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Lecture 8: Scalar products, norms and orthogonality

Let U , V and W be three real vector spaces. We say that the transformation1

G : U × V 7→ W (2)

is bilinear if for all u1, u2 ∈ U , all v1, v2 ∈ V , and all c ∈ R

1. G(u1 + u2, v1) = G(u1, v1) +G(u2, v1),

2. G(u1, v1 + v2) = G(u1, v1) +G(u1, v2),

3. G(cu1, v1) = G(u1, cv1) = cG(u1, v1).

If the bilinear transformation G is real-valued, i.e.,

G : U × V 7→ R, (3)

then we say that F is a bilinear form.

Example 1: Consider U = Rm, V = Rn and a matrix A ∈Mm×n(R). Then

G : Rm × Rn → R

(u, v)→
m∑
i=1

n∑
j=1

uiAijvj

is a bilinear form.

If U = V then we say that G : V × V 7→ R is a bilinear form on V . Moreover, if for all v1, v2 ∈ V
we have that

G(v1, v2) = G(v2, v1) (4)

then we say that the bilinear form on V is symmetric.

Matrix associated to a bilinear form. Similarly to linear transformations, it is possible to
define the matrix associated to a bilinear form on V . To this end, suppose that V is n-dimensional
and consider the basis BV = {v1, . . . , vn}. Let u, v ∈ V such that

u = x1v1 + · · ·+ xnvn, v = y1v1 + · · ·+ ynvn. (5)

The coordinates of u and v relative to BV are

[u]BV
=

x1...
xn

 , [v]BV
=

y1...
yn

 . (6)

1The multiplication symbol × in (2) means “Cartesian product” of two sets. The elements of the set U × V are
of pairs of vectors (u, v) where u ∈ V and v ∈ V . We have already seen an example of a vector space constructed
using multiple Cartesian products, i.e.,

Rn = R× R× · · · × R︸ ︷︷ ︸
n times

. (1)
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A substitution of u and v into G(u, v) yields

G(u, v) =
n∑

i=1

n∑
j=1

xiG(vi, vj)yj. (7)

Define the matrix ABV associated with G(u, v) relative to BV as

ABV =

G(v1, v1) · · · G(v1, vn)
...

. . .
...

G(vn, v1) · · · G(vn, vn)

 (8)

This allows us to write (7) as
G(u, v) = [u]TBV

ABV [v]BV
. (9)

If G is symmetric then ABV is a symmetric matrix.

Scalar products. A scalar product on a real vector space V is a symmetric bilinear form on V .
The scalar product between two vectors in V is a real number2. We denote such scalar product
as

〈u, v〉 = G(u, v) ∀u, v ∈ V. (10)

A scalar product in V is also called “inner product” in V .

Examples of scalar products:

1. V = Rn: 〈u, v〉 =
n∑

i=1

uivi (scalar product on Rn). This scalar product is often called “dot-

product” and denoted as u · v. The matrix associated with the dot product is the identity
matrix.

2. V = Rn: 〈u, v〉 =
n∑

i=1

n∑
j=1

uigijvj where gij is a n × n symmetric matrix. In differential

geometry and in the theory of general relativity gij is called metric tensor and it represents
the metric properties of the space-time (the curvature of the space-time is a nonlinear function
of gij).

3. V = Mn×n(R): 〈A,B〉 = Tr(ABT ) =
n∑

i,j=1

AijBij for all A,B ∈ Mn×n(R) (scalar product

between two matrices). Here Tr(ABT ) denotes the trace of the matrix ABT , which is clearly
a symmetric bilinear form3.

2It is possible to define scalar products on complex vector spaces. In this setting, the symmetric bilinear form
returns a complex number and it is called Hermitian bilinear form.

3In fact,

Tr(ABT ) = Tr(BAT ), Tr((A+ C)BT ) = Tr(ABT ) + Tr(CBT ) = Tr(B(A+ C)T ) (11)
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4. V = C0([0, 1]) (space of continuous functions defined on [0, 1]). The integral

〈u, v〉 =

∫ 1

0

u(x)v(x)dx

is a symmetric bilinear form on C0([0, 1]) which defines a scalar product. In particular, if u
and v are two polynomials of degree at most n defined on [0, 1] then 〈u, v〉 is a scalar product
on Pn.

