Lecture 7: Linear transformations

Let V and W be two vector spaces over a field K. We say that a transformation

$$F: V \mapsto W \tag{1}$$

is *linear* if

1. F(u+v) = F(u) + F(v) $\forall u, v \in V,$ 2. F(cu) = cF(u) $\forall u \in V, \forall c \in K.$

Conditions 1. and 2. imply that

$$F(au + bv) = aF(u) + bF(v) \qquad \forall u, v \in V, \quad \forall a, b \in K.$$
(2)

Let us discuss a few examples of linear and nonlinear transformations.

• Example 1: The transformation

$$F: \mathbb{R} \to \mathbb{R}$$
$$x \to \sin(x)$$

is nonlinear. In fact, $\sin(x+y) \neq \sin(x) + \sin(y)$ for arbitrary x and y in \mathbb{R} .

• Example 2: Let $V = C^{(1)}(\mathbb{R})$ (vector space of real-valued continuously differentiable functions), $W = C^{(0)}(\mathbb{R})$ (vector space of real-valued continuous functions), $K = \mathbb{R}$. The transformation

$$F: C^{1}(\mathbb{R}) \to C^{0}(\mathbb{R})$$
$$f(x) \to \frac{df(x)}{dx}$$

is linear. In fact, we have

$$\frac{d}{dx}(af(x) + bg(x)) = a\frac{df(x)}{dx} + b\frac{dg(x)}{dx} \qquad \forall f, g \in C^{(1)}(\mathbb{R}), \quad \forall a, b \in \mathbb{R}.$$
(3)

• Example 3: The transformation

$$F: \mathbb{R}^3 \to \mathbb{R}^2$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \to \begin{bmatrix} x_1 - x_2 \\ 2x_1 + x_2 - x_3 \end{bmatrix}$$

is linear. In fact, we have

$$F\left(a\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}+b\begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}\right) = \begin{bmatrix}a(x_1-x_2)+b(y_1-y_2)\\a(2x_1+x_2-x_3)+b(2y_1+y_2-y_3)\end{bmatrix} = aF\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) + bF\left(\begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}\right)$$

• Example 4: The transformation

$$F : \mathbb{R}^3 \to \mathbb{R}^2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \to \begin{bmatrix} x_1 + x_2 + 1 \\ x_3 + x_1 \end{bmatrix}$$
(4)

is \underline{not} linear. In fact,

$$F\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} + \begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}\right) \neq F\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) + F\left(\begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix}\right)$$

Transformations of the form (4) are called *affine* transformations. Affine transformations are obtained by adding a constant vector to a linear transformation. For the transformation (4) we have (5, -7)

$$F\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) \to \underbrace{\begin{bmatrix} 1 & 1 & 0\\1 & 0 & 1\end{bmatrix}}_{\text{linear transformation}} \underbrace{\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}}_{\text{constant vector}} + \underbrace{\begin{bmatrix} 1\\0\end{bmatrix}}_{\text{constant vector}}.$$
(5)

• *Example 5:* The transformation¹

trace :
$$M_{n \times n}(\mathbb{R}) \to \mathbb{R}$$

 $A \to \sum_{k=1}^{n} a_{kk}$ (trace of the matrix A) (6)

is linear. In fact,

$$\operatorname{trace}(aA + bB) = a \operatorname{trace}(A) + b \operatorname{trace}(B).$$
(7)

Hereafter we show that the composition of two linear transformation is a linear transformation.

Theorem 1. Let U, V, and W be vector spaces. Consider the linear transformations $F: U \to V$ and $G: V \to W$. Then $G(F(u)): U \to W$ is a linear transformation.

Proof. If F and G are linear transformations then

$$G(F(au + bv)) = G(aF(u) + bF(v)) = aG(F(u)) + bG(F(v)).$$
(8)

Hence, the composition of F and G is a linear transformation.

¹The trace of a square matrix is defined to be the sum of all diagonal entries of A.

Injective, surjective and invertible transformations. Let V and W be two vector spaces. Consider the following transformation

$$F: V \to W \tag{9}$$

Here, F can be linear on nonlinear.

1. We say that F is *injective* or *one-to-one* if:

for all
$$u, v \in V$$
 $F(u) = F(v) \Rightarrow u = v$ (10)

2. We say that F is surjective or onto if

for all $w \in W$ there exists (at least one) $u \in V$ such that F(u) = w (11)

Note that there may be more than one element in V that is mapped onto w. In the figure above, two elements u and v are mapped onto the same element w.

3. We say that F is *invertible*² if is is one-to-one and onto (injective and surjective).

²Invertible transformations are often called bijections or bijective transformations.

Example 6: The nonlinear transformation

$$F: \mathbb{R} \to \mathbb{R}$$
$$x \to \sin(x)$$

Ì

is not injective nor surjective on the real line.

