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Lecture 11: Eigenvalues and Eigenvectors

Consider a vector space V and the linear transformation transformation

F : V 7→ V. (1)

We say that λ ∈ R (or C) is an eigenvalue of F if there exists a nonzero vector v ∈ V such that

F (v) = λv. (2)

We call v eigenvector of F corresponding to the eigenvalue λ.

Note that, by definition, we are not allowing eigenvectors to be zero, i.e., v = 0V is not an eigen-
vector. If we allow v = 0V to be an eigenvector, then any number λ would be an eigenvalue of F .
However, we can have eigenvectors corresponding to zero eigenvalues. In this case the eigenvector
belongs to the nullspace of F , since λ = 0⇒ F (v) = 0V .

Next, suppose that V is n-dimensional and let BV = {u1, . . . , un} be a basis of V . Denote by ABV
be the matrix associated with the linear transformation F relative to the basis BV . We have seen
that the coordinates of F (v) relative to the basis BV can be expressed as

[F (v)]BV = ABV [v]BV (3)

where

[v]BV =

x1
...
xn

 (4)

are the coordinates of v relative to BV . We have

F (v) = λv ⇔ ABV [v]BV = λ[v]BV . (5)

Hence, computing eigenvalues and eigenvectors of matrices is equivalent to compute eigenvalues
and eigenvectors of linear transformations between finite-dimensional vector spaces.

Remark: Eigenvalues and eigenvectors can be defined also for linear transformations between
infinite-dimensional vector spaces. For example, consider the derivative operator

F : C(∞)(R) 7→ C(∞)(R),

f(x) 7→ df(x)

dx
.

We have seen that d/dx defines a linear transformation (linear operator) between infinite-dimensional
vector spaces. an eigenvector of d/dx corrersponding to an eigenvalue λ has the form ψ(x) = eλx.
In fact

deλx

dx
= λeλx ⇒ dψ(x)

dx
= λψ(x). (6)

Eigenvectors belonging to function spaces are often called eigenfunctions.
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Eigenvalues of a matrix. Consider a n×n matrix A with real or complex coefficients. If λ ∈ R (or
C) and v ∈ Rn (or Cn) are, respectively, and eigenvalue of A and an eigenvector of A corresponding
to λ then

Av = λv. (7)

Equation (7) is also called eigenvalue problem for the matrix A. We have

Av = λv ⇔ (A− λI)v = 0Rn , (8)

Hence, the eigenvector v (which is non-zero by definition) is in the nullspace of the matrix (A−λI).
This implies that the matrix A− λI is not injective and therefore not invertible. Equivalently, by
using the matrix rank theorem we have that

rank(A− λI) = n− dim(N(A− λI))︸ ︷︷ ︸
≥1

< n. (9)

This shows that the matrix (A− λI) is not full rank and therefore it is not invertible. A necessary
and sufficient condition for (A− λI) to be not invertible is

p(λ) = det(A− λI) = 0 (characterististic equation), (10)

The polynomial
p(λ) = det(A− λI) (11)

is known as characteristic polynomial associated with the matrix A. The characteristic equation
(10) implies that the eigenvalues of a matrix A are roots of the characteristic polynomial p(λ).

How many eigenvalues do we have for a given n× n matrix A? The characteristic polynomial p(λ)
associated with a n × n matrix A is a polynomial of degree n with real or complex coefficients
(complex coefficients if the matrix A has complex entries). By using the fundamental theorem of
algebra (see Lecture 3) we conclude that every n×n matrix has exactly n complex eigenvalues. Some
of such eigenvalues may be repeated, in which case we say that they have “algebraic multiplicity”
greater than one. In other words, the multiplicity of an eigenvalue as a root of the characteristic
polynomial is called algebraic multiplicity the eigenvalue.

If the matrix A is real then the characteristic polynomial p(λ) has real coefficients and therefore
the roots of p(λ) are either real or complex conjugates.

