrum, which as shown in Mezić (2005) would introduce
an additional term in (2). The system state at future times can be obtained either by
directly evolving x or by evolving the full-state observable through Koopman:

F(x) = (Kg) (x) =
NK∑

k=1

vk(Kϕk)(x) =
NK∑

k=1

μkvkϕk(x). (3)

This representation of F(x) is particularly advantageous because the dynamics asso-
ciated with each eigenfunction are determined by its corresponding eigenvalue.

Figure 1 shows a commutative diagram that acts as a visual summary of this section.
The top row shows the direct evolution of states, x ∈ M, governed by F; the bottom
row shows the evolution of observables, ψ ∈ F , governed by the Koopman operator.
Although F and K act on different spaces, they encapsulate the same dynamics. For
example, once given a state x, to compute (Kψ)(x)one could either take the observable
ψ , apply K, and evaluate it at x (the bottom route), or use F to compute F(x) and
then evaluate ψ at this updated position (the top route). Similarly, to compute F(x),
one could either apply F to x (the top route) or apply K to the full-state observable
and evaluate (Kg)(x) (the bottom route). As a result, one can either choose to work
with a finite-dimensional, nonlinear system or an infinite-dimensional, linear system
depending upon which “path” is simpler/more useful for a given problem.

We should note that for autonomous systems of ordinary differential equations
(ODEs), such as

ẋ = f (x), (4)

there is a semigroup of Koopman operators, K�t , each of which is associated with the
flow map for the time interval �t (Budišić et al. 2012; Santitissadeekorn and Bollt
2007). The infinitesimal generator of this semigroup is

K̂ψ = f · ∇ψ, (5)

which we will refer to as the continuous-time Koopman operator. If ϕk is the kth
eigenfunction of K̂ associated with the eigenvalue λk , then the future value of some
vector-valued observable g can be written as
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Fig. 1 A cartoon of the Koopman operator and how it relates to the underlying dynamical system. The top
path updates the state, x ∈ M, using the evolution operator F. The bottom path updates the observables,
ψ ∈ F , using the Koopman operator, K. Here, both dynamical systems are autonomous, so the (discrete)
time, n ∈ Z, does not appear explicitly. The connection between the states and observables is through the
full-state observable g(x) = x. By writing g in terms of the Koopman eigenfunctions, we substitute the
complex evolution of xwith the straightforward, linear evolution of theϕi . To reconstruct x, we superimpose
the Koopman eigenfunctions evaluated at a point, which satisfy (Kϕi )(xi ) = μiϕi (xi ), using the Koopman
modes as shown in (3). As a result, these two “paths” commute, and one can either solve a finite dimensional
but nonlinear problem (the top path) or an infinite dimensional but linear problem (the bottom path) if one
can compute the Koopman eigenvalues, eigenfunctions, and modes

g(x(t + �t)) = (K�t g)(x(t)) =
NK∑

k=1

eλk�tvkϕk(x(t)), (6)

which is similar in form to (3), but now “fast” and “slow” are determined by the real
part of λk rather than its absolute value.

In what follows, we will not have access to the “right-hand side” function, f ,
and therefore cannot approximate K̂ directly. However, if the discrete-time dynamical
system F is the flow map associated with f for a fixed time interval �t (i.e., K =
K�t ), then (3) and (6) are equivalent with μk = eλk�t . As a result, although we
will be approximating the Koopman operator associated with discrete-time dynamical
systems, we will often present our results in terms of λk rather than μk when the
underlying system is a flow rather than map.
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2.2 Extended Dynamic Mode Decomposition

In this subsection, we outline extended dynamicmode decomposition (EDMD), which
is a method that approximates the Koopman operator and therefore the Koopman
eigenvalue, eigenfunction, andmode tuples defined in Sect. 2.1. The EDMDprocedure
requires two prerequisites: (a) a data set of snapshot pairs, i.e., {(xm, ym)}Mm=1 that we
will organize as a pair of data sets,

X = [
x1 x2 , . . . , xM

]
, Y = [

y1 y2 , . . . , yM
]
, (7)

where xi ∈ M and yi ∈ M are snapshots of the system state with yi = F(xi ),
and (b) a dictionary of observables, D = {ψ1, ψ2, . . . , ψNK } where ψi ∈ F , whose
span we denote as FD ⊂ F ; for brevity, we also define the vector-valued function
� : M → C

1×NK where

�(x) = [
ψ1(x) ψ2(x) , . . . , ψNK (x)

]
. (8)

The data set needed is typically constructed from multiple short bursts of simulation
or from experimental data. For example, if the data were given as a single time series,
then for a given snapshot xi , yi = F(xi ) is the next snapshot in the time series. In the
original definition of DMD (Schmid 2010; Rowley et al. 2009), the data provided to
the algorithm was assumed to come in the form of a single time series. This restriction
was relaxed in Tu et al. (2014), where it was shown that a generalization of DMD that
requires only a data set of snapshot pairs would produce equivalent results. Because
EDMD is based on this definition of DMD, we will assume only that xi and yi are
related by the dynamics even if the entire data set is in the form of a time series.
However, if the data were the form of a time series, then EDMD could also be under-
stood using the Krylov-based arguments used to justify “standard” DMD (Rowley
et al. 2009). Furthermore, the optimal choice of dictionary elements remains an open
question, but a short discussion including some pragmatic choices will be given in
Sect. 3. For now, we assume that D is “rich enough” to accurately approximate a few
of the leading Koopman eigenfunctions.

2.2.1 Approximating the Koopman Operator and its Eigenfunctions

Now we seek to generate K ∈ C
NK×NK , a finite-dimensional approximation of K. By

definition, a function ψ ∈ FD can be written as

ψ(x) =
NK∑

k=1

akψk(x) = �(x)a, (9)

the linear superposition of the NK elements in the dictionary with the weights a. Note
that unlike in (2), where Nk could be infinite, Nk is finite in both (9) and all that
follows. Because FD is typically not an invariant subspace of K,
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(Kψ)(x) = (� ◦ F)(x)a = �(x)(Ka) + r(x) (10)

which includes the residual term r ∈ F . To determine K , we will minimize

J = 1

2

M∑

m=1

|r(xm)|2

= 1

2

M∑

m=1

|((� ◦ F)(xm) − �(xm)K )a|2

= 1

2

M∑

m=1

∣
∣(�( ym) − �(xm)K )a

∣
∣2

(11)

where xm is the mth snapshot in X , and ym = F(xm) is the mth snapshot in Y .
Equation 11 is a least-squares problem and therefore cannot have multiple isolated
local minima; it must have either a unique global minimizer or a continuous family
(or families) of minimizers. As a result, regularization (here via the truncated singular
value decomposition) may be required to ensure the solution is unique, and the K that
minimizes (11) is:

K � G+A, (12)

where + denotes the pseudoinverse and

G = 1

M

M∑

m=1

�(xm)∗�(xm), (13a)

A = 1

M

M∑

m=1

�(xm)∗�( ym), (13b)

with K , G, A ∈ C
NK×NK . As a result, K is a finite-dimensional approximation of K

that maps ψ ∈ FD to some other ψ̂ ∈ FD by minimizing the residuals at the data
points. As a consequence, if ξ j is the j th eigenvector of K with the eigenvalue μ j ,
then the EDMD approximation of an eigenfunction of K is

ϕ j (x) = �(x)ξ j . (14)

Finally, in many applications the discrete-time data in X and Y are generated by a
continuous-time process with a sampling interval of �t . If this is the case, we define

λ j = ln(μ j )

�t to approximate the eigenvalues of the continuous-time system. In the
remainder of the manuscript, we denote the eigenvalues of K with the μ j and (when
applicable) the approximation of the corresponding continuous-time eigenvalues as
λ j . Although both embody the same information, one choice is often more natural for
a specific problem.
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2.2.2 Computing the Koopman Modes

Next,wewill compute approximations of theKoopmanmodes for the full-state observ-
able using EDMD. Recall that the Koopman modes are the weights needed to express
the full state in the Koopman eigenfunction basis. As such, we will proceed in two
steps: First, we will express the full-state observable using the elements of D; then,
we will find a mapping from the elements of D to the numerically computed eigen-
functions. Applying these two steps in sequence will yield the observables expressed
as a linear combination of Koopman eigenfunctions, which are, by definition, the
Koopman modes for the full-state observable.

Recall that the full-state observable, g(x) = x, is a vector-valued observable (e.g.,
g : M → R

N ) that can be generated by “stacking” N scalar-valued observables,
gi : M → R, as follows:

g(x) =

⎡

⎢
⎢
⎢
⎣

g1(x)

g2(x)
...

gN (x)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

e∗
1x
e∗
2x
...

e∗
N x

⎤

⎥
⎥
⎥
⎦

, (15)

where ei is the i th unit vector in R
N . At this time, we conveniently assume that

all gi (x) ∈ FD so that gi (x) = ∑NK
k=1 ψk(x)bk,i = �(x)bi , where bi is some

appropriate vector of weights. If this is not the case, approximate Koopman modes
can be computed by projecting gi onto FD, though the accuracy and usefulness of
this fit clearly depend on the choice of D. To avoid this issue, we take gi ∈ FD
for i = 1, . . . , N in all examples that follow. In either case, the entire vector-valued
observable can be expressed (or approximated) in this manner as

g(x) = BT�(x)T = (�(x)B)T , B = [
b1 b2 , . . . , bN

]
, (16)

where B ∈ C
K×NK .

Next, we will express theψi in terms of all the ϕi , which are our numerical approx-
imations of the Koopman eigenfunctions. For notational convenience, we define the
vector-valued function � : M → C

1×NK , where

�(x) = [
ϕ1(x) ϕ2(x) , . . . , ϕNK (x)

]
. (17)

Using (14) and (16), this function can also be written as

�(x) = �(x)�, � = [
ξ1 ξ2 , . . . , ξ NK

]
, (18)

where ξ i ∈ C
NK is the i th eigenvector of K associated with μi . Therefore, we can

determine the ψi as a function of ϕi by inverting �T . Because � is a matrix of
eigenvectors, its inverse is

�−1 = W∗ = [
w1 w2 , . . . ,wNK

]∗
, (19)
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where wi is the i th left eigenvector of K also associated with μi (i.e., w∗
i K = w∗

i μi )
appropriately scaled so w∗

i ξ i = 1. We combine (16) and (19), and after some slight
algebraic manipulation found that

g(x) = V�(x)T =
NK∑

k=1

vkϕk, V = [
v1 v2 . . . vNK

] = (
W∗B

)T
, (20)

where vi = (w∗
i B)T is the i th Koopman mode. This is the formula for the Koopman

modes that we desired.

