Lecture 8: Scalar products, norms and orthogonality

Let U, V and W be three real vector spaces. We say that the transformation ${ }^{1}$

$$
\begin{equation*}
G: U \times V \mapsto W \tag{2}
\end{equation*}
$$

is bilinear if for all $u_{1}, u_{2} \in U$, all $v_{1}, v_{2} \in V$, and all $c \in \mathbb{R}$

1. $G\left(u_{1}+u_{2}, v_{1}\right)=G\left(u_{1}, v_{1}\right)+G\left(u_{2}, v_{1}\right)$,
2. $G\left(u_{1}, v_{1}+v_{2}\right)=G\left(u_{1}, v_{1}\right)+G\left(u_{1}, v_{2}\right)$,
3. $G\left(c u_{1}, v_{1}\right)=G\left(u_{1}, c v_{1}\right)=c G\left(u_{1}, v_{1}\right)$.

If the bilinear transformation G is real-valued, i.e.,

$$
\begin{equation*}
G: U \times V \mapsto \mathbb{R} \tag{3}
\end{equation*}
$$

then we say that F is a bilinear form.

Example 1: Consider $U=\mathbb{R}^{m}, V=\mathbb{R}^{n}$ and a matrix $A \in M_{m \times n}(\mathbb{R})$. Then

$$
\begin{aligned}
G: \mathbb{R}^{m} \times \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
(u, v) & \rightarrow \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i} A_{i j} v_{j}
\end{aligned}
$$

is a bilinear form.

If $U=V$ then we say that $G: V \times V \mapsto \mathbb{R}$ is a bilinear form on V. Moreover, if for all $v_{1}, v_{2} \in V$ we have that

$$
\begin{equation*}
G\left(v_{1}, v_{2}\right)=G\left(v_{2}, v_{1}\right) \tag{4}
\end{equation*}
$$

then we say that the bilinear form on V is symmetric.

Matrix associated to a bilinear form. Similarly to linear transformations, it is possible to define the matrix associated to a bilinear form on V. To this end, suppose that V is n-dimensional and consider the basis $\mathcal{B}_{V}=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $u, v \in V$ such that

$$
\begin{equation*}
u=x_{1} v_{1}+\cdots+x_{n} v_{n}, \quad v=y_{1} v_{1}+\cdots+y_{n} v_{n} \tag{5}
\end{equation*}
$$

The coordinates of u and v relative to \mathcal{B}_{V} are

$$
[u]_{B_{V}}=\left[\begin{array}{c}
x_{1} \tag{6}\\
\vdots \\
x_{n}
\end{array}\right], \quad[v]_{B_{V}}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

[^0]A substitution of u and v into $G(u, v)$ yields

$$
\begin{equation*}
G(u, v)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} G\left(v_{i}, v_{j}\right) y_{j} \tag{7}
\end{equation*}
$$

Define the matrix $A_{\mathcal{B}_{V}}$ associated with $G(u, v)$ relative to B_{V} as

$$
A_{\mathcal{B}_{V}}=\left[\begin{array}{ccc}
G\left(v_{1}, v_{1}\right) & \cdots & G\left(v_{1}, v_{n}\right) \tag{8}\\
\vdots & \ddots & \vdots \\
G\left(v_{n}, v_{1}\right) & \cdots & G\left(v_{n}, v_{n}\right)
\end{array}\right]
$$

This allows us to write (7) as

$$
\begin{equation*}
G(u, v)=[u]_{B_{V}}^{T} A_{\mathcal{B}_{V}}[v]_{B_{V}} \tag{9}
\end{equation*}
$$

If G is symmetric then $A_{\mathcal{B}_{V}}$ is a symmetric matrix.

Scalar products. A scalar product on a real vector space V is a symmetric bilinear form on V. The scalar product between two vectors in V is a real number ${ }^{2}$. We denote such scalar product as

$$
\begin{equation*}
\langle u, v\rangle=G(u, v) \quad \forall u, v \in V \tag{10}
\end{equation*}
$$

A scalar product in V is also called "inner product" in V.
$\underline{\text { Examples of scalar products: }}$

1. $V=\mathbb{R}^{n}:\langle u, v\rangle=\sum_{i=1}^{n} u_{i} v_{i}$ (scalar product on \mathbb{R}^{n}). This scalar product is often called "dotproduct" and denoted as $u \cdot v$. The matrix associated with the dot product is the identity matrix.
2. $V=\mathbb{R}^{n}:\langle u, v\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} g_{i j} v_{j}$ where $g_{i j}$ is a $n \times n$ symmetric matrix. In differential geometry and in the theory of general relativity $g_{i j}$ is called metric tensor and it represents the metric properties of the space-time (the curvature of the space-time is a nonlinear function of $g_{i j}$).
3. $V=M_{n \times n}(\mathbb{R}):\langle A, B\rangle=\operatorname{Tr}\left(A B^{T}\right)=\sum_{i, j=1}^{n} A_{i j} B_{i j}$ for all $A, B \in M_{n \times n}(\mathbb{R})$ (scalar product between two matrices). Here $\operatorname{Tr}\left(A B^{T}\right)$ denotes the trace of the matrix $A B^{T}$, which is clearly a symmetric bilinear form ${ }^{3}$.

