Lecture 8: Scalar products, norms and orthogonality

Let U, V and W be three real vector spaces. We say that the transformation¹

$$G: U \times V \mapsto W \tag{2}$$

is bilinear if for all $u_1, u_2 \in U$, all $v_1, v_2 \in V$, and all $c \in \mathbb{R}$

- 1. $G(u_1 + u_2, v_1) = G(u_1, v_1) + G(u_2, v_1),$
- 2. $G(u_1, v_1 + v_2) = G(u_1, v_1) + G(u_1, v_2),$
- 3. $G(cu_1, v_1) = G(u_1, cv_1) = cG(u_1, v_1).$

If the bilinear transformation G is real-valued, i.e.,

$$G: U \times V \mapsto \mathbb{R},\tag{3}$$

then we say that F is a *bilinear form*.

Example 1: Consider $U = \mathbb{R}^m$, $V = \mathbb{R}^n$ and a matrix $A \in M_{m \times n}(\mathbb{R})$. Then

$$G: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$$
$$(u, v) \to \sum_{i=1}^m \sum_{j=1}^n u_i A_{ij} v_j$$

is a bilinear form.

If U = V then we say that $G : V \times V \mapsto \mathbb{R}$ is a bilinear form on V. Moreover, if for all $v_1, v_2 \in V$ we have that

$$G(v_1, v_2) = G(v_2, v_1)$$
(4)

then we say that the bilinear form on V is symmetric.

Matrix associated to a bilinear form. Similarly to linear transformations, it is possible to define the matrix associated to a bilinear form on V. To this end, suppose that V is *n*-dimensional and consider the basis $\mathcal{B}_V = \{v_1, \ldots, v_n\}$. Let $u, v \in V$ such that

$$u = x_1 v_1 + \dots + x_n v_n, \qquad v = y_1 v_1 + \dots + y_n v_n.$$
 (5)

The coordinates of u and v relative to \mathcal{B}_V are

$$[u]_{B_V} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \qquad [v]_{B_V} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$$
(6)

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n \text{ times}}.$$
(1)

¹The multiplication symbol × in (2) means "Cartesian product" of two sets. The elements of the set $U \times V$ are of pairs of vectors (u, v) where $u \in V$ and $v \in V$. We have already seen an example of a vector space constructed using multiple Cartesian products, i.e.,

A substitution of u and v into G(u, v) yields

$$G(u,v) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i G(v_i, v_j) y_j.$$
(7)

Define the matrix $A_{\mathcal{B}_V}$ associated with G(u, v) relative to B_V as

$$A_{\mathcal{B}_V} = \begin{bmatrix} G(v_1, v_1) & \cdots & G(v_1, v_n) \\ \vdots & \ddots & \vdots \\ G(v_n, v_1) & \cdots & G(v_n, v_n) \end{bmatrix}$$
(8)

This allows us to write (7) as

$$G(u,v) = [u]_{B_V}^T A_{\mathcal{B}_V}[v]_{B_V}.$$
(9)

If G is symmetric then $A_{\mathcal{B}_V}$ is a symmetric matrix.

Scalar products. A scalar product on a real vector space V is a symmetric bilinear form on V. The scalar product between two vectors in V is a real number². We denote such scalar product as

$$\langle u, v \rangle = G(u, v) \qquad \forall u, v \in V.$$
 (10)

A scalar product in V is also called "inner product" in V.

Examples of scalar products:

- 1. $V = \mathbb{R}^n$: $\langle u, v \rangle = \sum_{i=1}^n u_i v_i$ (scalar product on \mathbb{R}^n). This scalar product is often called "dotproduct" and denoted as $u \cdot v$. The matrix associated with the dot product is the identity matrix.
- 2. $V = \mathbb{R}^n$: $\langle u, v \rangle = \sum_{i=1}^n \sum_{j=1}^n u_i g_{ij} v_j$ where g_{ij} is a $n \times n$ symmetric matrix. In differential

geometry and in the theory of general relativity g_{ij} is called *metric tensor* and it represents the metric properties of the space-time (the curvature of the space-time is a nonlinear function of g_{ij}).