In fact, there are multiple points on the x axis with the same value of sin(x). For example,

$$\sin(1) = \sin(1 + 2k\pi) \quad k \in \mathbb{Z}.$$
(12)

Hence the function is not injective. The function $\sin(x)$ is also not surjective in \mathbb{R} , as there is no $x \in \mathbb{R}$ such that $\sin(x) = 2$. However, if we restrict the domain and range of F as follows

$$F: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$$
$$x \to \sin(x)$$

then F is invertible, since it is injective and surjective. The inverse function is denoted by $\sin^{-1}(x)$ or $\arcsin(x)$

Example 7: The linear transformation

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} \to \underbrace{\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} = \begin{bmatrix} x_1 + 2x_2 \\ -x_1 + x_2 \end{bmatrix},$$

is one-to-one and onto. In fact it is easy to show Ax = Ay implies x = y (inejctivity), and that for each $y \in \mathbb{R}$ there exits $x \in \mathbb{R}^2$ such that Ax = y. Therefore the transformation F is invertible. The inverse transformation is defined by the inverse matrix A^{-1}

$$F^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} \to \underbrace{\frac{1}{3} \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}}_{A^{-1}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{x} = \frac{1}{3} \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \end{bmatrix}.$$

Definition. Let V, W be vector spaces, $F : V \to W$ a linear transformation. If F is invertible then we say that F is an *isomorphism* between V and W. If there exists an isomorphism between the vector spaces V and W (i.e., an invertible linear transformation) then we say that V and W are *isomorphic*.

Theorem 2. Let V be a vector space of dimension n over a field K. Then V is isomorphic to K^n .

Proof. Let $v_1, \ldots, v_n \in V$ be a basis of F. Any vector $v \in V$ can be represented uniquely relative to the basis as

$$v = x_1 v_1 + \dots + x_n v_n \qquad x_i \in K. \tag{13}$$

The transformation

$$F: V \to K^n \tag{14}$$

$$v \to \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \tag{15}$$

is linear, one-to-one and onto. These properties follow immediately from the definition of basis (surjectivity), and from the fact that the coordinates of $v \in V$ relative to a basis are unique (injectivity). Hence, (15) defines a bijection between V and K^n . This means that V is isomorphic to K^n .

Example 8: The space of polynomials of degree at most 4 with real coefficients, i.e., $\mathbb{P}_4(\mathbb{R})$, is isomorphic to \mathbb{R}^5 . In fact, if we set up a basis for $\mathbb{P}_4(\mathbb{R})$, i.e., a set of 5 linearly independent polynomials of degree at most 4, e.g.,

$$p_4(x) = x^4 - 3x, \quad p_3(x) = x^3, \quad p_2(x) = x^3 + x^2 + 1, \quad p_1(x) = x - x^3, \quad p_0(x) = x^2 + 1,$$
 (16)

then we see that each polynomial in $p \in \mathbb{P}_4(\mathbb{R})$ is uniquely identified by 5 real coefficients (x_0, \ldots, x_4) :

$$p(x) = x_4 p_4(x) + x_3 p_3(x) + x_2 p_2(x) + x_1 p_1(x) + x_0 p_0(x).$$
(17)

Hence, there exists a bijection between \mathbb{R}^5 and the space of polynomials $\mathbb{P}_4(\mathbb{R})$. In other words, $\mathbb{P}_4(\mathbb{R})$ and \mathbb{R}^5 are isomorphic.

Example 9: The vector space of 3×3 symmetric matrices with real coefficient is isomorphic to \mathbb{R}^6 .

Since the inverse of an isomorphism is an isomorphism we have that all vector spaces of dimension n over some field K are isomorphic to one another. For example, the vector space of polynomials of degree at most 3 is isomorphic to the vector space of 2×2 matrices with real coefficients.

Theorem 3. The set of all linear mappings between two vector spaces V and W is a vector space. Such a space is denoted by $\mathcal{L}(V, W)$. Nullspace and range of a linear transformation. Let V, W be vector spaces. Consider the linear transformation

$$F: V \to W. \tag{18}$$

• The nullspace (or kernel³) of F is the set vectors in V that are mapped into 0_W (zero vector of W), i.e.,

$$N(F) = \{ v \in V \text{ such that } F(v) = 0_W \}$$
 (nullspace of F). (19)

Clearly, since F is linear we have that the element 0_V is always mapped onto 0_W . Therefore, 0_V is always in the nullspace of F.

• The range of F is the set of vectors w in W such that w is the image of some $v \in V$ under F, i.e., there exists $v \in V$ such that F(v) = w.

$$R(F) = \{F(v) \in W \text{ such that } v \in V\}$$

$$(20)$$

Note that the range of R(F) has 0_W in it. In fact, since F is linear we have that $F(0_V) = 0_W$.

