Lecture 7: Linear transformations

Let V and W be two vector spaces over a field K. We say that a transformation

$$
\begin{equation*}
F: V \mapsto W \tag{1}
\end{equation*}
$$

is linear if

1. $F(u+v)=F(u)+F(v) \quad \forall u, v \in V$,
2. $F(c u)=c F(u) \quad \forall u \in V, \quad \forall c \in K$.

Conditions 1. and 2. imply that

$$
\begin{equation*}
F(a u+b v)=a F(u)+b F(v) \quad \forall u, v \in V, \quad \forall a, b \in K \tag{2}
\end{equation*}
$$

Let us discuss a few examples of linear and nonlinear transformations.

- Example 1: The transformation

$$
\begin{aligned}
F: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \rightarrow \sin (x)
\end{aligned}
$$

is nonlinear. In fact, $\sin (x+y) \neq \sin (x)+\sin (y)$ for arbitrary x and y in \mathbb{R}.

- Example 2: Let $V=C^{(1)}(\mathbb{R})$ (vector space of real-valued continuously differentiable functions), $W=C^{(0)}(\mathbb{R})$ (vector space of real-valued continuous functions), $K=\mathbb{R}$. The transformation

$$
\begin{aligned}
F: C^{1}(\mathbb{R}) & \rightarrow C^{0}(\mathbb{R}) \\
f(x) & \rightarrow \frac{d f(x)}{d x}
\end{aligned}
$$

is linear. In fact, we have

$$
\begin{equation*}
\frac{d}{d x}(a f(x)+b g(x))=a \frac{d f(x)}{d x}+b \frac{d g(x)}{d x} \quad \forall f, g \in C^{(1)}(\mathbb{R}), \quad \forall a, b \in \mathbb{R} \tag{3}
\end{equation*}
$$

- Example 3: The transformation

$$
\begin{aligned}
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1}-x_{2} \\
2 x_{1}+x_{2}-x_{3}
\end{array}\right] }
\end{aligned}
$$

is linear. In fact, we have

$$
F\left(a\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+b\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
a\left(x_{1}-x_{2}\right)+b\left(y_{1}-y_{2}\right) \\
a\left(2 x_{1}+x_{2}-x_{3}\right)+b\left(2 y_{1}+y_{2}-y_{3}\right)
\end{array}\right]=a F\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)+b F\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)
$$

- Example 4: The transformation

$$
\begin{align*}
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1}+x_{2}+1 \\
x_{3}+x_{1}
\end{array}\right]} \tag{4}
\end{align*}
$$

is not linear. In fact,

$$
F\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right) \neq F\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)+F\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)
$$

Transformations of the form (4) are called affine transformations. Affine transformations are obtained by adding a constant vector to a linear transformation. For the transformation (4) we have

$$
F\left(\left[\begin{array}{l}
x_{1} \tag{5}\\
x_{2} \\
x_{3}
\end{array}\right]\right) \rightarrow \underbrace{\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}_{\text {linear transformation }}+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{\text {constant vector }}
$$

- Example 5: The transformation ${ }^{1}$

$$
\begin{align*}
\operatorname{trace}: M_{n \times n}(\mathbb{R}) & \rightarrow \mathbb{R} \\
A & \rightarrow \sum_{k=1}^{n} a_{k k} \quad(\text { trace of the matrix } A) \tag{6}
\end{align*}
$$

is linear. In fact,

$$
\begin{equation*}
\operatorname{trace}(a A+b B)=a \operatorname{trace}(A)+b \operatorname{trace}(B) \tag{7}
\end{equation*}
$$

Hereafter we show that the composition of two linear transformation is a linear transformation.
Theorem 1. Let U, V, and W be vector spaces. Consider the linear transformations $F: U \rightarrow V$ and $G: V \rightarrow W$. Then $G(F(u)): U \rightarrow W$ is a linear transformation.

Proof. If F and G are linear transformations then

$$
\begin{equation*}
G(F(a u+b v))=G(a F(u)+b F(v))=a G(F(u))+b G(F(v)) \tag{8}
\end{equation*}
$$

Hence, the composition of F and G is a linear transformation.

[^0]Injective, surjective and invertible transformations. Let V and W be two vector spaces. Consider the following transformation

$$
\begin{equation*}
F: V \rightarrow W \tag{9}
\end{equation*}
$$

Here, F can be linear on nonlinear.

1. We say that F is injective or one-to-one if:

$$
\begin{equation*}
\text { for all } \quad u, v \in V \quad F(u)=F(v) \quad \Rightarrow \quad u=v \tag{10}
\end{equation*}
$$

2. We say that F is surjective or onto if

$$
\begin{equation*}
\text { for all } \quad w \in W \quad \text { there exists (at least one) } \quad u \in V \quad \text { such that } \quad F(u)=w \tag{11}
\end{equation*}
$$

Note that there may be more than one element in V that is mapped onto w. In the figure above, two elements u and v are mapped onto the same element w.
3. We say that F is invertible ${ }^{2}$ if is is one-to-one and onto (injective and surjective).

[^1]Example 6: The nonlinear transformation

$$
\begin{aligned}
F: \mathbb{R} & \rightarrow \mathbb{R} \\
x & \rightarrow \sin (x)
\end{aligned}
$$

is not injective nor surjective on the real line.

