AM 10 Prof. Daniele Venturi

Lecture 3: Roots of complex polynomials
To characterize the roots of complex polynomials we first study the roots of a complex number.

Roots of a complex number. Let z,w € C be two complex numbers, and n € N a natural
number. We have seen how to compute the n-th power of z (or w) using De Moivre’s formula (see
Lecture 2), i.e.,

z=z[e” = 2" =|z"e™. (1)

Now we consider the inverse operation, i.e., how to compute the n-th root of a complex number.
We say that z is the n-th root! of w if
2" = w. (2)

This is the simplest polynomial equation involving complex numbers: here w € C is given while
z € Cis to be determined. We shall see hereafter that the polynomial equation (2) has exactly n
solutions in C. To compute such solutions it is convenient to first write both z and w in a polar
form as

w = |wle’ and 2= |z]e”. (3)

Taking the n-th power of z as in (1) and substituting it into (2) yields
[2["e™ = |w]e™ (4)
This equation is equivalent to the following system of equations
2" = |w], ™=, (5)
The first one admits the unique solution?
2l = ¥/Jwl. (6)

The second equation e’ = e is an equality between two vectors on the unit circle in the complex
plane, and it has exactly n distinct solutions {y, ..., %,_1}. To compute such solutions we simply
rewrite the equality ™ = e in a trigonometric form as

9

cos(nd) = cos(t), sin(nd) = sin(t). (7)
This is a system of two nonlinear equations in the unknown variable .

How do we solve the nonlinear system (7) for ¥? How many distinct solutions does it have?

e (learly
nd =t. (8)

is a solution to the system (7) since it satisfies both equations. In fact, substituting ni =t
into (7) yields two identities: cos(t) = cos(t) and sin(t) = sin(t). However, (8) is not the only
solution. In fact, by using the periodicity of the cosine and sine functions we have that

cos(t + 2km) = cos(t) sin(t + 2kw) = sin(t) for all k € Z (9)

n equation (2) w is the n-th power of z while z is the n-th root of w.
2Recall that |2| > 0 and |w| > 0. Therefore there exists a unique solution to |z|" = |w].
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This means that
nd=t+2kr keZ (10)

are solutions. These solutions however are not all distinct. In fact, we have seen that ¥ £+ 27
identifies the same complex number on the unit circle. Therefore the only distinct solutions
of (7) are

ndy =t + 2krw k=0,....,n—1. (11)

Therefore, the complex n-the roots of a number w € C can be written explicitly as follows:

: t+ 2k
2" =w & 2z, = {/Jwle™ Yy = kT k=0,...,n—1 (12)
n

where |w| and t are, respectively, the modulus and the argument of the complex number w. Note
that all complex roots of a number w lie on a circle with radius {/|w| in the complex plane.

Example: Compute the complex 4-th roots the real number w = —1. Such roots are defined by the

(complex) solutions to the equation
2t = 1. (13)

By applying formula (12) we immediately get
2 = ! THHM/A (1,2, 3.

In fact, the modulus of w is equal to 1, and therefore \/|w| = 1. The four complex 4-th roots of -1
can be written in an algebraic form as follows

141 -1+ —1—1 1—1
20 = 9 z21 = Y R2 = ) <3 = :
NG RG] V2 V2
Im,
T Z,
[ X
-1 1 Re
22 Z3
It can be verified that each z, in (14) satisfies indeed 2z} = —1. For example, using the algebraic
form we have
s (40" A+ (1+9)?  (29)?* .
0T T 1 ~ Ty T
—1 4 -1 N2(—1 2\ 2 —94)2
zf:( Z—z) :( +l)4( + 1) :< 4Z> -1 (14)
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Ezxample: Compute the complex cubic roots of the real number w = 2. The cubic roots are complex

solutions of the polynomial equation
23 =2 (15)

By using (12) we immediately obtain

2 = V2e2FT8 | =0,1,2

ie.,

>
[\

(—1+z’\/§), 22:\3/—5(—1—i\/§).

20:\3/57 z1 = 9

Inm, . |
CIRCLE WITH

/_ / RADIVS ?{E‘

Zo >
|/
-z Re

Z,

We remark that if we solve 22> = 1 in R instead of C then we obtain a unique solution, i.e., z = 1.
On the other hand in C we have three solutions: one real, and two complex conjugates.

Remark: Formula (12) suggests that once the first n-th root z is found, then all others can be
obtained by simply dividing the circle with radius |z| = {/|w| into n evenly-spaced parts!

Roots of quadratic polynomial equations in C. Consider the following quadratic polynomial?
az’ +bz+c=0, (17)

where a, b, and ¢ can be complex numbers. Divide (17) by a

b
2424520
a a

and complete the square

b\> ¢ B
(Z+%> +a—47a2—0. (18)
Upon definition of
b
- —_ 1
d=2z+ 5 (19)

3An example of a quadratic polynomial with complex coefficients is

(1+1i)22 +52—i=0. (16)

Page 3



AM 10 Prof. Daniele Venturi

we can write (18) as
b — 4ac
4a2
This equation can be solved by taking the square root of the complex number b* — 4ac/4a®. As

is well-known, this yields two complex numbers 6 and —¢§ opposite to each other and sitting on a
circle with radius |b? — 4ac|*/?/(2]al).