A scalar product on 〈·, ·〉 : V × V → R is said to be non-degenerate if

〈v, w〉 = 0 for all w ⇒ v = 0V . (12)

Theorem 1. Let V be a real vector space of dimension n. A scalar product

〈·, ·〉 : V × V → R

is non-degenerate if and only if the matrix associated with 〈·, ·〉 relative to any basis BV =
{v1, . . . , vn} is invertible.

Proof. We know that for all u, v ∈ V

〈u, v〉 = [u]TBVABV [v]BV . (13)

If the inner product is non-degenerate then, by definition

[u]TBVABV [v]BV = 0 for all [u]BV ⇒ [v]BV = 0Rn . (14)

This implies that the nullspace of ABV reduces to the singleton {0Rn}. In fact if there exists another
nonzero vector [w] in the nullspace of ABV then clearly ABV [w] = 0Rn and the implication in (14)
is not true. Conversely, suppose that ABV is invertible. Consider the column vector ABV [v]BV and
take all “dot products” with the elements the canonical basis of Rn. This yields the system

[ek]TABV [v]BV = 0 k = 1, . . . , n, (15)

which is a homogeneous linear system of equations in n unknowns [v]BV that can be written as

ABV [v]BV = 0Rn . (16)

The solution to this system is clearly [v]BV = 0Rn , since ABV is invertible by assumption.

Examples of non-degenerate scalar products: The scalar products 1., 2. (with gij invertible) and 3.
at page 2, and 4. at page 3 are all non-degenerate scalar products. Let us show that 3. is indeed a
non-degenerate scalar product on Mn×n(R). We need to show that

Tr(ABT ) = 0 for all B ∈Mn×n(R) implies A = 0Mn×n . (17)
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The trace of the matrix product can be expressed as

Tr(ABT ) =
n∑

i,j=1

AijBij. (18)

Since B is arbitrary it easily follows form Tr(ABT ) = 0 that A = 0Mn×n . In fact, evaluate the
equation above using B equal to each element of the canonical basis of Mn×n(R). This yields
Aij = 0.

Examples of degenerate scalar products: Hereafter we provide a few examples of degenerate scalar
products.

1. Let V = R2. Consider two vectors

x =

[
x1
x2

]
, y =

[
y1
y2

]
(19)

the scalar product
〈x, y〉 = x1y1 (20)

is degenerate. In fact, the condition

〈x, y〉 = 0 for all y ∈ R2 does not imply x =

[
0
0

]
. (21)

To see this simply consider the vector x =

[
0
1

]
. Alternatively, we observe that the scalar

product (20) can be written as

〈x, y〉 =
[
x1 x2

] [1 0
0 0

]
︸ ︷︷ ︸

ABV

[
y1
y2

]
(22)

Recalling Theorem 2, we see that the matrix ABV associated with the scalar product relative
to the canonical basis of R2 is not invertible and therefore the scalar product is degenerate.

Positive definite scalar products. Let V be a real vector space. A scalar product on V is said
to be positive definite if

〈v, v〉 > 0 for all nonzero v ∈ V. (23)

Clearly, if v = 0V then 〈v, v〉 = 0.

Examples of positive definite scalar products: The scalar products 1., 3. and 4. defined at page 2
are all non-degenerate and positive definite. The scalar product 2. at page 2 is non-degenerate and
positive definite if and only if the matrix gij is positive definite, i.e., if

n∑
i,j=1

gijxixj > 0 for all nozero vectors x ∈ Rn. (24)
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Positive definite matrices are necessarily invertible. In fact, from condition (24) it follows that for
any nonzero vector x, gx is nonzero. Therefore g is full rank (⇒ nullspace reduces to the 0Rn) and
therefore invertible.

Norms. A norm on a vector space V is is a function ‖·‖ : V → R with the following properties

1. ‖av‖ = |a| ‖v‖ for all v ∈ V and for all a ∈ R (or C).

2. ‖u+ v‖ ≤ ‖u‖+ ‖v‖

3. ‖u‖ = 0 ⇔ u = 0V

4. ‖u‖ > 0 for all nonzero u ∈ V .