In fact, there are multiple points on the x axis with the same value of $\sin (x)$. For example,

$$
\begin{equation*}
\sin (1)=\sin (1+2 k \pi) \quad k \in \mathbb{Z} \tag{12}
\end{equation*}
$$

Hence the function is not injective. The function $\sin (x)$ is also not surjective in \mathbb{R}, as there is no $x \in \mathbb{R}$ such that $\sin (x)=2$. However, if we restrict the domain and range of F as follows

$$
\begin{aligned}
F:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] & \rightarrow[-1,1] \\
x & \rightarrow \sin (x)
\end{aligned}
$$

then F is invertible, since it is injective and surjective. The inverse function is denoted by $\sin ^{-1}(x)$ or $\arcsin (x)$

Example 7: The linear transformation

$$
\begin{aligned}
& F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x} \rightarrow \underbrace{\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
-x_{1}+x_{2}
\end{array}\right],
\end{aligned}
$$

is one-to-one and onto. In fact it is easy to show $A x=A y$ implies $x=y$ (inejctivity), and that for each $y \in \mathbb{R}$ there exits $x \in \mathbb{R}^{2}$ such that $A x=y$. Therefore the transformation F is invertible. The inverse transformation is defined by the inverse matrix A^{-1}

$$
\begin{aligned}
& F^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x} \rightarrow \underbrace{\frac{1}{3}\left[\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right]}_{A^{-1}} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\frac{1}{3}\left[\begin{array}{c}
x_{1}-2 x_{2} \\
x_{1}+x_{2}
\end{array}\right] .
\end{aligned}
$$

Definition. Let V, W be vector spaces, $F: V \rightarrow W$ a linear transformation. If F is invertible then we say that F is an isomorphism between V and W. If there exists an isomorphism between the vector spaces V and W (i.e., an invertible linear trasformation) then we say that V and W are isomorphic.

Theorem 2. Let V be a vector space of dimension n over a field K. Then V is isomorphic to K^{n}.
Proof. Let $v_{1}, \ldots, v_{n} \in V$ be a basis of F. Any vector $v \in V$ can be represented uniquely relative to the basis as

$$
\begin{equation*}
v=x_{1} v_{1}+\cdots+x_{n} v_{n} \quad x_{i} \in K \tag{13}
\end{equation*}
$$

The transformation

$$
\begin{align*}
F: V & \rightarrow K^{n} \tag{14}\\
v & \rightarrow\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \tag{15}
\end{align*}
$$

is linear, one-to-one and onto. These properties follow immediately from the definition of basis (surjectivity), and from the fact that the coordinates of $v \in V$ relative to a basis are unique (injectivity). Hence, (15) defines a bijection between V and K^{n}. This means that V is isomorphic to K^{n}.

Example 8: The space of polynomials of degree at most 4 with real coefficients, i.e., $\mathbb{P}_{4}(\mathbb{R})$, is isomorphic to \mathbb{R}^{5}. In fact, if we set up a basis for $\mathbb{P}_{4}(\mathbb{R})$, i.e., a set of 5 linearly independent polynomials of degree at most 4, e.g.,

$$
\begin{equation*}
p_{4}(x)=x^{4}-3 x, \quad p_{3}(x)=x^{3}, \quad p_{2}(x)=x^{3}+x^{2}+1, \quad p_{1}(x)=x-x^{3}, \quad p_{0}(x)=x^{2}+1, \tag{16}
\end{equation*}
$$

then we see that each polynomial in $p \in \mathbb{P}_{4}(\mathbb{R})$ is uniquely identified by 5 real coefficients $\left(x_{0}, \ldots, x_{4}\right)$:

$$
\begin{equation*}
p(x)=x_{4} p_{4}(x)+x_{3} p_{3}(x)+x_{2} p_{2}(x)+x_{1} p_{1}(x)+x_{0} p_{0}(x) . \tag{17}
\end{equation*}
$$

Hence, there exists a bijection between \mathbb{R}^{5} and the space of polynomials $\mathbb{P}_{4}(\mathbb{R})$. In other words, $\mathbb{P}_{4}(\mathbb{R})$ and \mathbb{R}^{5} are isomorphic.

Example 9: The vector space of 3×3 symmetric matrices with real coefficient is isomorphic to \mathbb{R}^{6}.

Since the inverse of an isomorphism is an isomorphism we have that all vector spaces of dimension n over some field K are isomorphic to one another. For example, the vector space of polynomials of degree at most 3 is isomorphic to the vector space of 2×2 matrices with real coefficients.

Theorem 3. The set of all linear mappings between two vector spaces V and W is a vector space. Such a space is denoted by $\mathcal{L}(V, W)$.

Nullspace and range of a linear transformation. Let V, W be vector spaces. Consider the linear transformation

$$
\begin{equation*}
F: V \rightarrow W . \tag{18}
\end{equation*}
$$

- The nullspace (or kernel ${ }^{3}$) of F is the set vectors in V that are mapped into 0_{W} (zero vector of W), i.e.,

$$
\begin{equation*}
\left.N(F)=\left\{v \in V \quad \text { such that } \quad F(v)=0_{W}\right\} \quad \text { (nullspace of } F\right) . \tag{19}
\end{equation*}
$$

Clearly, since F is linear we have that the element 0_{V} is always mapped onto 0_{W}. Therefore, 0_{V} is always in the nullspace of F.

- The range of F is the set of vectors w in W such that w is the image of some $v \in V$ under F, i.e., there exists $v \in V$ such that $F(v)=w$.

$$
\begin{equation*}
R(F)=\{F(v) \in W \quad \text { such that } \quad v \in V\} \tag{20}
\end{equation*}
$$

Note that the range of $R(F)$ has 0_{W} in it. In fact, since F is linear we have that $F\left(0_{V}\right)=0_{W}$.

Let us determine the nullspace and the range of simple linear transformations.