3. $V = M_{n \times n}(\mathbb{R})$: $\langle A, B \rangle = \text{Tr}(AB^T) = \sum_{i,j=1}^n A_{ij}B_{ij}$ for all $A, B \in M_{n \times n}(\mathbb{R})$ (scalar product between two matrices). Here $\text{Tr}(AB^T)$ denotes the trace of the matrix AB^T , which is clearly

between two matrices). Here $\operatorname{Tr}(AB^{T})$ denotes the trace of the matrix AB^{T} , which is clearly a symmetric bilinear form³.

 2 It is possible to define scalar products on complex vector spaces. In this setting, the symmetric bilinear form returns a complex number and it is called Hermitian bilinear form.

 3 In fact,

$$\operatorname{Tr}(AB^T) = \operatorname{Tr}(BA^T), \qquad \operatorname{Tr}((A+C)B^T) = \operatorname{Tr}(AB^T) + \operatorname{Tr}(CB^T) = \operatorname{Tr}(B(A+C)^T)$$
(11)

4. $V = C^{0}([0, 1])$ (space of continuous functions defined on [0, 1]). The integral

$$\langle u, v \rangle = \int_0^1 u(x)v(x)dx$$

is a symmetric bilinear form on $C^0([0, 1])$ which defines a scalar product. In particular, if u and v are two polynomials of degree at most n defined on [0, 1] then $\langle u, v \rangle$ is a scalar product on \mathbb{P}_n .

A scalar product on $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{R}$ is said to be non-degenerate if

$$\langle v, w \rangle = 0 \quad \text{for all } w \quad \Rightarrow \quad v = 0_V.$$
 (12)

Theorem 1. Let V be a real vector space of dimension n. A scalar product

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

is non-degenerate if and only if the matrix associated with $\langle \cdot, \cdot \rangle$ relative to any basis $\mathcal{B}_V = \{v_1, \ldots, v_n\}$ is invertible.

Proof. We know that for all $u, v \in V$

$$\langle u, v \rangle = [u]_{\mathcal{B}_V}^T A_{\mathcal{B}_V}[v]_{\mathcal{B}_V}.$$
(13)

If the inner product is non-degenerate then, by definition

$$[u]_{\mathcal{B}_V}^T A_{\mathcal{B}_V}[v]_{\mathcal{B}_V} = 0 \qquad \text{for all} \quad [u]_{\mathcal{B}_V} \quad \Rightarrow \quad [v]_{\mathcal{B}_V} = 0_{\mathbb{R}^n}.$$
(14)

This implies that the nullspace of $A_{\mathcal{B}_V}$ reduces to the singleton $\{0_{\mathbb{R}^n}\}$. In fact if there exists another nonzero vector [w] in the nullspace of $A_{\mathcal{B}_V}$ then clearly $A_{\mathcal{B}_V}[w] = 0_{\mathbb{R}^n}$ and the implication in (14) is not true. Conversely, suppose that $A_{\mathcal{B}_V}$ is invertible. Consider the column vector $A_{\mathcal{B}_V}[v]_{\mathcal{B}_V}$ and take all "dot products" with the elements the canonical basis of \mathbb{R}^n . This yields the system

$$[e_k]^T A_{\mathcal{B}_V}[v]_{\mathcal{B}_V} = 0 \qquad k = 1, \dots, n,$$
(15)

which is a homogeneous linear system of equations in n unknowns $[v]_{\mathcal{B}_V}$ that can be written as

$$A_{\mathcal{B}_V}[v]_{\mathcal{B}_V} = 0_{\mathbb{R}^n}.$$
(16)

The solution to this system is clearly $[v]_{\mathcal{B}_V} = 0_{\mathbb{R}^n}$, since $A_{\mathcal{B}_V}$ is invertible by assumption.