2.2.3 Algorithm Summary

This subsection has been added to address the fourth referee’s suggestion about an
algorithm summary section. In summary, the EDMD procedure requires the user to
supply the following:

(1) A data set of snapshot pairs {(xm, ym)}Mm=1.
(2) A set of functions, D = {ψ1, ψ2, . . . , ψNK }, that will be used to approximate the

Koopman eigenfunctions; for brevity, we define the vector-valued function, �, in
(8) that contains these dictionary elements.

(3) A matrix B, defined in (16), which contains the weights required to reconstruct
the full-state observable using the elements of D.

With these prerequisites, the procedure to obtain the Koopman eigenvalues, modes,
and eigenfunctions is as follows:

(1) Loop through the data set of snapshot pairs to form the matrices G and A using
(13); these computations can be performed in parallel and are compatible with the
MapReduce framework (Dean and Ghemawat 2008).

(2) Form K � G+A. Then, compute the set of eigenvalues, μi , eigenvectors, ξ i , and
left eigenvectors, wi .

(3) Compute the set of Koopman modes by setting vi � (w∗
i B)T , where vi is the i th

Koopman mode.

As a result of this procedure, we have a set ofμi , which is our approximation of the
i thKoopman eigenvalue and a set of vi , which is our approximation of the i thKoopman
mode. We also have the vector ξ i , which allows the i th Koopman eigenfunction to be
approximated using (14).

Ultimately, the EDMD procedure is a regression procedure and can be applied
to any set of snapshot pairs without modification. However, the contribution of this
manuscript is to show how the regression problem above relates to the Koopman
operator, and making this connection requires some knowledge about the process that
created the data. If the underlying system is (effectively) a discrete-time, autonomous
dynamical system (or, equivalently, an autonomous flow sampled at a fixed interval
of �t), then the results of this section hold. If the underlying system is stochastic,
then a connection with the Koopman operator still exists, but will be discussed later
in Sect. 5. Furthermore, even some non-autonomous systems could, in principle, be
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analyzed using EDMD by augmenting the state vector to include time; this, however,
will be left for future work.

2.3 Convergence of the EDMD Algorithm to a Galerkin Method

In this subsection, we relate EDMD to the Galerkin methods one would use to
approximate the Koopman operator with complete information about the underlying
dynamical system. In this context, a Galerkin method is a weighted-residual method
where the residual, as defined in (10), is orthogonal to the span of D. In particular,
we show that the EDMD approximation of the Koopman operator converges to the
approximation that would be obtained from a Galerkin method in the large-data limit.
In this manuscript, the large-data limit is when M → ∞ and the elements of X are
drawn independently from a distribution on M with the probability density ρ. Note
that one method of generating a more complex ρ (e.g., not a Gaussian or uniform dis-
tribution) is to randomly sample points from a single, infinitely long trajectory. In this
case, ρ is one of the natural measures associated with the underlying dynamical sys-
tem. We also assume that F = L2(M, ρ). The first assumption defines a process for
adding new data points to our set and could be replaced with other sampling schemes.
The second assumption is required so that the inner products in the Galerkin method
converge, which is relevant for problems where M = R

N .
If EDMD were a Galerkin method, then the entries of G and A in (12) would be

defined as

Ĝi j =
∫

M
ψ∗
i (x)ψ j (x)ρ(x) dx = 〈

ψi , ψ j
〉
ρ

,

Âi j =
∫

M
ψ∗
i (x)ψ j (F(x))ρ(x) dx = 〈

ψi ,Kψ j
〉
ρ

,

(21)

where 〈p, q〉ρ = ∫
M p∗(x)q(x)ρ(x) dx is the inner product and the finite-

dimensional Galerkin approximation of the Koopman operator would be K̂ = Ĝ
−1

Â.
The performance of this method certainly depends upon the choice of ψ j and ρ, but
it is nevertheless a Galerkin method as the residual would be orthogonal to FD (Boyd
2013; Trefethen 2000). There are non-trivial questions about what sets of ψ and what
measures, ρ, are required if the Galerkin method is to generate a useful approximation
of the Koopman operator (e.g., when can we “trust” our eigenfunctions if ρ is com-
pactly supported but M = R

N ?), but they are beyond the scope of this manuscript
and will be the focus of future work.

For a finite M , the i j th element of G is

Gi j � 1

M

M∑

m=1

ψ∗
i (xm)ψ j (xm), (22a)

So the i j th element of G contains the sample mean of ψ∗
i (x)ψ j (x). Similarly,
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Ai j � 1

M

M∑

m=1

ψ∗
i (xm)ψ j ( ym). (22b)

When M is finite, (21) is approximated by (22). However, by the law of large
numbers, the sample means almost surely converge to the expected values when the
number of samples, M , becomes sufficiently large. For this system, the expectations
can be written as

lim
M→∞ Gi j =

∫

M
ψ∗
i (x)ψ j (x)ρ(x) dx = 〈

ψi , ψ j
〉
ρ

= Ĝi j ,

lim
M→∞ Ai j =

∫

M
ψ∗
i (x)ψ j (F(x))ρ(x) dx = 〈

ψi ,Kψ j
〉
ρ

= Âi j ,

(23)

which reintroduces the integrals in (21). As a result, the entries of A and G converge to
their analytically determined values, and therefore, the output of the EDMDprocedure
will converge to the output of a Galerkin method. With randomly distributed initial
data, the needed integrals are computed using Monte Carlo integration, and the rate
of convergence will be O(M−1/2). Other sampling choices, such as placing points on
a uniform grid, effectively use different quadrature rules and could therefore obtain a
better rate of convergence.

Implicit in this argument is the fact that xm and ym are snapshots of the system
state, which implies that a snapshot, say xm , cannot map to “two different places.”
However, there are many cases where xm and ym are only partial measurements of the
system state, in which case this could happen. For example, xm and ym could consist
of N elements of a vector in R

N0 where N0 > N , and so some state measurements
have simply been neglected. This is quite common and occurs when the data have
been compressed using POD or other related techniques. Another common example
is where xm and ym are snapshots of the full state, but the underlying system is
periodically forced; in this case, the missing information is the “phase” of the forcing.

Because the Koopman operator acts on scalar observables, one could still consider
the EDMD procedure as an approximation of a Koopman operator using a set of
functions, ψk , that are constant in the “missing” components. As a result, if the true
eigenfunctions are nearly constant in these directions [an assumption that is justifiable
in some cases, such as fast-slow systems (Froyland et al. 2014)], then the missing
information may have only a small impact on the resulting eigenfunctions. However,
this assumption clearly does not hold in general, so care must be taken in order to have
as “complete” a set of measurements as possible.

2.4 Relationship with DMD

When M is not large, EDMD will not be an accurate Galerkin method because the
quadrature errors generated by the Monte Carlo integrator will be significant, and so
the residual will probably not be orthogonal to FD. However, it is still formally an
extension of DMD, which has empirically been shown to yield meaningful results
even without exhaustive data sets. In this section, we show that EDMD is equivalent
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to DMD for a very specific—and restrictive—choice of D because EDMD and DMD
will produce the same set of eigenvalues and modes for any set of snapshot pairs.

Because there are many conceptually equivalent but mathematically different def-
initions of DMD, the one we adopt here is taken from Tu et al. (2014), which defines
the DMD modes as the eigenvectors of the matrix

KDMD � YX+, (24)

where the j th mode is associated with the j th eigenvalue of KDMD, μ j . KDMD is
constructed using the data matrices in (7), where + again denotes the pseudoinverse.
This definition is a generalization of preexisting DMD algorithms (Schmid 2010;
Schmid et al. 2011) and does not require the data to be in the form of a single time
series. All that is required are states and their images (for a map) or their updated
positions after a fixed interval in time of �t (for a flow). However, in the event that
they are in the form of a single time series, then as discussed in Tu et al. (2014), this
generalization is related to the Krylov method presented in Rowley et al. (2009).

Now,wewill prove that theKoopmanmodes computed using EDMDare equivalent
to DMDmodes, if the dictionary used for EDMD consists of scalar observables of the
formψi (x) = e∗

i x for i = 1, . . . , N . This is the special (if relatively restrictive) choice
of dictionary alluded to earlier. In particular, we show that the i th Koopman mode, vi ,
is also an eigenvector of KDMD, hence a DMDmode. Because the elements of the full-
state observable are the dictionary elements, B = I in (16). Then, theKoopmanmodes
are the complex conjugates of the left eigenvectors of K , so vTi = w∗

i . Furthermore,
GT = 1

M XX∗ and AT = 1
M YX∗. Then,

K T = ATGT+ = YX∗ (
XX∗)+ = YX+ = KDMD. (25)

Therefore, KDMDvi = (vTi K
T
DMD)T = (w∗

i K )T = (μiw
∗
i )

T = μivi , and all the
Koopman modes computed by EDMD are eigenvectors of KDMD and are thus the
DMD modes. Once again, the choice of dictionary is critical; EDMD and DMD are
equivalent only for this very specific D, and other choices of D will enable EDMD to
generate different (and potentially more useful) results.