Example 10: Consider the following linear transformation

$$
\begin{align*}
& F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{1}+x_{2}+x_{3} \\
x_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]} \tag{21}
\end{align*}
$$

The nullspace of F is the set of vectors in \mathbb{R}^{3} that mapped onto the zero vector of \mathbb{R}^{2}. Hence, the nullspace of F is defined by the following homogeneous linear system of equations

$$
\left\{\begin{array} { l }
{ x _ { 1 } + x _ { 2 } + x _ { 3 } = 0 } \tag{22}\\
{ x _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=-x_{2} \\
x_{3}=0
\end{array}\right.\right.
$$

Note that the nullspace of F is a vector subspace of \mathbb{R}^{3} (line passing through the origin). The range of F can be constructed by taking an arbitrary element of \mathbb{R}^{3} and mapping it via F. Such range coincides with column space of the matrix A, i.e., the span of the columns of A. In fact,

$$
\left[\begin{array}{c}
x_{1}+x_{2}+x_{3} \tag{23}\\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Hence,

$$
R(F)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \tag{24}\\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}=\mathbb{R}^{2}
$$

Theorem 4. Let V, W be vector spaces, $F: V \rightarrow W$ linear. Then

1. $N(F)$ is a vector subspace of V.
2. $R(F)$ is a vector subspace of W.

Proof. Let $u, v \in N(F)$. Clearly, $u+v$ is in $N(F)$. In fact, since F is linear we have $F(u+v)=$ $F(u)+F(v)=0_{W}$. Thus, $u+v$ is in $N(F)$. Moreover, $0_{V} \in N(F)$ and $c u \in N(F)$ for all $u \in N(F)$ and all $c \in K$. This implies that $N(F)$ is a vector subspace of V. To prove that $R(F)$ is a vector subspace of W, let $w, s \in R(F)$. This means that there exist $u, v \in V$ such that $F(u)=w$ and $F(v)=s$. Obviously, $(w+s) \in R(F)$. In fact, by using the linearity of F we have $F(u+v)=w+s$, and therefore $w+s \in R(F)$. Also, 0_{W} is $R(F)$ and $c u \in R(F)$ for all $u \in R(F)$. Thus, $R(F)$ is a vector subspace of W.

The nullspace and the range of linear transformation also characterize the injectivity and surjectivity of the transformation. In particular we have the following theorems.

Theorem 5. Let V, W be vector spaces, $F: V \rightarrow W$ a linear transformation. Then F is injective (one-to-one) if and only if $N(F)=\left\{0_{V}\right\}$, i.e., the if nullspace of F reduces the single element $\left\{0_{V}\right\}$.

[^2]Proof. To prove the theorem we need to prove two statements:

1. F is injective $\Rightarrow N(F)=\left\{0_{V}\right\}$.

Suppose that F is one-to-one. We want to show that this implies $N(F)=\left\{0_{V}\right\}$. To this end, let $v \in N(F)$, i.e., $F(v)=0_{W}$. Clearly $v=0_{V}$ is mapped onto 0_{W}, i.e., $0_{V} \in N(F)$. The assumption that F is one-to-one rules out the existence of any other element in V mapped onto 0_{W}. In other words, 0_{V} is the only element of V mapped into 0_{W}. Hence, if F is one-to-one then $N(F)=\left\{0_{V}\right\}$.
2. $N(F)=\left\{0_{V}\right\} \Rightarrow F$ is injective.

Conversely, let us assume that $N(F)=\left\{0_{V}\right\}$. We want to show that this implies that F is one-to-one. To this end, suppose there are two elements $u, v \in V$ such that $F(u)=F(v)$. By using the linearity of F we have $F(u-v)=0_{W}$, i.e., $(u-v) \in N(F)$. Since, by assumption, the only element in the nullspace of F is 0_{V} we have that $u-v=0_{V}$, i.e., $u=v$. In other words, $N(F)=\left\{0_{V}\right\}$ implies that F is one-to-one.

Theorem 6. Let V, W be vector spaces, $F: V \rightarrow W$ linear. Then F is surjective (onto) if and only if $\operatorname{dim}(R(F))=\operatorname{dim}(W)$.

Proof. As before, to prove the theorem we need to prove two statements:

1. F is surjective $\Rightarrow \operatorname{dim}(R(F))=\operatorname{dim}(W)$,
2. F is surjective $\Leftarrow \operatorname{dim}(R(F))=\operatorname{dim}(W)$.

Let F be surjective (or onto), i.e., $\forall w \in W$ there exists at least one $v \in V$ such that $F(v)=$ w. This means that $R(F)=W$ and therefore $\operatorname{dim}(R(F))=\operatorname{dim}(W)$. Conversely, suppose that $\operatorname{dim}(R(F))=\operatorname{dim}(W)$. We know that $R(F)$ is a vector subspace of W. Since the dimension of $R(F)$ and W are the same (by assumption) then $R(F)=W$, i.e., F is surjective (or onto).