Example 1: Compute the eigenvalues of the matrix

A =

[
2 3
3 −6

]
. (12)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
2− λ 3

3 −6− λ

]
= −(2− λ)(6 + λ)− 9, (13)

i.e.,
p(λ) = λ2 + 4λ− 21. (14)
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The eigenvalues of A are roots of p(λ). Setting p(λ) = 0 yields

λ1,2 = −2±
√

4 + 21 = −2± 5 ⇒ λ1 = 3, λ2 = −7. (15)

In this case, both eigenvalues have algebraic multiplicity one, i.e., they are simple roots of p(λ).
The characteristic polynomial can be factored as

p(λ) = (λ− 3)(λ+ 7), (16)

suggesting once again that λ = 3 and λ = −7 are simple roots.

Example 2: Compute the eigenvalues of the matrix

A =


2 5 1 −5
0 4 3 0
0 0 2 4
0 0 0 1

 . (17)

In this case we have

A− λI =


2− λ 5 1 −5

0 4− λ 3 0
0 0 2− λ 4
0 0 0 1− λ

 (18)

and
p(λ) = det(A− λI) = (2− λ)2(4− λ)(1− λ). (19)

Hence, the matrix A has three eigenvalues:

λ1 = 2 with algebraic multiplicity 2,

λ2 = 4 with algebraic multiplicity 1,

λ3 = 1 with algebraic multiplicity 1.

Note that the eigenvalues coincides with the diagonal entries of the matrix A. This is a general fact
about upper or or lower triangular matrices, i.e., the eigenvalues of such matrices coincides with
the diagonal entries of the matrix. For example, the following matrix

A =


1 1 1 1
0 1 3 0
0 0 0 −1
0 0 0 0

 . (20)

has two eigenvalues λ1 = 1 and λ2 = 0, both with algebraic multiplicity 2.

Example 3: Compute the eigenvalues of the following matrix

A =

[
1 2
−1 1

]
. (21)

The characteristic polynomial is

p(λ) = det(A− λI) = det

[
1− λ 2
−1 1− λ

]
= −(1− λ)2 + 2, (22)
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i.e.,
p(λ) = λ2 − 2λ+ 3. (23)

Hence, the eigenvalues are
λ1 = 1 + i

√
2 λ2 = 1− i

√
2 (24)

Note that λ1 and λ2 are complex conjugates eigenvalues. Clearly, for 2×2 matrices with real entries
the fundamental theorem of algebra tells us that the eigenvalues are either both real or complex
conjugates.

Eigenvectors and eigenspaces. By definition, an eigenvector of a n × n matrix A is a nonzero
vector v ∈ Rn such that

Av = λv. (25)

This means that v is an element of the nullspace of (A− λI) since v is mapped onto the zero of Rn

by (A− λI). We know that such a nullspace is a vector subspace of Rn.

In the context of eigenvalue problems, we call N(A − λI) the eigenspace of A corresponding to
the eigenvalue λ. The dimension of the eigenspace N(A − λI) is called geometric multiplicity of
the eigenvalue λ. By definition, an eigenvector cannot be zero and therefore the eigenspace corre-
sponding to each eigenvalue has dimension at least equal to one. The dimension of the eigenspace
corresponding to a certain eigenvalue can be computed by using the matrix rank theorem.

Example 4: Compute the eigenspaces of the matrix

A =

[
2 3
3 −6

]
(26)

We have seen in a previous example that the eigenvalues of A are λ1 = 3 and λ2 = −7. Let us
compute the eigenspace corresponding to λ1. To this end, we first compute the dimension of such
eigenspace by using the matrix rank theorem

dim(N(A− λ1I)) = 2− rank(A− λ1I) = 2− rank

([
−1 3
3 −9

])
= 2− 1 = 1 (27)

Hence, the eigenspace corresponding to λ1 has dimension one. Any vector of such an eigenspace
is an eigenvector of A corresponding to λ1. To compute a basis for the eigenspace N(A − λ1I)
consider

(A− λ1I)v = 0R2 ⇔
[
−1 3
3 −9

] [
v1

v2

]
=

[
0
0

]
⇔ −v1 + 3v2 = 0 (28)