Conceptually, DMD can be thought of as producing an approximation of the Koop-
man eigenfunctions using the set of linear monomials as basis functions forFD, which
is analogous to a one-term Taylor expansion. For problems where the eigenfunctions
can be approximated accurately using linear monomials (e.g., in some small neighbor-
hood of a stable fixed point), then DMDwill produce an accurate local approximation
of the Koopman eigenfunctions. However, this is certainly not the case for all sys-
tems (particularly beyond the region of validity for local linearization). EDMD can
be thought of as an extension of DMD that retains additional terms in the expansion,
where these additional terms are determined by the elements of D. The quality of the
resulting approximation is governed by FD and, therefore, depends upon the choice
of D. In all the examples that follow, the dictionaries we use will be strict supersets
of the dictionary chosen implicitly by DMD. Assuming this “richer” dictionary and
using the argument presented in Tu et al. (2014), it is easy to show that if DMD is
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Table 1 Some commonly used dictionaries of functions and the application where they are, in our expe-
rience, best suited

Name Suggested context

Hermite polynomials Problems defined on R
N with normally distributed data

Radial basis functions Problems defined on irregular domains

Discontinuous spectral elements Large problems where a block-diagonal G is
beneficial/computationally important

able to exactly recover a Koopman mode and eigenvalue from a given set of data, then
EDMD will also exactly recover the same Koopman modes and eigenvalues. How-
ever, in many applications the tuples of interest cannot be exactly recovered. In these
cases, the idea is that the more extensive dictionary used by EDMD will produce bet-
ter approximations of the leading Koopman tuples because FD is larger and therefore
better able to represent the eigenfunctions of interest.

3 The Choice of the Dictionary

As with all spectral methods, the accuracy and rate of convergence of EDMD depend
on D, whose elements span the subspace of observables, FD ⊂ F . Possible choices
for the elements of D include: polynomials (Boyd 2013), Fourier modes (Trefethen
2000), radial basis functions (Wendland 1999), and spectral elements (Karniadakis
and Sherwin 2013), but the optimal choice of basis functions likely depends on both
the underlying dynamical system and the sampling strategy used to obtain the data.
Any of these sets are, in principle, a useful choice for D, though some care must be
taken on infinite domains to ensure that any needed inner products will converge.

Choosing D for EDMD is, in some cases, more difficult than selecting a set of
basis functions for use in a standard spectral method because the domain on which the
underlying dynamical system is defined, M, and is not necessarily known. Typically,
we can define � ⊃ M so that it contains all the data in X and Y ; e.g., pick � to be a
“box” in R

N that contains every snapshot in X and Y . Next, we choose the elements
of D to be a basis for F̃D ⊂ F̃ , where F̃ is the space of functions that map � → C.
Because F ⊂ F̃ , this choice of D can be used in the EDMD procedure, but there is no
guarantee that the elements of D form a basis for FD as there may be redundancies.
The potential for these redundancies and the numerical issues they generate is why
regularization, and hence, the pseudoinverse (Hansen 1990) is required in (12). An
example of these redundancies and their effects is given in Appendix.

Although the optimal choice of D is unknown, there are three choices that are
broadly applicable in our experience. They are: Hermite polynomials, radial basis
functions (RBFs), and discontinuous spectral elements. The Hermite polynomials are
the simplest of the three sets and are best suited to problems defined on R

N if the
data in X are normally distributed. The observables that comprise D are products of
the Hermite polynomials in a single dimension (e.g., H1(x)H2(y)H0(z), where Hi is
the i th Hermite polynomial and x = (x, y, z)). This set of basis functions is simple
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to implement and conceptually related to approximating the Koopman eigenfunctions
with a Taylor expansion. Furthermore, because they are orthogonal with respect to
Gaussian weights, G will be diagonal if the xm are drawn from a normal distribution,
which can be beneficial numerically.

An alternative to the Hermite polynomials is discontinuous spectral elements. To
use this set, we define a set of BN boxes, {Bi }BN

i=1, such that ∪BN
i=1Bi ⊃ M. Then,

on each of the Bi , we define Ki (suitably transformed) Legendre polynomials. For
example, in one dimension, each basis function is of the form

ψi j (x) =
{
L j (ξ) x ∈ Bi ,

0 otherwise,
(26)

where L j is the j th Legendre polynomial and ξ is x transformed such that the “edges”
of the box are at ξ = ±1. The advantage of this basis is that G will be block-diagonal
and therefore easy to invert even if a very large number of basis functions are employed.

With a fixed amount of data, an equally difficult task is choosing theBi ; the number
and arrangement of theBi are a balance between span of the basis functions (i.e., h-type
convergence), which increases as the number of boxes is increased, and the accuracy
of the quadrature rule, which decreases because smaller boxes contain fewer data
points. To generate a covering of M, we use a method similar to the one used by
GAIO (Dellnitz et al. 2001). Initially, all the data (i.e., X and Y ) are contained within
a single user-selected box, B(0)

1 . If this box contains more than a pre-specified number
of data points, it is subdivided into 2N domains of equal Lebesgue measure (e.g.,
in one dimension, B(0)

1 = B(1)
1 ∪ B(1)

2 ). We then proceed recursively: if any of B(1)
i

contain more than a pre-specified number of points, then they too are subdivided; this
proceeds until no box has an “overly large” number of data points. AnyB( j)

i that do not
contain any data points are pruned, which after j iterates leaves the set of subdomains,
{B( j)

i }, on which we define the Legendre polynomials. The resulting set of functions
are compactly supported and can be evaluated efficiently using 2N trees, where N is
the dimension of a snapshot. Finally, the higher-order polynomials used here allow
for more rapid p-type convergence if the eigenfunctions happen to be smooth.

The final choice is a set of radial basis functions (RBFs), which appeal to previous
work on “mesh-free” methods (Liu 2010). Because these methods do not require a
computational grid or mesh, they are particularly effective for problems whereM has
what might be called a complex geometry. Many different RBFs could be effective,
but one particularly useful set of RBFs are the thin plate splines (Wendland 1999;
Belytschko et al. 1996) because they do not require the scaling parameter that other
RBFs (e.g., Gaussians) do. However, we still must choose the “centers” about which
the RBFs are defined, which we do with k-means clustering (Bishop 2006) with a
pre-specified value of k on the combined data set. Although we make no claims of
optimality, in our examples, the density of the RBF centers appears to be directly
related to the density of data points, which is, intuitively, a reasonable method for
distributing the RBF centers as regions with more samples will also have more spatial
resolution.
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There are, of course, other dictionaries that may prove more effective in other cir-
cumstances. For example, basis functions defined in polar coordinates are useful when
limit cycles or other periodic orbits are present as theymimic the form of the Koopman
eigenfunctions for simple limit cycles (Bagheri 2013). How to choose the best set of
functions is an important, yet open, question; fortunately, the EDMD method often
produces useful results even with the relatively naïve choices presented in this section
and summarized in Table 1.

4 Deterministic Data and the Koopman Eigenfunctions

Most applications of DMD assume that the data sets were generated by a deterministic
dynamical system. In Sect. 2, we showed that, as long as the dictionary can accurately
approximate the leadingKoopman eigenfunctions, EDMDproduces an approximation
of the Koopman eigenfunctions, eigenvalues, and modes with large amounts of data
(the regime in which EDMD is equivalent to a Galerkin method). In this section, we
demonstrate that EDMD can produce accurate approximations of the Koopman eigen-
functions, eigenvalues, and modes with relatively limited amounts of data by applying
the method to two illustrative examples. The first is a discrete-time linear system, for
which the eigenfunctions, eigenvalues, and modes are known analytically, and serves
as a test case for the method. The second is the unforced Duffing equation. Our goal
there is to demonstrate that the approximate Koopman eigenfunctions obtained via
EDMD have the potential to serve as a data-driven parameterization of a system with
multiple basins of attraction.

4.1 A Linear Example

4.1.1 The Governing Equation, Data, and Analytically Obtained Eigenfunctions

One system where the Koopman eigenfunctions are known analytically is a simple
LTI system of the form

x(n + 1) = Jx(n), (27)

with x(n) ∈ R
N and J ∈ R

N×N . It is clear that an eigendecomposition yields
complete information about the underlying system provided J has a complete set of
eigenvectors. Because the underlying dynamics are linear, it should not be surprising
that the Koopman approach contains the eigendecomposition of J .

To show this, note that the action of the Koopman operator for this problem is

Kψ(x) = ψ(Jx), (28)

where ψ ∈ F . Assuming J has a complete set of eigenvectors, it will have N left
eigenvectors,wi , that satisfyw∗

i J = μ jw
∗
i , andwhere the i th eigenvector is associated

with the eigenvalue μi . Then, the function

ϕn1,n2,...,nN (x) =
N∏

i=1

(w∗
i x)ni (29)
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is an eigenfunction of the Koopman operator with the eigenvalue
∏N

i=1 μ
ni
i for ni ∈ N.

This is a well-known result (see, e.g., Rowley et al. 2009), so we show the proof of
this only for the sake of completeness. We proceed directly:

Kϕn1,n2,...,nN (x) =
N∏

i=1

(w∗
i Jx)ni =

N∏

i=1

μ
ni
i (w∗

i x)ni

=
(

N∏

i=1

μ
ni
i

)

ϕn1,n2,...,nN (x),

bymaking use of (28) and the definition ofwi as a left eigenvector. Then, the represen-
tation of the full-state observable in terms of the Koopman modes and eigenfunctions
(i.e., (2)) is

x =
N∑

i=1

vi
(
w∗
i x

)
, (30)

where the i th Koopman mode, vi , is the i th eigenvector of J suitably scaled so that
w∗
i vi = 1. This is identical to writing x in terms of the eigenvectors of J ; inner

products with the left eigenvectors determine the component in each direction, and
the (right) eigenvectors allow the full state to be reconstructed. As a concrete example,
consider

x(n + 1) =
[
0.9 −0.1
0.0 0.8

]

x(n) = Jx(n), (31)

where xn = [xn, yn]. From (29), the Koopman eigenfunctions and eigenvalues are

ϕi j (x, y) =
(
x − y√

2

)i

y j , λi j = (0.9)i (0.8) j , (32)

for i, j ∈ Z, where the factor of 1/
√
2 was added to normalize the left eigenvectors

of J . Figure 2 shows the first 8 nontrivial eigenfunctions sorted by their associated
eigenvalue. The zeroth eigenfunction, ϕ00(x) = 1 withμ00 = 1, was omitted because
it is always an eigenfunction and will be recovered by EDMD if ψ = 1 is included as
a dictionary element.