Next we discuss a very important theorem for linear transformations between vector spaces.
Theorem 7. Let V and W be vector space and $F: V \rightarrow W$ be any linear transformation. Then

$$
\begin{equation*}
\operatorname{dim}(V)=\operatorname{dim}(N(F))+\operatorname{dim}(R(F)) \tag{25}
\end{equation*}
$$

Proof. If $R(F)=0_{W}$ the statement is trivial since the entire V is mapped to the 0_{W}. This implies $N(F)=V$, and of course $\operatorname{dim}(N(F))=\operatorname{dim}(V)$. Consider now $\operatorname{dim}(R(F))=s>0$ and let $\left\{w_{1}, \ldots, w_{s}\right\}$ be a basis of $R(F)$. Then there exist s elements $v_{1}, \ldots, v_{s} \in V$ such that $F\left(v_{1}\right)=w_{1}, \ldots, F\left(v_{s}\right)=w_{s}$. Suppose $\operatorname{dim}(N(F))=q$ and let $\left\{u_{1}, \ldots, u_{q}\right\}$ be a basis for $N(F)$.
We would like to show that $\left\{u_{1}, \ldots, u_{q}, v_{1}, \ldots, v_{s}\right\}$ is a basis of V^{4}. To this end, pick an arbitrary $v \in V$. Then, there exists $x_{1}, \ldots, x_{s} \in K$ such that $F(v)=x_{1} w_{1}+\ldots+x_{s} w_{s}$ (since w_{1}, \ldots, w_{s} is a

[^3]basis for $R(F))$. Recalling that $F\left(v_{1}\right)=w_{1}, \ldots, F\left(v_{s}\right)=w_{s}$
\[

$$
\begin{aligned}
F(v) & =x_{1} F\left(v_{1}\right)+\ldots+x_{s} F\left(v_{s}\right) \\
& =F\left(x_{1} v_{1}+\ldots+x_{s} v_{s}\right) .
\end{aligned}
$$
\]

By using the linearity of F we obtain

$$
F\left(v-x_{1} v_{1}-\cdots-x_{s} v_{s}\right)=0_{W} \quad \Rightarrow \quad\left(v-x_{1} v_{1}-\cdots-x_{s} v_{s}\right) \in N(F) .
$$

At this point we represent $\left(v-x_{1} v_{1}-\cdots-x_{s} v_{s}\right)$ relative to the basis of $N(F)$

$$
v-x_{1} v_{1}-\ldots-x_{s} v_{s}=y_{1} u_{1}+\ldots+y_{q} u_{q},
$$

i.e.,

$$
v=x_{1} v_{1}+\ldots+x_{s} v_{s}+y_{1} u_{1}+\ldots+y_{q} u_{q}
$$

This shows that $V=\operatorname{span}\left\{v_{1}, \ldots, v_{s}, u_{1}, \ldots, u_{q}\right\}$, i.e., that V is generated by $\left\{v_{1}, \ldots, v_{s}, u_{1}, \ldots, u_{q}\right\}$. To prove the theorem it remains to prove that the the vectors $\left\{v_{1}, \ldots, v_{s}, u_{1}, \ldots, u_{q}\right\}$ are linearly independent. In this way we can claim that $n=s+q$, i.e., $\operatorname{dim}(V)=\operatorname{dim}(N(F))+\operatorname{dim}(R(F))$.

To this end, consider the linear combination

$$
\begin{equation*}
x_{1} v_{1}+\ldots+x_{s} v_{s}+y_{1} u_{1}+\ldots+y_{q} u_{q}=0_{V} \tag{26}
\end{equation*}
$$

By applying F and recalling that $F\left(u_{i}\right)=0_{W}\left(u_{i} \in N(F)\right)$ we obtain

$$
\begin{equation*}
x_{1} w_{1}+\ldots+x_{s} w_{s}=0_{W} \quad \Rightarrow \quad x_{1}, \ldots, x_{s}=0 \tag{27}
\end{equation*}
$$

In fact $\left\{w_{1}, \ldots, w_{s}\right\}$ is a basis for $R(F)$ and therefore w_{i} are linearly independent. Substituting this result back into (26) yields

$$
\begin{equation*}
y_{1} u_{1}+\ldots+y_{q} u_{q}=0_{V} \quad \Rightarrow \quad y_{1}, \ldots, y_{q}=0 \tag{28}
\end{equation*}
$$

since $\left\{u_{1}, \ldots, u_{q}\right\}$ is a basis for $N(F)$. Equations (27), (28) and (26) allow us to conclude that $\left\{v_{1}, \ldots, v_{s}, u_{1}, \ldots, u_{q}\right\}$ are linearly independent. Moreover the vectors $\left\{v_{1}, \ldots, v_{s}, u_{1}, \ldots, u_{q}\right\}$ generate V, and therefore they are a basis for V. This implies that

$$
\begin{equation*}
\operatorname{dim}(V)=s+q=\operatorname{dim}(N(F))+\operatorname{dim}(R(F)) \tag{29}
\end{equation*}
$$

Matrix rank theorem. Theorem 7 can be applied to linear transformations defined by matrices. To this end, consider the transformation $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ from \mathbb{R}^{n} into \mathbb{R}^{m} defined as $F(x)=A x$, where A is an $m \times n$ matrix:

$$
\underbrace{\left[\begin{array}{c}
x_{1} \tag{30}\\
\vdots \\
x_{n}
\end{array}\right]}_{x} \rightarrow \underbrace{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]}_{x}
$$

We know that range of F coincides with the column space of A. Also the dimension of the column space is the rank of the matrix A. Therefore from equation (25) it follows that

$$
\begin{equation*}
n=\operatorname{dim}(N(A))+\operatorname{rank}(A) . \tag{31}
\end{equation*}
$$

Matrix associated with a linear transformation Let V and W be finite-dimensional vector spaces, and let

$$
\begin{equation*}
F: V \rightarrow W \tag{32}
\end{equation*}
$$

an arbitrary linear transformation. In this section we show how to represent F in terms of a matrix. To this end, suppose that

$$
\begin{array}{ll}
\mathcal{B}_{V}=\left\{v_{1}, \ldots, v_{n}\right\} & \rightarrow \quad \text { basis of } V, \quad \operatorname{dim}(V)=n \\
\mathcal{B}_{W}=\left\{w_{1}, \ldots, w_{m}\right\} \quad & \rightarrow \quad \text { basis of } W, \quad \operatorname{dim}(W)=m
\end{array}
$$

