
AM 10 Prof. Daniele Venturi

Lecture 1: Real numbers

In this lecture we briefly discuss the set of real numbers R, and show how such set can be
constructed based on successive extensions of the set of natural numbers

N = {1, 2, 3, . . .}.

The main steps are:

1. Construct Z = {0,±1,±2,±3, ...} (integer numbers).

2. Construct Q =

{
p

q
: p, q ∈ Z, q 6= 0

}
(rational numbers).

3. Define the set of irrational numbers and add it to the set of rational numbers to obtain the
set of real numbers.
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Of course we can go on and look for four more rational numbers between 0 and 1/5, i.e.,{
1

25
,

2

25
,

3

25
,

4

25

}
, (1)

etc. Clearly, we have1

N ⊂ Z ⊂ Q. (2)

Rational numbers either have a finite number of decimal digits or an infinite number of decimal
digits repeating periodically. For example:

3

4
=0.75 (finite number of decimals),

1

3
=0.333333 . . . = 0.3 (infinite decimals repeating periodically),

1

7
=0. 142857︸ ︷︷ ︸ 142857︸ ︷︷ ︸ . . . = 0.142857 (infinite decimals repeating periodically).

1In mathematics, the symbol “⊂” means “subset of”. Note that N is a subset of Z because Z includes all integer
numbers {1, 2, 3, . . .}. In addition, Z includes the negative of all integer numbers and the element zero {0}. Of
course, the set of rational numbers Q includes, by definition, the set of natural numbers as well as the set of integer
numbers.
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Moreover, the sum or the products of two rational numbers is still a rational number. For example,

1

3
+

2

15
=

7

15
,

1

3
× 2

15
=

2

45
. (3)

You may have heard that the set of rational numbers is not “complete”. In other words, there are
numbers on the (continuum) horizontal lines sketched above that cannot be represented as a ratio
between two integers, i.e., as a rational number. One of such numbers is the square root of 2

√
2 = 1.41421356237309504880168872420969807856967187 · · · (4)

which has an infinite number of decimals that do not repeat periodically as in the case of rational
numbers.

The number
√

2 is indeed an irrational number that can be visualized by rotating the diagonal of
a unit square by 45 degrees clockwise as follows

:
Recall, in fact, that by the Pythagorean theorem, the length of the diagonal of the unit square is

√
12 + 12 =

√
2. (5)

Remarkably, no matter how hard we try to cover the continuum line with rational numbers we
find out that the number of “holes” left to be filled is infinite and uncountable (cardinality larger
than N). Hereafter we rigorously show that

√
2 is indeed not a rational number. To this end, we

formulate the following Theorem2:

Theorem. There is no rational number the square of which equals 2. Equivalently, there is no
rational number that equals

√
2.

Proof. Suppose that there exists a rational number p/q (irreducible fraction3) the square of which
equals two: (

p

q

)2

= 2 ⇒ p2 = 2q2. (6)

Clearly, p2 = 2q2 is an even natural number (2 times the natural number q2 is necessarily even).
This implies that p is an even integer number, and therefore can be written as

p = 2s for some s ∈ Z. (7)

2A Theorem is a statement that is not self-evident but can be proved (or disproved) by a sequence of logical or
mathematical operations.

3An irreducible fraction is a fraction that cannot be simplified any further. For example, 3/2 is an irreducible
fraction while 6/4 is not an irreducible fraction as both the numerator and the denominator can be divided by 2 to
obtain 3/2.
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Substituting equation (7) into (6) yields

22s2

q2
= 2 ⇒ q2 = 2s2 ⇒ q is an even number. (8)

But this contradicts the fact that p/q is an irreducible fraction. Indeed, we just concluded that
both p and q are divisible by 2 since they are both even numbers. In summary, the assumption that
there exists a rational number p/q equals to

√
2 yields a contradiction, and therefore the assumption

must be wrong, meaning that such a rational number cannot exist.

The technique we just used to prove the Theorem above is known as “proof by contradiction”
(“Reductio ad absurdum” in Latin). Essentially it is a form of argument that establishes a statement
by arriving at a contradiction or at something that is impossible or absurd, even when the initial
assumption is the negation of the statement to be proved. For example, let us prove the following
statement

“There isn’t a smallest positive rational number”

by using the proof by contradiction technique. To this end, we first assume that there is a smallest
positive rational number (negation of the statement) and immediately notice that dividing such
rational number by 2 (or any other integer number larger than 2) yields another rational number
that is smaller than the one we started with. This contradicts the hypothesis that there is a small-
est rational number. Therefore the statement “There isn’t a smallest rational number” must be true.

There are many other examples of numbers that cannot be represented as a ratio between two integer
numbers (i.e., rationals). Such numbers are called irrational numbers, and they have an infinite
number of decimals (non-repeating). Moreover, there are infinite irrational numbers (uncountably
many!). Well known examples of irrational numbers are: π = 3.141592653 · · · ,

√
2 = 1.41421356 · · · ,√

3 = 1.73205080 · · · , e = 2.71828182845 · · · (Napier number).