Hence,

v =

[
3
1

]
(29)

is a basis for N(A − λ1I), and an eigenvector of A corresponding to λ1. All eigenvectors of A
corresponding to λ1 are in the form

c

[
3
1

]
with c 6= 0. (30)
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Similarly, the eigenspace corresponding to λ2 has dimension 1 and can be determined by solving
the linear system

(A− λ2I)v = 0R2 ⇔
[
9 3
3 1

] [
v1

v2

]
=

[
0
0

]
⇔ 3v1 + v2 = 0. (31)

Hence,

v =

[
1
−3

]
(32)

is a basis for N(A− λ2I) and an eigenvector of A corresponding to λ2. In summary, λ1 and λ2 are
eigenvalues with algebraic multiplicity one and geometric multiplicity one. Geometric multiplicity
one means that the eigenspaces N(A− λ1I) and N(A− λ2I) are both one-dimensional. A basis for
N(A− λ1I) and N(A− λ2I) is given by (29) and (32), respectively.

The following theorem establishes a relationship between the algebraic multiplicity and the geomet-
ric multiplicity of an eigenvalue λ.

Theorem 1. Let λ be an eigenvalue of a n × n matrix A. Denote by s the algebraic multiplicity
of λ. Then

dim(N(A− λI)) ≤ s. (33)

In other words the geometric multiplicity of λ (i.e., the dimension of the associated eigenspace) is
always smaller or equal than the algebraic multiplicity).

Of course, if λ is a simple eigenvalue (s = 1) then dim(N(A − λI)) = 1, i.e., the eigenspace
corresponding to simple eigenvalues is always one-dimensional. If λ has algebraic multiplicity 2,
i.e., it is a repeated eigenvalue, then it is possible to have geometric multiplicity equal to one or
equal to two. In the latter case the eigenspace is two-dimensional and any vector in such eigenspace
(including linear combinations of multiple eigenvectors) is an eigenvector. Let us provide a simple
example of a 2×2 matrix with one eigenvalue of algebraic multiplicity two and geometric multiplicity
one

Example 5: Consider the following matrix

A =

[
2 1
0 2

]
. (34)

We know that λ = 2 is the only eigenvalue and it has algebraic multiplicity two. In fact, the
characteristic polynomial is p(λ) = (2− λ)2. The geometric multiplicity of λ = 2 can be calculated
by using the matrix rank theorem

dim(N(A− λI)) = 2− rank(A− λI) = 2− rank

([
0 1
0 0

])
︸ ︷︷ ︸

=1

= 2− 1 = 1. (35)

Hence, the eigenspace associated with λ = 2 is one-dimensional. A basis for such an eigenspace is
obtained as follows:

(A− λI)v = 0R2 ⇔
[
0 1
0 0

] [
v1

v2

]
=

[
0
0

]
⇔ v2 = 0. (36)
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We can choose as basis

v =

[
1
0

]
. (37)

Example 6: Compute the eigenvalues and the eigenvectors of the following matrix

A =

2 1 3
0 1 5
0 0 2

 . (38)

This is an upper triangular matrix and therefore the eigenvalues coincide with the diagonal entries.
Hence we have λ1 = 2 with algebraic multiplicity two and λ2 = 1 with algebraic multiplicity
one.

A− λ1I =

0 1 3
0 −1 5
0 0 0

 ⇔ dim(N(A− λ1I)) = 3− rank(A− λ1I)︸ ︷︷ ︸
=2

= 1 (39)

A− λ2I =

1 1 3
0 0 5
0 0 1

 ⇔ dim(N(A− λ2I)) = 3− rank(A− λ2I)︸ ︷︷ ︸
=2

= 1 (40)

Therefore, the dimension of the eigenspaces associated with λ1 and λ2 is one. Let us find a basis
for such eigenspaces.