To apply the EDMDprocedure, one needs both data and a dictionary of observables.
The data in X consist of 100 normally distributed initial conditions, xi , and their
images, yi = Jxi , which we aggregate in the matrix Y , i.e., X,Y ∈ R

2×100. The
dictionary, D, is chosen to contain the direct product of Hermite polynomials in x and
in y that include up to the fourth-order terms in x and y, i.e.,

D = {ψ0, ψ1, ψ2, . . .}

=

{H0(x)H0(y), H1(x)H0(y), H2(x)H0(y), H3(x)H0(y), H4(x)H0(y),
H0(x)H1(y), H1(x)H1(y), H2(x)H1(y), H3(x)H1(y), H4(x)H1(y),
H0(x)H2(y), H1(x)H2(y), H2(x)H2(y), H3(x)H2(y), H4(x)H2(y),
H0(x)H3(y), H1(x)H3(y), H2(x)H3(y), H3(x)H3(y), H4(x)H3(y),
H0(x)H4(y), H1(x)H4(y), H2(x)H4(y), H3(x)H4(y), H4(x)H4(y)},

(33)
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Fig. 2 Pseudocolor plots of the first eight Koopman eigenfunctions, as ordered by their corresponding
eigenvalue, plotted using their analytical expressions, (32), along with the associated eigenvalue. Note that
the eigenfunctions were scaled so that ‖ϕi‖∞ = 1 on the domain shown

Fig. 3 Pseudocolor plots of the first eight non-trivial eigenfunctions of the Koopman operator, ordered
by their corresponding eigenvalue, computed using the EDMD procedure. The eigenfunctions obtained
using EDMD were scaled such that ‖ϕi‖∞ = 1 on the domain shown. With this scaling, there is excellent
agreement between these results and those presented in Fig. 2

so the function ψi is the product of a Hermite polynomial in x of degree (i mod 5)
and a Hermite polynomial in y of degree

⌊ i
5

⌋
. The Hermite polynomials were chosen

because they are orthogonal with respect to the weight function ρ(x) = e−‖x‖2 that is
implicit in the normally distributed sampling strategy used here and can also represent
the leading Koopman eigenfunctions in this problem.

4.1.2 Results

Figure 3 shows the same eight eigenfunctions computed using the EDMD method.
Overall, there is (as expected) excellent quantitative agreement, both in the eigenval-
ues and in the eigenfunctions, with the analytical results presented in Fig. 2. On the
domain shown, the eigenvalues are accurate to ten digits, and the maximum pointwise
difference between the true and computed eigenfunction is 10−6. In this problem,
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Fig. 4 A subset of the spectrum of the Koopman operator and the EDMD computed approximation. As
shown here, there are clearly errors in the spectrum further away from the unit circle (which is not contained
in the plotting region). The center plot shows an example of a “missing” eigenfunction that is not captured
by EDMD; this eigenfunction is proportional to (x − y)5 /∈ FD and cannot be represented with our basis
functions. The right plot shows an example of an “erroneous” eigenfunction that appears because FD is
not an invariant subspace of the Koopman operator

standard DMD also generates highly accurate approximations of ϕ10 and ϕ01 along
with their associated eigenvalues, but will not produce any of the other eigenfunc-
tions; the standard choice of the dictionary contains only linear terms and, therefore,
cannot reproduce eigenfunctions with constant terms or any nonlinear terms. As a
result, expanding the basis allows EDMD to capture more of the Koopman eigenfunc-
tions than standard DMD could. These additional eigenfunctions are not necessary to
reconstruct the full-state observable of an LTI system, but are in principle needed in
nonlinear settings.

This level of accuracy is in large part because the first nine eigenfunctions are in
FD, the subspace of observables spanned by D. When this is not the case, the result
is either a missing or erroneous eigenfunction like the examples shown in Fig. 4. The

eigenfunction ϕ50 =
(
x−y√

2

)5
with μ = 0.95 = 0.59049 is not captured by EDMD

with the dictionary chosen here because it lacks the needed fifth-order monomials in
x and y, which is similar to how DMD skips the second Koopman eigenfunction due
to a lack of quadratic terms.

The erroneous eigenfunction appears because FD is not invariant with respect to
the action of the Koopman operator. In particular, ϕ50 contains the term yx4 whose
image K(yx4) /∈ FD because x5, y5 /∈ FD. In most applications, there are small
components of the eigenfunction that cannot be represented in the dictionary chosen,
which results in errors in the eigenfunction such as the one seen here. Even in the
limit of infinite data, we would compute the eigenfunctions of PFDK, where PFD
is the projection onto FD, rather than the eigenfunction of K. To see that this not
a legitimate eigenfunction, we added H5(x) and H5(y) to D, which removes this
erroneous eigenfunction.

In our experience, erroneous eigenfunctions tend to appear in one of the two places.
Sometimes they will be associated with one of the slowly decaying eigenvalues and
in that case are often associated with lower mode energies (i.e., the value of the
corresponding Koopman eigenfunction is small when the corresponding Koopman
mode is normalized). Otherwise, they also typically form a “cloud” of rapidly decaying
eigenvalues, which are ignored as we are primarily only interested in the leading
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Koopman eigenvalues. One pragmatic method for determining whether or not an
eigenvalue is spurious or not is to apply the EDMD procedure to subsets of the data
and compare the resulting eigenvalues; while all of the eigenvalues will be perturbed,
the erroneous ones tend to have larger fluctuations. Unfortunately, missing eigenvalues
are more difficult to detect without prior knowledge, but tend to live in the same part
of the complex plane that the erroneous eigenvalues do as both are caused by a lack
of dictionary elements. In practice, we take the cloud of erroneous eigenvalues as the
cutoff point below which the EDMD method cannot be trusted to produce accurate
results.

Finally, we compute the Koopman modes for the full-state observable. Using the
ordering of the dictionary elements given in (33), the weight matrix, B in (16), needed
to compute the Koopman modes for the full-state observable, g(x)T = [x, y] is

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 0
0 0
0 0
0 1
0 0
...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (34)

This B in conjunction with (20) yields a numerical approximation of a Koop-
man mode for each of the Koopman eigenvalues computed previously. The Koopman
modes associated with μ10 = 0.9 is v10 = [0,−√

2]T , while the Koopman mode
associated with μ01 = 0.8 is v01 = [−1,−1]T ; again, these are the eigenvectors
of J . The contribution of the other numerically computed eigenfunctions in recon-
structing the full-state observable is negligible (i.e., ‖vk‖ ≈ 10−11 for k �= 1, 3),
so the Koopman/EDMD analysis is an eigenvalue/eigenvector decomposition once
numerical errors are taken into consideration.

Although EDMD reveals a richer set of Koopman eigenfunctions that are analyti-
cally known to exist, their associated Koopman modes are zero, and hence, they can
be neglected. Our goal in presenting this example is not to demonstrate any new phe-
nomenon, but rather to demonstrate that there is good quantitative agreement between
the analytically obtained Koopman modes, eigenvalues, and eigenfunctions and the
approximations produced by EDMD. Furthermore, it allowed us to highlight the types
of errors that appear when FD is not an invariant subspace of K, which results in
erroneous eigenfunctions, or when the dictionary is missing elements, which results
in missing eigenfunctions.

4.2 The Duffing Equation

In this section, we will compute the Koopman eigenfunctions for the unforced Duffing
equation, which for the parameter regime of interest here has two stable spirals and
a saddle point whose stable manifold defines the boundary between the basins of
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attraction. Following Mauroy et al. (2013) and the references contained therein, the
eigenvalues of the linearizations about the fixed points in the system are known to be
a subset of the Koopman eigenvalues, and for each stable spiral, the magnitude and
phase of the associated Koopman eigenfunction parameterizes the relevant basin of
attraction. Additionally, because basins of attraction are forward invariant sets, there
will be two eigenfunctions with μ = 0, each of which is supported on one of the two
basins of attraction in this system (or, equivalently, there will be a trivial eigenfunction
and another eigenfunctionwithμ = 0whose level sets denote the basins of attraction).
Ultimately, we are not interested in recovering highly accurate eigenfunctions in this
example. Instead, we will demonstrate that the eigenfunctions computed by EDMD
are accurate enough that they can be used to identify and parameterize the basins of
attraction that are present in this problem for the region of interest.

The governing equations for the unforced Duffing equation are

ẍ = −δ ẋ − x(β + αx2), (35)

which we will study using the parameters δ = 0.5, β = −1, and α = 1. In this
regime, there are two stable spirals at x = ±1 with ẋ = 0, and a saddle at x, ẋ = 0, so
almost every initial condition, except for those on the stable manifold of the saddle,
is drawn to one of the spirals. Despite the existence of an unstable equilibrium, the
continuous-time Koopman eigenvalues for this system that are required to reconstruct
the full-state observable are all non-positive, which can intuitively be understood by
considering the value of limt→∞ e∗

i (x(t)) for the i th unit vector ei . For any initial
condition x(0), the values of these observables will relax to either 0 or ±1 depending
on i and the initial condition. This relaxation implies that the eigenvalues used in the
expansion in (6) should not have positive real parts, otherwise exponential growth
would be observed.

This is shown in Gaspard and Tasaki (2001) and Gaspard et al. (1995) for the
pitchfork and Hopf bifurcations, where the eigenfunctions and eigendistributions can
be obtained analytically. Unlike those examples, we do not have analytical expressions
for the eigenfunctions (or eigendistributions) here, but we will appeal to the same
intuition. In particular, we expect EDMD to approximate the Koopman eigenfunctions
associated with the attractors at (±1, 0) because those quantities, at least away from
the saddle, can lie in or near the subspace spanned by our dictionary. There will also be
eigenvalues associated with the unstable equilibrium at the origin, but they are paired
with eigendistributions [e.g., Dirac delta distributions and their derivatives (Gaspard
and Tasaki 2001; Gaspard et al. 1995)], which are not in the span of any dictionary
we will choose and therefore could not be recovered even if we had a large quantity
of data near that equilibrium.