Examples of non-degenerate scalar products: The scalar products 1., 2. (with g_{ij} invertible) and 3. at page 2, and 4. at page 3 are all non-degenerate scalar products. Let us show that 3. is indeed a non-degenerate scalar product on $M_{n \times n}(\mathbb{R})$. We need to show that

$$\operatorname{Tr}(AB^T) = 0 \quad \text{for all} \quad B \in M_{n \times n}(\mathbb{R}) \quad \text{implies} \quad A = 0_{M_{n \times n}}.$$
 (17)

The trace of the matrix product can be expressed as

$$\operatorname{Tr}(AB^{T}) = \sum_{i,j=1}^{n} A_{ij} B_{ij}.$$
(18)

Since B is arbitrary it easily follows form $\operatorname{Tr}(AB^T) = 0$ that $A = 0_{M_{n \times n}}$. In fact, evaluate the equation above using B equal to each element of the canonical basis of $M_{n \times n}(\mathbb{R})$. This yields $A_{ij} = 0$.

Examples of degenerate scalar products: Hereafter we provide a few examples of degenerate scalar products.

1. Let $V = \mathbb{R}^2$. Consider two vectors

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
(19)

the scalar product

$$\langle x, y \rangle = x_1 y_1 \tag{20}$$

is degenerate. In fact, the condition

$$\langle x, y \rangle = 0$$
 for all $y \in \mathbb{R}^2$ does not imply $x = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. (21)

To see this simply consider the vector $x = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Alternatively, we observe that the scalar product (20) can be written as

$$\langle x, y \rangle = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}}_{A_{\mathcal{B}_V}} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
(22)

Recalling Theorem 2, we see that the matrix $A_{\mathcal{B}_V}$ associated with the scalar product relative to the canonical basis of \mathbb{R}^2 is not invertible and therefore the scalar product is degenerate.

Positive definite scalar products. Let V be a real vector space. A scalar product on V is said to be *positive definite* if

$$\langle v, v \rangle > 0$$
 for all nonzero $v \in V$. (23)

Clearly, if $v = 0_V$ then $\langle v, v \rangle = 0$.

Examples of positive definite scalar products: The scalar products 1., 3. and 4. defined at page 2 are all non-degenerate and positive definite. The scalar product 2. at page 2 is non-degenerate and positive definite if and only if the matrix g_{ij} is positive definite, i.e., if

$$\sum_{i,j=1}^{n} g_{ij} x_i x_j > 0 \quad \text{for all nozero vectors} \quad x \in \mathbb{R}^n.$$
(24)

Positive definite matrices are necessarily invertible. In fact, from condition (24) it follows that for any nonzero vector x, gx is nonzero. Therefore g is full rank (\Rightarrow nullspace reduces to the $0_{\mathbb{R}^n}$) and therefore invertible.

Norms. A norm on a vector space V is is a function $\|\cdot\|: V \to \mathbb{R}$ with the following properties

- 1. ||av|| = |a| ||v|| for all $v \in V$ and for all $a \in \mathbb{R}$ (or \mathbb{C}).
- 2. $||u+v|| \le ||u|| + ||v||$
- 3. $||u|| = 0 \quad \Leftrightarrow \quad u = 0_V$
- 4. ||u|| > 0 for all nonzero $u \in V$.

The norm defines the *length* of vectors in a vector space. We have already seen a norm when we studied complex numbers, i.e., the modulus of a complex number. Let us provide a few examples of norms.

Examples:

• Let $V = \mathbb{R}^n$. For every $v \in \mathbb{R}^n$ we define

$$\|v\|_{1} = \sum_{i=1}^{n} |v_{i}|$$
 (1-norm) (25)

$$\|v\|_{2} = \left(\sum_{i=1}^{n} |v_{i}|^{2}\right)^{1/2}$$
 (2-norm) (26)

$$\|v\|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{1/p} \qquad (p\text{-norm}, \ p \ge 1 \text{ real number}) \tag{27}$$

$$\|v\|_{\infty} = \max_{i=1,\dots,n} |v_i| \qquad \text{(infinity norm)} \tag{28}$$

All these norms satisfy properties 1.-4. above. Moreover, it can be shown that

$$\|v\|_{\infty} = \lim_{p \to \infty} \|v\|_p.$$
⁽²⁹⁾

• Let $V = C^0([0,1])$ (space of continuous functions in [0,1]). We define

$$||u||_{\infty} = \max_{x \in [0,1]} |u(x)|$$
 (uniform norm), (30)

$$||u||_2 = \int_0^1 |u(x)|^2 dx$$
 (L² ([0, 1])-norm). (31)

