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Lecture 7: Linear transformations

Let V and W be two vector spaces over a field K. We say that a transformation

F : V 7→ W (1)

is linear if

1. F (u+ v) = F (u) + F (v) ∀u, v ∈ V ,

2. F (cu) = cF (u) ∀u ∈ V, ∀c ∈ K.

Conditions 1. and 2. imply that

F (au+ bv) = aF (u) + bF (v) ∀u, v ∈ V, ∀a, b ∈ K. (2)

Let us discuss a few examples of linear and nonlinear transformations.

• Example 1: The transformation

F : R→ R
x→ sin(x)

is nonlinear. In fact, sin(x+ y) 6= sin(x) + sin(y) for arbitrary x and y in R.

• Example 2: Let V = C(1)(R) (vector space of real-valued continuously differentiable functions),
W = C(0)(R) (vector space of real-valued continuous functions), K = R. The transformation

F : C1(R)→ C0(R)

f(x)→ df(x)

dx

is linear. In fact, we have

d

dx
(af(x) + bg(x)) = a

df(x)

dx
+ b

dg(x)

dx
∀f, g ∈ C(1)(R), ∀a, b ∈ R. (3)

• Example 3: The transformation

F : R3 → R2x1x2
x3

→ [
x1 − x2

2x1 + x2 − x3

]
is linear. In fact, we have

F

a
x1x2
x3

+ b

y1y2
y3

 =

[
a(x1 − x2) + b(y1 − y2)

a(2x1 + x2 − x3) + b(2y1 + y2 − y3)

]
= aF

x1x2
x3

+bF

y1y2
y3

 .
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• Example 4: The transformation

F : R3 → R2x1x2
x3

→ [
x1 + x2 + 1
x3 + x1

]
(4)

is not linear. In fact,

F

x1x2
x3

+

y1y2
y3

 6= F

x1x2
x3

+ F

y1y2
y3

 .

Transformations of the form (4) are called affine transformations. Affine transformations are
obtained by adding a constant vector to a linear transformation. For the transformation (4)
we have

F

x1x2
x3

→ [
1 1 0
1 0 1

]x1x2
x3


︸ ︷︷ ︸
linear transformation

+

[
1
0

]
︸︷︷︸

constant vector

. (5)

• Example 5: The transformation1

trace : Mn×n(R)→ R

A→
n∑

k=1

akk (trace of the matrix A) (6)

is linear. In fact,
trace(aA+ bB) = a trace(A) + b trace(B). (7)

Hereafter we show that the composition of two linear transformation is a linear transformation.

Theorem 1. Let U , V , and W be vector spaces. Consider the linear transformations F : U → V
and G : V → W . Then G(F (u)) : U → W is a linear transformation.

Proof. If F and G are linear transformations then

G(F (au+ bv)) = G(aF (u) + bF (v)) = aG(F (u)) + bG(F (v)). (8)

Hence, the composition of F and G is a linear transformation.

1The trace of a square matrix is defined to be the sum of all diagonal entries of A.
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Injective, surjective and invertible transformations. Let V and W be two vector spaces.
Consider the following transformation

F : V → W (9)

Here, F can be linear on nonlinear.

1. We say that F is injective or one-to-one if:

for all u, v ∈ V F (u) = F (v) ⇒ u = v (10)

Me · F(u)

· F(v)v o

Or
·
Ox ⑧

V W

2. We say that F is surjective or onto if

for all w ∈ W there exists (at least one) u ∈ V such that F (u) = w (11)

Me

·
W

v o

Or
·
Ox ⑧

V W

Note that there may be more than one element in V that is mapped onto w. In the figure
above, two elements u and v are mapped onto the same element w.