Therefore, we use a set of data that consists of 103 trajectories with 11 samples each
with a sampling interval of �t = 0.25 (i.e., X,Y ∈ R

2×104 ), and initial conditions
uniformly distributed over x, ẋ ∈ [−2, 2]. With this sampling rate and initialization
scheme,many trajectorieswill approach the stable spirals, but fewwill have (to numer-
ical precision) reached the fixed points. As a result, the basins of attraction cannot be
determined by observing the last snapshot in a given trajectory. Instead, EDMD will
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Fig. 5 (left) A plot of the first non-trivial eigenfunction generated with an eigenvalue of λ = −10−3

obtained from 103 randomly initialized trajectories each consisting of ten steps taken with �t = 0.25 This
eigenfunction should be constant in each basin of attraction and have λ = 0, so EDMD is generating an
approximation of the eigenfunction rather than a fully converged solution. (center) The numerically com-
puted eigenfunction on the left evaluated at the points where we had data. (right) A plot of the misclassified
points (less than 0.5% of the data); each of these points lies (to the eye) on the boundary between the
invariant sets

be used to “stitch” together this ensemble of trajectories to form a single coherent
picture.

However, because there aremultiple basins of attraction, the leading eigenfunctions
appear to be discontinuous (Mauroy et al. 2013) and supported only on the appropriate
basin of attraction. In principle, our computation could be done “all at once” using
a single D and applying EDMD to the complete data set. To enforce the compactly
supported nature of the eigenfunctions regardless of which dictionary we use, we
will proceed in a two-tiered fashion. First, the basins of attraction will be identified
using all of the data and a dictionary with support everywhere we have data. Once
we have identified these basins, both state space and the data will be partitioned into
subdomains based on the numerically identified basins. The EDMD procedure will
then be run on each subdomain and the corresponding partitioned data set individually.

4.2.1 Locating Basins of Attraction

Figure 5 highlights the first step: partitioning of state space into basins of attraction.We
used a dictionary consisting of the constant function and 1,000 radial basis functions
(RBFs) (the thin plate splines described in Sect. 3), where k-means clustering (Bishop
2006) on the full data set was used to choose the RBF centers. RBFs were chosen
here because of the geometry of the computational domain; indeed, RBFs are often
a fundamental component of “mesh-free” methods that avoid the non-trivial task of
generating a computational mesh (Liu 2010).

The leading (continuous-time) eigenvalue isλ0 = −10−14 which corresponds to the
constant function. The second eigenfunction, shown in the leftmost image of Fig. 5, has
λ1 = −10−3, which should be considered an approximation of zero. The discrepancy
between the numerically computed eigenfunction and the theoretical one is due to the
choice of the dictionary. The analytical eigenfunction possesses a discontinuity on
the edge of the basin of attraction (i.e., the stable manifold of the saddle point at the
origin), but discontinuous functions are not in the space spanned by RBFs. Therefore,
the numerically computed approximation “blurs” this edge as shown in Fig. 5.
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The scatter plot in the center of Fig. 5 shows the data points colored by the first non-
trivial eigenfunction. There is good qualitative agreement between the numerically
computed basin of attraction and the actual basin. By computing the mean value of
ϕ1 on the data and using that value as the threshold that determines which basin of
attraction a point belongs to, the EDMD approach misclassifies only 46 of the 104 data
points, resulting in an error of only 0.5% as shown by the rightmost plot. As a result,
the leading eigenfunctions computed by EDMD are sufficiently accurate to produce
a meaningful partition of the data.

4.2.2 Parameterizing a Basin of Attraction

Now that the basins of attraction have been identified, the next task is to develop a
coordinate system or parameterization of the individual basins. To do so, we will use
the eigenfunctions associatedwith the eigenvalues of the system linearization about the
corresponding fixed point. Because these fixed points are spirals, this parameterization
can be realized using the amplitude and phase of onemember of the complex-conjugate
pair of eigenfunctions. To approximate these eigenfunctions, we first partition our data
into two sets asmentioned above using the leadingKoopman eigenfunctions (including
the misclassified data points). On each subset of the data, the k-means procedure was
run again to select a new set of 1000 RBF centers, and this “adjusted” basis along with
the constant function comprised the D used by EDMD. Figure 6 shows the amplitude
and phase of the eigenfunction with eigenvalue closest to −0.25 + 1.387ı computed
using the data in each basin of attraction. The computed eigenvalues agree favorably
with the analytically obtained eigenvalue; the basin of the spiral at (1, 0) has the
eigenvalue −0.237+ 1.387ı , and the basin of the spiral at (−1, 0) has the eigenvalue
−0.24 + 1.35ı .

Figure 6 demonstrates that the amplitude and phase of a Koopman eigenfunction
forms something analogous to an “action–angle” parameterization of the basin of
attraction. Due to the nonlinearity in the Duffing oscillator, this parameterization is
more complicated than an appropriately shifted polar coordinate system and is, there-
fore, not the parameterization that would be generated by linearization about either
(±1, 0). The level sets of the amplitude of this eigenfunction are the so-called isosta-
bles (Mauroy et al. 2013). One feature predicted in that manuscript is that the 0-level
set of the isostable is the fixed point in the basin of attraction; this feature is reflected
in Fig. 6 by the blue region, which corresponds to small values of the eigenfunction
that are near the fixed points at (±1, 0). Additionally, a singularity in the phase can be
observed there. The EDMD approach produces noticeable numerical errors near the
edges of the basin. These errors can be due to a lack of data or due to the singularities
in the eigenfunctions that can occur at unstable fixed points (Mauroy andMezic 2013).

In this section, we applied the EDMD procedure to deterministic systems and
showed that it produces an approximation of the Koopman operator. With a sensible
choice of data and D, we showed that EDMD generates a quantitatively accurate
approximation of the Koopman eigenvalues, eigenfunctions, and modes for the linear
example. In the second example, we used the Koopman eigenfunctions to identify and
parameterize the basins of attraction of the Duffing equation. Although the EDMD
approximation of the eigenfunctions could be made more accurate with more data,
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Fig. 6 (top) Amplitude and phase of the Koopman eigenfunction with λ = −0.237+ 1.387i (analytically,
−0.250+ 1.392i) for the stable spiral at (1, 0). (bottom) The same pair of plots for the spiral at (−1, 0). In
all four images, the data points are colored by value of the eigenfunction. Near the equilibria, the level sets
of the eigenfunctions are included as a guide for the eye. Although there are errors near the “edge” of the
basin of attraction, the amplitude and phase of this eigenfunction can serve as a polar coordinate system for
the corresponding basin of attraction

it is still accurate enough to serve as an effective parameterization. As a result, the
EDMDmethod can be useful with limited quantities of data and should be considered
an enabling technology for data-driven approximations of the Koopman eigenvalues,
eigenfunction, and modes.

5 Stochastic Data and the Kolmogorov Backward Equation

The EDMD approach is entirely data driven and will produce an output regardless of
the nature of the data given to it. However, if the results of EDMDare to bemeaningful,
then certain assumptions must be made about the dynamical system that produced the
data used. In the previous section, it was assumed that the data were generated by a
deterministic dynamical system; as a result, EDMD produced approximations of the
tuples of Koopman eigenfunctions, eigenvalues, and modes.

Another interesting case to consider is when the underlying dynamical system is a
Markov process, such as a stochastic differential equation (SDE). For such systems,
the evolution of an observable is governed by the Kolmogorov backward (KB) equa-
tion [33], whose “right-hand side” has been called the “stochastic Koopman operator”
(SKO) (Mezić 2005). In this section, we will show that EDMD produces approxi-
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mations of the eigenfunctions, eigenvalues, and modes of the SKO if the underlying
dynamical system happens to be a Markov process.

To accomplish this, we will prove that the EDMD method converges to a Galerkin
method in the large-data limit. After that, we will demonstrate its accuracy with finite
amounts of data by applying it to the model problem of a one-dimensional SDE with a
double-well potential, where the SKO eigenfunctions can be computed using standard
numerical methods.

Another proposed application of the Koopman operator is for the purposes ofmodel
reduction, which was first explored in Mezić (2005) and later work such as Froy-
land et al. (2014). Model reduction based on the Koopman eigenfunctions is equally
applicable in both deterministic and stochastic settings, but we choose to present it for
stochastic systems to highlight the similarities between EDMD andmanifold learning
techniques such as diffusion maps (Nadler et al. 2005; Coifman and Lafon 2006). In
particular, we apply EDMD to an SDE defined on a “Swiss roll,” which is a nonlinear
manifold often used to test manifold learning methods (Lee and Verleysen 2007). The
purpose of this example is twofold: First, we show that a data-driven parameterization
of the Swiss roll can be obtained using EDMD, and second, we show that this para-
meterization will preferentially capture “slow” dynamics on that manifold before the
“fast” dynamics when the noise is made anisotropic.

5.1 EDMD with Stochastic Data

For a discrete-time Markov process,

x �→ F(x;ω),

the SKO (Mezić 2005) is defined as

(Kψ)(x) = E[ψ(F(x;ω))], (36)

where ω ∈ �s is an element in the probability space associated with the stochastic
dynamics (�s) and probability measure P , E denotes the expected value over that
space, and ψ ∈ F is a scalar observable. The SKO (Mezić 2005) takes an observable
of the full system state and returns the conditional expectation of the observable “one
timestep in the future.” Note that this definition is compatible with the deterministic
Koopman operator because E[ψ(F(x))] = ψ(F(x)) if F is deterministic.