Remarkably, all irrational numbers can be obtained as limits of suitable sequences of rational num-
bers. For example,

π = 4
∞∑
n=0

(−1)n

2n+ 1
= 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− · · ·

)
(Leibnitz sequence)

e =
∞∑
n=0

1

n!
= 1 + 1 +

1

2
+

1

6
+

1

24
+ · · ·

Similarly,
√

2 can be obtained by iterating (an infinite number of times) the following sequence of
rational numbers:

Sn+1 =
Sn

2
+

1

Sn

S0 = 1 (9)

i.e.,

S0 = 1, S1 =
3

2
= 1.5, S2 =

17

12
= 1.416, S3 =

577

408
= 1.4142156862745098039, . . .
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The sequences above are not unique, meaning that there are many other sequences of rationals
converging to the same irrationals. For example,

e = lim
n→∞

(
1 +

1

n

)n

(Bernoulli sequence).

In any case, such sequences do exist, and they can represent (in their limit) all irrational numbers4.
By adding (formally) the set of irrational numbers (denoted by I), which is uncountable, to the set
of the rationals Q we obtain the set of real numbers5:

R = Q ∪ I (10)

A remarkable result of number theory says that both Q and I are “dense” in R. This means that
any real number can be obtained as limit point of sequences of rational numbers or sequences of
irrational numbers. Moreover, between any two distinct real numbers there always exists a rational
number and an irrational one.

Axiomatic definition of R

The set of real numbers can be defined in an axiomatic way. An axiom is statement or a
proposition which is regarded as being established, accepted, or self-evidently true. Hence, by
defining R in terms of axioms we specify properties of R that are self-evidently true.

Field axioms. The set of real number R is a (algebraic) field, i.e., it is a set in which we can define
two operations (addition “+” and multiplication6) with the following properties:

1. Associative property7:

∀x, y, z ∈ R, (x+ y) + z = x+ (y + z) and (xy)z = x(yz).

2. Commutative property:

∀x, y ∈ R, x+ y = y + x and xy = yx.

3. Additive neutral element:

There exists an element of R, denoted by 0, such that ∀x ∈ R, x+ 0 = x.

4. Multiplicative neutral element:

There exists an element of R, denoted by 1, such that ∀x ∈ R, 1x = x.

4The sequences are actually used in practice to compute approximations of irrational numbers. For example, in
2016 Ron Watkins used the sequence (9) to compute 10 trillion digits of

√
2 (see http://www.numberworld.org/

digits/Sqrt(2)).
5Note that R can also be thought of as Q plus all limit points of converging sequences of rational numbers.
6The multiplication operation between two elements x, y ∈ R is denoted simply as xy.
7In mathematics, the symbol ∀ means “for all”, while the symbol ∈ means “in”. Hence, writing ∀x, y, z ∈ R can

be spelled out as follows: “for all x, y and z in the set of real numbers”.
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5. Inverse with respect to addition:

∀x ∈ R, there exists y ∈ R such that x+ y = 0 (y = −x) (y is the opposite of x).

6. Inverse with respect to multiplication:

∀x ∈ R \ {0}, there exists y ∈ R| x · y = 1 (y is the inverse of x).

7. Distributive property of multiplication:

∀x, y, z ∈ R x(y + z) = xy + xz.

Remark: The set R is closed under addition and multiplication. This means that addition and
product of real numbers is still a real number. In general, any set satisfying properties 1.-7. is a
called a (algebraic) field. In particular, it can be verified that: 1) N is not a field; 2) Z is not a field
(the inverse with respect to multiplication is not in Z); 3) Q is a field; 4) I = R \ Q is not a field
(the product of two irrationals can be an integer

√
2
√

2 = 2).

By using the field axioms it is easy define subtraction and division between two real numbers as:

Subtraction: ∀x, y ∈ R, x− y = x+ (−y) (subtraction seen as adding the opposite of y).

Division: ∀x, y ∈ R, y 6= 0, x/y = xy−1 (division seen as multiplying by the inverse of y).

Ordering axioms. The field of real numbers R is totally ordered, i.e., we can define in R an
ordering relation ≤ such that for all x, y ∈ R:

1. x ≤ y ⇒ x+ z ≤ y + z, ∀z ∈ R.

2. x ≤ y ⇒ xz ≤ yz, ∀z ≥ 0.

The mathematical symbol ≤ means “less or equal”. Similarly, “≥” means “greater or equal”. So the
ordering axiom number 2. can be phrased as follows: “Let x and y be two arbitrary real numbers;
if x is smaller or equal than y, and z is any non-negative real number, then xz is smaller or equal
than yz.”

Remark: The ordering axioms say that all elements of R are ordered, i.e., we can always tell which
element is bigger or smaller than any other element. That is why the lines sketched at Page 1 and
Page 2 have one arrow (not two!) that indicates the direction in which the numbers are increasing.

