
AM 10 Prof. Daniele Venturi

Lecture 2: Complex numbers

The quadratic equation

z2 + 1 = 0 (1)

has no solution in R. In fact, there is no real number such that z2 = −1 (recall that the square
of any real number is either positive or equal to zero). However, we can still define solutions of
equation (1), but we have to seek them in a different set of numbers. In particular, such a set must
include new types of numbers the square of which is a negative real number. These numbers are
called imaginary numbers.

Let “i” be one of such numbers, i.e., an imaginary number defined as

i =
√
−1. (2)

Clearly, z = i is a solution of equation (1). In fact,

z2 + 1 = i2 + 1 = −1 + 1 = 0. (3)

Moreover, z = −i is another solution of equation (1) since

z2 + 1 = (−i)2 + 1 = (−1)2i2 + 1 = −1 + 1 = 0. (4)

Next, consider the polynomial equation

z2 + z + 1 = 0. (5)

We can rearrange such polynomial equation as(
z +

1

2

)2

+
3

4
= 0. (6)

Upon definition of

u = z +
1

2
(7)

we can write (6) as

u2 = −3

4
⇔ u1,2 = ±i

√
3

2
. (8)

Substituting u1,2 back into (7) yields the following two solutions to equation (5)

z1,2 = −1

2
± i
√

3

2
. (9)

This suggests that the new set of numbers we are interested in (at lest from the viewpoint of solving
quadratic polynomial equations) has the form

z = x+ iy (complex number), (10)

where x and y are real numbers and i is the imaginary unit defined in equation (2). Specifically, x
is called the real part of z, and y is called the imaginary part of z. The real and imaginary parts of
z are often denotes as

Re(z) = x and Im(z) = y. (11)
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Numbers of the form (10) are called complex numbers. The set of all complex numbers will be
denoted by

C = {z = x+ iy : x, y ∈ R}. (12)

As we shall see hereafter, C is an algebraic field, i.e., is possible to define in C addition and
multiplication operations satisfying the same field axioms we have seen in Lecture 1 for R (field
axioms for real numbers).

Addition and multiplication. Consider the following complex numbers

z1 = x1 + iy1 z2 = x2 + iy2. (13)

It is natural to define addition and multiplication in C by using the addition and multiplication
operations we defined in R (see Lecture 1). Specifically, we define

z1 + z2 = (x1 + x2) + i(y1 + y2) (addition operation) (14)

Note that z1 + z2 is still of the form x+ iy (with x = (x1 + x2) and y = (y1 + y2)). Therefore C is
closed1 under the addition operation “+” defined in (14). Similarly,

z1z2 =(x1 + iy1)(x2 + iy2)

=(x1x2 − y1y2) + i(x1y2 + x2y1) (multiplication operation) (15)

Again, z1z2 is a complex number, i.e., a number of the form x + iy (with x = (x1x2 − y1y2) and
y = (x1y2 + x2y1)). This means that C is closed under the multiplication operation defined in (15)

It is easy to show that the set of complex numbers C, with the addition and multiplication operations
defined in (14) and (15) is a field. In other words, for all z1, z2, z3 ∈ C we have that:

1. Addition and multiplication are commutative

z1 + z2 = z2 + z1 z1z2 = z2z1 (16)

2. Addition and multiplication in are associative

(z1 + z2) + z3 = z1 + (z2 + z3) (z1z2)z3 = z1(z2z3) (17)

3. The distributive property of multiplication relative to addition holds

z1(z2 + z3) = z1z2 + z1z3 (18)

4. There exists neutral elements for both addition and multiplication

z1 + z2 = z1 ⇒ z2 = 0 + i0 (additive neutral element)
z1z2 = z1 ⇒ z2 = 1 + i0 (multiplicative neutral element)

(19)

1We say that C is closed under the addition operation + defined in (14) if for all z1, z2 ∈ C we have that
(z1 + z2) ∈ C.
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Based on the definition of additive and multiplicative neutrals it is straightforward to define the
opposite and the inverse of a complex number. To this end, let z = x+ y

z + z1 = 0 + 0i ⇒ z1 = −x− iy (opposite of z)

zz2 = 1 + 0i ⇒ z2 =
x

x2 + y2
− i y

x2 + y2
(inverse of z)

(20)

Let us denote z1 as −z and z2 as 1/z. Note that equations (20) allow us to define subtraction and
division between two complex numbers in terms of addition and multiplication. In fact, subtraction
of z2 from z1 is the same as adding the opposite of z2 to z1. Similarly, z1/z2 is the same as multiplying
z1 by the inverse of z2.