As with the deterministic case, we assume the snapshots in X ∈ R
N×M were

generated by randomly placing initial conditions on M with the density of ρ(x) and
that M is sufficiently large. Once again, ρ does not need to be an invariant measure
of the underlying dynamical system; it is simply the sampling density of the data.
Due to the stochastic nature of the system, there are two probability spaces involved:
one related to the samples in X and another for the stochastic dynamics. Because our
system has “process” rather than “measurement” noise, the xi are known exactly, and
the interpretation of the Gram matrix, G, remains unchanged. Therefore,
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lim
M→∞ Gi, j =

∫

M
ψ∗
i (x)ψ j (x)ρ(x)dx = 〈

ψi , ψ j
〉
ρ

,

by the law of large numbers when M is large enough. This is identical to the deter-
ministic case. However, the definition of A will change. Assuming that the choice of
ω and x are independent,

lim
M→∞ Ai, j = E[ψ∗

i (Kψ j )] =
∫

M×�s

ψ∗
i (x)ψ j (F(x,ω))ρ(x) dxdP(ω)

=
∫

M
ψ∗
i (x)E[ψ j (F(x,ω))]ρ(x) dx = 〈

ψi ,Kψ j
〉
ρ

.

.

The elements of A now contain a second integral over the probability space that
pertains to the stochastic dynamics, which produces the expectation of the observable
in the expression above.

The accuracy of the resulting method will depend on the dictionary, D, the man-
ifold on which the dynamical system is defined, the data, and the dynamics used to
generate it. One interesting special case is if the basis functions are indicator functions
supported on “boxes.” When this is the case, EDMD is equivalent to the widely used
Ulam Galerkin method (Bollt and Santitissadeekorn 2013; Dellnitz et al. 2001). This
equivalence is lost for other choices ofD and ρ, but as we will demonstrate in the sub-
sequent sections, EDMD can produce accurate approximations of the eigenfunctions
for many other choices of these quantities.

The “stochastic Koopman modes” can then be computed using (20), but they too
must be reinterpreted as the weights needed to reconstruct the expected value of the
full-state observable using the eigenfunctions of the SKO. Due to the stochastic nature
of the dynamics, the Koopman modes can no longer exactly specify the state of the
system. However, they can be used as approximations of the Koopman modes that
would be obtained in the “noise-free” limit when some appropriate restrictions are
placed on the nature of the noise and the underlying dynamical system. Indeed, these
are the modes we are truly computing when we apply DMD or EDMD to experimental
data, which by its very nature contains some noise.

5.2 A Stochastic Differential Equation with a Double-Well Potential

In this section,wewill show that the EDMDprocedure is capable of accurately approx-
imating the eigenfunctions of the stochastic Koopman operator by applying it to an
SDEwith a double-well potential. Althoughwe do not have analytical solutions for the
eigenfunctions, the problem is simple enough that we can accurately compute them
using standard numerical methods.

5.2.1 The Double-Well Problem and Data

First, consider an SDE with a double-well potential. Let the governing equations for
this system be
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Fig. 7 Double-well potential
U (x) = −2(x2 − 1)2x2

dx = −∇U (x)dt + σdWt , (37)

where x is the state, −∇U (x) the drift, σ is the (constant) the diffusion coefficient,
and Wt is a Wiener process. Furthermore, no-flux boundary conditions are imposed
at x = ±1. For this problem, we let U (x) = −2(x2 − 1)2x2 as shown in Fig. 7.

The Fokker–Planck equation associated with this SDE is

∂ρ(x, t)

∂t
= − ∂

∂x

(

−∂U

∂x
ρ(x, t)

)

+ σ 2

2

∂2ρ(x, t)

∂x2
= Pρ, (38)

where ρ is a probability density with ∂xρ(x, t)
∣
∣
x=±1 = 0 due to the no-flux bound-

ary conditions we impose, and P̂ is the infinitesimal generator of the semigroup of
Perron–Frobenius operators. The adjoint of the Perron–Frobenius operator determines
the Kolmogorov backward equation and thus defines the generator of the semigroup
of stochastic Koopman operators, K̂ = P̂†, which we refer to as the continuous-
time stochastic Koopman operator. In the remainder of this section, we focus on the
continuous-time SKO rather than on its discrete-time analog like we did in Sect. 2.
For this example,

K̂ψ = −∂U

∂x

∂ψ

∂x
+ σ 2

2

∂2ψ

∂x2
(39)

with Neumann boundary conditions, ∂xψ
∣
∣
x=±1 = 0. To directly approximate the

Koopman eigenfunctions, (39) is discretized in space using a second-order finite-
difference scheme with 1024 interior points. The eigenvalues and eigenvectors of the
resulting finite-dimensional approximation of the Koopman operator will be used to
validate the EDMD computations.

The data are 106 initial points on x ∈ [−1, 1] drawn from a uniform distribution,
which constitute X , and their positions after �t = 0.1, which constitute Y . The
evolution of each initial condition was accomplished through 102 steps of the Euler–
Maruyama method (Higham 2001; Kloeden and Platen 1992) with a timestep of 10−3

using the double-well potential in Fig. 7. Note that only the initial and final points in
this trajectory were retained, so we have access to 106 and not 108 snapshot pairs. The
dictionary chosen is a discontinuous spectral element basis that splits x ∈ [−1, 1] into
four equally sized subdomains with up to tenth-order Legendre polynomials on each
subdomain (see Sect. 3) for a total of forty degrees of freedom.
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Fig. 8 (left) First six eigenvalues of the stochastic Koopman operator obtained with a finite-difference
discretization of K. (right) The first six eigenvalues obtained with the EDMD approach. In both plots,
a marker is placed every tenth data point. While there is good quantitative agreement between the true
eigenvalues and those obtained with EDMD, some small “noise” due to quadrature errors does appear in
the right plot as σ → 0

(a) (b) (c)

Fig. 9 A comparison of the leading non-trivial eigenfunction computed with the finite-difference method
and EDMD for: a σ = 0.2, b σ = 0.5, and c σ = 1.0. As with the eigenvalues, there is excellent agreement
between the “true” and data-driven approximations of this eigenfunction, though there are small quantitative
differences in the approximation

5.2.2 Recovering the Koopman Eigenfunctions and Eigenvalues

Because the Koopman operator is infinite dimensional, we will clearly be unable to
approximate all of the tuples. Instead, we focus on the leading (i.e., most slowly
decaying) tuples, which govern the long-term dynamics of the underlying system. In
this example, we seek to demonstrate that our approximation is: (a) quantitatively
accurate and (b) valid over a range of coefficients, σ , and not solely in the small (or
large) noise limits.

Figure 8 shows the first six eigenvalues obtained using a finite-difference discretiza-
tion of the Koopman operator and the EDMD approximation as a function of σ . In this
problem, the constant function ϕ0 = 1 is always an eigenfunction of the Koopman
operator with λ0 = 0 for all values of σ . Because D contains the constant function, it
should be no surprise that the EDMDmethod is able to identify it as an eigenfunction.
Although trivial, the existence of this eigenfunction is a “sanity check” for the method.

More interesting is the first non-trivial eigenfunction which has the eigenvalue λ1.
The change in ϕ1 as a function of σ is shown in Fig. 9. As with the eigenvalue,
there is good agreement between EDMD and the directly computed eigenfunctions
at different values of σ . For all values of σ , ϕ1 is an odd function; what changes is
how rapidly ϕ1 transitions from its maximum to its minimum. When σ is small, this
transition is rapid, and ϕ1 will approach a step function as σ → 0. When σ grows,
this eigenfunction is “smoothed out” and the transition becomes slower. In the limit
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as σ → ∞, the dynamics of the problem are dominated by the diffusion term, and ϕ1
will be proportional to cos(πx/L) as is implied by the rightmost plot in the figure.

In many system-identification algorithms [e.g., Juang (1994)], one often constructs
deterministic governing equations from inherently stochastic data (either due to mea-
surement or due to process noise). Similarly, methods like DMD have been applied to
noisy sets of data to produce an approximation of theKoopmanmodes and eigenvalues
with the assumption that the underlying system is deterministic. In this example, this
is equivalent to using the output of EDMD with data taken with 0 < σ � 1 as an
approximation of the Koopman tuples that would be obtained with σ = 0.

For certain tuples, this is a reasonable approach. Taking σ → 0, λ3 and λ4 and ϕ3
and ϕ4 are good approximations of their deterministic counterparts. In particular, ϕ3
and ϕ4 are one-to-one with their associated basin of attraction and appear to possess a
zero at the stable fixed point. However, these approximate eigenfunctions lack some
important features such as a singularity at x = 0 that occurs due to the unstable fixed
point there. Therefore, both eigenfunctions are good approximations of their σ = 0
counterparts, but cannot be “trusted” in the vicinity of an unstable fixed point.

For other tuples, even a small amounts of noise can be important. Consider the
“slowest” nonzero eigenvalue, λ2, which appears to approach −4 as σ → 0, but is not
obtained by the EDMDmethod when σ = 0. Formally, the existence of an eigenvalue
of −4 is not surprising. The fixed point at x = 0 is unstable with λ = 4, and in
continuous time, if (λn ,ϕn) is an eigenvalue/eigenfunctionpair then (kλn ,ϕk

n ) is, at least
formally, an eigenvalue/eigenfunction pair for any scalar k. Using an argument similar
to Matkowsky and Schuss (1981), it can be shown that ϕ2(x) = C0 exp(−4x2/σ 2)+
O(σ 2) as σ → 0 where C0 is chosen to normalize ϕ2. However, this approaches a
delta function as σ → 0 and therefore leaves the subspace of observables spanned
by our dictionary. When this occurs, this tuple appears to “vanish,” which is why it
does not appear in the σ = 0 limit. As a result, when applying methods like EDMD
or DMD to noisy data, the spectrum of the finite-dimensional approximation is not
necessarily a good approximation of the spectrum that would be obtained with noise-
free data. Some of the tuples, such as those containing ϕ1, ϕ3, and ϕ4, have eigenvalues
that closely approximate the ones found in the deterministic problem. However, others
such as the tuple containing ϕ2 do not. Furthermore, the only method to determine that
λ2 can be neglected is by directly examining the eigenfunction. As a result, when we
apply methods like DMD/EDMD to noisy data with the purpose of using the spectrum
to determine the timescales and behaviors of the underlying system, we must keep in
mind that not all of the eigenvalues obtained with noisy data will be present if “clean”
data are used instead.