The norm defines the length of vectors in a vector space. We have already seen a norm when we
studied complex numbers, i.e., the modulus of a complex number. Let us provide a few examples
of norms.

Examples:

• Let V = Rn. For every v ∈ Rn we define

‖v‖1 =
n∑

i=1

|vi| (1-norm) (25)

‖v‖2 =

(
n∑

i=1

|vi|2
)1/2

(2-norm) (26)

‖v‖p =

(
n∑

i=1

|vi|p
)1/p

(p-norm, p ≥ 1 real number) (27)

‖v‖∞ = max
i=1,...,n

|vi| (infinity norm) (28)

All these norms satisfy properties 1.-4. above. Moreover, it can be shown that

‖v‖∞ = lim
p→∞
‖v‖p . (29)

• Let V = C0([0, 1]) (space of continuous functions in [0, 1]). We define

‖u‖∞ = max
x∈[0,1]

|u(x)| (uniform norm), (30)

‖u‖2 =

∫ 1

0

|u(x)|2 dx (L2 ([0, 1])-norm). (31)

• Let V = Mn×n(R) (space of n× n matrices with real coefficients). Let us define the following
matrix norm

‖A‖ = max
v 6=0Rn

‖Av‖p
‖v‖p

= max
‖v‖p=1

‖Av‖p p ≥ 1. (32)
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It is straightforward to show that

‖A‖∞ = max
i=1,..,n

(
n∑

j=1

|Aij|

)
, (33)

‖A‖1 = max
j=1,..,n

(
n∑

i=1

|Aij|

)
. (34)

For example,

‖Av‖∞ = max
i=1,...,n

∣∣∣∣∣
n∑

j=1

Aijvj

∣∣∣∣∣ ≤ max
i=1,...,n

(
n∑

j=1

|Aij| |vj|

)
≤ ‖v‖∞ max

i=1,...,n

(
n∑

j=1

|Aij|

)
(35)

which implies that

‖Av‖∞
‖v‖∞

≤ max
i=1,...,n

(
n∑

j=1

|Aij|

)
for all v 6= 0Rn , (36)

i.e.,

max
v 6=0Rn

‖Av‖∞
‖v‖∞

= max
i=1,...,n

(
n∑

j=1

|Aij|

)
= ‖A‖∞ . (37)

The matrix norms (33) and (34) are said to be compatible with associated vector norms (or
induced by the vector norms) since they verify the inequalities

‖Av‖p ≤ ‖A‖p ‖v‖p p = 1,∞. (38)

Norms induced by scalar products. Any non-degenerate positive-definite scalar product on V
induces a norm4

‖v‖ =
√
〈v, v〉. (39)

In particular, the standard dot product in Rn

〈v, v〉 =
n∑

i=1

v2i

induces the 2-norm defined in (26). Similarly, the scalar product between two matrices A,B ∈
Mn×n(R)

〈A,B〉 = Tr
(
ABT

)
induces the following norm in the space of matrices Mn×n(R)

‖A‖F =

√√√√ n∑
i,j=1

A2
ij (Frobenious norm). (40)

The Frobenious norm is compatible with the vector norm in the sense that ‖Ax‖2 ≤ ‖A‖F ‖x‖2.
4It is straightforward to show that properties 1.-4. at page 5 are all satisfied by the norm (39).
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Theorem 2 (Cauchy-Schwarz inequality). Let V be a real vector space. Then for all u, v ∈ V we
have

|〈u, v〉| ≤ ‖u‖ ‖v‖ , (41)

where ‖u‖ =
√
〈u, u〉 and ‖v‖ =

√
〈v, v〉.