The transformation F is uniquely determined by the image of the basis \mathcal{B}_{V} under F, i.e.,

$$
\begin{equation*}
\left\{v_{1}, \ldots, v_{n}\right\} \quad \rightarrow \quad\left\{F\left(v_{1}\right), \ldots, F\left(v_{n}\right)\right\} \tag{33}
\end{equation*}
$$

Clearly, for all $i=1, \ldots, n$ we have that $F\left(v_{i}\right) \in R(F) \subseteq W$. Therefore, each $F\left(v_{i}\right)$ can be represented in terms of the basis \mathcal{B}_{W} as

$$
\left\{\begin{array}{l}
F\left(v_{1}\right)=a_{11} w_{1}+\cdots+a_{m 1} w_{m} \tag{34}\\
\vdots \\
F\left(v_{n}\right)=a_{1 n} w_{1}+\cdots+a_{m n} w_{m}
\end{array}\right.
$$

Note that $a_{i j}$ is the i-th component of $F\left(v_{j}\right)$ relative to the basis $\left\{w_{1}, \ldots, w_{m}\right\}$. The matrix associated with the linear transformation F depends bases \mathcal{B}_{V} and \mathcal{B}_{W} and it is defined as

$$
A_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(F)=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \tag{35}\\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

Next, consider an arbitrary element $v \in V$, and represent it in terms of the basis \mathcal{B}_{V}

$$
\begin{equation*}
v=x_{1} v_{1}+\cdots+x_{n} v_{n} \tag{36}
\end{equation*}
$$

By applying F and taking (34) into account we obtain

$$
\begin{align*}
F(v) & =x_{1} F\left(v_{1}\right)+\cdots+x_{n} F\left(v_{n}\right) \\
& =x_{1}\left(a_{11} w_{1}+\cdots+a_{m 1} w_{m}\right)+\cdots+x_{n}\left(a_{1 n} w_{1}+\cdots+a_{m n} w_{m}\right) \\
& =\underbrace{\left(a_{11} x_{1}+\cdots+a_{1 n} x_{n}\right)}_{y_{1}} w_{1}+\cdots+\underbrace{\left(a_{m 1} x_{1}+\cdots+a_{m n} x_{n}\right)}_{y_{m}} w_{m} . \tag{37}
\end{align*}
$$

At this point we define the following two column vectors

$$
[v]_{\mathcal{B}_{V}}=\left[\begin{array}{c}
x_{1} \tag{38}\\
\vdots \\
x_{n}
\end{array}\right], \quad[F(v)]_{\mathcal{B}_{W}}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]
$$

representing the coordinates of v and $F(v)$ relative to the bases \mathcal{B}_{V} and \mathcal{B}_{W}, respectively ${ }^{5}$. With this notation, we see from (37) and (35) that

$$
\begin{equation*}
[F(v)]_{\mathcal{B}_{W}}=A_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(F)[v]_{\mathcal{B}_{V}} . \tag{39}
\end{equation*}
$$

Therefore, the coordinates of $F(v)$ relative to \mathcal{B}_{W} are obtained by taking the matrix-vector product between the matrix $A_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(F)$ and the coordinates of v relative to \mathcal{B}_{V}.

Example 11: Let V and W be vector spaces of $\operatorname{dimension} \operatorname{dim}(V)=2$ and $\operatorname{dim}(W)=3$, respectively. We consider the following bases in V and W :

$$
\begin{equation*}
\mathcal{B}_{V}=\left\{v_{1}, v_{2}\right\}, \quad \mathcal{B}_{W}=\left\{w_{1}, w_{2}, w_{3}\right\} . \tag{40}
\end{equation*}
$$

Relative to such bases, suppose that F is defined as

$$
\left\{\begin{array}{l}
F\left(v_{1}\right)=w_{1}-2 w_{2}-w_{3} \tag{41}\\
F\left(v_{2}\right)=w_{1}+w_{2}+w_{3}
\end{array} .\right.
$$

Then the matrix representing F is

$$
A_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(F)=\left[\begin{array}{cc}
1 & 1 \tag{42}\\
-2 & 1 \\
-1 & 1
\end{array}\right]
$$

If $v=x_{1} v_{1}+x_{2} v_{2}$ is an arbitrary vector in V then

$$
\begin{align*}
F(v) & =x_{1} F\left(v_{1}\right)+x_{2} F\left(v_{2}\right) \\
& =x_{1}\left(w_{1}-2 w_{2}-w_{3}\right)+x_{2}\left(w_{1}+w_{2}+w_{3}\right) \\
& =\underbrace{\left(x_{1}+x_{2}\right)}_{y_{1}} w_{1}+\underbrace{\left(x_{2}-2 x_{1}\right)}_{y_{2}} w_{2}+\underbrace{\left(x_{2}-x_{1}\right)}_{y_{3}} w_{3} . \tag{43}
\end{align*}
$$

Note that the coordinates of $F(v)$ relative to the basis \mathcal{B}_{W}, i.e., $\left\{y_{1}, y_{2}, y_{3}\right\}$ are given by the standard matrix-vector product

$$
\left[\begin{array}{l}
y_{1} \tag{44}\\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

[^4]Change of basis transformation Consider the following two bases in the vector space V

$$
\begin{aligned}
& \mathcal{B}_{1}=\left\{u_{1}, \ldots, u_{n}\right\} \\
& \mathcal{B}_{2}=\left\{v_{1}, \ldots, v_{n}\right\}
\end{aligned}
$$