Let us determine the nullspace and the range of simple linear transformations.

Example 10: Consider the following linear transformation

$$F: \mathbb{R}^3 \to \mathbb{R}^2$$

$$\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} \to \begin{bmatrix} x_1 + x_2 + x_3\\ x_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & 1\\ 0 & 0 & 1 \end{bmatrix}}_A \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$$
(21)

The nullspace of F is the set of vectors in \mathbb{R}^3 that mapped onto the zero vector of \mathbb{R}^2 . Hence, the nullspace of F is defined by the following homogeneous linear system of equations

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_3 = 0 \end{cases} \implies \begin{cases} x_1 = -x_2 \\ x_3 = 0 \end{cases}$$
(22)

Note that the nullspace of F is a vector subspace of \mathbb{R}^3 (line passing through the origin). The range of F can be constructed by taking an arbitrary element of \mathbb{R}^3 and mapping it via F. Such range coincides with *column space* of the matrix A, i.e., the span of the columns of A. In fact,

$$\begin{bmatrix} x_1 + x_2 + x_3 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$
 (23)

Hence,

$$R(F) = \operatorname{span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\} = \operatorname{span}\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\} = \mathbb{R}^2.$$
(24)

Theorem 4. Let V, W be vector spaces, $F: V \to W$ linear. Then

- 1. N(F) is a vector subspace of V.
- 2. R(F) is a vector subspace of W.

Proof. Let $u, v \in N(F)$. Clearly, u + v is in N(F). In fact, since F is linear we have $F(u + v) = F(u) + F(v) = 0_W$. Thus, u + v is in N(F). Moreover, $0_V \in N(F)$ and $cu \in N(F)$ for all $u \in N(F)$ and all $c \in K$. This implies that N(F) is a vector subspace of V. To prove that R(F) is a vector subspace of W, let $w, s \in R(F)$. This means that there exist $u, v \in V$ such that F(u) = w and F(v) = s. Obviously, $(w+s) \in R(F)$. In fact, by using the linearity of F we have F(u+v) = w+s, and therefore $w + s \in R(F)$. Also, 0_W is R(F) and $cu \in R(F)$ for all $u \in R(F)$. Thus, R(F) is a vector subspace of W.

The nullspace and the range of linear transformation also characterize the injectivity and surjectivity of the transformation. In particular we have the following theorems.

Theorem 5. Let V, W be vector spaces, $F : V \to W$ a linear transformation. Then F is injective (one-to-one) if and only if $N(F) = \{0_V\}$, i.e., the if nullspace of F reduces the single element $\{0_V\}$.

³The nullspace/kernel of a linear transformation F is often denoted as ker(F).

Proof. To prove the theorem we need to prove two statements:

1. F is injective $\Rightarrow N(F) = \{0_V\}.$

Suppose that F is one-to-one. We want to show that this implies $N(F) = \{0_V\}$. To this end, let $v \in N(F)$, i.e., $F(v) = 0_W$. Clearly $v = 0_V$ is mapped onto 0_W , i.e., $0_V \in N(F)$. The assumption that F is one-to-one rules out the existence of any other element in V mapped onto 0_W . In other words, 0_V is the only element of V mapped into 0_W . Hence, if F is one-to-one then $N(F) = \{0_V\}$.

2. $N(F) = \{0_V\} \Rightarrow F$ is injective.

Conversely, let us assume that $N(F) = \{0_V\}$. We want to show that this implies that F is one-to-one. To this end, suppose there are two elements $u, v \in V$ such that F(u) = F(v). By using the linearity of F we have $F(u - v) = 0_W$, i.e., $(u - v) \in N(F)$. Since, by assumption, the only element in the nullspace of F is 0_V we have that $u - v = 0_V$, i.e., u = v. In other words, $N(F) = \{0_V\}$ implies that F is one-to-one.

Theorem 6. Let V, W be vector spaces, $F : V \to W$ linear. Then F is surjective (onto) if and only if $\dim(R(F)) = \dim(W)$.

Proof. As before, to prove the theorem we need to prove two statements:

- 1. F is surjective $\Rightarrow \dim(R(F)) = \dim(W)$,
- 2. F is surjective $\Leftarrow \dim(R(F)) = \dim(W)$.

Let F be surjective (or onto), i.e., $\forall w \in W$ there exists at least one $v \in V$ such that F(v) = w. This means that R(F) = W and therefore $\dim(R(F)) = \dim(W)$. Conversely, suppose that $\dim(R(F)) = \dim(W)$. We know that R(F) is a vector subspace of W. Since the dimension of R(F) and W are the same (by assumption) then R(F) = W, i.e., F is surjective (or onto).