• Let $V = M_{n \times n}(\mathbb{R})$ (space of $n \times n$ matrices with real coefficients). Let us define the following matrix norm

$$||A|| = \max_{v \neq 0_{\mathbb{R}^n}} \frac{||Av||_p}{||v||_p} = \max_{||v||_p = 1} ||Av||_p \qquad p \ge 1.$$
(32)

It is straightforward to show that

$$||A||_{\infty} = \max_{i=1,\dots,n} \left(\sum_{j=1}^{n} |A_{ij}| \right),$$
(33)

$$\|A\|_{1} = \max_{j=1,\dots,n} \left(\sum_{i=1}^{n} |A_{ij}| \right).$$
(34)

For example,

$$\|Av\|_{\infty} = \max_{i=1,\dots,n} \left| \sum_{j=1}^{n} A_{ij} v_j \right| \le \max_{i=1,\dots,n} \left(\sum_{j=1}^{n} |A_{ij}| |v_j| \right) \le \|v\|_{\infty} \max_{i=1,\dots,n} \left(\sum_{j=1}^{n} |A_{ij}| \right)$$
(35)

which implies that

$$\frac{\|Av\|_{\infty}}{\|v\|_{\infty}} \le \max_{i=1,\dots,n} \left(\sum_{j=1}^{n} |A_{ij}| \right) \quad \text{for all } v \ne 0_{\mathbb{R}^n},$$
(36)

i.e.,

$$\max_{v \neq 0_{\mathbb{R}^n}} \frac{\|Av\|_{\infty}}{\|v\|_{\infty}} = \max_{i=1,\dots,n} \left(\sum_{j=1}^n |A_{ij}| \right) = \|A\|_{\infty}.$$
(37)

The matrix norms (33) and (34) are said to be *compatible* with associated vector norms (or *induced* by the vector norms) since they verify the inequalities

$$||Av||_{p} \le ||A||_{p} ||v||_{p} \qquad p = 1, \infty.$$
(38)

Norms induced by scalar products. Any non-degenerate positive-definite scalar product on V induces a norm⁴

$$\|v\| = \sqrt{\langle v, v \rangle}.\tag{39}$$

In particular, the standard dot product in \mathbb{R}^n

$$\langle v, v \rangle = \sum_{i=1}^{n} v_i^2$$

induces the 2-norm defined in (26). Similarly, the scalar product between two matrices $A, B \in M_{n \times n}(\mathbb{R})$

$$\langle A, B \rangle = \operatorname{Tr} \left(A B^T \right)$$

induces the following norm in the space of matrices $M_{n \times n}(\mathbb{R})$

$$||A||_F = \sqrt{\sum_{i,j=1}^n A_{ij}^2} \qquad \text{(Frobenious norm)}.$$
(40)

The Frobenious norm is compatible with the vector norm in the sense that $||Ax||_2 \le ||A||_F ||x||_2$.

 $^{^{4}}$ It is straightforward to show that properties 1.-4. at page 5 are all satisfied by the norm (39).

Theorem 2 (Cauchy-Schwarz inequality). Let V be a real vector space. Then for all $u, v \in V$ we have

$$|\langle u, v \rangle| \le ||u|| \, ||v|| \,, \tag{41}$$

where $||u|| = \sqrt{\langle u, u \rangle}$ and $||v|| = \sqrt{\langle v, v \rangle}$.