[^1]4. $V=C^{0}([0,1])$ (space of continuous functions defined on $[0,1]$). The integral
$$
\langle u, v\rangle=\int_{0}^{1} u(x) v(x) d x
$$
is a symmetric bilinear form on $C^{0}([0,1])$ which defines a scalar product. In particular, if u and v are two polynomials of degree at most n defined on $[0,1]$ then $\langle u, v\rangle$ is a scalar product on \mathbb{P}_{n}.

A scalar product on $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ is said to be non-degenerate if

$$
\begin{equation*}
\langle v, w\rangle=0 \quad \text { for all } w \quad \Rightarrow \quad v=0_{V} . \tag{12}
\end{equation*}
$$

Theorem 1. Let V be a real vector space of dimension n. A scalar product

$$
\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}
$$

is non-degenerate if and only if the matrix associated with $\langle\cdot, \cdot\rangle$ relative to any basis $\mathcal{B}_{V}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ is invertible.

Proof. We know that for all $u, v \in V$

$$
\begin{equation*}
\langle u, v\rangle=[u]_{\mathcal{B}_{V}}^{T} A_{\mathcal{B}_{V}}[v]_{\mathcal{B}_{V}} . \tag{13}
\end{equation*}
$$

If the inner product is non-degenerate then, by definition

$$
\begin{equation*}
[u]_{\mathcal{B}_{V}}^{T} A_{\mathcal{B}_{V}}[v]_{\mathcal{B}_{V}}=0 \quad \text { for all } \quad[u]_{\mathcal{B}_{V}} \quad \Rightarrow \quad[v]_{\mathcal{B}_{V}}=0_{\mathbb{R}^{n}} \tag{14}
\end{equation*}
$$

This implies that the nullspace of $A_{\mathcal{B}_{V}}$ reduces to the singleton $\left\{0_{\mathbb{R}^{n}}\right\}$. In fact if there exists another nonzero vector $[w]$ in the nullspace of $A_{\mathcal{B}_{V}}$ then clearly $A_{\mathcal{B}_{V}}[w]=0_{\mathbb{R}^{n}}$ and the implication in (14) is not true. Conversely, suppose that $A_{\mathcal{B}_{V}}$ is invertible. Consider the column vector $A_{\mathcal{B}_{V}}[v]_{\mathcal{B}_{V}}$ and take all "dot products" with the elements the canonical basis of \mathbb{R}^{n}. This yields the system

$$
\begin{equation*}
\left[e_{k}\right]^{T} A_{\mathcal{B}_{V}}[v]_{\mathcal{B}_{V}}=0 \quad k=1, \ldots, n, \tag{15}
\end{equation*}
$$

which is a homogeneous linear system of equations in n unknowns $[v]_{\mathcal{B}_{V}}$ that can be written as

$$
\begin{equation*}
A_{\mathcal{B}_{V}}[v]_{\mathcal{B}_{V}}=0_{\mathbb{R}^{n}} \tag{16}
\end{equation*}
$$

The solution to this system is clearly $[v]_{\mathcal{B}_{V}}=0_{\mathbb{R}^{n}}$, since $A_{\mathcal{B}_{V}}$ is invertible by assumption.

Examples of non-degenerate scalar products: The scalar products 1., 2 . (with $g_{i j}$ invertible) and 3. at page 2, and 4. at page 3 are all non-degenerate scalar products. Let us show that 3 . is indeed a non-degenerate scalar product on $M_{n \times n}(\mathbb{R})$. We need to show that

$$
\begin{equation*}
\operatorname{Tr}\left(A B^{T}\right)=0 \quad \text { for all } \quad B \in M_{n \times n}(\mathbb{R}) \quad \text { implies } \quad A=0_{M_{n \times n}} \tag{17}
\end{equation*}
$$

The trace of the matrix product can be expressed as

$$
\begin{equation*}
\operatorname{Tr}\left(A B^{T}\right)=\sum_{i, j=1}^{n} A_{i j} B_{i j} \tag{18}
\end{equation*}
$$

Since B is arbitrary it easily follows form $\operatorname{Tr}\left(A B^{T}\right)=0$ that $A=0_{M_{n \times n}}$. In fact, evaluate the equation above using B equal to each element of the canonical basis of $M_{n \times n}(\mathbb{R})$. This yields $A_{i j}=0$.