3. We say that F is invertible2 if is is one-to-one and onto (injective and surjective).

2Invertible transformations are often called bijections or bijective transformations.
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Example 6: The nonlinear transformation

F : R→ R
x→ sin(x)

is not injective nor surjective on the real line.

itisa
In fact, there are multiple points on the x axis with the same value of sin(x). For example,

sin(1) = sin(1 + 2kπ) k ∈ Z. (12)

Hence the function is not injective. The function sin(x) is also not surjective in R, as there is no
x ∈ R such that sin(x) = 2. However, if we restrict the domain and range of F as follows

F :
[
−π

2
,
π

2

]
→ [−1, 1]

x→ sin(x)

then F is invertible, since it is injective and surjective. The inverse function is denoted by sin−1(x)
or arcsin(x)

Example 7: The linear transformation

F : R2 → R2[
x1
x2

]
︸︷︷︸

x

→
[

1 2
−1 1

]
︸ ︷︷ ︸

A

[
x1
x2

]
︸︷︷︸

x

=

[
x1 + 2x2
−x1 + x2

]
,

is one-to-one and onto. In fact it is easy to show Ax = Ay implies x = y (inejctivity), and that for
each y ∈ R there exits x ∈ R2 such that Ax = y. Therefore the transformation F is invertible. The
inverse transformation is defined by the inverse matrix A−1

F−1 : R2 → R2[
x1
x2

]
︸︷︷︸

x

→ 1

3

[
1 −2
1 1

]
︸ ︷︷ ︸

A−1

[
x1
x2

]
︸︷︷︸

x

=
1

3

[
x1 − 2x2
x1 + x2

]
.

Page 4



AM 10 Prof. Daniele Venturi

Definition. Let V , W be vector spaces, F : V → W a linear transformation. If F is invertible
then we say that F is an isomorphism between V and W . If there exists an isomorphism between
the vector spaces V and W (i.e., an invertible linear trasformation) then we say that V and W are
isomorphic.

Theorem 2. Let V be a vector space of dimension n over a field K. Then V is isomorphic to Kn.

Proof. Let v1, . . . , vn ∈ V be a basis of F . Any vector v ∈ V can be represented uniquely relative
to the basis as

v = x1v1 + · · ·+ xnvn xi ∈ K. (13)

The transformation

F : V → Kn (14)

v →

x1...
xn

 (15)

is linear, one-to-one and onto. These properties follow immediately from the definition of basis
(surjectivity), and from the fact that the coordinates of v ∈ V relative to a basis are unique
(injectivity). Hence, (15) defines a bijection between V and Kn. This means that V is isomorphic
to Kn.

Example 8: The space of polynomials of degree at most 4 with real coefficients, i.e., P4(R), is
isomorphic to R5. In fact, if we set up a basis for P4(R), i.e., a set of 5 linearly independent
polynomials of degree at most 4, e.g.,

p4(x) = x4 − 3x, p3(x) = x3, p2(x) = x3 + x2 + 1, p1(x) = x− x3, p0(x) = x2 + 1, (16)

then we see that each polynomial in p ∈ P4(R) is uniquely identified by 5 real coefficients (x0, . . . , x4):

p(x) = x4p4(x) + x3p3(x) + x2p2(x) + x1p1(x) + x0p0(x). (17)

Hence, there exists a bijection between R5 and the space of polynomials P4(R). In other words,
P4(R) and R5 are isomorphic.

Example 9: The vector space of 3 × 3 symmetric matrices with real coefficient is isomorphic to
R6.

Since the inverse of an isomorphism is an isomorphism we have that all vector spaces of dimension
n over some field K are isomorphic to one another. For example, the vector space of polynomials
of degree at most 3 is isomorphic to the vector space of 2× 2 matrices with real coefficients.

Theorem 3. The set of all linear mappings between two vector spaces V and W is a vector space.
Such a space is denoted by L(V,W ).

Page 5



AM 10 Prof. Daniele Venturi

Nullspace and range of a linear transformation. Let V , W be vector spaces. Consider the
linear transformation

F : V → W. (18)

• The nullspace (or kernel3) of F is the set vectors in V that are mapped into 0W (zero vector
of W ), i.e.,

N(F ) = {v ∈ V such that F (v) = 0W} (nullspace of F ). (19)

Clearly, since F is linear we have that the element 0V is always mapped onto 0W . Therefore,
0V is always in the nullspace of F .

e
⑧

R(F)

N(F) th

v

④.. "x

I TW=

• The range of F is the set of vectors w in W such that w is the image of some v ∈ V under F ,
i.e., there exists v ∈ V such that F (v) = w.

R(F ) = {F (v) ∈ W such that v ∈ V } (20)

Note that the range of R(F ) has 0W in it. In fact, since F is linear we have that F (0V ) = 0W .

Let us determine the nullspace and the range of simple linear transformations.