Proof. For $v = 0_V$ the inequality reduces to 0 = 0. Let $u, v \in V$ be nonzero. The vector

$$u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v \tag{42}$$

is orthogonal⁵ to v since

$$\left\langle v, u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v \right\rangle = \langle v, u \rangle - \frac{\langle u, v \rangle}{\langle v, v \rangle} \langle v, v \rangle = 0.$$
(43)

Next, consider the identity

$$u = u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v + \frac{\langle u, v \rangle}{\langle v, v \rangle} v.$$
(44)

We have

$$\begin{aligned} \|u\|^{2} &= \langle u, u \rangle \\ &= \left\langle u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v, u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v \right\rangle + \frac{|\langle u, v \rangle|^{2}}{|\langle v, v \rangle|^{2}} \langle v, v \rangle \\ &= \left\| u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v \right\|^{2} + \frac{|\langle u, v \rangle|^{2}}{\|v\|^{2}} \\ &\geq \frac{|\langle u, v \rangle|^{2}}{\|v\|^{2}}. \end{aligned}$$

$$(45)$$

From the last inequality we have $|\langle u, v \rangle|^2 \le ||u||^2 ||v||^2$. Taking the square root yields equation (41).

Cosine similarity. The Cauchy-Schwartz inequality (41) implies that

$$-1 \le \frac{\langle u, v \rangle}{\|u\| \|v\|} \le 1.$$

$$(46)$$

The quantity

$$\cos(\vartheta) = \frac{\langle u, v \rangle}{\|u\| \|v\|} \tag{47}$$

is known as *cosine similarity* between the vectors u and v. In the case where u and v are vectors of \mathbb{R}^2 , \mathbb{R}^3 or \mathbb{R}^n , the cosine similarity coincides with cosine of the angle between the two vectors. Such an angle is measures on the two-dimensional plane spanned by the two vectors. From (47) it follows that

$$||u - v||^{2} = ||u||^{2} + ||v||^{2} - 2 ||u|| ||v|| \cos(\vartheta).$$
(48)

which is the well-known law of cosines for triangles. The cosine similarity is practically utilized in many different fields, e.g., natural language processing (similarity between texts) and econometrics (analysis of time series).

⁵We say that to vectors $u, w \in V$ are orthogonal with respect to the scalar product $\langle \cdot, \cdot \rangle$ if $\langle u, w \rangle = 0$.

Orthogonality. Consider a vector space V and a non-degenerate positive definite scalar product $\langle \cdot, \cdot \rangle$ on V. Two vectors $u, v \in V$ are said to be *orthogonal* relative to $\langle \cdot, \cdot \rangle$ if

$$\langle u, v \rangle = 0. \tag{49}$$

Examples:

• $V = \mathbb{R}^2$. The following vectors

$$u = \begin{bmatrix} 1\\1 \end{bmatrix}, \qquad v = \begin{bmatrix} -1\\1 \end{bmatrix}$$
(50)

are orthogonal in \mathbb{R}^2 relative to the standard inner product

$$\langle u, v \rangle = \sum_{i=1}^{2} u_i v_i = -1 + 1 = 0.$$
 (51)

• $V = M_{2 \times 2}(\mathbb{R})$. The following matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
(52)

are orthogonal in $M_{2\times 2}(\mathbb{R})$ relative to the inner product

$$\langle A, B \rangle = \operatorname{Tr} \left(A B^T \right).$$
 (53)

In fact,

$$\operatorname{Tr}\left(AB^{T}\right) = \operatorname{Tr}\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right) = \operatorname{Tr}\left(\begin{bmatrix}0 & 0\\0 & 0\end{bmatrix}\right) = 0.$$
(54)

• $V = \mathbb{P}_2([-1, 1])$ (vector space of polynomials of degree at most two). The polynomials

$$p_1(x) = x$$
 and $p_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$ (55)

are orthogonal with respect to the scalar product

$$\langle p_1, p_2 \rangle = \int_{-1}^{1} p_1(x) p_2(x) dx.$$
 (56)

In fact,

$$\langle p_1, p_2 \rangle = \int_{-1}^{1} p_1(x) p_2(x) dx = \int_{-1}^{1} \left(\frac{3}{2}x^3 - \frac{1}{2}x\right) dx = \left[\frac{3}{8}x^4 - \frac{1}{4}x^2\right]_{-1}^{1} = 0.$$
(57)

Orthogonal projections. Consider two vectors u and v in a vector space V. The orthogonal projection of u onto v is defined as

$$P_{v}u = \frac{\langle u, v \rangle}{\langle v, v \rangle} v = \left\langle u, \frac{v}{\|v\|} \right\rangle \frac{v}{\|v\|},\tag{58}$$

Page 8

where $\|\cdot\|$ is the norm induced by the scalar product. Clearly $v/\|v\|$ is a vector with norm equal to one, i.e., a *unit vector*.