5.2.3 Rate of Convergence

Among other things, the performance of the EDMD method is dependent upon the
number of snapshots provided to it, the distribution of the data, the underlying dynam-
ical system, and the dictionary. In this section, we examine the convergence of EDMD
to a Galerkin method as the number of snapshots increases in order to provide some
intuition about the “usefulness” of the eigenfunctions obtained without an exhaustive
amount of data. To do so, we generated a larger set of data consisting of 107 ini-
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Fig. 10 (left) Plot of the first non-trivial eigenvalue as a function of the number of data points with σ = 1.
The red dashed line denotes the “exact” value computed using direct numerical methods. Although the
EDMD approximation is poor with M < 100, it quickly becomes more accurate as M is increased. (right)
Plot of the error, i.e., ‖ϕ1,EDMD − ϕ1,True‖, as a function of M . Because the scalar products in (12) are
evaluated using Monte Carlo integration, the method converges like O(M−1/2) as shown by the fit on the
right (Color figure online)

tial conditions chosen from a spatially uniform distribution for the case with σ = 1.
Each initial condition was propagated using the Euler–Maruyama method described
in the previous section, but only the initial and terminal states were retained. Then, we
applied EDMD using the same dictionary to subsets of the data, computed the leading
nontrivial eigenvalue and eigenfunction, and compared the results to the “true” leading
eigenfunction and eigenvalue computed using a finite-difference approximation of the
stochastic Koopman operator.

Figure 10 shows the convergence of the leading non-trivial eigenvalue and eigen-
function as a function of the number of snapshots, M . In the rightmost plot, we define
the error as ‖ϕ1,EDMD−ϕ1,True‖ after both eigenfunctions have been normalized so that
‖ϕ1,EDMD‖2 = ‖ϕ1,True‖2. As expected, EDMD is inaccurate when M is small (here,
M < 100); there is not enough data to accurately approximate the scalar products.
For M > 103, the eigenfunction produced by EDMD have the right shape, and the
eigenvalue is approaching its true value. For M > 104, there is no “visible” difference
in the leading eigenvalue, and the error in the leading eigenfunction is less than 10−3.

To quantify the rate of convergence, we fit a line to the plot of error versus M in
the right panel of Fig. 10. As expected, EDMD converges like M−0.49, which is very
close to the predicted value of O(M−0.5) associated with Monte Carlo integration.
Because this problem is stochastic, we cannot increase the rate of convergence by
uniform sampling (the integral over the probability space associatedwith the stochastic
dynamics will still converge like O(M−1/2)), even though that is a simple method for
enhancing the rate of convergence for deterministic problems.

To provide some intuition about what the eigenfunctions with σ = 1 look like,
Fig. 11 plots the leading nontrivial eigenfunction for M = 1623, 14384, and 1128837.
Ultimately, the purpose of EDMD is to produce effective approximations of the lead-
ing Koopman eigenfunctions. As shown in this subsection, EDMD is qualitatively
accurate even at the smallest values of M , but there are clearly some numerical issues
at the edges of the domain and near x = 0 where the discontinuities in the numer-
ically computed eigenfunctions can occur with our choice of dictionary. To obtain
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Fig. 11 Comparison of the EDMD approximation of the leading non-trivial Koopman eigenfunction with
σ = 1 for M = 1623, 14384, and 1128837 with the “exact” solution obtained using direct numerical
methods. The EDMD solution is similar to the exact solution even when M ∼ 103, but we would not
characterize it as quantitatively accurate until M > 104. Beyond M > 105, EDMD and the exact solution
are visually identical

a more quantitatively accurate solution, additional data points are required. When
M = 14384, the numerical issues at the boundaries and the discontinuity at x = 0
have diminished. As shown in the plot withM = 1128837, this process continues until
the EDMD eigenfunction is visually identical to the true eigenfunction. In principle,
highly accurate approximations of the leading Koopman eigenfunctions using EDMD
are possible, but because EDMD for stochastic systems is a Monte Carlo method, the
relatively slow rate of convergence may make the amount of data required to obtain
this level of accuracy infeasible in practice.

5.3 Parameterizing Nonlinear Manifolds and Reducing Stochastic Dynamics

In this section, we will briefly demonstrate how the EDMD method can be used to
parameterize nonlinear manifolds and reduce stochastic differential equations defined
on those manifolds. Everything done here could also be done for a deterministic
system; we chose to use an SDE rather than an ODE only to highlight the similarities
between EDMD and nonlinear manifold learning techniques such as diffusion maps,
and not because of any restriction on the Koopman approach.We proceed in two steps:
First,wewill show that data fromanSDEdefined on theSwiss roll,which is a nonlinear
manifold often used as a test of nonlinear manifold learning techniques (Nadler et al.
2005, 2006; Coifman and Lafon 2006; Lee and Verleysen 2007); in conjunction with
the EDMD procedure can generate a data-driven parameterization of that manifold.
For this first example, isotropic diffusion is used, so there is no “fast” or “slow” solution
component that can be meaningfully neglected. Instead, we will show that the leading
eigenfunctions are one-to-one with the “length” and “width” of the Swiss roll. Then,
we alter the SDE and introduce a “fast” component by making the diffusion term
anisotropic. In this case, EDMD will “pick” the slower components before the faster
ones. We should stress that in this application, EDMD could be used as a replacement
for (rather than in conjunction with) other methods such as diffusion maps (DMAPs)
and its variants (Nadler et al. 2005, 2006; Coifman andLafon 2006;Dsilva et al. 2013).
Although there are advantages to combining diffusionmaps andKoopman (Budisic and
Mezic 2012), exploration of those approaches is beyond the scope of this manuscript.
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Fig. 12 First two non-trivial Koopman eigenfunctions for the diffusion process on the “Swiss roll” using
3 × 104 data points. The first eigenfunction is one-to-one with s1 (the “length” of the Swiss roll), and the
second eigenfunction is one-to-one with s2. As a result, they could act as a data-driven parameterization
of this nonlinear manifold. The eigenvalues associated with these eigenfunctions are −0.234 and −0.491
compared to the theoretical values of − 2

9 and − 1
2 respectively

5.3.1 Parameterizing a Nonlinear Manifold with a Diffusion Process

For this example, the data are generated by a diffusion process on a rectangular domain,

ds = 2dW t, (40)

where s = (s1, s2) is the state and W t is a two-dimensional Wiener process with
s1 ∈ [0, 3π ] and s2 ∈ [0, 2π ]. No-flux boundary conditions are imposed at the domain
edges. If one had access to the true variables, SKO could be written as

Kψ = 2∂2s1ψ + 2∂2s2ψ, (41)

also with no-flux boundary conditions; in this particular problem, the SKO is self-
adjoint and therefore equivalent to the Perron–Frobenius operator. The eigenfunctions
are ϕi j = cos (is1/3) cos ( js2/2) with the eigenvalues λi j = −2(i2/9 + j2/4). Note
that the leading eigenfunctions, ϕ1,0 and ϕ0,1, are cos (s1/3) and cos (s2/2), which are
one-to-one with s1 and s2 on [0, 3π ] and [0, 2π ], respectively, and could be used to
parameterize state space if s1 and s2 were not known.

In this example, the true data (i.e., the state expressed in terms of s1 and s2) on the
rectangle are mapped onto a “Swiss roll” via the transformation

g(s) =
⎡

⎣
(s1 + 0.1) cos(s1)

s2
(s1 + 0.1) sin(s1)

⎤

⎦ , (42)

which, among other things, has introduced a new spatial dimension. In all that fol-
lows, the EDMD approach is applied to the three-dimensional, transformed variables
and not the two-dimensional, true variables. Our objective here is to determine a 2-
parameter description of what initially appears to be three-dimensional data, directly
from the data.
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The data given to EDMD were generated by 104 initial conditions uniformly dis-
tributed in s1 and s2 that were evolved for a total time of �t = 0.1 using the
Euler–Maruyamamethodwith 100 timesteps. Then, both the initial and terminal states
of the system were mapped into three dimensions using (42). Next, a dictionary must
be defined. However, M is unknown (indeed, parameterizing M is the entire point),
so the domain � is taken to be the “box” in R3 such that x ∈ [−3π − 0.1, 3π + 0.1],
y ∈ [0, 2π ] and z ∈ [−3π −0.1, 3π +0.1]. In this larger domain, the spectral element
basis consisting of 4096 rectangular subdomains (16 each in x , y, and z) with up to
linear polynomials in each subdomain is employed. Because M ⊂ �, extraneous and
redundant functions are expected, and G is often ill conditioned.

Figure 12 shows the transformed data colored by the first and second non-trivial
eigenfunctions of the Koopman operator. Unlike many of the previous examples, there
are clear differences in the analytical and computed eigenvalues and eigenfunctions.
However, the first eigenfunction is one-to-onewith the “arclength” along the Swiss roll
(i.e., the s1 direction), and the second eigenfunction is one-to-onewith the “width” (i.e.,
the s2 direction). Furthermore, the first two eigenvalues obtained with EDMD, -0.234
and -0.491, arrange the eigenfunctions in the correct order and compare favorably with
the true eigenvalues of −2/9 and −1/2. Therefore, while our computed Koopman
eigenfunctions may not be highly accurate, they are accurate enough to parameterize
the nonlinear manifold, which was the goal.

The procedure for incorporating new data points is simple: The embedding for any
x̃ ∈ M can be obtained simply by evaluating the relevant eigenfunctions at x̃. It should
be stressed that although the ϕ are defined on �, their value is only meaningful on (or
very near) M because that is where the dynamical system is defined. Therefore, these
new points must be elements ofM if the resulting embedding is to have any meaning.

5.3.2 Reducing Multiscale Dynamics

In the previous example, the noisewas isotropic, so the dynamicswere equally “fast” in
both directions. Because we are interested in themost slowly decaying eigenfunctions,
the eigenfunction that is one-to-one with s1 is more important because it decays more
slowly than the eigenfunction that is one-to-one with s2. In this example, we introduce
anisotropic diffusion and therefore create “fast” and “slow” directions on the nonlinear
manifold. The purpose of this example is to show that EDMDwill “reorder” its ranking
of the eigenfunctions and recover the slower component before the faster one if the
level of anisotropy is large enough.