Remark: We have now set up all the machinery to perform any type of algebraic calculation between
complex numbers, including addition, subtraction, multiplication and division.

Remark: From what has been said, it is clear that C includes R as a subset, i.e., R ⊂ C. This
can be seen by noting that real numbers are simply complex numbers with zero imaginary part.
Moreover, the addition and multiplication operations we defined in C, i.e., equations (14)-(15),
reduce to addition and multiplication between real numbers if we set to zero the imaginary parts.
Hence R ⊂ C.

Remark: C is not an ordered field. In other words, it does not make sense to write inequalities
between complex numbers.

Graphical representation of complex numbers. There is a one-to-one correspondence between
the complex number

z = x+ iy

and the pair of real numbers x, y ∈ R. This means that z identifies uniquely x and y, and conversely
the pair (x, y) identifies uniquely the complex number z. This suggests that we could represent (x, y)
as a point (or a vector) in the Cartesian plane.

When the Cartesian plane is used to represent complex numbers, it is usually called complex plane.
In this setting, the x-axis is called real axis while the y-axis is called imaginary axis.

-
Recall that for the complex number z = x+ iy we defined

Re(z) = x (real part of z) Im(z) = y (imaginary part of z). (21)
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The complex plane allows us to easily visualize addition between complex numbers (parallelogram
rule), and other operations such as the opposite of a complex number, and the complex conjugate
(reflections with respect to the real axis).

ADDITION

z1 +Zz

Szz

iam⑧

OPPOSITE

Im(z)

Z1im
COMPLEX CONJUGATE

Im(z)

&"nee
Complex conjugate. Let z = x + iy be a complex number. The complex conjugate of z is the
complex number

z∗ = x− iy (complex conjugate). (22)

Note that z∗ has the same real part of z, but opposite imaginary part. With this notation, we have
the following characterization of the complex conjugate.

Theorem 1 (Properties of the complex conjugate). Let z, w ∈ C be two arbitrary complex numbers.
Then

1. (z∗)∗ = z

2. (z + w)∗ = z∗ + w∗

3. (zw)∗ = z∗w∗

4. z + z∗ = 2 Re(z)

5. z − z∗ = 2i Im(z)

6. zz∗ = Re(z)2 + Im(z)2

7. z = z∗ ⇔ z ∈ R

Proof. Let us prove property 3, property 4, and property 6. The proof of the other properties is
left as exercise. Let z = x+ iy and w = a+ ib be two arbitrary complex numbers.

Property 3.

(zw)∗ = ((x+iy)(a+ib))∗ = (xa−yb+i(xb+ya))∗ = xa−yb−i(xb+ya) = (x−iy)(a−ib) = z∗w∗.

Property 4.
z + z∗ = (x+ iy) + (x+ iy)∗ = 2x+ iy − iy = 2 Re(z).

Property 6.

zz∗ = (x+ iy)(x+ iy)∗ = (x+ iy)(x− iy) = x2 + y2 = Re(z)2 + Im(z)2.
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Remark: By using the complex conjugate, it is easy to express the quotient between two complex
numbers, e.g.,

3− 2i

−1 + 2i
(23)

in an standard algebraic form. We know that such ratio is a complex number2, and therefore it can
written is the form x+ iy. The question is what is x and what is y? There is a shortcut to answer
this question. In practice, given a quotient between two complex numbers z1 and z2 (i.e., z1/z2) we
can multiply the numerator and the denominator by z∗2 to obtain the algebraic form

z1
z2

=
z1z
∗
2

z2z∗2
. (24)

The denominator in (24) a real number (by property 6. in Theorem 1).

Example: Let z1 = 3 − 2i and z2 = −1 + 2i. Compute the algebraic form of the complex number
z1/z2. We have

3− 2i

−1 + 2i
=

(3− 2i)(−1− 2i)

(−1 + 2i)︸ ︷︷ ︸
z1

(−1− 2i)︸ ︷︷ ︸
z∗1

=
(3− 2i)(−1− 2i)

5
= −7

5
− 4

5
i.

Modulus of a complex number. The modulus of a complex number z = x+ iy is a real number
defined as

|z| =
√
x2 + y2 =

√
zz∗ (modulus of z)

The modulus of z represents the length of the vector defined by the point (x, y) in the complex
plane.