Next we discuss a very important theorem for linear transformations between vector spaces.

Theorem 7. Let V and W be vector space and $F: V \to W$ be any linear transformation. Then

$$\dim(V) = \dim(N(F)) + \dim(R(F)).$$
(25)

Proof. If $R(F) = 0_W$ the statement is trivial since the entire V is mapped to the 0_W . This implies N(F) = V, and of course $\dim(N(F)) = \dim(V)$. Consider now $\dim(R(F)) = s > 0$ and let $\{w_1, \ldots, w_s\}$ be a basis of R(F). Then there exist s elements $v_1, \ldots, v_s \in V$ such that $F(v_1) = w_1, \ldots, F(v_s) = w_s$. Suppose $\dim(N(F)) = q$ and let $\{u_1, \ldots, u_q\}$ be a basis for N(F).

We would like to show that $\{u_1, \ldots, u_q, v_1, \ldots, v_s\}$ is a basis of V^4 . To this end, pick an arbitrary $v \in V$. Then, there exists $x_1, \ldots, x_s \in K$ such that $F(v) = x_1w_1 + \ldots + x_sw_s$ (since w_1, \ldots, w_s is a

⁴Note that if $\{u_1, \ldots, u_q, v_1, \ldots, v_s\}$ is a basis of V then $\dim(V) = q + s$, where $q = \dim(N(F))$ and $s = \dim(R(F))$.

basis for R(F)). Recalling that $F(v_1) = w_1, ..., F(v_s) = w_s$

$$F(v) = x_1 F(v_1) + \ldots + x_s F(v_s)$$

= $F(x_1 v_1 + \ldots + x_s v_s).$

By using the linearity of F we obtain

$$F(v - x_1v_1 - \dots - x_sv_s) = 0_W \quad \Rightarrow \quad (v - x_1v_1 - \dots - x_sv_s) \in N(F).$$

At this point we represent $(v - x_1v_1 - \cdots - x_sv_s)$ relative to the basis of N(F)

$$v - x_1v_1 - \ldots - x_sv_s = y_1u_1 + \ldots + y_qu_q$$

i.e.,

$$v = x_1v_1 + \ldots + x_sv_s + y_1u_1 + \ldots + y_qu_q$$

This shows that $V = \text{span}\{v_1, \ldots, v_s, u_1, \ldots, u_q\}$, i.e., that V is generated by $\{v_1, \ldots, v_s, u_1, \ldots, u_q\}$. To prove the theorem it remains to prove that the vectors $\{v_1, \ldots, v_s, u_1, \ldots, u_q\}$ are linearly independent. In this way we can claim that n = s + q, i.e., $\dim(V) = \dim(N(F)) + \dim(R(F))$.

To this end, consider the linear combination

$$x_1v_1 + \ldots + x_sv_s + y_1u_1 + \ldots + y_qu_q = 0_V.$$
⁽²⁶⁾

By applying F and recalling that $F(u_i) = 0_W$ $(u_i \in N(F))$ we obtain

$$x_1w_1 + \ldots + x_sw_s = 0_W \quad \Rightarrow \quad x_1, \ldots, x_s = 0.$$

$$(27)$$

In fact $\{w_1, \ldots, w_s\}$ is a basis for R(F) and therefore w_i are linearly independent. Substituting this result back into (26) yields

$$y_1 u_1 + \ldots + y_q u_q = 0_V \quad \Rightarrow \quad y_1, \ldots, y_q = 0 \tag{28}$$

since $\{u_1, \ldots, u_q\}$ is a basis for N(F). Equations (27), (28) and (26) allow us to conclude that $\{v_1, \ldots, v_s, u_1, \ldots, u_q\}$ are linearly independent. Moreover the vectors $\{v_1, \ldots, v_s, u_1, \ldots, u_q\}$ generate V, and therefore they are a basis for V. This implies that

$$\dim(V) = s + q = \dim(N(F)) + \dim(R(F)).$$
(29)

Matrix rank theorem. Theorem 7 can be applied to linear transformations defined by matrices. To this end, consider the transformation $F : \mathbb{R}^n \to \mathbb{R}^m$ from \mathbb{R}^n into \mathbb{R}^m defined as F(x) = Ax, where A is an $m \times n$ matrix:

$$\underbrace{\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}}_{x} \to \underbrace{\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}}_{x}$$
(30)