Examples:

• Let $V = \mathbb{R}^2$ and consider the following vectors

$$u = \begin{bmatrix} 1\\1 \end{bmatrix}, \qquad v = \begin{bmatrix} 2\\0 \end{bmatrix}. \tag{59}$$

The projection of u onto v is

$$P_{v}u = \frac{\langle u, v \rangle}{\langle v, v \rangle}v = \frac{2}{4} \begin{bmatrix} 2\\0 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}.$$
 (60)

Note that if we subtract $\frac{\langle u, v \rangle}{\langle v, v \rangle} v$ from u we obtain a vector that is orthogonal to v.

$$u - \frac{\langle u, v \rangle}{\langle v, v \rangle} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
 (61)

• $V = \mathbb{R}^3$. Given three vectors $v_1, v_2, v_3 \in \mathbb{R}^3$ we can compute the orthogonal projection of any vector onto any other vector, e.g., the orthogonal projection of v_2 onto v_1

$$P_{v_1}v_2 = \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1.$$
(62)

We can also construct an orthogonal set of vector by transforming the given set of linearly independent vectors $\{v_1, v_2, v_3\}$ as follows

$$u_{1} = v_{1},$$

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1},$$

$$u_{3} = v_{3} - \frac{\langle v_{3}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle v_{3}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2}.$$

This procedure is known as *Gram-Schmidt orthogonalization*, and it allows us to transform any set of linearly independent vectors into an orthogonal one. Such set of ortogonal vectors can be then normalized.

Gram-Schmidt orthogonalization. The previous example suggests that we can transform any basis $\{v_1, \ldots, v_n\}$ of a *n*-dimensional vector space V into an orthonormal basis⁶ by using the Gram-Schmidt procedure. In fact, we can first compute

$$u_{1} = v_{1},$$

$$u_{2} = v_{2} - \frac{\langle v_{2}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1},$$

$$u_{3} = v_{3} - \frac{\langle v_{3}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle v_{3}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2},$$

$$\vdots$$

$$u_{n} = v_{n} - \frac{\langle v_{n}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \cdots \frac{\langle v_{n}, u_{n-1} \rangle}{\langle u_{n-1}, u_{n-1} \rangle} u_{n-1}.$$

and then normalize the vectors $\{u_1, \ldots, u_n\}$ to obtain the orthonormal basis

$$\left\{\frac{u_1}{\|u_1\|}, \dots, \frac{u_n}{\|u_n\|}\right\}.$$
(63)

Alternatively, we can normalize each vector u_i right after we compute it. This reduces the number of calculations in the Gram-Schmidt procedure as we can write

$$\begin{aligned} u_1 &= v_1, & \widehat{u}_1 &= u_1 / \|u_1\|, \\ u_2 &= v_2 - \langle v_2, \widehat{u}_1 \rangle \, \widehat{u}_1 & \widehat{u}_2 &= u_2 / \|u_2\|, \\ u_3 &= v_3 - \langle v_3, \widehat{u}_1 \rangle \, \widehat{u}_1 - \langle v_3, \widehat{u}_2 \rangle \, \widehat{u}_2 & \widehat{u}_3 &= u_3 / \|u_3\|, \\ & \dots \end{aligned}$$

It is straightforward to show that

$$\langle u_i, u_j \rangle = \delta_{ij} \left\| u_j \right\|^2, \tag{64}$$

where δ_{ij} is the Kronecker delta function⁷. For example,

$$\langle u_1, u_2 \rangle = \left\langle v_1, v_2 - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 \right\rangle = \langle v_1, v_2 \rangle - \frac{\langle v_2, v_1 \rangle}{\langle v_1, v_1 \rangle} \langle v_1, v_1 \rangle = 0.$$
(66)

Example: Let us use the Gram-Schmidt procedure to orthogonalize the following vectors in \mathbb{R}^2

$$v_1 = \begin{bmatrix} 2\\1 \end{bmatrix}, \qquad v_2 = \begin{bmatrix} 1\\2 \end{bmatrix}.$$

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
(65)

⁶Note that the orthogonal basis we obtain from the Gram-Schmidt procedure is not unique. In fact a reordering of the vectors $\{v_1, \ldots, v_n\}$ yields a different orthogonal basis at the end of the procedure.