Examples of degenerate scalar products: Hereafter we provide a few examples of degenerate scalar products.

1. Let $V=\mathbb{R}^{2}$. Consider two vectors

$$
x=\left[\begin{array}{l}
x_{1} \tag{19}\\
x_{2}
\end{array}\right], \quad y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

the scalar product

$$
\begin{equation*}
\langle x, y\rangle=x_{1} y_{1} \tag{20}
\end{equation*}
$$

is degenerate. In fact, the condition

$$
\langle x, y\rangle=0 \quad \text { for all } \quad y \in \mathbb{R}^{2} \quad \text { does not imply } \quad x=\left[\begin{array}{l}
0 \tag{21}\\
0
\end{array}\right]
$$

To see this simply consider the vector $x=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Alternatively, we observe that the scalar product (20) can be written as

$$
\langle x, y\rangle=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right] \underbrace{\left[\begin{array}{ll}
1 & 0 \tag{22}\\
0 & 0
\end{array}\right]}_{A_{\mathcal{B}_{V}}}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Recalling Theorem 2, we see that the matrix $A_{\mathcal{B}_{V}}$ associated with the scalar product relative to the canonical basis of \mathbb{R}^{2} is not invertible and therefore the scalar product is degenerate.

Positive definite scalar products. Let V be a real vector space. A scalar product on V is said to be positive definite if

$$
\begin{equation*}
\langle v, v\rangle>0 \quad \text { for all nonzero } \quad v \in V \text {. } \tag{23}
\end{equation*}
$$

Clearly, if $v=0_{V}$ then $\langle v, v\rangle=0$.

Examples of positive definite scalar products: The scalar products 1., 3. and 4. defined at page 2 are all non-degenerate and positive definite. The scalar product 2. at page 2 is non-degenerate and positive definite if and only if the matrix $g_{i j}$ is positive definite, i.e., if

$$
\begin{equation*}
\sum_{i, j=1}^{n} g_{i j} x_{i} x_{j}>0 \quad \text { for all nozero vectors } \quad x \in \mathbb{R}^{n} \tag{24}
\end{equation*}
$$

Positive definite matrices are necessarily invertible. In fact, from condition (24) it follows that for any nonzero vector $x, g x$ is nonzero. Therefore g is full rank (\Rightarrow nullspace reduces to the $0_{\mathbb{R}^{n}}$) and therefore invertible.

Norms. A norm on a vector space V is is a function $\|\cdot\|: V \rightarrow \mathbb{R}$ with the following properties

1. $\|a v\|=|a|\|v\|$ for all $v \in V$ and for all $a \in \mathbb{R}$ (or $\mathbb{C})$.
2. $\|u+v\| \leq\|u\|+\|v\|$
3. $\|u\|=0 \quad \Leftrightarrow \quad u=0_{V}$
4. $\|u\|>0 \quad$ for all nonzero $u \in V$.

The norm defines the length of vectors in a vector space. We have already seen a norm when we studied complex numbers, i.e., the modulus of a complex number. Let us provide a few examples of norms.

Examples:

- Let $V=\mathbb{R}^{n}$. For every $v \in \mathbb{R}^{n}$ we define

$$
\begin{array}{ll}
\|v\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right| & (1 \text {-norm }) \\
\|v\|_{2}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{2}\right)^{1 / 2} & (2 \text {-norm }) \\
\|v\|_{p}=\left(\sum_{i=1}^{n}\left|v_{i}\right|^{p}\right)^{1 / p} & (p \text {-norm, } p \geq 1 \text { real number) } \\
\|v\|_{\infty}=\max _{i=1, \ldots, n}\left|v_{i}\right| & \text { (infinity norm) } \tag{28}
\end{array}
$$

All these norms satisfy properties 1.-4. above. Moreover, it can be shown that

$$
\begin{equation*}
\|v\|_{\infty}=\lim _{p \rightarrow \infty}\|v\|_{p} . \tag{29}
\end{equation*}
$$

- Let $V=C^{0}([0,1])$ (space of continuous functions in $[0,1]$). We define

$$
\begin{align*}
& \|u\|_{\infty}=\max _{x \in[0,1]}|u(x)| \quad \text { (uniform norm) } \tag{30}\\
& \|u\|_{2}=\int_{0}^{1}|u(x)|^{2} d x \quad\left(L^{2}([0,1])\right. \text {-norm). } \tag{31}
\end{align*}
$$

- Let $V=M_{n \times n}(\mathbb{R})$ (space of $n \times n$ matrices with real coefficients). Let us define the following matrix norm

$$
\begin{equation*}
\|A\|=\max _{v \neq \mathbb{0}_{\mathbb{R}^{n}}} \frac{\|A v\|_{p}}{\|v\|_{p}}=\max _{\|v\|_{p}=1}\|A v\|_{p} \quad p \geq 1 \tag{32}
\end{equation*}
$$