We know that range of F coincides with the column space of A. Also the dimension of the column space is the *rank* of the matrix A. Therefore from equation (25) it follows that

$$n = \dim(N(A)) + \operatorname{rank}(A) \,. \tag{31}$$

Matrix associated with a linear transformation Let V and W be finite-dimensional vector spaces, and let

$$F: V \to W \tag{32}$$

an arbitrary linear transformation. In this section we show how to represent F in terms of a matrix. To this end, suppose that

$$\mathcal{B}_{V} = \{v_{1}, \dots, v_{n}\} \quad \to \quad \text{basis of } V, \quad \dim(V) = n, \\ \mathcal{B}_{W} = \{w_{1}, \dots, w_{m}\} \quad \to \quad \text{basis of } W, \quad \dim(W) = m.$$

The transformation F is uniquely determined by the image of the basis \mathcal{B}_V under F, i.e.,

$$\{v_1, \dots, v_n\} \quad \to \quad \{F(v_1), \dots, F(v_n)\}. \tag{33}$$

Clearly, for all i = 1, ..., n we have that $F(v_i) \in R(F) \subseteq W$. Therefore, each $F(v_i)$ can be represented in terms of the basis \mathcal{B}_W as

$$\begin{cases}
F(v_1) = a_{11}w_1 + \dots + a_{m1}w_m \\
\vdots \\
F(v_n) = a_{1n}w_1 + \dots + a_{mn}w_m
\end{cases}$$
(34)

Note that a_{ij} is the *i*-th component of $F(v_j)$ relative to the basis $\{w_1, \ldots, w_m\}$. The matrix associated with the linear transformation F depends bases \mathcal{B}_V and \mathcal{B}_W and it is defined as

$$A_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(F) = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}.$$
 (35)

Next, consider an arbitrary element $v \in V$, and represent it in terms of the basis \mathcal{B}_V

$$v = x_1 v_1 + \dots + x_n v_n. \tag{36}$$

Page 10

By applying F and taking (34) into account we obtain

$$F(v) = x_1 F(v_1) + \dots + x_n F(v_n)$$

= $x_1 (a_{11}w_1 + \dots + a_{m1}w_m) + \dots + x_n (a_{1n}w_1 + \dots + a_{mn}w_m)$
= $\underbrace{(a_{11}x_1 + \dots + a_{1n}x_n)}_{y_1} w_1 + \dots + \underbrace{(a_{m1}x_1 + \dots + a_{mn}x_n)}_{y_m} w_m.$ (37)

At this point we define the following two column vectors

$$[v]_{\mathcal{B}_V} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \qquad [F(v)]_{\mathcal{B}_W} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$
(38)

representing the *coordinates* of v and F(v) relative to the bases \mathcal{B}_V and \mathcal{B}_W , respectively⁵. With this notation, we see from (37) and (35) that

$$[F(v)]_{\mathcal{B}_W} = A^{\mathcal{B}_W}_{\mathcal{B}_V}(F)[v]_{\mathcal{B}_V}.$$
(39)

Therefore, the coordinates of F(v) relative to \mathcal{B}_W are obtained by taking the matrix-vector product between the matrix $A_{\mathcal{B}_V}^{\mathcal{B}_W}(F)$ and the coordinates of v relative to \mathcal{B}_V .

Example 11: Let V and W be vector spaces of dimension $\dim(V) = 2$ and $\dim(W) = 3$, respectively. We consider the following bases in V and W:

$$\mathcal{B}_V = \{v_1, v_2\}, \qquad \mathcal{B}_W = \{w_1, w_2, w_3\}.$$
(40)

Relative to such bases, suppose that F is defined as

$$\begin{cases} F(v_1) = w_1 - 2w_2 - w_3 \\ F(v_2) = w_1 + w_2 + w_3 \end{cases}$$
(41)

Then the matrix representing F is

$$A_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(F) = \begin{bmatrix} 1 & 1 \\ -2 & 1 \\ -1 & 1 \end{bmatrix}.$$
 (42)

If $v = x_1v_1 + x_2v_2$ is an arbitrary vector in V then

$$F(v) = x_1 F(v_1) + x_2 F(v_2)$$

= $x_1(w_1 - 2w_2 - w_3) + x_2(w_1 + w_2 + w_3)$
= $\underbrace{(x_1 + x_2)}_{y_1} w_1 + \underbrace{(x_2 - 2x_1)}_{y_2} w_2 + \underbrace{(x_2 - x_1)}_{y_3} w_3.$ (43)

Note that the coordinates of F(v) relative to the basis \mathcal{B}_W , i.e., $\{y_1, y_2, y_3\}$ are given by the standard matrix-vector product

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
(44)

 $^{^{5}}$ We know from Lecture 6 that such coordinates are uniquely defined by the basis.