Example 10: Consider the following linear transformation

F : R3 → R2x1x2
x3

→ [
x1 + x2 + x3

x3

]
=

[
1 1 1
0 0 1

]
︸ ︷︷ ︸

A

x1x2
x3

 (21)

The nullspace of F is the set of vectors in R3 that mapped onto the zero vector of R2. Hence, the
nullspace of F is defined by the following homogeneous linear system of equations{

x1 + x2 + x3 = 0

x3 = 0
⇒

{
x1 = −x2
x3 = 0

(22)
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X3

N(F) =G(xx,xz,xz) ElR:
xz =0,xz=-x=3

- X2

*1

Note that the nullspace of F is a vector subspace of R3 (line passing through the origin). The range
of F can be constructed by taking an arbitrary element of R3 and mapping it via F . Such range
coincides with column space of the matrix A, i.e., the span of the columns of A. In fact,[

x1 + x2 + x3
x3

]
= x1

[
1
0

]
+ x2

[
1
0

]
+ x3

[
1
1

]
. (23)

Hence,

R(F ) = span

{[
1
0

]
,

[
1
0

]
,

[
1
1

]}
= span

{[
1
0

]
,

[
1
1

]}
= R2. (24)

Theorem 4. Let V , W be vector spaces, F : V → W linear. Then

1. N(F ) is a vector subspace of V .

2. R(F ) is a vector subspace of W .

Proof. Let u, v ∈ N(F ). Clearly, u + v is in N(F ). In fact, since F is linear we have F (u + v) =
F (u) +F (v) = 0W . Thus, u+ v is in N(F ). Moreover, 0V ∈ N(F ) and cu ∈ N(F ) for all u ∈ N(F )
and all c ∈ K. This implies that N(F ) is a vector subspace of V . To prove that R(F ) is a vector
subspace of W , let w, s ∈ R(F ). This means that there exist u, v ∈ V such that F (u) = w and
F (v) = s. Obviously, (w+s) ∈ R(F ). In fact, by using the linearity of F we have F (u+v) = w+s,
and therefore w + s ∈ R(F ). Also, 0W is R(F ) and cu ∈ R(F ) for all u ∈ R(F ). Thus, R(F ) is a
vector subspace of W .

The nullspace and the range of linear transformation also characterize the injectivity and surjectivity
of the transformation. In particular we have the following theorems.

Theorem 5. Let V , W be vector spaces, F : V → W a linear transformation. Then F is injective
(one-to-one) if and only if N(F ) = {0V }, i.e., the if nullspace of F reduces the single element {0V }.

3The nullspace/kernel of a linear transformation F is often denoted as ker(F ).
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Proof. To prove the theorem we need to prove two statements:

1. F is injective ⇒ N(F ) = {0V }.

Suppose that F is one-to-one. We want to show that this implies N(F ) = {0V }. To this end,
let v ∈ N(F ), i.e., F (v) = 0W . Clearly v = 0V is mapped onto 0W , i.e., 0V ∈ N(F ). The
assumption that F is one-to-one rules out the existence of any other element in V mapped onto
0W . In other words, 0V is the only element of V mapped into 0W . Hence, if F is one-to-one
then N(F ) = {0V }.

2. N(F ) = {0V } ⇒ F is injective.

Conversely, let us assume that N(F ) = {0V }. We want to show that this implies that F is
one-to-one. To this end, suppose there are two elements u, v ∈ V such that F (u) = F (v). By
using the linearity of F we have F (u− v) = 0W , i.e., (u− v) ∈ N(F ). Since, by assumption,
the only element in the nullspace of F is 0V we have that u − v = 0V , i.e., u = v. In other
words, N(F ) = {0V } implies that F is one-to-one.

Theorem 6. Let V , W be vector spaces, F : V → W linear. Then F is surjective (onto) if and
only if dim(R(F )) = dim(W ).

Proof. As before, to prove the theorem we need to prove two statements:

1. F is surjective ⇒ dim(R(F )) = dim(W ),

2. F is surjective ⇐ dim(R(F )) = dim(W ).

Let F be surjective (or onto), i.e., ∀w ∈ W there exists at least one v ∈ V such that F (v) =
w. This means that R(F ) = W and therefore dim(R(F )) = dim(W ). Conversely, suppose that
dim(R(F )) = dim(W ). We know that R(F ) is a vector subspace of W . Since the dimension of
R(F ) and W are the same (by assumption) then R(F ) = W , i.e., F is surjective (or onto).