Proof. For v = 0V the inequality reduces to 0 = 0. Let u, v ∈ V be nonzero. The vector

u− 〈u, v〉
〈v, v〉

v (42)

is orthogonal5 to v since 〈
v, u− 〈u, v〉

〈v, v〉
v

〉
= 〈v, u〉 − 〈u, v〉

〈v, v〉
〈v, v〉 = 0. (43)

Next, consider the identity

u = u− 〈u, v〉
〈v, v〉

v +
〈u, v〉
〈v, v〉

v. (44)

We have

‖u‖2 = 〈u, u〉

=

〈
u− 〈u, v〉
〈v, v〉

v, u− 〈u, v〉
〈v, v〉

v

〉
+
|〈u, v〉|2

|〈v, v〉|2
〈v, v〉

=

∥∥∥∥u− 〈u, v〉〈v, v〉
v

∥∥∥∥2 +
|〈u, v〉|2

‖v‖2

≥|〈u, v〉|
2

‖v‖2
. (45)

From the last inequality we have |〈u, v〉|2 ≤ ‖u‖2 ‖v‖2. Taking the square root yields equation (41).

Cosine similarity. The Cauchy-Schwartz inequality (41) implies that

−1 ≤ 〈u, v〉
‖u‖ ‖v‖

≤ 1. (46)

The quantity

cos(ϑ) =
〈u, v〉
‖u‖ ‖v‖

(47)

is known as cosine similarity between the vectors u and v. In the case where u and v are vectors
of R2, R3 or Rn, the cosine similarity coincides with cosine of the angle between the two vectors.
Such an angle is measures on the two-dimensional plane spanned by the two vectors. From (47) it
follows that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2 ‖u‖ ‖v‖ cos(ϑ). (48)

which is the well-known law of cosines for triangles. The cosine similarity is practically utilized in
many different fields, e.g., natural language processing (similarity between texts) and econometrics
(analysis of time series).

5We say that to vectors u,w ∈ V are orthogonal with respect to the scalar product 〈·, ·〉 if 〈u,w〉 = 0.
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Orthogonality. Consider a vector space V and a non-degenerate positive definite scalar product
〈·, ·〉 on V . Two vectors u, v ∈ V are said to be orthogonal relative to 〈·, ·〉 if

〈u, v〉 = 0. (49)

Examples:

• V = R2. The following vectors

u =

[
1
1

]
, v =

[
−1
1

]
(50)

are orthogonal in R2 relative to the standard inner product

〈u, v〉 =
2∑

i=1

uivi = −1 + 1 = 0. (51)

• V = M2×2(R). The following matrices

A =

[
1 0
0 0

]
, B =

[
0 1
0 0

]
(52)

are orthogonal in M2×2(R) relative to the inner product

〈A,B〉 = Tr
(
ABT

)
. (53)

In fact,

Tr
(
ABT

)
= Tr

([
1 0
0 0

] [
0 0
1 0

])
= Tr

([
0 0
0 0

])
= 0. (54)

• V = P2([−1, 1]) (vector space of polynomials of degree at most two). The polynomials

p1(x) = x and p2(x) =
3

2
x2 − 1

2
(55)

are orthogonal with respect to the scalar product

〈p1, p2〉 =

∫ 1

−1
p1(x)p2(x)dx. (56)

In fact,

〈p1, p2〉 =

∫ 1

−1
p1(x)p2(x)dx =

∫ 1

−1

(
3

2
x3 − 1

2
x

)
dx =

[
3

8
x4 − 1

4
x2
]1
−1

= 0. (57)

Orthogonal projections. Consider two vectors u and v in a vector space V . The orthogonal
projection of u onto v is defined as

Pvu =
〈u, v〉
〈v, v〉

v =

〈
u,

v

‖v‖

〉
v

‖v‖
, (58)
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where ‖·‖ is the norm induced by the scalar product. Clearly v/ ‖v‖ is a vector with norm equal to
one, i.e., a unit vector.

Examples:

• Let V = R2 and consider the following vectors

u =

[
1
1

]
, v =

[
2
0

]
. (59)

1-
*w
In Is

<1,v>v
-

(,v>

The projection of u onto v is

Pvu =
〈u, v〉
〈v, v〉

v =
2

4

[
2
0

]
=

[
1
0

]
. (60)

Note that if we subtract
〈u, v〉
〈v, v〉

v from u we obtain a vector that is orthogonal to v.

u− 〈u, v〉
〈v, v〉

=

[
1
1

]
−
[
1
0

]
=

[
0
1

]
. (61)

• V = R3. Given three vectors v1, v2, v3 ∈ R3 we can compute the orthogonal projection of any
vector onto any other vector, e.g., the orthogonal projection of v2 onto v1