⁷The Kronecher delta is defined as:

We have

$$u_1 = v_1,$$
 $u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{||u_1||^2} u_1.$

The norm of $u_1 = v_1$ is

$$||u_1||^2 = ||v_1||^2 = \langle v_1, v_1 \rangle = 2^2 + 1^2 = 5.$$
(67)

This implies that

$$u_2 = \begin{bmatrix} 1\\2 \end{bmatrix} - \frac{4}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 1 - 8/5\\2 - 4/5 \end{bmatrix} = \begin{bmatrix} -3/5\\6/5 \end{bmatrix}$$

Note that u_1 and u_2 are orthogonal. In fact,

$$\langle u_1, u_2 \rangle = 2 \times \left(-\frac{3}{5} \right) + \frac{6}{5} = 0.$$
 (68)

The norm of u_2 is

$$||u_2|| = \sqrt{\langle u_2, u_2 \rangle} = \sqrt{\frac{9}{25} + \frac{36}{25}} = \frac{3\sqrt{5}}{5}.$$
(69)

This means that

$$\left\{\frac{u_1}{\|u_1\|}, \frac{u_2}{\|u_2\|}\right\} = \left\{\frac{\sqrt{5}}{5} \begin{bmatrix} 2\\1 \end{bmatrix}, \frac{\sqrt{5}}{5} \begin{bmatrix} -1\\2 \end{bmatrix}\right\}$$
(70)

is an orthonormal basis of \mathbb{R}^2 . Note that $u_2/||u_2||$ can be obtained by rotating $u_1/||u_1||$ by 90 degrees counterclockwise.

Representation of vectors relative to orthonormal bases. Let $\mathcal{B}_V = {\hat{u}_1, \ldots, \hat{u}_n}$ be an orthonormal basis of a *n*-dimensional vector space *V*. Any vector $v \in V$ can be represented relative to the basis \mathcal{B}_V as

$$v = x_1 \widehat{u}_1 + \dots + x_n \widehat{u}_n. \tag{71}$$

by projecting the vector v onto \hat{u}_i and taking into account the orthonormality conditions $\langle u_i, u_j \rangle = \delta_{ij}$ yields

$$\langle v, \widehat{u}_j \rangle = \langle x_1 \widehat{u}_1 + \dots + x_n \widehat{u}_n, \widehat{u}_j \rangle$$

$$= x_1 \langle \widehat{u}_1, \widehat{u}_j \rangle + \dots + x_n \langle \widehat{u}_n, \widehat{u}_j \rangle$$

$$= x_j \langle \widehat{u}_j, \widehat{u}_j \rangle$$

$$= x_j$$

$$(72)$$

i.e., the *j*-the coordinate of v relative to \mathcal{B}_V coincides with the projection of v onto \hat{u}_j . On the other hand, if we consider an orthogonal basis $\{u_1, \ldots, u_n\}$ we obtain

$$v = y_1 u_1 + \dots + y_n u_n \quad \Rightarrow \quad x_j = \frac{\langle v, u_j \rangle}{\langle u_j, u_j \rangle}.$$
 (73)

Theorem 3. Let $\mathcal{B}_V = {\hat{u}_1, \ldots, \hat{u}_n}$ be an orthonormal basis of a *n*-dimensional vector space *V*. Then for any vector $v \in V$ we have

$$v = x_1 \widehat{u}_1 + \dots + x_n \widehat{u}_n$$
 and $||v||^2 = \sum_{k=1}^n x_k^2.$ (74)