Next we discuss a very important theorem for linear transformations between vector spaces.

Theorem 7. Let V and W be vector space and F : V → W be any linear transformation. Then

dim(V ) = dim(N(F )) + dim(R(F )). (25)

Proof. If R(F ) = 0W the statement is trivial since the entire V is mapped to the 0W . This
implies N(F ) = V , and of course dim(N(F )) = dim(V ). Consider now dim(R(F )) = s > 0
and let {w1, . . . , ws} be a basis of R(F ). Then there exist s elements v1, . . . , vs ∈ V such that
F (v1) = w1, . . . , F (vs) = ws. Suppose dim(N(F )) = q and let {u1, . . . , uq} be a basis for N(F ).

We would like to show that {u1, . . . , uq, v1, . . . , vs} is a basis of V 4. To this end, pick an arbitrary
v ∈ V . Then, there exists x1, . . . , xs ∈ K such that F (v) = x1w1 + . . .+ xsws (since w1, . . . , ws is a

4Note that if {u1, . . . , uq, v1, . . . , vs} is a basis of V then dim(V ) = q+s, where q = dim(N(F ) and s = dim(R(F )).
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basis for R(F )). Recalling that F (v1) = w1, ..., F (vs) = ws

F (v) = x1F (v1) + . . .+ xsF (vs)

= F (x1v1 + . . .+ xsvs).

By using the linearity of F we obtain

F (v − x1v1 − · · · − xsvs) = 0W ⇒ (v − x1v1 − · · · − xsvs) ∈ N(F ).

At this point we represent (v − x1v1 − · · · − xsvs) relative to the basis of N(F )

v − x1v1 − . . .− xsvs = y1u1 + . . .+ yquq,

i.e.,
v = x1v1 + . . .+ xsvs + y1u1 + . . .+ yquq.

This shows that V = span{v1, . . . , vs, u1, . . . , uq}, i.e., that V is generated by {v1, . . . , vs, u1, . . . , uq}.
To prove the theorem it remains to prove that the the vectors {v1, . . . , vs, u1, . . . , uq} are linearly
independent. In this way we can claim that n = s+ q, i.e., dim(V ) = dim(N(F )) + dim(R(F )).

To this end, consider the linear combination

x1v1 + . . .+ xsvs + y1u1 + . . .+ yquq = 0V . (26)

By applying F and recalling that F (ui) = 0W (ui ∈ N(F )) we obtain

x1w1 + . . .+ xsws = 0W ⇒ x1, . . . , xs = 0. (27)

In fact {w1, . . . , ws} is a basis for R(F ) and therefore wi are linearly independent. Substituting this
result back into (26) yields

y1u1 + . . .+ yquq = 0V ⇒ y1, . . . , yq = 0 (28)

since {u1, . . . , uq} is a basis for N(F ). Equations (27), (28) and (26) allow us to conclude that
{v1, . . . , vs, u1, . . . , uq} are linearly independent. Moreover the vectors {v1, . . . , vs, u1, . . . , uq} gen-
erate V , and therefore they are a basis for V . This implies that

dim(V ) = s+ q = dim(N(F )) + dim(R(F )). (29)

Matrix rank theorem. Theorem 7 can be applied to linear transformations defined by matrices.
To this end, consider the transformation F : Rn → Rm from Rn into Rm defined as F (x) = Ax,
where A is an m× n matrix: x1...

xn


︸ ︷︷ ︸

x

→

a11 · · · a1n
...

. . .
...

am1 · · · amn


︸ ︷︷ ︸

A

x1...
xn


︸ ︷︷ ︸

x

(30)
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We know that range of F coincides with the column space of A. Also the dimension of the column
space is the rank of the matrix A. Therefore from equation (25) it follows that

n = dim(N(A)) + rank(A) . (31)

Matrix associated with a linear transformation Let V and W be finite-dimensional vector
spaces, and let

F : V → W (32)

an arbitrary linear transformation. In this section we show how to represent F in terms of a matrix.
To this end, suppose that

BV = {v1, . . . , vn} → basis of V , dim(V ) = n,

BW = {w1, . . . , wm} → basis of W , dim(W ) = m.