It is straightforward to show that

$$
\begin{align*}
\|A\|_{\infty} & =\max _{i=1, \ldots, n}\left(\sum_{j=1}^{n}\left|A_{i j}\right|\right) \tag{33}\\
\|A\|_{1} & =\max _{j=1, \ldots, n}\left(\sum_{i=1}^{n}\left|A_{i j}\right|\right) . \tag{34}
\end{align*}
$$

For example,

$$
\begin{equation*}
\|A v\|_{\infty}=\max _{i=1, \ldots, n}\left|\sum_{j=1}^{n} A_{i j} v_{j}\right| \leq \max _{i=1, \ldots, n}\left(\sum_{j=1}^{n}\left|A_{i j}\right|\left|v_{j}\right|\right) \leq\|v\|_{\infty} \max _{i=1, \ldots, n}\left(\sum_{j=1}^{n}\left|A_{i j}\right|\right) \tag{35}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\frac{\|A v\|_{\infty}}{\|v\|_{\infty}} \leq \max _{i=1, \ldots, n}\left(\sum_{j=1}^{n}\left|A_{i j}\right|\right) \quad \text { for all } v \neq 0_{\mathbb{R}^{n}} \tag{36}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\max _{v \neq \mathbb{R}^{n}} \frac{\|A v\|_{\infty}}{\|v\|_{\infty}}=\max _{i=1, \ldots, n}\left(\sum_{j=1}^{n}\left|A_{i j}\right|\right)=\|A\|_{\infty} . \tag{37}
\end{equation*}
$$

The matrix norms (33) and (34) are said to be compatible with associated vector norms (or induced by the vector norms) since they verify the inequalities

$$
\begin{equation*}
\|A v\|_{p} \leq\|A\|_{p}\|v\|_{p} \quad p=1, \infty \tag{38}
\end{equation*}
$$

Norms induced by scalar products. Any non-degenerate positive-definite scalar product on V induces a norm ${ }^{4}$

$$
\begin{equation*}
\|v\|=\sqrt{\langle v, v\rangle} . \tag{39}
\end{equation*}
$$

In particular, the standard dot product in \mathbb{R}^{n}

$$
\langle v, v\rangle=\sum_{i=1}^{n} v_{i}^{2}
$$

induces the 2-norm defined in (26). Similarly, the scalar product between two matrices $A, B \in$ $M_{n \times n}(\mathbb{R})$

$$
\langle A, B\rangle=\operatorname{Tr}\left(A B^{T}\right)
$$

induces the following norm in the space of matrices $M_{n \times n}(\mathbb{R})$

$$
\begin{equation*}
\|A\|_{F}=\sqrt{\sum_{i, j=1}^{n} A_{i j}^{2}} \quad \text { (Frobenious norm) } \tag{40}
\end{equation*}
$$

The Frobenious norm is compatible with the vector norm in the sense that $\|A x\|_{2} \leq\|A\|_{F}\|x\|_{2}$.

[^2]Theorem 2 (Cauchy-Schwarz inequality). Let V be a real vector space. Then for all $u, v \in V$ we have

$$
\begin{equation*}
|\langle u, v\rangle| \leq\|u\|\|v\| \tag{41}
\end{equation*}
$$

where $\|u\|=\sqrt{\langle u, u\rangle}$ and $\|v\|=\sqrt{\langle v, v\rangle}$.
Proof. For $v=0_{V}$ the inequality reduces to $0=0$. Let $u, v \in V$ be nonzero. The vector

$$
\begin{equation*}
u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v \tag{42}
\end{equation*}
$$

is orthogonal ${ }^{5}$ to v since

$$
\begin{equation*}
\left\langle v, u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v\right\rangle=\langle v, u\rangle-\frac{\langle u, v\rangle}{\langle v, v\rangle}\langle v, v\rangle=0 . \tag{43}
\end{equation*}
$$

Next, consider the identity

$$
\begin{equation*}
u=u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v+\frac{\langle u, v\rangle}{\langle v, v\rangle} v . \tag{44}
\end{equation*}
$$

We have

$$
\begin{align*}
\|u\|^{2} & =\langle u, u\rangle \\
& =\left\langle u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v, u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v\right\rangle+\frac{|\langle u, v\rangle|^{2}}{|\langle v, v\rangle|^{2}}\langle v, v\rangle \\
& =\left\|u-\frac{\langle u, v\rangle}{\langle v, v\rangle} v\right\|^{2}+\frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}} \\
& \geq \frac{|\langle u, v\rangle|^{2}}{\|v\|^{2}} . \tag{45}
\end{align*}
$$

From the last inequality we have $|\langle u, v\rangle|^{2} \leq\|u\|^{2}\|v\|^{2}$. Taking the square root yields equation (41).