Obviously, we can express any element in \mathcal{B}_{1} as a linear combination of elements in \mathcal{B}_{2} and vice versa. For example,

$$
\left\{\begin{array}{l}
v_{1}=\alpha_{11} u_{1}+\cdots+\alpha_{n 1} u_{m} \tag{45}\\
\quad \vdots \\
v_{n}=\alpha_{1 n} u_{1}+\cdots+\alpha_{n n} u_{n}
\end{array}\right.
$$

The matrix associated with the linear transformation "change of basis from \mathcal{B}_{2} to \mathcal{B}_{1} " is

$$
M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}=\left[\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \tag{46}\\
\vdots & \ddots & \vdots \\
\alpha_{n 1} & \cdots & \alpha_{n n}
\end{array}\right]
$$

Such a matrix is invertible and it allows us to transform the coordinates of any vector $v \in V$ from those relative to \mathcal{B}_{1} to those relative to \mathcal{B}_{2}, i.e.,

$$
\begin{equation*}
[v]_{\mathcal{B}_{2}}=M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}[v]_{\mathcal{B}_{1}} . \tag{47}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
[v]_{\mathcal{B}_{1}}=M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}[v]_{\mathcal{B}_{2}}=\left(M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}\right)^{-1}[v]_{\mathcal{B}_{2}} \quad \text { which implies } \quad M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}=\left(M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}\right)^{-1} \tag{48}
\end{equation*}
$$

The change of basis transformation can be also used to represent a linear transformation $F: V \rightarrow W$ relative to different bases in V and W. To show this, let

$$
\begin{array}{llll}
\mathcal{B}_{1}, \mathcal{B}_{2} & \rightarrow & \text { Bases of } V, & \operatorname{dim}(V)=n \\
\mathcal{B}_{3}, \mathcal{B}_{4} & \rightarrow & \text { Bases of } W, & \operatorname{dim}(W)=m
\end{array}
$$

We have,

$$
\begin{equation*}
[F(v)]_{\mathcal{B}_{4}}=M_{\mathcal{B}_{3}}^{\mathcal{B}_{4}}[F(v)]_{\mathcal{B}_{3}}=M_{\mathcal{B}_{3}}^{\mathcal{B}_{4}} A_{\mathcal{B}_{2}}^{\mathcal{B}_{3}}[v]_{\mathcal{B}_{2}}=\underbrace{M_{\mathcal{B}_{3}}^{\mathcal{B}_{4}} A_{\mathcal{B}_{2}}^{\mathcal{B}_{3}} M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}}_{A_{\mathcal{B}_{1}}^{\mathcal{B}_{4}}}[v]_{\mathcal{B}_{1}}, \tag{49}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
A_{\mathcal{B}_{1}}^{\mathcal{B}_{4}}=M_{\mathcal{B}_{3}}^{\mathcal{B}_{4}} A_{\mathcal{B}_{2}}^{\mathcal{B}_{3}} M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}} . \tag{50}
\end{equation*}
$$

The matrix $A_{\mathcal{B}_{1}}^{\mathcal{B}_{4}}$ represents the linear transformation F relative to the bases \mathcal{B}_{1} (basis of V) and \mathcal{B}_{4} (basis of W). Similarly, $A_{\mathcal{B}_{2}}^{\mathcal{B}_{3}}$ represents the linear transformation F relative to the bases \mathcal{B}_{2} (basis of V) and \mathcal{B}_{3} (basis of W).

Example 12: (Change of basis in \mathbb{R}^{2}) Consider the following bases of \mathbb{R}^{2}

$$
\begin{array}{ll}
\mathcal{B}_{1}=\left\{e_{1}, e_{2}\right\}, & e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left(\text { canonical basis of } \mathbb{R}^{2}\right), \\
\mathcal{B}_{2}=\left\{v_{1}, v_{2}\right\}, & v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
\end{array}
$$

Define the change of basis transformation

$$
\begin{equation*}
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \tag{51}
\end{equation*}
$$

as

$$
F\left(\left[\begin{array}{l}
1 \tag{52}\\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad F\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Clearly,

$$
\left\{\begin{array}{l}
v_{1}=e_{1}+e_{2} \tag{53}\\
v_{2}=e_{1}+2 e_{2}
\end{array}\right.
$$

The following figure sketches $\left\{e_{1}, e_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ as vectors in the Cartesian plane.

Any vector $v \in \mathbb{R}^{2}$ can be expressed relatively to \mathcal{B}_{1} or \mathcal{B}_{2} :

$$
\begin{align*}
v & =x_{1} v_{1}+x_{2} v_{2} \\
& =x_{1}\left(e_{1}+e_{2}\right)+x_{2}\left(e_{1}+2 e_{2}\right) \\
& =\left(x_{1}+x_{2}\right) e_{1}+\left(x_{1}+2 x_{2}\right) e_{2} . \tag{54}
\end{align*}
$$

Denote by

$$
[v]_{\mathcal{B}_{1}}=\left[\begin{array}{l}
y_{1} \tag{55}\\
y_{2}
\end{array}\right], \quad[v]_{\mathcal{B}_{2}}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

the coordinates of v relative to \mathcal{B}_{1} and \mathcal{B}_{2}, respectively. Then equation (54) implies that

$$
[v]_{\mathcal{B}_{1}}=M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}[v]_{\mathcal{B}_{2}}, \quad \text { where } \quad M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}=\left[\begin{array}{ll}
1 & 1 \tag{56}\\
1 & 2
\end{array}\right]
$$

$M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}$ is the matrix associated with the change of basis transformation $\mathcal{B}_{2} \rightarrow \mathcal{B}_{1}$. Clearly, $M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}$ is invertible with inverse

$$
M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}=\left(M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}}\right)^{-1}=\left[\begin{array}{cc}
2 & -1 \tag{57}\\
-1 & 1
\end{array}\right]
$$