Change of basis transformation Consider the following two bases in the vector space V

$$\mathcal{B}_1 = \{u_1, \dots, u_n\}$$
$$\mathcal{B}_2 = \{v_1, \dots, v_n\}$$

Obviously, we can express any element in \mathcal{B}_1 as a linear combination of elements in \mathcal{B}_2 and vice versa. For example,

$$\begin{cases} v_1 = \alpha_{11}u_1 + \dots + \alpha_{n1}u_m \\ \vdots \\ v_n = \alpha_{1n}u_1 + \dots + \alpha_{nn}u_n \end{cases}$$
(45)

The matrix associated with the linear transformation "change of basis from \mathcal{B}_2 to \mathcal{B}_1 " is

$$M_{\mathcal{B}_2}^{\mathcal{B}_1} = \begin{bmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{bmatrix}.$$
 (46)

Such a matrix is invertible and it allows us to transform the coordinates of any vector $v \in V$ from those relative to \mathcal{B}_1 to those relative to \mathcal{B}_2 , i.e.,

$$[v]_{\mathcal{B}_2} = M_{\mathcal{B}_1}^{\mathcal{B}_2}[v]_{\mathcal{B}_1}.$$
(47)

Moreover, we have

$$[v]_{\mathcal{B}_1} = M_{\mathcal{B}_2}^{\mathcal{B}_1}[v]_{\mathcal{B}_2} = \left(M_{\mathcal{B}_1}^{\mathcal{B}_2}\right)^{-1}[v]_{\mathcal{B}_2} \quad \text{which implies} \quad M_{\mathcal{B}_2}^{\mathcal{B}_1} = \left(M_{\mathcal{B}_1}^{\mathcal{B}_2}\right)^{-1}.$$
 (48)

The change of basis transformation can be also used to represent a linear transformation $F: V \to W$ relative to different bases in V and W. To show this, let

$$\begin{array}{lll} \mathcal{B}_1, \ \mathcal{B}_2 & \to & \text{Bases of } V, & \dim(V) = n, \\ \mathcal{B}_3, \ \mathcal{B}_4 & \to & \text{Bases of } W, & \dim(W) = m. \end{array}$$

We have,

$$[F(v)]_{\mathcal{B}_4} = M_{\mathcal{B}_3}^{\mathcal{B}_4} [F(v)]_{\mathcal{B}_3} = M_{\mathcal{B}_3}^{\mathcal{B}_4} A_{\mathcal{B}_2}^{\mathcal{B}_3} [v]_{\mathcal{B}_2} = \underbrace{M_{\mathcal{B}_3}^{\mathcal{B}_4} A_{\mathcal{B}_2}^{\mathcal{B}_3} M_{\mathcal{B}_1}^{\mathcal{B}_2}}_{A_{\mathcal{B}_1}^{\mathcal{B}_4}} [v]_{\mathcal{B}_1}, \tag{49}$$

i.e.,

$$A_{\mathcal{B}_1}^{\mathcal{B}_4} = M_{\mathcal{B}_3}^{\mathcal{B}_4} A_{\mathcal{B}_2}^{\mathcal{B}_3} M_{\mathcal{B}_1}^{\mathcal{B}_2}.$$
 (50)

The matrix $A_{\mathcal{B}_1}^{\mathcal{B}_4}$ represents the linear transformation F relative to the bases \mathcal{B}_1 (basis of V) and \mathcal{B}_4 (basis of W). Similarly, $A_{\mathcal{B}_2}^{\mathcal{B}_3}$ represents the linear transformation F relative to the bases \mathcal{B}_2 (basis of V) and \mathcal{B}_3 (basis of W).

Example 12: (Change of basis in \mathbb{R}^2) Consider the following bases of \mathbb{R}^2

$$\mathcal{B}_1 = \{e_1, e_2\}, \qquad e_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0\\1 \end{bmatrix} \quad \text{(canonical basis of } \mathbb{R}^2\text{)},$$
$$\mathcal{B}_2 = \{v_1, v_2\}, \qquad v_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\2 \end{bmatrix}.$$

(51)

Define the change of basis transformation

as

$$F\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix}, \qquad F\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}.$$
(52)

Clearly,

$$\begin{cases} v_1 = e_1 + e_2 \\ v_2 = e_1 + 2e_2 \end{cases}$$
 (53)

The following figure sketches $\{e_1, e_2\}$ and $\{v_1, v_2\}$ as vectors in the Cartesian plane.