The transformation F is uniquely determined by the image of the basis BV under F , i.e.,

{v1, . . . , vn} → {F (v1), . . . , F (vn)}. (33)

-** =

VI

N2. R(F)

N(F) · F(V1)

·
V3 · F(vz)

D.
·Ox

Clearly, for all i = 1, . . . , n we have that F (vi) ∈ R(F ) ⊆ W . Therefore, each F (vi) can be
represented in terms of the basis BW as

F (v1) = a11w1 + · · ·+ am1wm

...

F (vn) = a1nw1 + · · ·+ amnwm

. (34)

Note that aij is the i-th component of F (vj) relative to the basis {w1, . . . , wm}. The matrix asso-
ciated with the linear transformation F depends bases BV and BW and it is defined as

ABWBV (F ) =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 . (35)

Next, consider an arbitrary element v ∈ V , and represent it in terms of the basis BV

v = x1v1 + · · ·+ xnvn. (36)
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By applying F and taking (34) into account we obtain

F (v) =x1F (v1) + · · ·+ xnF (vn)

=x1 (a11w1 + · · ·+ am1wm) + · · ·+ xn (a1nw1 + · · ·+ amnwm)

= (a11x1 + · · ·+ a1nxn)︸ ︷︷ ︸
y1

w1 + · · ·+ (am1x1 + · · ·+ amnxn)︸ ︷︷ ︸
ym

wm. (37)

At this point we define the following two column vectors

[v]BV =

x1...
xn

 , [F (v)]BW =

y1...
ym

 (38)

representing the coordinates of v and F (v) relative to the bases BV and BW , respectively5. With
this notation, we see from (37) and (35) that

[F (v)]BW = ABWBV (F )[v]BV . (39)

Therefore, the coordinates of F (v) relative to BW are obtained by taking the matrix-vector product
between the matrix ABWBV (F ) and the coordinates of v relative to BV .

Example 11: Let V and W be vector spaces of dimension dim(V ) = 2 and dim(W ) = 3, respectively.
We consider the following bases in V and W :

BV = {v1, v2}, BW = {w1, w2, w3}. (40)

Relative to such bases, suppose that F is defined as{
F (v1) = w1 − 2w2 − w3

F (v2) = w1 + w2 + w3

. (41)

Then the matrix representing F is

ABWBV (F ) =

 1 1
−2 1
−1 1

 . (42)

If v = x1v1 + x2v2 is an arbitrary vector in V then

F (v) =x1F (v1) + x2F (v2)

=x1(w1 − 2w2 − w3) + x2(w1 + w2 + w3)

= (x1 + x2)︸ ︷︷ ︸
y1

w1 + (x2 − 2x1)︸ ︷︷ ︸
y2

w2 + (x2 − x1)︸ ︷︷ ︸
y3

w3. (43)

Note that the coordinates of F (v) relative to the basis BW , i.e., {y1, y2, y3} are given by the standard
matrix-vector product y1y2

y3

 =

 1 1
−2 1
−1 1

[x1
x2

]
. (44)

5We know from Lecture 6 that such coordinates are uniquely defined by the basis.
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Change of basis transformation Consider the following two bases in the vector space V

B1 = {u1, . . . , un}
B2 = {v1, . . . , vn}

Obviously, we can express any element in B1 as a linear combination of elements in B2 and vice
versa. For example, 

v1 = α11u1 + · · ·+ αn1um
...

vn = α1nu1 + · · ·+ αnnun

. (45)

The matrix associated with the linear transformation “change of basis from B2 to B1” is

MB1
B2 =

α11 · · · α1n
...

. . .
...

αn1 · · · αnn

 . (46)

Such a matrix is invertible and it allows us to transform the coordinates of any vector v ∈ V from
those relative to B1 to those relative to B2, i.e.,

[v]B2 = MB2
B1 [v]B1 . (47)

Moreover, we have

[v]B1 = MB1
B2 [v]B2 =

(
MB2
B1

)−1
[v]B2 which implies MB1

B2 =
(
MB2
B1

)−1
. (48)

The change of basis transformation can be also used to represent a linear transformation F : V → W
relative to different bases in V and W . To show this, let

B1, B2 → Bases of V , dim(V ) = n,

B3, B4 → Bases of W, dim(W ) = m.