Pv1v2 =
〈v2, v1〉
〈v1, v1〉

v1. (62)

We can also construct an orthogonal set of vector by transforming the given set of linearly
independent vectors {v1, v2, v3} as follows

u1 =v1,

u2 =v2 −
〈v2, u1〉
〈u1, u1〉

u1,

u3 =v3 −
〈v3, u1〉
〈u1, u1〉

u1 −
〈v3, u2〉
〈u2, u2〉

u2.
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This procedure is known as Gram-Schmidt orthogonalization, and it allows us to transform
any set of linearly independent vectors into an orthogonal one. Such set of ortogonal vectors
can be then normalized.

Gram-Schmidt orthogonalization. The previous example suggests that we can transform any
basis {v1, . . . , vn} of a n-dimensional vector space V into an orthonormal basis6 by using the Gram-
Schmidt procedure. In fact, we can first compute

u1 =v1,

u2 =v2 −
〈v2, u1〉
〈u1, u1〉

u1,

u3 =v3 −
〈v3, u1〉
〈u1, u1〉

u1 −
〈v3, u2〉
〈u2, u2〉

u2,

...

un =vn −
〈vn, u1〉
〈u1, u1〉

u1 − · · ·
〈vn, un−1〉
〈un−1, un−1〉

un−1.

and then normalize the vectors {u1, . . . , un} to obtain the orthonormal basis{
u1
‖u1‖

, . . . ,
un
‖un‖

}
. (63)

Alternatively, we can normalize each vector ui right after we compute it. This reduces the number
of calculations in the Gram-Schmidt procedure as we can write

u1 = v1, û1 = u1/ ‖u1‖ ,
u2 = v2 − 〈v2, û1〉 û1 û2 = u2/ ‖u2‖ ,
u3 = v3 − 〈v3, û1〉 û1 − 〈v3, û2〉 û2 û3 = u3/ ‖u3‖ ,
· · ·

It is straightforward to show that
〈ui, uj〉 = δij ‖uj‖2 , (64)

where δij is the Kronecker delta function7. For example,

〈u1, u2〉 =

〈
v1, v2 −

〈v2, v1〉
〈v1, v1〉

v1

〉
= 〈v1, v2〉 −

〈v2, v1〉
〈v1, v1〉

〈v1, v1〉 = 0. (66)

Example: Let us use the Gram-Schmidt procedure to orthogonalize the following vectors in R2

v1 =

[
2
1

]
, v2 =

[
1
2

]
.

6Note that the orthogonal basis we obtain from the Gram-Schmidt procedure is not unique. In fact a reordering
of the vectors {v1, . . . , vn} yields a different orthogonal basis at the end of the procedure.

7The Kronecher delta is defined as:

δij =

{
1 if i = j

0 if i 6= j
(65)
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We have

u1 = v1, u2 = v2 −
〈v2, u1〉
||u1||2

u1.

The norm of u1 = v1 is
‖u1‖2 = ‖v1‖2 = 〈v1, v1〉 = 22 + 12 = 5. (67)

This implies that

u2 =

[
1
2

]
− 4

5

[
2
1

]
=

[
1− 8/5
2− 4/5

]
=

[
−3/5
6/5

]
Note that u1 and u2 are orthogonal. In fact,

〈u1, u2〉 = 2×
(
−3

5

)
+

6

5
= 0. (68)

The norm of u2 is

‖u2‖ =
√
〈u2, u2〉 =

√
9

25
+

36

25
=

3
√

5

5
. (69)

This means that {
u1
‖u1‖

,
u2
‖u2‖

}
=

{√
5

5

[
2
1

]
,

√
5

5

[
−1
2

]}
(70)

is an orthonormal basis of R2. Note that u2/ ‖u2‖ can be obtained by rotating u1/ ‖u1‖ by 90
degrees counterclockwise.