Any vector $v \in \mathbb{R}^2$ can be expressed relatively to \mathcal{B}_1 or \mathcal{B}_2 :

$$v = x_1 v_1 + x_2 v_2$$

= $x_1(e_1 + e_2) + x_2(e_1 + 2e_2)$
= $(x_1 + x_2)e_1 + (x_1 + 2x_2)e_2.$ (54)

Denote by

$$[v]_{\mathcal{B}_1} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \qquad [v]_{\mathcal{B}_2} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
(55)

the coordinates of v relative to \mathcal{B}_1 and \mathcal{B}_2 , respectively. Then equation (54) implies that

$$[v]_{\mathcal{B}_1} = M_{\mathcal{B}_2}^{\mathcal{B}_1}[v]_{\mathcal{B}_2}, \qquad \text{where} \qquad M_{\mathcal{B}_2}^{\mathcal{B}_1} = \begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}.$$
(56)

 $M_{\mathcal{B}_2}^{\mathcal{B}_1}$ is the matrix associated with the change of basis transformation $\mathcal{B}_2 \to \mathcal{B}_1$. Clearly, $M_{\mathcal{B}_2}^{\mathcal{B}_1}$ is invertible with inverse

$$M_{\mathcal{B}_1}^{\mathcal{B}_2} = \left(M_{\mathcal{B}_2}^{\mathcal{B}_1}\right)^{-1} = \begin{bmatrix} 2 & -1\\ -1 & 1 \end{bmatrix}$$
(57)

 $M_{\mathcal{B}_1}^{\mathcal{B}_2}$ is the matrix associated with the change of basis transformation $\mathcal{B}_1 \to \mathcal{B}_2$. Let us see if this is true. To this end, we consider the vector $v = e_1$ and compute the coordinates of this vector relative to \mathcal{B}_2 . We have

$$[v]_{\mathcal{B}_1} = \begin{bmatrix} 1\\ 0 \end{bmatrix} \quad \Rightarrow \quad [v]_{\mathcal{B}_2} = \underbrace{\begin{bmatrix} 2 & -1\\ -1 & 1 \end{bmatrix}}_{M_{\mathcal{B}_1}^{\mathcal{B}_2}} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} 2\\ -1 \end{bmatrix}$$
(58)

 $F: \mathbb{R}^2 \to \mathbb{R}^2$

Example 13: (Rotations in \mathbb{R}^2) Consider the linear transformation $F : \mathbb{R}^2 \to \mathbb{R}^2$ defined as follows (counterclockwise rotation of the basis vectors by an angle θ)

$$\begin{cases} F(e_1) = \cos(\theta)e_1 + \sin(\theta)e_2\\ F(e_2) = -\sin(\theta)e_1 + \cos(\theta)e_2 \end{cases},$$
(59)

where

$$e_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{60}$$

is the canonical basis of \mathbb{R}^2 .

The matrix associated with the transformation F relative to the basis $\mathcal{B}_V = \{e_1, e_2\}$ is

$$A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}(F) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(2D rotation matrix). (61)

Any vector with components $[v]_{\mathcal{B}_V}$ is rotated to a vector F(v) with components

$$[F(v)]_{\mathcal{B}_V} = A^{\mathcal{B}_V}_{\mathcal{B}_V}[v]_{\mathcal{B}_V}.$$
(62)

For example, the vector $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ has components $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ relative to the canonical basis \mathcal{B}_V , and it is transformed to a vector F(v) with components

$$[F(v)]_{\mathcal{B}_{V}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2\cos(\theta) - \sin(\theta) \\ 2\sin(\theta) + \cos(\theta) \end{bmatrix}.$$
 (63)

In particular, if $\theta = \pi/2$ (90 degrees counterclockwise rotation) then

$$[F(v)]_{\mathcal{B}_V} = \begin{bmatrix} -1\\2 \end{bmatrix}.$$
 (64)

The inverse transformation (inverse rotation) is obtained by replacing θ with $-\theta$ in (61), i.e.,

$$\left[A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}(F)\right]^{-1} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}.$$
(65)

Page 14

It is straightforward to verify that for all $\theta \in [0, 2\pi]$ we have

$$\left[A_{\mathcal{B}_V}^{\mathcal{B}_V}(F)\right]^{-1}A_{\mathcal{B}_V}^{\mathcal{B}_V}(F) = I_2.$$
(66)

In fact,

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 \\ 0 & \cos^2\theta + \sin^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

The rotation matrix is an *orthogonal matrix*⁶.

Example 14: (Rotations in \mathbb{R}^3) We can define rotations along each of the three axes of a 3D Cartesian coordinate system, i.e.,

Note that the composition of two rotations in \mathbb{R}^3 does not commute. For example,

$$R_1R_3 \neq R_3R_1.$$

⁶In general, we say that $A \in M_{n \times n}(\mathbb{R})$ is orthogonal if

$$A^{T} = A^{-1}.$$
 (67)

This is equivalent to the statement that orthogonal matrices satisfy

$$AA^T = I_n. ag{68}$$

Example 15: (Orthogonal projection) Consider

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

and the canonical bases of \mathbb{R}^3

$$\mathcal{B}_3 = \{e_1, e_2, e_3\} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