$M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}$ is the matrix associated with the change of basis transformation $\mathcal{B}_{1} \rightarrow \mathcal{B}_{2}$. Let us see if this is true. To this end, we consider the vector $v=e_{1}$ and compute the coordinates of this vector relative to \mathcal{B}_{2}. We have

$$
[v]_{\mathcal{B}_{1}}=\left[\begin{array}{l}
1 \tag{58}\\
0
\end{array}\right] \quad \Rightarrow \quad[v]_{\mathcal{B}_{2}}=\underbrace{\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]}_{M_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Example 13: (Rotations in \mathbb{R}^{2}) Consider the linear transformation $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined as follows (counterclockwise rotation of the basis vectors by an angle θ)

$$
\left\{\begin{array}{l}
F\left(e_{1}\right)=\cos (\theta) e_{1}+\sin (\theta) e_{2} \tag{59}\\
F\left(e_{2}\right)=-\sin (\theta) e_{1}+\cos (\theta) e_{2}
\end{array}\right.
$$

where

$$
e_{1}=\left[\begin{array}{l}
1 \tag{60}\\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

is the canonical basis of \mathbb{R}^{2}.

The matrix associated with the transformation F relative to the basis $\mathcal{B}_{V}=\left\{e_{1}, e_{2}\right\}$ is

$$
A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}(F)=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \tag{61}\\
\sin (\theta) & \cos (\theta)
\end{array}\right] \quad \text { (2D rotation matrix) } .
$$

Any vector with components $[v]_{\mathcal{B}_{V}}$ is rotated to a vector $F(v)$ with components

$$
\begin{equation*}
[F(v)]_{\mathcal{B}_{V}}=A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}[v]_{\mathcal{B}_{V}} . \tag{62}
\end{equation*}
$$

For example, the vector $v=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ has components $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ relative to the canonical basis \mathcal{B}_{V}, and it is transformed to a vector $F(v)$ with components

$$
[F(v)]_{\mathcal{B}_{V}}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \tag{63}\\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \cos (\theta)-\sin (\theta) \\
2 \sin (\theta)+\cos (\theta)
\end{array}\right] .
$$

In particular, if $\theta=\pi / 2$ (90 degrees counterclockwise rotation) then

$$
[F(v)]_{\mathcal{B}_{V}}=\left[\begin{array}{c}
-1 \tag{64}\\
2
\end{array}\right]
$$

The inverse transformation (inverse rotation) is obtained by replacing θ with $-\theta$ in (61), i.e.,

$$
\left[A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}(F)\right]^{-1}=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \tag{65}\\
-\sin (\theta) & \cos (\theta)
\end{array}\right] .
$$

It is straightforward to verify that for all $\theta \in[0,2 \pi]$ we have

$$
\begin{equation*}
\left[A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}(F)\right]^{-1} A_{\mathcal{B}_{V}}^{\mathcal{B}_{V}}(F)=I_{2} \tag{66}
\end{equation*}
$$

In fact,

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & 0 \\
0 & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The rotation matrix is an orthogonal matrix ${ }^{6}$.

Example 14: (Rotations in $\left.\mathbb{R}^{3}\right)$ We can define rotations along each of the three axes of a 3D Cartesian coordinate system, i.e.,

$$
R_{3}=\left[\begin{array}{ccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 \\
\sin \theta_{3} & \cos \theta_{3} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
R_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{1} & -\sin \theta_{1} \\
0 & \sin \theta_{1} & \cos \theta_{1}
\end{array}\right]
$$

$$
R_{2}=\left[\begin{array}{ccc}
\cos \theta_{2} & 0 & -\sin \theta_{2} \\
0 & 1 & 0 \\
\sin \theta_{2} & 0 & \cos \theta_{2}
\end{array}\right]
$$

Note that the composition of two rotations in \mathbb{R}^{3} does not commute. For example,

$$
R_{1} R_{3} \neq R_{3} R_{1}
$$

[^5]\[

$$
\begin{equation*}
A A^{T}=I_{n} . \tag{68}
\end{equation*}
$$

\]

Example 15: (Orthogonal projection) Consider

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

and the canonical bases of \mathbb{R}^{3}

$$
\mathcal{B}_{3}=\left\{e_{1}, e_{2}, e_{3}\right\}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

We define F by mapping the basis \mathcal{B}_{3} as follows

$$
F\left(e_{1}\right)=e_{1}, \quad F\left(e_{2}\right)=e_{2}, \quad F\left(e_{3}\right)=0_{\mathbb{R}^{3}} .
$$

The associated matrix defines an orthogonal projection onto the $\left(x_{1}, x_{2}\right)$

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \tag{69}\\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Note that $P^{2}=P$. The orthogonal projection transformation basically project any vector $v \in \mathbb{R}^{3}$ onto the plane spanned by e_{1} and e_{2}. If we are interested in a projection onto different plane, we can use e.g., the 3D rotation matrices R_{i} and rotate the plane before applying the projection. Note that with just R_{1} and R_{3} we can orient the plane (x_{1}, x_{2}) in all possible directions. We maintain that

$$
\begin{equation*}
P\left(\theta_{1}, \theta_{3}\right)=R_{1}\left(\theta_{1}\right) R_{3}\left(\theta_{3}\right) P R_{3}^{T}\left(\theta_{3}\right) R_{1}^{T}\left(\theta_{1}\right) \tag{70}
\end{equation*}
$$

is an orthogonal projection onto a tilted plane identified by the angles $\left(\theta_{1}, \theta_{3}\right)$. To explain this formula suppose for simplicity that we just rotate the plane (x_{1}, x_{2}) counterclockwise of an angle θ_{1} around the x_{1} axis. The projection of any object onto such plane is obtained by rotating the object clockwise of an angle θ_{1} around x_{1} (matrix $R_{1}^{T}\left(\theta_{3}\right)$ projecting onto the (x_{1}, x_{2}) plane and then rotating the result back (matrix $R_{1}\left(\theta_{3}\right)$). Clearly, (70) satisfies the condition for orthogonal projections,

$$
\begin{equation*}
P^{2}\left(\theta_{1}, \theta_{3}\right)=P\left(\theta_{1}, \theta_{3}\right) . \tag{71}
\end{equation*}
$$