Im(z)

z =1 +i
S--

1 Re(z)

2In fact for any z1, z2 ∈ C we have that z1/z2 is the multiplication of z1 by the inverse of z2 (which is a complex
number). Recall that multiplication between two complex numbers is a complex number. Therefore z1/z2 is a
complex number that can be written in the algebraic form x+ iy.
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Clearly, the modulus of the imaginary number i is

|i| = |0 + 1i| =
√

02 + 12 = 1. (25)

Similarly, the modulus of the complex number z = 1 + i is

|z| = |1 + 1i| =
√

12 + 12 =
√

2. (26)

The modulus of a complex number satisfies a certain number of properties which are summarized
in the following Theorem.

Theorem 2 (Properties of the modulus). Let z, w ∈ C be two arbitrary complex numbers. Then,

1. |z| = 0⇔ z = 0

2. |z∗| = |z|

3. {|Re(z)|, | Im(z)|} ≤ |z| ≤ |Re(z)|+ | Im(z)|

4. |zw| = |z||w|

5. |z + w| ≤ |z|+ |w| (triangle inequality)

6. ||z| − |w|| ≤ |z + w| (reverse triangle inequality)

Proof. Let us prove property 4, and property 5. The proof of the other properties is left as exercise.
Let z and w be two arbitrary complex numbers.

Property 4.
|zw|2 = zwz∗w∗ = zz∗ww∗ = |z|2|w|2 ⇒ |zw| = |z||w|.

Property 5.

|z + w|2 = (z + w)(z∗ + w∗)

= zz∗ + ww∗ + wz∗ + w∗z

= |z|2 + |w|2 + 2 Re(wz∗)

≤ |z|2 + |w|2 + 2|Re(wz∗)|. (27)

At this point we notice that3

Re(wz∗)2 = |wz∗|2 − Im(wz∗)2 ≤ |wz∗|2 = |w||z∗|2 = |w|2|z|2, (28)

i.e.,
|Re(wz∗)| ≤ |w||z|. (29)

A substitution of this equation into (27) yields

|z + w|2 ≤ |z|2 + |w|2 + 2|w|2|z|2 = (|z|+ |w|)2. (30)

By taking the square root of (30) we obtain Property 5.

3Equation (28) follows from property 6 in Theorem 1, and property 2 and 4 in Theorem 2.
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Polar form of a complex number. We have seen in Theorem 2 (property 4) that given two
arbitrary complex numbers the norm of their product is equal to the product of their norms, i.e.,

|zw| = |z||w| ∀z, w ∈ C. (31)

This implies implies that the product of two complex numbers with modulus one is still a complex
number with modulus one. In other words, the set

U = {z ∈ C : |z| = 1} (unit circle in the complex plane) (32)

is closed under multiplication. For example, consider the following two complex numbers z and w

z =
1

2
+ i

√
3

2
w =

√
3

2
+ i

1

2
(33)

both of which have modulus equal to one (verify it!). Clearly, we have

|zw| = |i| = 1. (34)

Im

z =1 +i
I in

Wz =i ·w=E +ite..- 1
Re

Im
z =(z1u(0)
S

-
*I
Om.1 Re

The inverse of a complex number on the unit circle (32) coincides with the complex conjugate. In
fact,

|z|2 = 1 ⇒ zz∗ = 1 ⇒ z∗ =
1

z
. (35)

Clearly, by using elements of the set U defined in (32) we can represent any complex number as

z = |z|u(ϑ) u(ϑ) ∈ U. (36)

Note that u(ϑ) depends only one parameter, i.e., the angle ϑ (arclength on the unit circle). Moreover,
by using well-known results of trigonometry we can write the complex number u(ϑ) as

u(ϑ) = cos(ϑ) + i sin(ϑ). (37)
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Complex exponential function. Consider two arbitrary complex numbers on the unit circle (32)

u(ϑ1) = cos(ϑ1) + i sin(ϑ1) u(ϑ2) = cos(ϑ2) + i sin(ϑ2) (38)

and take their product

u(ϑ1)u(ϑ2) = cos(ϑ1) cos(ϑ2)− sin(ϑ1) sin(ϑ2) + i [sin(ϑ1) cos(ϑ2) + cos(ϑ1) sin(ϑ2)]

= cos(ϑ1 + ϑ2) + i sin(ϑ1 + ϑ2)

=u(ϑ1 + ϑ2) (39)

Remark: This means that the function u(ϑ) defined in (37) transforms sums into products, i.e.,
u(ϑ1 + ϑ2) = u(ϑ1)u(ϑ2).