Our particular example is

ds1 = 2

ε
dW1, (43a)

ds2 = 2dW2, (43b)

with ε = 0.1, which is again transformed onto the same Swiss roll. Although the
domain in s1 is larger than it is in the s2 component, the dynamics of s1 are now signif-
icantly faster than those of s2 due to a much larger amount of “noise.” Because the two
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Fig. 13 First two non-trivial Koopman eigenfunctions for the multiscale diffusion process in (43) on the
“Swiss roll” computed using 3 × 104 data points. The eigenvalues associated with these eigenfunctions
are −0.504 (analytically it has the value −1/2) and −2.1 (analytically, −2). In contrast to Fig. 12, these
eigenfunctions are a parameterization of the “width” of the Swiss roll (s2) and a higher harmonic. As a result,
the eigenfunctions computed by EDMD take into account both the geometry of the underlying manifold
and the dynamics defined on it

random processes in (43) are independent, the eigenfunctions themselves should not
change. However, the eigenvalues associated with each of the eigenfunctions should.

Figure 13 shows how EDMD captures this difference in the underlying diffusion
process. Before, the first two non-trivial eigenfunctions were one-to-one with s1 and s2
respectively; now, the first is one-to-one with s2, and the second is a higher harmonic
(but still only a function of s2). The eigenfunction that is one-to-one with s1 still exists,
but it is no longer associated with a leading eigenvalue. Analytically, its eigenvalue is
−20/9 though EDMD computes a value of −2.3. Therefore, it is no longer a leading
eigenfunction, but still is approximated by the EDMD procedure.

This section explored the application of the EDMD method to data taken from a
Markov process. Algorithmically, the method remains the same regardless of how the
data were generated, but as demonstrated here, EDMD computes an approximation
of the tuples associated with SKO rather than the Koopman operator. To demonstrate
the effectiveness of EDMD, we applied the method to a simple SDE with a double-
well potential, and an SDE defined on a Swiss roll, which is a nonlinear manifold
often used as a benchmark for manifold learning techniques. One advantage of the
Koopman approach for applications such as manifold learning or model reduction is
that the Koopman tuples take into account both the geometry of the manifold, through
the eigenfunction and mode, and the dynamics, through the eigenvalue. As a result,
the approach taken here is aware of both geometry and dynamics and does not focus
solely on one or the other.

6 Conclusions

In thismanuscript,wepresented adata-drivenmethod that computes approximations of
the Koopman eigenvalues, eigenfunctions, and modes (what we call Koopman tuples)
directly from a set of snapshot pairs. We refer to this method as extended dynamic
mode decomposition (EDMD). The finite-dimensional approximation generated by
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EDMD is the solution to a least-squares problem and converges to a Galerkin method
with a large amount of data. While the usefulness of the Galerkin method depends
on the sampling density and dictionary selected, several “common sense” choices of
both appear to produce useful results.

We demonstrate the effectiveness of the method with four examples: two examples
dealt with deterministic data and two with stochastic data. First, we applied EDMD
to a linear system where the Koopman eigenfunctions are known analytically. Direct
comparison of the EDMD eigenfunctions and the analytic values demonstrated that
EDMD can be highly accurate with the proper choice of data and dictionary. Next, we
applied EDMD to the unforced Duffing equation, for which the Koopman eigenfunc-
tions are not known explicitly. Although more data will increase the accuracy of the
resulting eigenfunctions, they appeared to be accurate enough to effectively partition
the domain of interest and parameterize the resulting partitions.

The final two examples used data generated byMarkov processes. First, we applied
EDMD to data taken from an SDE with a double-well potential and demonstrated the
accuracy of the method by comparing those results with a direct numerical approxi-
mation of the stochastic Koopman operator over a range of diffusion parameters. Next,
we applied EDMD to data from a diffusion process on a “Swiss roll,” which is a non-
linear manifold commonly used as an example for nonlinear dimensionality reduction.
Similar to those methods (see e.g., Coifman and Lafon (2006) and Lee and Verleysen
(2007)), EDMD generated an effective parameterization of the manifold using the
leading eigenfunctions. By making the diffusion anisotropic, we then demonstrated
that EDMD extracts a parameterization that is dynamically, rather than only geomet-
rically, meaningful. Due to the simplicity of this problem, the eigenfunctions remain
unchanged despite the anisotropy; the difference appears in the temporal evolution of
the eigenfunctions, which is dictated by the corresponding set of eigenvalues. As a
result, the purpose of that example was to show that EDMD “ordered” the eigenvalues
of each tuple differently.

The Koopman operator governs the evolution of observables defined on the state
space of a dynamical system. By judiciously selecting how we observe our system,
we can generate linear models that are valid on all of (or, at least, a larger subset
of) state space rather than just some small neighborhood of a fixed point; this could
allow algorithms designed for linear systems to be applied even in nonlinear settings.
However, the tuples of eigenvalues, eigenfunctions, and modes required to do so
are decidedly non-trivial to compute. Data-driven methods such as EDMD have the
potential to allow accurate approximations of these quantities to be computed without
knowledge of the underlying dynamics or geometry. As a result, they could be a
practical method for enabling Koopman-based analysis and model reduction in large
nonlinear systems.
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Appendix: EDMD with Redundant Dictionaries

In this appendix, we present a simple example of applying EDMD to a problem where
the elements of D contain redundancies (i.e., the elements of D are not a basis for
FD ⊂ F). Given full knowledge of the underlying dynamical system, one would
always choose the elements of D to be a basis for FD, but due to our ignorance of
M, a redundant set of functions may be chosen. Our objective here is to demonstrate
that accurate results can still be obtained even if such a choice is made. To separate
quadrature errors from errors resulting from our choice of D, we assume that M is
large enough that the EDMD method has already converged to a Galerkin method in
that the residual is orthogonal to the space spanned by D.

For the purposes of demonstration, we replace K with L = ∂2s , the Laplace–
Beltrami operator defined on the manifold M, where (x, y) = (s, s) for s ∈ [0, 2π)

with periodic boundary conditions, which would correspond to, say, the EDMD pro-
cedure applied to a diffusion process on a periodic domain. A useful basis for this
problem would be ψ̃k(x, y) = exp(ıks) = exp(ık(x + y)), but without prior knowl-
edge ofM, it is difficult to determine this choice should bemade. Because the problem
appears two-dimensional, one may choose a dictionary whose elements have the form
ψm,n(x, y) = exp(ımx + ıny), which contains the ψ̃ but is not linearly independent
on M. The indexes we use for the set of functions are ψk(x, y) = ψm,n(x, y) with
m = (k mod K ) − K/2 and n = ⌊ k

K

⌋ − K/2 with k = 0, 1, . . . , K 2. Here, K ∈ N

is the total number of basis functions in a single spatial dimension.
Following (12), the i, j th element of G is

Gi, j =
∫

M
ψi (x)∗ψ j (x)dx =

∫ 2π

0
eı((m j−mi )s+(n j−ni )s) ds

=
{
2π m j + n j − mi − ni = 0,

0 otherwise.

(44)

Similarly,

Ai, j =
∫

M
ψi (x)∗∂2s ψ j (x)dx =

∫ 2π

0
−(m j + n j )

2eı((m j−mi )s+(n j−ni )s) ds

=
{

−2π(m j + n j )
2 m j + n j − mi − ni = 0,

0 otherwise.

(45)

The diagonal structure we would normally have has been replaced with a more
complex sparsity pattern, and it has a large nullspace (when K = 8, the nullspace is
50-dimensional). To reiterate, there are no advantages to this choice; the redundancies
in D appear due to ignorance about the nature of M, which is the expected situation.
Because G is singular, the use of the pseudoinverse in (12) is critical to obtain a unique
solution.

However, once this is done, there is excellent agreement between the leading eigen-
functions and eigenvalues of L and those computed using EDMD; this is shown in
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(a) (b) (c)

Fig. 14 a A sketch of the manifold s �→ (s, s) where our dynamical system is defined, and the larger
domain, �, on which the elements ofD are defined. b A plot of the leading 56 eigenvalues of ∂2s computed
using EDMD; the redundant functions have increased the dimension of the nullspace from 1 to 50, but
accurately capture the pairs of eigenvalues at −k2 for k = 0, 1, 2, . . . , 8. c A plot of the real part of the first
three non-trivial eigenfunctions shown in black, red, and blue respectively; as expected, they are equivalent
to cos(ks). The imaginary component of the eigenfunctions, which is not shown, captures the sin(ks) terms
(Color figure online)

Fig. 14. The nonzero eigenvalues are quantitatively correct; in particular, pairs of
eigenvalues of the form λ = −k2 are obtained up until k = 8 using K = 8. Although
the maximum (absolute) value of m or n is only 4, it is clear that the superposition
of these functions on M mimics k = 8 modes. The associated eigenfunctions are
shown in Fig. 14c; again, there is excellent agreement between the analytic solution
(i.e., exp(−ıks)) and the EDMD computed solution.

The resulting eigenfunctions can also be evaluated for (x, y) /∈ M, but the functions
have no dynamical meaning there. Indeed, their value is determined entirely by the
regularization used and has no relationship to the underlying dynamical system, which
is defined solely on M. This should be contrasted to related works such as Froyland
et al. (2014) where the dynamical system is truly defined on �, and M is simply the
slow manifold where the eigenfunctions evaluated at (x, y) /∈ M are meaningful as
they contain information about the fast dynamics of the system.

Overall, the performance of the EDMD procedure is dependent upon the subspace,
FD and not the precise choice of D. There are numerical advantages of choosing
D to be a basis for FD, but in many circumstances this cannot be done without
prior knowledge ofM. As a result, there are likely benefits to combining EDMDwith
manifold learning techniques [see, e.g., Coifman and Lafon (2006), Lee andVerleysen
(2007), Erban et al. (2007) and Sirisup et al. (2005)]. These methods can numerically
approximate M, which could allow a more effective choice of the elements of D and
their associated numerical benefits. As shown here, these methods are not essential to
the algorithm, but M must be identified through some means if EDMD is to be used
for more than just data analysis.
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