We have,

[F (v)]B4 = MB4
B3 [F (v)]B3 = MB4

B3A
B3
B2 [v]B2 = MB4

B3A
B3
B2M

B2
B1︸ ︷︷ ︸

A
B4
B1

[v]B1 , (49)

i.e.,
AB4B1 = MB4

B3A
B3
B2M

B2
B1 . (50)

The matrix AB4B1 represents the linear transformation F relative to the bases B1 (basis of V ) and B4
(basis of W ). Similarly, AB3B2 represents the linear transformation F relative to the bases B2 (basis
of V ) and B3 (basis of W ).

Example 12: (Change of basis in R2) Consider the following bases of R2

B1 = {e1, e2}, e1 =

[
1
0

]
, e2 =

[
0
1

]
(canonical basis of R2),

B2 = {v1, v2}, v1 =

[
1
1

]
, v2 =

[
1
2

]
.
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Define the change of basis transformation

F : R2 → R2 (51)

as

F

([
1
0

])
=

[
1
1

]
, F

([
0
1

])
=

[
1
2

]
. (52)

Clearly, {
v1 = e1 + e2

v2 = e1 + 2e2
. (53)

The following figure sketches {e1, e2} and {v1, v2} as vectors in the Cartesian plane.

·
v =(2)

1
M -v1 =(I)ICe
e1

"1

Any vector v ∈ R2 can be expressed relatively to B1 or B2:

v =x1v1 + x2v2

=x1(e1 + e2) + x2(e1 + 2e2)

=(x1 + x2)e1 + (x1 + 2x2)e2. (54)

Denote by

[v]B1 =

[
y1
y2

]
, [v]B2 =

[
x1
x2

]
. (55)

the coordinates of v relative to B1 and B2, respectively. Then equation (54) implies that

[v]B1 = MB1
B2 [v]B2 , where MB1

B2 =

[
1 1
1 2

]
. (56)

MB1
B2 is the matrix associated with the change of basis transformation B2 → B1. Clearly, MB1

B2 is
invertible with inverse

MB2
B1 =

(
MB1
B2

)−1
=

[
2 −1
−1 1

]
(57)

MB2
B1 is the matrix associated with the change of basis transformation B1 → B2. Let us see if this is

true. To this end, we consider the vector v = e1 and compute the coordinates of this vector relative
to B2. We have

[v]B1 =

[
1
0

]
⇒ [v]B2 =

[
2 −1
−1 1

]
︸ ︷︷ ︸

M
B2
B1

[
1
0

]
=

[
2
−1

]
(58)
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Example 13: (Rotations in R2) Consider the linear transformation F : R2 → R2 defined as follows
(counterclockwise rotation of the basis vectors by an angle θ){

F (e1) = cos(θ)e1 + sin(θ)e2

F (e2) = − sin(θ)e1 + cos(θ)e2
, (59)

where

e1 =

[
1
0

]
, e2 =

[
0
1

]
(60)

is the canonical basis of R2.

I

FarFiee
The matrix associated with the transformation F relative to the basis BV = {e1, e2} is

ABVBV (F ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(2D rotation matrix). (61)

Any vector with components [v]BV is rotated to a vector F (v) with components

[F (v)]BV = ABVBV [v]BV . (62)

For example, the vector v =

[
2
1

]
has components

[
2
1

]
relative to the canonical basis BV , and it is

transformed to a vector F (v) with components

[F (v)]BV =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
2
1

]
=

[
2 cos(θ)− sin(θ)
2 sin(θ) + cos(θ)

]
. (63)

In particular, if θ = π/2 (90 degrees counterclockwise rotation) then

[F (v)]BV =

[
−1
2

]
. (64)

The inverse transformation (inverse rotation) is obtained by replacing θ with −θ in (61), i.e.,

[
ABVBV (F )

]−1
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (65)
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It is straightforward to verify that for all θ ∈ [0, 2π] we have[
ABVBV (F )

]−1
ABVBV (F ) = I2. (66)

In fact, [
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

]
=

[
1 0
0 1

]
.

The rotation matrix is an orthogonal matrix6.