We define F by mapping the basis \mathcal{B}_3 as follows

$$F(e_1) = e_1, \qquad F(e_2) = e_2, \qquad F(e_3) = 0_{\mathbb{R}^3}$$

The associated matrix defines an orthogonal projection onto the (x_1, x_2)

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
 (69)

Note that $P^2 = P$. The orthogonal projection transformation basically project any vector $v \in \mathbb{R}^3$ onto the plane spanned by e_1 and e_2 . If we are interested in a projection onto different plane, we can use e.g., the 3D rotation matrices R_i and rotate the plane before applying the projection. Note that with just R_1 and R_3 we can orient the plane (x_1, x_2) in all possible directions. We maintain that

$$P(\theta_1, \theta_3) = R_1(\theta_1) R_3(\theta_3) P R_3^T(\theta_3) R_1^T(\theta_1)$$
(70)

is an orthogonal projection onto a tilted plane identified by the angles (θ_1, θ_3) . To explain this formula suppose for simplicity that we just rotate the plane (x_1, x_2) counterclockwise of an angle θ_1 around the x_1 axis. The projection of any object onto such plane is obtained by rotating the object clockwise of an angle θ_1 around x_1 (matrix $R_1^T(\theta_3)$ projecting onto the (x_1, x_2) plane and then rotating the result back (matrix $R_1(\theta_3)$). Clearly, (70) satisfies the condition for orthogonal projections,

$$P^2(\theta_1, \theta_3) = P(\theta_1, \theta_3). \tag{71}$$

Example 16: (Oblique projection) Let $v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ be a vector of \mathbb{R}^3 representing the direction of a

light beam. A light beam passing through an arbitrary point $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ has the form

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = c \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} + \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \text{where } c \in \mathbb{R}$$

$$(72)$$

If we set $y_3 = 0$ we obtain $c = -x_3/v_3$. With such a value for c, the light beam passing through the point x intersects the horizontal plane. The linear transformation defined by

$$\begin{cases} y_1 = -\frac{v_1}{v_3}x_3 + x_1 \\ y_2 = -\frac{v_2}{v_3}x_3 + x_2 \\ y_3 = 0 \end{cases}$$
(73)

defines an oblique projection onto the horizontal plane. The matrix associated with such oblique projection transformation (relative to the canonical basis of \mathbb{R}^3) is

$$P = \begin{bmatrix} 1 & 0 & -v_1/v_3 \\ 0 & 1 & -v_2/v_3 \\ 0 & 0 & 0 \end{bmatrix}$$
(74)

The oblique projection can be used to compute the *shadow* of any object in 3D. The following figure shows the shadow projected by a horse for various angles of the light beam.

Note that for $v_1 = v_2 = 0$ the oblique projection reduces to the projection we studied in the previous example.

Example 17: Let $\mathbb{P}_4 = \text{span}\{1, x, x^2, x^3, x^4\}$ be the space of polynomials of degree at most 4. Define the linear transformation

$$F: \mathbb{P}_4 \to \mathbb{P}_3$$
$$p(x) \to \frac{dp(x)}{dx}$$

The canonical bases of \mathbb{P}_4 and \mathbb{P}_3 are

$$\mathcal{B}_4 = \{1, x, x^2, x^3, x^4\},\$$

$$\mathcal{B}_3 = \{1, x, x^2, x^3\}.$$

We define the derivative transformation by mapping each element of \mathbb{P}_4 and representing the result in terms of \mathbb{P}_3 . This yields

$$F(1) = 0,$$
 $F(x) = 1,$ $F(x^2) = 2x,$ $F(x^3) = 3x^2,$ $F(x^4) = 4x^3.$

The matrix associated with F (derivative operator) relative to the bases \mathcal{B}_4 and \mathcal{B}_3 is

$$A_{\mathcal{B}_4}^{\mathcal{B}_3} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

For example, let us compute the derivative of the polynomial

$$p(x) = 1 - 3x + 6x^3. (75)$$

The coordinates of p(x) relative to \mathcal{B}_4 are

$$[p(x)]_{\mathcal{B}_4} = \begin{bmatrix} 1 & -3 & 0 & 6 & 0 \end{bmatrix}^T$$

Page 18

This implies that

$$\Rightarrow \left[\frac{dp(x)}{dx}\right]_{\mathcal{B}_3} = A^{\mathcal{B}_3}_{\mathcal{B}_4}[p(x)]_{\mathcal{B}_4} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1\\ -3\\ 0\\ 6\\ 0\\ 0 \end{bmatrix} = \begin{bmatrix} -3\\ 0\\ 18\\ 0 \end{bmatrix}.$$

Therefore we obtained

$$\frac{dp(x)}{dx} = -3 + 0x + 18x^2 + 0x^3 = -3 + 18x^2,$$
(76)

which is indeed the derivative of the polynomial (75).