Cosine similarity. The Cauchy-Schwartz inequality (41) implies that

$$
\begin{equation*}
-1 \leq \frac{\langle u, v\rangle}{\|u\|\|v\|} \leq 1 \tag{46}
\end{equation*}
$$

The quantity

$$
\begin{equation*}
\cos (\vartheta)=\frac{\langle u, v\rangle}{\|u\|\|v\|} \tag{47}
\end{equation*}
$$

is known as cosine similarity between the vectors u and v. In the case where u and v are vectors of $\mathbb{R}^{2}, \mathbb{R}^{3}$ or \mathbb{R}^{n}, the cosine similarity coincides with cosine of the angle between the two vectors. Such an angle is measures on the two-dimensional plane spanned by the two vectors. From (47) it follows that

$$
\begin{equation*}
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}-2\|u\|\|v\| \cos (\vartheta) . \tag{48}
\end{equation*}
$$

which is the well-known law of cosines for triangles. The cosine similarity is practically utilized in many different fields, e.g., natural language processing (similarity between texts) and econometrics (analysis of time series).

[^3]Orthogonality. Consider a vector space V and a non-degenerate positive definite scalar product $\langle\cdot, \cdot\rangle$ on V. Two vectors $u, v \in V$ are said to be orthogonal relative to $\langle\cdot, \cdot\rangle$ if

$$
\begin{equation*}
\langle u, v\rangle=0 . \tag{49}
\end{equation*}
$$

Examples:

- $V=\mathbb{R}^{2}$. The following vectors

$$
u=\left[\begin{array}{l}
1 \tag{50}\\
1
\end{array}\right], \quad v=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

are orthogonal in \mathbb{R}^{2} relative to the standard inner product

$$
\begin{equation*}
\langle u, v\rangle=\sum_{i=1}^{2} u_{i} v_{i}=-1+1=0 \tag{51}
\end{equation*}
$$

- $V=M_{2 \times 2}(\mathbb{R})$. The following matrices

$$
A=\left[\begin{array}{ll}
1 & 0 \tag{52}\\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

are orthogonal in $M_{2 \times 2}(\mathbb{R})$ relative to the inner product

$$
\begin{equation*}
\langle A, B\rangle=\operatorname{Tr}\left(A B^{T}\right) \tag{53}
\end{equation*}
$$

In fact,

$$
\operatorname{Tr}\left(A B^{T}\right)=\operatorname{Tr}\left(\left[\begin{array}{ll}
1 & 0 \tag{54}\\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\operatorname{Tr}\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right)=0
$$

- $V=\mathbb{P}_{2}([-1,1])$ (vector space of polynomials of degree at most two). The polynomials

$$
\begin{equation*}
p_{1}(x)=x \quad \text { and } \quad p_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} \tag{55}
\end{equation*}
$$

are orthogonal with respect to the scalar product

$$
\begin{equation*}
\left\langle p_{1}, p_{2}\right\rangle=\int_{-1}^{1} p_{1}(x) p_{2}(x) d x \tag{56}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
\left\langle p_{1}, p_{2}\right\rangle=\int_{-1}^{1} p_{1}(x) p_{2}(x) d x=\int_{-1}^{1}\left(\frac{3}{2} x^{3}-\frac{1}{2} x\right) d x=\left[\frac{3}{8} x^{4}-\frac{1}{4} x^{2}\right]_{-1}^{1}=0 \tag{57}
\end{equation*}
$$

Orthogonal projections. Consider two vectors u and v in a vector space V. The orthogonal projection of u onto v is defined as

$$
\begin{equation*}
P_{v} u=\frac{\langle u, v\rangle}{\langle v, v\rangle} v=\left\langle u, \frac{v}{\|v\|}\right\rangle \frac{v}{\|v\|}, \tag{58}
\end{equation*}
$$

where $\|\cdot\|$ is the norm induced by the scalar product. Clearly $v /\|v\|$ is a vector with norm equal to one, i.e., a unit vector.

Examples:

- Let $V=\mathbb{R}^{2}$ and consider the following vectors

$$
u=\left[\begin{array}{l}
1 \tag{59}\\
1
\end{array}\right], \quad v=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

The projection of u onto v is

$$
P_{v} u=\frac{\langle u, v\rangle}{\langle v, v\rangle} v=\frac{2}{4}\left[\begin{array}{l}
2 \tag{60}\\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Note that if we subtract $\frac{\langle u, v\rangle}{\langle v, v\rangle} v$ from u we obtain a vector that is orthogonal to v.

$$
u-\frac{\langle u, v\rangle}{\langle v, v\rangle}=\left[\begin{array}{l}
1 \tag{61}\\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