Example 16: (Oblique projection) Let $v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ be a vector of \mathbb{R}^{3} representing the direction of a light beam. A light beam passing through an arbitrary point $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ has the form

$$
\left[\begin{array}{l}
y_{1} \tag{72}\\
y_{2} \\
y_{3}
\end{array}\right]=c\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]+\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { where } c \in \mathbb{R}
$$

If we set $y_{3}=0$ we obtain $c=-x_{3} / v_{3}$. With such a value for c, the light beam passing through the point x intersects the horizontal plane. The linear transformation defined by

$$
\left\{\begin{array}{l}
y_{1}=-\frac{v_{1}}{v_{3}} x_{3}+x_{1} \tag{73}\\
y_{2}=-\frac{v_{2}}{v_{3}} x_{3}+x_{2} \\
y_{3}=0
\end{array}\right.
$$

defines an oblique projection onto the horizontal plane. The matrix associated with such oblique projection transformation (relative to the canonical basis of \mathbb{R}^{3}) is

$$
P=\left[\begin{array}{ccc}
1 & 0 & -v_{1} / v_{3} \tag{74}\\
0 & 1 & -v_{2} / v_{3} \\
0 & 0 & 0
\end{array}\right]
$$

The oblique projection can be used to compute the shadow of any object in 3D. The following figure shows the shadow projected by a horse for various angles of the light beam.
Note that for $v_{1}=v_{2}=0$ the oblique projection reduces to the projection we studied in the previous example.

Example 17: Let $\mathbb{P}_{4}=\operatorname{span}\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ be the space of polynomials of degree at most 4 . Define the linear transformation

$$
\begin{aligned}
F: \quad \mathbb{P}_{4} & \rightarrow \mathbb{P}_{3} \\
p(x) & \rightarrow \frac{d p(x)}{d x}
\end{aligned}
$$

The canonical bases of \mathbb{P}_{4} and \mathbb{P}_{3} are

$$
\begin{aligned}
& \mathcal{B}_{4}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}, \\
& \mathcal{B}_{3}=\left\{1, x, x^{2}, x^{3}\right\}
\end{aligned}
$$

We define the derivative transformation by mapping each element of \mathbb{P}_{4} and representing the result in terms of \mathbb{P}_{3}. This yields

$$
F(1)=0, \quad F(x)=1, \quad F\left(x^{2}\right)=2 x, \quad F\left(x^{3}\right)=3 x^{2}, \quad F\left(x^{4}\right)=4 x^{3}
$$

The matrix associated with F (derivative operator) relative to the bases \mathcal{B}_{4} and \mathcal{B}_{3} is

$$
A_{\mathcal{B}_{4}}^{\mathcal{B}_{3}}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right] .
$$

For example, let us compute the derivative of the polynomial

$$
\begin{equation*}
p(x)=1-3 x+6 x^{3} \tag{75}
\end{equation*}
$$

The coordinates of $p(x)$ relative to \mathcal{B}_{4} are

$$
[p(x)]_{\mathcal{B}_{4}}=\left[\begin{array}{lllll}
1 & -3 & 0 & 6 & 0
\end{array}\right]^{T} .
$$

This implies that

$$
\Rightarrow\left[\frac{d p(x)}{d x}\right]_{\mathcal{B}_{3}}=A_{\mathcal{B}_{4}}^{\mathcal{B}_{3}}[p(x)]_{\mathcal{B}_{4}}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right]\left[\begin{array}{c}
1 \\
-3 \\
0 \\
6 \\
0
\end{array}\right]=\left[\begin{array}{c}
-3 \\
0 \\
18 \\
0
\end{array}\right] .
$$

Therefore we obtained

$$
\begin{equation*}
\frac{d p(x)}{d x}=-3+0 x+18 x^{2}+0 x^{3}=-3+18 x^{2} \tag{76}
\end{equation*}
$$

which is indeed the derivative of the polynomial (75).

[^0]: ${ }^{1}$ The trace of a square matrix is defined to be the sum of all diagonal entries of A.

[^1]: ${ }^{2}$ Invertible transformations are often called bijections or bijective transformations.

[^2]: ${ }^{3}$ The nullspace/kernel of a linear transformation F is often denoted as $\operatorname{ker}(F)$.

[^3]: ${ }^{4}$ Note that if $\left\{u_{1}, \ldots, u_{q}, v_{1}, \ldots, v_{s}\right\}$ is a basis of V then $\operatorname{dim}(V)=q+s$, where $q=\operatorname{dim}(N(F)$ and $s=\operatorname{dim}(R(F))$.

[^4]: ${ }^{5}$ We know from Lecture 6 that such coordinates are uniquely defined by the basis.

[^5]: ${ }^{6}$ In general, we say that $A \in M_{n \times n}(\mathbb{R})$ is orthogonal if

 $$
 \begin{equation*}
 A^{T}=A^{-1} . \tag{67}
 \end{equation*}
 $$

 This is equivalent to the statement that orthogonal matrices satisfy