Example 14: (Rotations in R3) We can define rotations along each of the three axes of a 3D Cartesian
coordinate system, i.e.,

iteei R3 =

cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1



-nes R1 =

1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1



ne
ei

R2 =

cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2



Note that the composition of two rotations in R3 does not commute. For example,

R1R3 6= R3R1.

6In general, we say that A ∈Mn×n(R) is orthogonal if

AT = A−1. (67)

This is equivalent to the statement that orthogonal matrices satisfy

AAT = In. (68)
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Example 15: (Orthogonal projection) Consider

F : R3 → R3

and the canonical bases of R3

B3 = {e1, e2, e3} =


1

0
0

 ,
0

1
0

 ,
0

0
1


We define F by mapping the basis B3 as follows

F (e1) = e1, F (e2) = e2, F (e3) = 0R3 .

The associated matrix defines an orthogonal projection onto the (x1, x2)

P =

1 0 0
0 1 0
0 0 0

 . (69)

Note that P 2 = P . The orthogonal projection transformation basically project any vector v ∈ R3

onto the plane spanned by e1 and e2. If we are interested in a projection onto different plane, we
can use e.g., the 3D rotation matrices Ri and rotate the plane before applying the projection. Note
that with just R1 and R3 we can orient the plane (x1, x2) in all possible directions. We maintain
that

P (θ1, θ3) = R1(θ1)R3(θ3)PR
T
3 (θ3)R

T
1 (θ1) (70)

is an orthogonal projection onto a tilted plane identified by the angles (θ1, θ3). To explain this
formula suppose for simplicity that we just rotate the plane (x1, x2) counterclockwise of an angle
θ1 around the x1 axis. The projection of any object onto such plane is obtained by rotating the
object clockwise of an angle θ1 around x1 (matrix RT

1 (θ3) projecting onto the (x1, x2) plane and
then rotating the result back (matrix R1(θ3)). Clearly, (70) satisfies the condition for orthogonal
projections,

P 2(θ1, θ3) = P (θ1, θ3). (71)

Example 16: (Oblique projection) Let v =

v1v2
v3

 be a vector of R3 representing the direction of a

light beam. A light beam passing through an arbitrary point x =

x1x2
x3

 has the form

y1y2
y3

 = c

v1v2
v3

+

x1x2
x3

 where c ∈ R (72)
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If we set y3 = 0 we obtain c = −x3/v3. With such a value for c, the light beam passing through the
point x intersects the horizontal plane. The linear transformation defined by

y1 = −v1
v3
x3 + x1

y2 = −v2
v3
x3 + x2

y3 = 0

(73)

defines an oblique projection onto the horizontal plane. The matrix associated with such oblique
projection transformation (relative to the canonical basis of R3) is

P =

1 0 −v1/v3
0 1 −v2/v3
0 0 0

 (74)

The oblique projection can be used to compute the shadow of any object in 3D. The following figure
shows the shadow projected by a horse for various angles of the light beam.

Note that for v1 = v2 = 0 the oblique projection reduces to the projection we studied in the previous
example.
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Example 17: Let P4 = span{1, x, x2, x3, x4} be the space of polynomials of degree at most 4. Define
the linear transformation

F : P4 → P3

p(x)→ dp(x)

dx
.

The canonical bases of P4 and P3 are

B4 = {1, x, x2, x3, x4},
B3 = {1, x, x2, x3}.

We define the derivative transformation by mapping each element of P4 and representing the result
in terms of P3. This yields

F (1) = 0, F (x) = 1, F (x2) = 2x, F (x3) = 3x2, F (x4) = 4x3.

The matrix associated with F (derivative operator) relative to the bases B4 and B3 is

AB3B4 =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

 .
For example, let us compute the derivative of the polynomial

p(x) = 1− 3x+ 6x3. (75)

The coordinates of p(x) relative to B4 are

[p(x)]B4 =
[
1 −3 0 6 0

]T
.

Page 18



AM 10 Prof. Daniele Venturi

This implies that

⇒
[
dp(x)

dx

]
B3

= AB3B4 [p(x)]B4 =


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4




1
−3
0
6
0

 =


−3
0
18
0

 .
Therefore we obtained

dp(x)

dx
= −3 + 0x+ 18x2 + 0x3 = −3 + 18x2, (76)

which is indeed the derivative of the polynomial (75).
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