5 =

Im,

Re
/

. 2
RADIVS = l*- 4a.c)
2ol

CIRCLE WITH

-0

By using (19) we see that the solution of the quadratic polynomial equation (17) is then

b b
20:5—%7 21:—5—% (20)

-7/
/\ \\
\\ b_
“2a.
\
0 \\> Re
\
\
-T2y
-0
Example: Consider the polynomial equation
P2 4+z24+1=0. (21)

This equation has real coefficients but no solution in R. By using the mathematical steps discussed
above it can be shown that (21) can be written as

1
6 = —% where d=z+ 3 (22)
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Therefore the two complex solutions are

V3

1
— ¥ 23
20,1 5 T (23)

Quadratic polynomials with real coefficients have roots that are either real or complex conjugates.
The roots can also be computed with the standard quadratic formula in this case.

Example: Consider the polynomial equation
2 +iz+1+i=0. (24)

By using the mathematical steps discussed above it can be shown that (24) can be written as

5:z+% ﬁ:—g—i (25)
The polar form of the complex number —5/4 — i is
5 Vil pilarctan(4/5)+m) (26)
4 4
Therefore, the two solutions of 6% = —5/4 — i are
Sy = %ei(arctan(4/5)+7r)/27 5 = %ei(arctan(4/5)+37r)/2. (27)
This implies that the roots of (24) are
o — % <_Z- . \‘l/ﬁei(arctan(4/5)+7r)/2) = % (_i n \‘yﬁei(arctan(4/5)+37r)/2) . (28)

Roots of complex polynomials. In the previous section we have seen how to compute the roots
of quadratic polynomials with complex coefficients. A natural question is whether it is possible to
generalize such computations to complex polynomials of degree n > 2. These polynomials can be
written as

p(2) = ap2" + -+ a1z +ap a; € C. (29)

An even deeper question is whether polynomials of the form (29) actually have roots. This question
was answered in 1799 by Gauss.

Theorem 1 (Fundamental theorem of algebra, Gauss 1799). Every non-constant polynomial of the
form (29) has at least one complex root.

By applying Gauss’s theorem recursively it is straightforward to conclude that (29) has exactly n
complex roots. This is summarized in the following Corollary.

Corollary 1. Every non-constant polynomial of the form (29) has exactly n complex roots.

Proof. Let z; € C be a root of (29). We known that such a root exists because of Theorem 1. Let
us first transform (29) to a monic polynomial (just divide by a,, # 0)
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P(2) = 2"+ by12" - bz + by, bj=— i=0,...,n—1 (30)

Obviously we can factor out z; as

p(z) = (2 — 21)p1(2) (31)
where p;(z) is a polynomial of degree n — 1 obtained by dividing p(x) by (z — z1). The reminder
of such polynomial division is zero because z; is a root of p(z). At this point we apply Theorem 1

again to p(z) to conclude that there exists another root z; and a polynomial py(x) of degree n — 2
such that

p(2) = (2 — 21)(z — 22)Pa(2). (32)

Proceeding recursively we conclude that the polynomial (29) can be factorized as

p(z)=(z—21)(z — 22) - (2 — zp). (33)

This means that p(z) has exactly n roots in C (not necessarily distinct).
[

Regarding the computation of the roots, Ruffini (1799) and Abel (1824) proved that it is impossible
to obtain closed form expressions for the roots of arbitrary polynomials of degree n > 5. This means
that if we are interested in computing the roots of a given polynomial with degree n > 5 then we
have to proceed numerically.

Remark: Effective algorithms to compute the roots of (29) are based on eigenvalue solvers. In fact,
it can be shown that eigenvalues of the following companion matrix

00 -+ 0 —=b
10 -0 —=bh

A=10 1 -+ 0 —bo (34)
00 -+ 1 —by]

coincide with the roots of the polynomials (30) and (29).

The following theorem characterizes the roots of polynomials with real coefficients.

Theorem 2. Let zp € C be a root of a polynomial with real coefficients. Then z{ (complex
conjugate of zy) is also a root.

Proof. Let
p(z) =) a2 (35)
k=0
be a polynomial with real coefficients {ay,...,ao}. If 2 is a root of p(z) then

> apzh =0. (36)
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By taking the complex conjugate of (36) and recalling that?
(20)" = (%)"  a=a

we obtain
n

Z ar(25)" = 0.

k=0

Therefore if zg is a root of p(z) then 2§ is also a root of p(z).

(37)

(38)

]

Theorem 2 states the roots of a polynomial of degree n with real coefficients are either real or
complex conjugates. This implies that the number of complex roots is always even for polynomials

with real coefficients.

4Equation (37) follows from (23)* = (2020)* = 2328 = (28)°.
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