- $V=\mathbb{R}^{3}$. Given three vectors $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$ we can compute the orthogonal projection of any vector onto any other vector, e.g., the orthogonal projection of v_{2} onto v_{1}

$$
\begin{equation*}
P_{v_{1}} v_{2}=\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} . \tag{62}
\end{equation*}
$$

We can also construct an orthogonal set of vector by transforming the given set of linearly independent vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$ as follows

$$
\begin{aligned}
& u_{1}=v_{1}, \\
& u_{2}=v_{2}-\frac{\left\langle v_{2}, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}, \\
& u_{3}=v_{3}-\frac{\left\langle v_{3}, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}-\frac{\left\langle v_{3}, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2} .
\end{aligned}
$$

This procedure is known as Gram-Schmidt orthogonalization, and it allows us to transform any set of linearly independent vectors into an orthogonal one. Such set of ortogonal vectors can be then normalized.

Gram-Schmidt orthogonalization. The previous example suggests that we can transform any basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of a n-dimensional vector space V into an orthonormal basis ${ }^{6}$ by using the GramSchmidt procedure. In fact, we can first compute

$$
\begin{aligned}
u_{1} & =v_{1}, \\
u_{2} & =v_{2}-\frac{\left\langle v_{2}, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}, \\
u_{3} & =v_{3}-\frac{\left\langle v_{3}, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}-\frac{\left\langle v_{3}, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2}, \\
& \vdots \\
u_{n} & =v_{n}-\frac{\left\langle v_{n}, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}-\cdots \frac{\left\langle v_{n}, u_{n-1}\right\rangle}{\left\langle u_{n-1}, u_{n-1}\right\rangle} u_{n-1} .
\end{aligned}
$$

and then normalize the vectors $\left\{u_{1}, \ldots, u_{n}\right\}$ to obtain the orthonormal basis

$$
\begin{equation*}
\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \ldots, \frac{u_{n}}{\left\|u_{n}\right\|}\right\} \tag{63}
\end{equation*}
$$

Alternatively, we can normalize each vector u_{i} right after we compute it. This reduces the number of calculations in the Gram-Schmidt procedure as we can write

$$
\begin{array}{ll}
u_{1}=v_{1}, & \widehat{u}_{1}=u_{1} /\left\|u_{1}\right\|, \\
u_{2}=v_{2}-\left\langle v_{2}, \widehat{u}_{1}\right\rangle \widehat{u}_{1} & \widehat{u}_{2}=u_{2} /\left\|u_{2}\right\|, \\
u_{3}=v_{3}-\left\langle v_{3}, \widehat{u}_{1}\right\rangle \widehat{u}_{1}-\left\langle v_{3}, \widehat{u}_{2}\right\rangle \widehat{u}_{2} & \widehat{u}_{3}=u_{3} /\left\|u_{3}\right\|,
\end{array}
$$

It is straightforward to show that

$$
\begin{equation*}
\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}\left\|u_{j}\right\|^{2} \tag{64}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta function ${ }^{7}$. For example,

$$
\begin{equation*}
\left\langle u_{1}, u_{2}\right\rangle=\left\langle v_{1}, v_{2}-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle-\frac{\left\langle v_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle}\left\langle v_{1}, v_{1}\right\rangle=0 \tag{66}
\end{equation*}
$$

Example: Let us use the Gram-Schmidt procedure to orthogonalize the following vectors in \mathbb{R}^{2}

$$
v_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

[^4]We have

$$
u_{1}=v_{1}, \quad \quad u_{2}=v_{2}-\frac{\left\langle v_{2}, u_{1}\right\rangle}{\left\|u_{1}\right\|^{2}} u_{1}
$$

The norm of $u_{1}=v_{1}$ is

$$
\begin{equation*}
\left\|u_{1}\right\|^{2}=\left\|v_{1}\right\|^{2}=\left\langle v_{1}, v_{1}\right\rangle=2^{2}+1^{2}=5 . \tag{67}
\end{equation*}
$$

This implies that

$$
u_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{4}{5}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1-8 / 5 \\
2-4 / 5
\end{array}\right]=\left[\begin{array}{c}
-3 / 5 \\
6 / 5
\end{array}\right]
$$

Note that u_{1} and u_{2} are orthogonal. In fact,

$$
\begin{equation*}
\left\langle u_{1}, u_{2}\right\rangle=2 \times\left(-\frac{3}{5}\right)+\frac{6}{5}=0 \tag{68}
\end{equation*}
$$

The norm of u_{2} is

$$
\begin{equation*}
\left\|u_{2}\right\|=\sqrt{\left\langle u_{2}, u_{2}\right\rangle}=\sqrt{\frac{9}{25}+\frac{36}{25}}=\frac{3 \sqrt{5}}{5} . \tag{69}
\end{equation*}
$$

This means that

$$
\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \frac{u_{2}}{\left\|u_{2}\right\|}\right\}=\left\{\frac{\sqrt{5}}{5}\left[\begin{array}{l}
2 \tag{70}\\
1
\end{array}\right], \frac{\sqrt{5}}{5}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\}
$$

is an orthonormal basis of \mathbb{R}^{2}. Note that $u_{2} /\left\|u_{2}\right\|$ can be obtained by rotating $u_{1} /\left\|u_{1}\right\|$ by 90 degrees counterclockwise.