(A− λ1I)v = 0R3 ⇒

0 1 3
0 −1 5
0 0 0

v1

v2

v3

 =

0
0
0

 ⇔


v1 arbitrary

v2 + 3v3 = 0

−v2 + 5v3 = 0

(41)

Hence, an eigenvector that spans N(A− λ1I) is

v =

1
0
0

 . (42)

Similarly,

(A− λ2I)v = 0R3 ⇒

1 1 3
0 0 5
0 0 1

v1

v2

v3

 =

0
0
0

 ⇔

{
v1 + v2 + 3v3 = 0

v3 = 0
(43)

Hence, an eigenvector that spans N(A− λ2I) is

v =

 1
−1
0

 . (44)
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Theorem 2. Eigenvectors corresponding to different eigenvalues are linearly independent.

Proof. Let v1 and v2 be two eigenvectors of a matrix A ∈ Mn×n corresponding to two distinct
eigenvalues λ1 and λ2. We want to show that

x1v1 + x2v2 = 0Rn ⇒ x1 = x2 = 0. (45)

To this end we first multiply the equation above by λ2 to obtain

x1λ2v1 + x2λ2v2 = 0Rn (46)

Then we apply the matrix A to x1v1 + x2v2 = 0Rn to obtain

x1Av1 + x2Av2 = x1λ1v1 + x2λ2v2 = 0Rn (47)

Subtracting equation (46) from equation (47) yields

x1 (λ1 − λ2)︸ ︷︷ ︸
6=0

v1︸︷︷︸
6=0Rn

= 0Rn ⇒ x1 = 0. (48)

Substituting x1 = 0 into x1v1 +x2v2 = 0Rn yields x2 = 0. Hence v1 and v2 are linearly independent.

Similarity transformations. Let A,B ∈Mn×n. We say that A is similar to B is there exists an
invertible matrix P ∈Mn×n such that

AP = PB ⇔ A = PBP−1 (49)

The transformation B → PBP−1 is called similarity transformation. An example of similarity
transformation is the change of basis transformation.

Theorem 3. Similar matrices have the same eigenvalues.

Proof. Let A,B ∈Mn×n be two similar matrices, i.e., P ∈Mn×n such that

A = PBP−1. (50)

Then

det(A− λI) = det(PBP−1 − λPP−1) = det(P ) det(B − λI) det(P−1) = det(B − λI) (51)

This theorem implies that the eigenvalues of a linear transformation F : V 7→ V (dim(V ) = n) do
not depend on the basis we choose to represent F in V . In fact the matrices associated to F relative
to different bases of V are related by a similarity transformation.
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Diagonalization. Consider a n × n matrix A. We have seen in Theorem 2 that eigenvectors
corresponding to different eigenvalues are linearly independent. Hence, if the algebraic multiplicity
of each eigenvalue is equal to the geometric multiplicity then it is possible to construct a basis for
Rn made of eigenvectors of A. Let us organize such n eigenvectors as columns of a matrix P

P =
[
v1 · · · vn

]
. (52)

Clearly,

AP =
[
Av1 · · · Avn

]
=
[
v1 · · · vn

] λ1 · · · 0
...

. . .
...

0 · · · λn


︸ ︷︷ ︸

Λ

= PΛ, (53)

where Λ is a diagonal matrix having the eigenvalues of A (counted with their multiplicity) along the
diagonal. Equation (53) shows that if A has n linearly independent eigenvectors then A is similar
to a diagonal matrix1 Λ. The similarity transformation is defined by the matrix P in (52), i.e., the
matrix that has the eigenvectors of A as columns.

A corollary of this statement is that matrices with simple eigenvalues are always diagonalizable,
since they have n linearly independent eigenvectors. The following theorem summarizes what we
just said.