Representation of vectors relative to orthonormal bases. Let BV = {û1, . . . , ûn} be an
orthonormal basis of a n-dimensional vector space V . Any vector v ∈ V can be represented relative
to the basis BV as

v = x1û1 + · · ·+ xnûn. (71)

by projecting the vector v onto ûi and taking into account the orthonormality conditions 〈ui, uj〉 =
δij yields

〈v, ûj〉 = 〈x1û1 + · · ·+ xnûn, ûj〉
=x1 〈û1, ûj〉+ · · ·+ xn 〈ûn, ûj〉
=xj 〈ûj, ûj〉
=xj (72)

i.e., the j-the coordinate of v relative to BV coincides with the projection of v onto ûj. On the other
hand, if we consider an orthogonal basis {u1, . . . , un} we obtain

v = y1u1 + · · ·+ ynun ⇒ xj =
〈v, uj〉
〈uj, uj〉

. (73)

Theorem 3. Let BV = {û1, . . . , ûn} be an orthonormal basis of a n-dimensional vector space V .
Then for any vector v ∈ V we have

v = x1û1 + · · ·+ xnûn and ‖v‖2 =
n∑

k=1

x2k. (74)
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Orthogonal complement. Let S be a subspace of V . The orthogonal complement of S in V is
defined as

S⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ S}
It can be shown that S⊥ is a vector subspace of V . Any vector v ∈ V can be expressed as a sum
of two vectors w1 ∈ S and w2 ∈ S⊥, i.e.,

v = w1 + w2 (75)

Equivalently, we say that V is the direct sum of S and S⊥, and write

V = S ⊕ S⊥. (76)

For example, any vector v ∈ V = R3 defines a one-dimensional vector subspace S. The orthogonal
complement of S in R3 is a plane orthogonal S. Such plane is denoted by S⊥

Ve is0
- SSPLANE)

The plane, i.e., the vector space S⊥, is identified mathematically by the condition

〈x, v〉 = 0 (v is given, x ∈ R3 is arbitrary) (77)

i.e.,
v1x1 + v2x2 + v3x3 = 0 (78)

We know this expression very well, but now we learned something new, i.e., that the coefficients of
v1, v2 and v3 are the components of a vector that is orthogonal to the plane. Similarly, given two
linearly independent vectors vectors v1 and v2 in R3, it is possible to determine the space that is
orthogonal to the span of v1 and v2 by solving the system of equations

〈x, v1〉 = 0, 〈x, v2〉 = 0 x ∈ R3. (79)

This system represents the intersection of two planes orthogonal to v1 and v2.

(X,N2) =0
S / (PLANE)

-

· (X,N1) =0

,
Sit A

↳ (PLANE)
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Orthogonal complement of the range and the nullspace of a matrix. Next consider a m×n
matrix A and let {v1, . . . , vn} be the columns of A. Denote by

R(A) = span{v1, . . . , vn} (80)

the column space of A, i.e., the range of the matrix A. We known that such space is a vector
subspace of Rm. The orthogonal complement of R(A) is

[R(A)]⊥ = {v ∈ Rm : 〈v, w〉 = 0 for all w ∈ R(A)}. (81)

Let us write the condition 〈v, w〉 = 0 a more explicitly.

To this end, we notice that R(A) can be characterized as the set of vectors w ∈ Rm such that such
that w = Ax. Hence,

v ∈ [R(A)]⊥ ⇔ 〈v, Ax〉 = 0 for all x ∈ Rn

⇔
〈
ATv, x

〉
= 0 for all x ∈ Rn

⇔ ATv = 0Rn

⇔ v ∈ N(AT ).

This means that
[R(A)]⊥ = N(AT ). (82)

In other words, the orthogonal complement of the column space of a matrix coincides with the
nullspace of the matrix transpose. We can also prove the equality the other way around, i.e.,

v ∈ N(AT ) ⇔ ATv = 0 v ∈ Rm

⇔
〈
w,ATv

〉
= 0 for all w ∈ Rn

⇔ 〈Aw, v〉 = 0 for all w ∈ Rn

⇔ v ∈ [R(A)]⊥ .

Repeating this simple proof for N(A) yields[
R(AT )

]⊥
= N(A). (83)

i.e., the orthogonal complement of the row space of A (i.e., the column space of AT ) coincides with
the nullspace of A. Similarly, it can be shown that

[N(A)]⊥ = R(AT ) and
[
N(AT )

]⊥
= R(A). (84)
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