Representation of vectors relative to orthonormal bases. Let $\mathcal{B}_{V}=\left\{\widehat{u}_{1}, \ldots, \widehat{u}_{n}\right\}$ be an orthonormal basis of a n-dimensional vector space V. Any vector $v \in V$ can be represented relative to the basis \mathcal{B}_{V} as

$$
\begin{equation*}
v=x_{1} \widehat{u}_{1}+\cdots+x_{n} \widehat{u}_{n} . \tag{71}
\end{equation*}
$$

by projecting the vector v onto \widehat{u}_{i} and taking into account the orthonormality conditions $\left\langle u_{i}, u_{j}\right\rangle=$ $\delta_{i j}$ yields

$$
\begin{align*}
\left\langle v, \widehat{u}_{j}\right\rangle & =\left\langle x_{1} \widehat{u}_{1}+\cdots+x_{n} \widehat{u}_{n}, \widehat{u}_{j}\right\rangle \\
& =x_{1}\left\langle\widehat{u}_{1}, \widehat{u}_{j}\right\rangle+\cdots+x_{n}\left\langle\widehat{u}_{n}, \widehat{u}_{j}\right\rangle \\
& =x_{j}\left\langle\widehat{u}_{j}, \widehat{u}_{j}\right\rangle \\
& =x_{j} \tag{72}
\end{align*}
$$

i.e., the j-the coordinate of v relative to \mathcal{B}_{V} coincides with the projection of v onto \widehat{u}_{j}. On the other hand, if we consider an orthogonal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ we obtain

$$
\begin{equation*}
v=y_{1} u_{1}+\cdots+y_{n} u_{n} \quad \Rightarrow \quad x_{j}=\frac{\left\langle v, u_{j}\right\rangle}{\left\langle u_{j}, u_{j}\right\rangle} . \tag{73}
\end{equation*}
$$

Theorem 3. Let $\mathcal{B}_{V}=\left\{\widehat{u}_{1}, \ldots, \widehat{u}_{n}\right\}$ be an orthonormal basis of a n-dimensional vector space V. Then for any vector $v \in V$ we have

$$
\begin{equation*}
v=x_{1} \widehat{u}_{1}+\cdots+x_{n} \widehat{u}_{n} \quad \text { and } \quad\|v\|^{2}=\sum_{k=1}^{n} x_{k}^{2} \tag{74}
\end{equation*}
$$

Orthogonal complement. Let S be a subspace of V. The orthogonal complement of S in V is defined as

$$
S^{\perp}=\{v \in V:\langle v, w\rangle=0 \quad \text { for all } \quad w \in S\}
$$

It can be shown that S^{\perp} is a vector subspace of V. Any vector $v \in V$ can be expressed as a sum of two vectors $w_{1} \in S$ and $w_{2} \in S^{\perp}$, i.e.,

$$
\begin{equation*}
v=w_{1}+w_{2} \tag{75}
\end{equation*}
$$

Equivalently, we say that V is the direct sum of S and S^{\perp}, and write

$$
\begin{equation*}
V=S \oplus S^{\perp} \tag{76}
\end{equation*}
$$

For example, any vector $v \in V=\mathbb{R}^{3}$ defines a one-dimensional vector subspace S. The orthogonal complement of S in \mathbb{R}^{3} is a plane orthogonal S. Such plane is denoted by S^{\perp}

The plane, i.e., the vector space S^{\perp}, is identified mathematically by the condition

$$
\begin{equation*}
\langle x, v\rangle=0 \quad\left(v \text { is given, } x \in \mathbb{R}^{3} \text { is arbitrary }\right) \tag{77}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
v_{1} x_{1}+v_{2} x_{2}+v_{3} x_{3}=0 \tag{78}
\end{equation*}
$$

We know this expression very well, but now we learned something new, i.e., that the coefficients of v_{1}, v_{2} and v_{3} are the components of a vector that is orthogonal to the plane. Similarly, given two linearly independent vectors vectors v_{1} and v_{2} in \mathbb{R}^{3}, it is possible to determine the space that is orthogonal to the span of v_{1} and v_{2} by solving the system of equations

$$
\begin{equation*}
\left\langle x, v_{1}\right\rangle=0, \quad\left\langle x, v_{2}\right\rangle=0 \quad x \in \mathbb{R}^{3} . \tag{79}
\end{equation*}
$$

This system represents the intersection of two planes orthogonal to v_{1} and v_{2}.