Theorem 4. Let A be a n × n matrix with eigenvalues {λ1, . . . , λp} with algebraic multiplicities
{s1, . . . , sp}, respectively. Then A is diagonalizable if and only if

dim(N(A− λiI)) = si for all i = 1, . . . , p. (54)

Example 7: The matrix

A =

[
2 3
3 −6

]
(55)

is diagonalizable. In fact we have seen that the eigenvalues are λ1 = 3 and λ2 = −7 (simple eigen-
values). This implies that the dimension of the associated eigenspace is one for both eigenvalues.
The eigenvectors of A are

v1 =

[
3
1

]
and v2 =

[
1
−3

]
. (56)

Define

P =
[
v1 v2

]
=

[
3 1
1 −3

]
, Λ =

[
λ1 0
0 λ2

]
=

[
3 0
0 −7

]
. (57)

It is straightforward to verify that

P−1 =
1

10

[
3 1
1 −3

]
(58)

and
A = PΛP−1 or Λ = P−1AP. (59)

1In general, we say that a matrix A is diagonalizable if there exists an invertible matrix P such that A is similar
to a diagonal matrix.

Page 8



AM 10 Prof. Daniele Venturi

Example 8: The matrix

A =

[
2 1
0 2

]
(60)

is not diagonalizable. In fact the algebraic multiplicity of the eigenvalue λ = 2 is two, while its
geometric multiplicity is one. It is possible to show that there exists a basis made of “generalized
eigenvectors” that makes A similar to a matrix J called Jordan form of A. In this particular example,
the Jordan form of A coincides with A, i.e., A is already in a Jordan form (see the Remark at page
10).

Example 9: Verify that the matrix

A =

1 0 0
0 1 0
0 1 2

 (61)

is diagonalizable. The matrix is lower-triangular with eigenvalues λ1 = 1 (algebraic multiplicity
two) and λ2 = 2 (algebraic multiplicity one). To verify that A is diagonalizable we just need to
check that the geometric multiplicity of λ1 = 1 is equal to two. To this end, we use the matrix rank
theorem:

dim(N(A− λ1I)) = 3− rank(A− λ1I) = 3− rank

0 0 0
0 0 0
0 1 1

 = 3− 1 = 2 (62)

This shows that the dimension of the nullspace of N(A−λ1I), i.e., the dimension of the eigenspace
associated with λ1 = 1 is two. Let us compute a basis for such an eigenspace. To this end,

(A− λ1I)v = 0R3 ⇒

0 0 0
0 0 0
0 1 1

v1

v2

v3

 =

0
0
0

 ⇔


v1 arbitrary

v2 arbitrary

v3 = −v2

(63)

Hence, a basis for the eigenspace corresponding to λ1 is
1

0
0

 ,
 0

1
−1

 . (64)

On the other hand, the eigenspace N(A−λ2I) is spanned by a vector that can be computed as

(A− λ2I)v = 0R3 ⇒

−1 0 0
0 −1 0
0 1 0

v1

v2

v3

 =

0
0
0

 ⇔


v1 = 0

v2 = 0

v3 arbitrary

(65)

Therefore a matrix P that diagonalizes A is

P =

1 0 0
0 1 0
0 −1 1

 . (66)
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Indeed, it can be verified by a direct calculation that1 0 0
0 1 0
0 0 2


︸ ︷︷ ︸

Λ

=

1 0 0
0 1 0
0 1 1


︸ ︷︷ ︸

P−1

1 0 0
0 1 0
0 1 2


︸ ︷︷ ︸

A

1 0 0
0 1 0
0 −1 1


︸ ︷︷ ︸

P

. (67)

Remark: It can be shown that the set of eigenvectors of any n× n matrix A can be complemented
to a basis of Rn (or Cn) by adding a certain number of generalized eigenvectors, as many as si −
dim(N(A − λiI)) in case the eigenspace N(A − λiI) has dimension smaller than the algebraic
multiplicity of λi. For instance, consider the matrix

A =

[
2 1
0 2

]
(68)

We know that the eigenspace corresponding to λ = 2 is one-dimensional with basis

v =

[
1
0

]
. (69)

To complement v to a basis of R2 we can construct another vector w as follows

(A− λI)w = v. (70)

Clearly, w is in the nullspace of the matrix (A − λI)2. It can be shown that w and v are linearly
independent. We obtain.