Completeness axiom. R is a field that is totally ordered and complete. “Complete” means that
for every subsets A,B ⊆ R not empty and separated (i.e., such that a ≤ b ∀a ∈ A and ∀b ∈ B)
there exists at least one c ∈ R such that a ≤ c ≤ b.

A B

-110m
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The completeness axiom assures that the set R has no “holes” in it. Also, it can be shown that
between two real numbers there is always an irrational and a rational, and between two rational
numbers there is always a real number and an irrational number.

Absolute value. The absolute value of a real number is a function defined as

| · | : R→ R+

x→ |x| =

{
x if x ≥ 0

−x if x < 0
(11)

Here, R+ denotes the set of non-negative real numbers, i.e., R+ = {x ∈ R : x ≥ 0}.

**
The absolute value function satisfies a certain number of properties summarized in the following
Theorem. Each of the properties can be proved based on the definition of | · |.

Theorem (Properties of the absolute value). Let a, b ∈ R. Then we have

1. |a| ≥ 0

2. |a| = 0⇔ a = 0

3. |a| = | − a|

4. −|a| ≤ a ≤ |a|

5. |a|2 = a2

6. |ab| = |a||b|

7. |a+ b| ≤ |a|+ |b| (Triangle inequality)

8. |a+ b| ≥ ||a| − |b|| (Reverse triangle inequality)

Proof. Let us prove the triangle inequality and the reverse triangle inequality. For every a, b ∈ R
we have8

a+ b ≤ |a|+ |b| and a+ b ≥ −|a| − |b|. (12)

8To prove (12) we notice that for all a, b ∈ R we have a ≤ |a| and b ≤ |b|. Therefore a + b ≤ |a| + |b|. Similarly,
we have −|a| ≤ a and −|b| ≤ b, which imply that −|a| − |b| ≤ a + b. Multiplying the last inequality by −1 yields
−(a + b) ≤ |a|+ |b|.
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This implies that
− (|a|+ |b|) ≤ a+ b ≤ |a|+ |b| (13)

i.e.,
|a+ b| ≤ |a|+ |b| for all a, b ∈ R. (14)

The last step follows from the fact that if c is any non-negative real number then

|a| ≤ c ⇔ −c ≤ a ≤ c. (15)

Similarly, for the reverse triangle inequality we observe that

a =a+ b− b ⇒ |a| ≤ |a+ b|+ |b| , (16)

b =b+ a− a ⇒ |b| ≤ |a+ b|+ |a| . (17)

Therefore
− |a+ b| ≤ |a| − |b| ≤ |a+ b| (18)

i.e.,
||a| − |b|| ≤ |a+ b| . (19)

By using the definition of absolute value we can define closed and open intervals of the real line
with endpoint a and b (a, b ∈ R, a < b) as

[a, b] ={x ∈ R| a ≤ x ≤ b} =

{
x ∈ R :

∣∣∣∣x− a+ b

2

∣∣∣∣ ≤ b− a
2

}
(closed interval), (20)

]a, b[={x ∈ R| a < x < b} =

{
x ∈ R :

∣∣∣∣x− a+ b

2

∣∣∣∣ < b− a
2

}
(open interval). (21)

Solution to linear and nonlinear equations

It is good practice to specify in which space we are looking for solutions of a certain equation. For
instance, the following linear equation

2x = 1 (22)

has no solution in N and no solution in Z, but it has a unique solution in Q equal to x = 1/2, and
of course a unique solution in R (since Q ⊂ R). Many nonlinear equations, however, do not admit
a solution in R. For example, the following polynomial (quadratic) equation

x2 + 1 = 0 (23)

has no solution in R. In fact, the square of any real number x is non-negative, i.e., x2 ≥ 0 for all
x ∈ R. Hence, there is no element in R such that x2 = −1, and therefore (23) has no solution in R.

If we are interested in defining a solutions to equation (23), then we need to utilize a different set of
numbers. In particular, such a set should include particular type of numbers the square of which is
negative and real. As we will see such numbers are called imaginary numbers, and will be described
in detail in the next lecture. Imaginary numbers are a subset of a more general set of numbers which
is complex numbers and denoted as C. Complex numbers were historically developed to make sense
of solutions of polynomial equations (i.e., zeros of polynomials). For instance it was shown that:
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Theorem (Fundamental theorem of algebra). Every non-constant polynomial of the form

pn(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 (24)

with real or complex coefficients {an, . . . , a0} has at least one complex root.

By applying this theorem recursively, it can be shown that every polynomial of degree n has exactly
n complex roots (which may not be all distinct).

Complex numbers and complex functions pay a fundamental role in a variety of applications,
e.g., series expansions of periodic functions, signal processing, solution to PDEs via Fourier se-
ries/transforms, quantum mechanics (e.g., Schrödinger equation), fluid dynamics (e.g., Joukowsky
transformations for airfoil design), conformal maps, nonlinear dynamics and control, image process-
ing, wave propagation, etc.
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