Orthogonal complement of the range and the nullspace of a matrix. Next consider a $m \times n$ matrix A and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the columns of A. Denote by

$$
\begin{equation*}
R(A)=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \tag{80}
\end{equation*}
$$

the column space of A, i.e., the range of the matrix A. We known that such space is a vector subspace of \mathbb{R}^{m}. The orthogonal complement of $R(A)$ is

$$
\begin{equation*}
[R(A)]^{\perp}=\left\{v \in \mathbb{R}^{m}:\langle v, w\rangle=0 \quad \text { for all } \quad w \in R(A)\right\} \tag{81}
\end{equation*}
$$

Let us write the condition $\langle v, w\rangle=0$ a more explicitly.
To this end, we notice that $R(A)$ can be characterized as the set of vectors $w \in \mathbb{R}^{m}$ such that such that $w=A x$. Hence,

$$
\begin{aligned}
v \in[R(A)]^{\perp} & \Leftrightarrow\langle v, A x\rangle=0 \quad \text { for all } x \in \mathbb{R}^{n} \\
& \Leftrightarrow\left\langle A^{T} v, x\right\rangle=0 \quad \text { for all } x \in \mathbb{R}^{n} \\
& \Leftrightarrow A^{T} v=0_{\mathbb{R}^{n}} \\
& \Leftrightarrow v \in N\left(A^{T}\right) .
\end{aligned}
$$

This means that

$$
\begin{equation*}
[R(A)]^{\perp}=N\left(A^{T}\right) \tag{82}
\end{equation*}
$$

In other words, the orthogonal complement of the column space of a matrix coincides with the nullspace of the matrix transpose. We can also prove the equality the other way around, i.e.,

$$
\begin{aligned}
v \in N\left(A^{T}\right) & \Leftrightarrow A^{T} v=0 \quad v \in \mathbb{R}^{m} \\
& \Leftrightarrow\left\langle w, A^{T} v\right\rangle=0 \quad \text { for all } w \in \mathbb{R}^{n} \\
& \Leftrightarrow\langle A w, v\rangle=0 \quad \text { for all } w \in \mathbb{R}^{n} \\
& \Leftrightarrow v \in[R(A)]^{\perp} .
\end{aligned}
$$

Repeating this simple proof for $N(A)$ yields

$$
\begin{equation*}
\left[R\left(A^{T}\right)\right]^{\perp}=N(A) \tag{83}
\end{equation*}
$$

i.e., the orthogonal complement of the row space of A (i.e., the column space of A^{T}) coincides with the nullspace of A. Similarly, it can be shown that

$$
\begin{equation*}
[N(A)]^{\perp}=R\left(A^{T}\right) \quad \text { and } \quad\left[N\left(A^{T}\right)\right]^{\perp}=R(A) \tag{84}
\end{equation*}
$$

[^0]: ${ }^{1}$ The multiplication symbol \times in (2) means "Cartesian product" of two sets. The elements of the set $U \times V$ are of pairs of vectors (u, v) where $u \in V$ and $v \in V$. We have already seen an example of a vector space constructed using multiple Cartesian products, i.e.,

 $$
 \begin{equation*}
 \mathbb{R}^{n}=\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text { times }} \tag{1}
 \end{equation*}
 $$

[^1]: ${ }^{2}$ It is possible to define scalar products on complex vector spaces. In this setting, the symmetric bilinear form returns a complex number and it is called Hermitian bilinear form.
 ${ }^{3}$ In fact,

 $$
 \begin{equation*}
 \operatorname{Tr}\left(A B^{T}\right)=\operatorname{Tr}\left(B A^{T}\right), \quad \operatorname{Tr}\left((A+C) B^{T}\right)=\operatorname{Tr}\left(A B^{T}\right)+\operatorname{Tr}\left(C B^{T}\right)=\operatorname{Tr}\left(B(A+C)^{T}\right) \tag{11}
 \end{equation*}
 $$

[^2]: ${ }^{4}$ It is straightforward to show that properties 1.-4. at page 5 are all satisfied by the norm (39).

[^3]: ${ }^{5}$ We say that to vectors $u, w \in V$ are orthogonal with respect to the scalar product $\langle\cdot, \cdot\rangle$ if $\langle u, w\rangle=0$.

[^4]: ${ }^{6}$ Note that the orthogonal basis we obtain from the Gram-Schmidt procedure is not unique. In fact a reordering of the vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ yields a different orthogonal basis at the end of the procedure.
 ${ }^{7}$ The Kronecher delta is defined as:

 $$
 \delta_{i j}= \begin{cases}1 & \text { if } i=j \tag{65}\\ 0 & \text { if } i \neq j\end{cases}
 $$