(A− λI)w = v ⇔
[
0 1
0 0

] [
w1

w2

]
=

[
1
0

]
⇔

{
w1 arbitrary

w2 = 1
. (71)

At this point we can define

P =
[
v w

]
=

[
1 0
0 1

]
(matrix of generalized eigenvectors), (72)

and apply A to P to obtain

AP =
[
Av Aw

]
=
[
v w

] [λ 1
0 λ

]
︸ ︷︷ ︸

J

= PJ (73)

Hence, A is similar to a matrix J in a particular form (not diagonal but almost diagonal), known as
Jordan canonical form. In this particular example, A is already in a Jordan form so the similarity
transformation defined by P turns out to be the identity transformation.

We conclude this section with an important theorem characterizing the spectral properties (i.e.,
eigenvalues and eigenvectors) of real symmetric matrices.
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Theorem 5 (Spectral theorem for symmetric matrices). If A ∈ Mn×n(R) is symmetric (i.e., A =
AT ) then all eigenvalues are real and there exists an orthonormal basis of Rn made of eigenvectors
of A.

Proof. To prove that the eigenvalues are real let us consider the following scalar product in Cn:

〈u, v〉 =
n∑
i=1

uiv
∗
i (74)

Suppose that u is an eigenvector of A. Then

〈Au, u〉 = 〈λu, u〉 = λ 〈u, u〉 (75)

On the other hand,
〈u,Au〉 = 〈u, λu〉 = λ∗ 〈u, u〉 . (76)

The matrix A is symmetric. This implies that

〈Au, u〉 = 〈u,Au〉 ⇔ λ∗ = λ, (77)

i.e., λ is real.

Let us now prove that eigenvectors of A corresponding to different eigenvalues are necessarily
orthogonal. To this end, suppose that u1 and u2 are eigenvectors of A corresponding to two different
eigenvalues λ1 and λ2. Then

λ1 〈u1, u2〉 = 〈Au1, u2〉 = 〈u1, Au2〉 = λ2 〈u1, u2〉 . (78)

Since λ1 6= λ2 we have that the previous equality is possible if and only if 〈u1, u2〉 = 0. This means
that u1 and u2 are orthogonal. Lastly, we need to prove that any symmetric matrix is diagonalizable.
This is a little bit technical so we skip this proof.

Note that, in general, the eigenvectors of a matrix A are not orthogonal relative to the standard
scalar product in Rn (or Cn). However, if the matrix is symmetric then the eigenvectors are neces-
sarily orthogonal2, and they can be normalized, if needed. This yields a matrix of eigenvectors

P =
[
u1 · · · un

]
satisfying PP T = In.

The condition PP T = In follows directly from 〈ui, uj〉 = δij (orthonormal eigenvectors). Hence the
matrix P that contains the eigenvectors of a symmetric matrix is an orthogonal matrix.

Theorem 6. Let A be any n× n matrix. Then,

1. det(A) = λ1λ2 · · ·λn,

2. trace(A) = λ1 + λ2 + · · ·+ λn,

where {λ1, . . . , λn} are the eigenvalues of A counted with their multiplicity.

2Eigenvectors corresponding to different eigenvalues are necessarily orthogonal, while eigenvectors corresponding
to the same eigenvalue with geometric multiplicity larger than one can be orthogonalized, e.g., by using Gram-Schmidt
procedure.
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Proof. To prove these identities, let us assume that A is diagonalizable3. In this case, we know that
there exists a matrix P that has the eigenvectors of A as columns such that

A = PΛP−1, where Λ =

λ1 · · · 0
... · · · ...
0 · · · λn

 (79)

is the diagonal matrix of eigenvalues. To prove 1. we simply notice that

det(A) = det(PΛP−1) = det(P ) det(P−1) det(Λ) = det(Λ) = λ1λ2 · · ·λn. (80)

To prove 2. we notice that4

trace(A) = trace(PΛP−1) = Tr(PP−1Λ) = trace(Λ) = λ1 + · · ·+ λn. (81)

3The proof for the non-diagonalizable case is very much the same. The only difference is that we use the Jordan
canonical form of A instead of the diagonal matrix of eigenvalues Λ.

4Recall that if A and B are two square matrices of the same size we have

trace(AB) = trace(BA).
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