Page 11

Orthogonal complement. Let S be a subspace of V. The orthogonal complement of S in V is defined as

$$S^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ for all } w \in S \}$$

It can be shown that S^{\perp} is a vector subspace of V. Any vector $v \in V$ can be expressed as a sum of two vectors $w_1 \in S$ and $w_2 \in S^{\perp}$, i.e.,

$$v = w_1 + w_2 \tag{75}$$

Equivalently, we say that V is the direct sum of S and S^{\perp} , and write

$$V = S \oplus S^{\perp}.$$
 (76)

For example, any vector $v \in V = \mathbb{R}^3$ defines a one-dimensional vector subspace S. The orthogonal complement of S in \mathbb{R}^3 is a plane orthogonal S. Such plane is denoted by S^{\perp}

0₁₈3

V2

$$\langle x, v \rangle = 0$$
 (v is given, $x \in \mathbb{R}^3$ is arbitrary) (77)

S (PLANE)

i.e.,

$$v_1 x_1 + v_2 x_2 + v_3 x_3 = 0 \tag{78}$$

We know this expression very well, but now we learned something new, i.e., that the coefficients of v_1 , v_2 and v_3 are the components of a vector that is orthogonal to the plane. Similarly, given two linearly independent vectors vectors v_1 and v_2 in \mathbb{R}^3 , it is possible to determine the space that is orthogonal to the span of v_1 and v_2 by solving the system of equations

$$\langle x, v_1 \rangle = 0, \qquad \langle x, v_2 \rangle = 0 \qquad x \in \mathbb{R}^3.$$
 (79)

This system represents the intersection of two planes orthogonal to v_1 and v_2 .

Orthogonal complement of the range and the nullspace of a matrix. Next consider a $m \times n$ matrix A and let $\{v_1, \ldots, v_n\}$ be the columns of A. Denote by

$$R(A) = \operatorname{span}\{v_1, \dots, v_n\}$$
(80)

the column space of A, i.e., the range of the matrix A. We known that such space is a vector subspace of \mathbb{R}^m . The orthogonal complement of R(A) is

$$[R(A)]^{\perp} = \{ v \in \mathbb{R}^m : \langle v, w \rangle = 0 \quad \text{for all} \quad w \in R(A) \}.$$
(81)

Let us write the condition $\langle v, w \rangle = 0$ a more explicitly.

To this end, we notice that R(A) can be characterized as the set of vectors $w \in \mathbb{R}^m$ such that such that w = Ax. Hence,

$$v \in [R(A)]^{\perp} \quad \Leftrightarrow \quad \langle v, Ax \rangle = 0 \quad \text{for all } x \in \mathbb{R}^n$$
$$\Leftrightarrow \quad \langle A^T v, x \rangle = 0 \quad \text{for all } x \in \mathbb{R}^n$$
$$\Leftrightarrow \quad A^T v = 0_{\mathbb{R}^n}$$
$$\Leftrightarrow \quad v \in N(A^T).$$

This means that

$$[R(A)]^{\perp} = N(A^{T}).$$
(82)

In other words, the orthogonal complement of the column space of a matrix coincides with the nullspace of the matrix transpose. We can also prove the equality the other way around, i.e.,

$$v \in N(A^{T}) \quad \Leftrightarrow \quad A^{T}v = 0 \qquad v \in \mathbb{R}^{m}$$
$$\Leftrightarrow \quad \left\langle w, A^{T}v \right\rangle = 0 \quad \text{for all } w \in \mathbb{R}^{n}$$
$$\Leftrightarrow \quad \left\langle Aw, v \right\rangle = 0 \quad \text{for all } w \in \mathbb{R}^{n}$$
$$\Leftrightarrow \quad v \in [R(A)]^{\perp}.$$

Repeating this simple proof for N(A) yields

$$\left[R(A^T)\right]^{\perp} = N(A). \tag{83}$$

i.e., the orthogonal complement of the *row space* of A (i.e., the column space of A^T) coincides with the nullspace of A. Similarly, it can be shown that

$$[N(A)]^{\perp} = R(A^T) \quad \text{and} \quad [N(A^T)]^{\perp} = R(A).$$
(84)