Im

01 +02
-

↳
I

u(02) *i
Oimmy-1 1
Re

M(8+02) =u(0)u(02)

The similarity between the function u(ϑ) and the real exponential function ex (x ∈ R) is quite
remarkable. In fact, we have

ex1+x2 = ex1ex2 , for all x1, x2 ∈ R. (40)

This suggests the following definition of complex exponential function

eiϑ = cos(ϑ) + i sin(ϑ). (41)

Remark: There are several other reasons supporting the definition of complex exponential function
(41). For instance, consider the Taylor series of the real exponential function

ex =
∞∑
k=1

xk

k!
. (42)

It is known that such series converges for all x ∈ R. By substituting x with iϑ in (42) we obtain

eiϑ =
∞∑
k=1

ikϑk

k!

=

(
1− ϑ2

2
+
ϑ4

24
− · · ·

)
+ i

(
ϑ− ϑ3

6
+

ϑ5

120
− · · ·

)
= cos(ϑ) + i sin(ϑ). (43)
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In fact, recall that the Taylor series of cos(ϑ) and sin(ϑ) are

cos(ϑ) = 1− ϑ2

2!
+
ϑ4

4!
+ · · · sin(ϑ) = ϑ− ϑ3

3!
+
ϑ5

5!
− · · · . (44)

Another reason why it makes sense to define the complex exponential as in (41) is that

deiϑ

dϑ
= ieiϑ. (45)

This can be verified by calculating the derivatives of the right hand side of (41) with respect to ϑ.

In summary, the complex exponential function (41) has the same properties of the real exponential
function, e.g., Taylor expansion, derivatives, and the product rule

ei(ϑ1+ϑ2) = eiϑ1eiϑ2 (46)

Euler’s formulas. By using equation (41) is straightforward to express sin(ϑ) and cos(ϑ) in terms
of complex exponential functions. To this end, we first evaluate (41) at −ϑ

e−iϑ = cos(ϑ)− i sin(ϑ). (47)

Then we add and subtract (47) to (41) to obtain

cos(ϑ) =
eiϑ + e−iϑ

2
and sin(ϑ) =

eiϑ − e−iϑ

2i
. (48)

Argument of a complex number. We have seen that an arbitrary complex number z ∈ C can
be written in three equivalent forms:

1. z = x+ iy (algebraic form)

2. z = |z|eiϑ (polar form)

3. z = |z| (cos(ϑ) + i sin(ϑ)) (trigonometric form)

The real number ϑ is called argument of the complex number z, and it represents the arclength (in
radiants) identified by the point z/|z| on the unit circle U (see Eq. (32)). To calculate the argument
of z, consider the following relations between algebraic form of z and the trigonometric form

x = |z| cos(ϑ) y = |z| sin(ϑ) (49)

The ratio y/x coincides with the tangent of ϑ

tan(ϑ) =
y

x
(50)

How do we extract the angle ϑ from the previous equation? One possibility is to use the inverse of
the tangent function, i.e., arctan(·), and write

ϑ = arctan
(y
x

)
(51)
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Gtanl
The problem with this simple approach is that function arctan(x) is defined only in the open interval
] − π/2, π/2[. Hence, the expression (51) can be used only to compute the argument of complex
number with strictly positive real part4 (first and fourth quadrants of the complex plane).

To compute the argument of arbitrary complex number x = x+ iy we need to shift arctan(y/x)
by π if the real part x is negative

arg(z) =


arctan

(y
x

)
x > 0

π

2
sign(y) x = 0

arctan
(y
x

)
+ π x < 0

(52)

With this definition ϑ = arg(z) is unique for all z ∈ C and it ranges in [−π/2, 3π/2[.

was Avaste
Alternatively, we can define the argument as (note that here we use capitalized Arg(·) to distinguish
it from (52))

Arg(z) =



arctan
(y
x

)
x > 0

π

2
sign(y) x = 0

arctan
(y
x

)
+ π x < 0, y ≥ 0

arctan
(y
x

)
− π x < 0, y < 0

(53)

With this definition ϑ = Arg(z) is unique for all z ∈ C and it ranges in [−π, π[.

4Complex numbers with argument ϑ ∈] − π/2, π/2[ are either in first quadrant (ϑ ∈ [0, π/2[) or in the fourth
quadrant (ϑ ∈]− π/2, 0]) of the complex plane.
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Remark: If we shift the argument of a complex number by 2kπ (k ∈ Z, the number is not going to
change. Hence, the following complex numbers

z = 3eiπ/3 z = 3e13iπ/3 z = 3e−5iπ/3 (54)

are actually the same complex number. This is due to the 2π-periodicity of the circular functions
defining the complex exponential (42).

Integer powers of a complex number (De Moivre’s formula). Consider a complex number
z expressed in a polar form

z = |z|eiϑ, (55)

where |z| is the modulus of z and ϑ denotes its argument. By multiplying z recursively by itself we
obtain

z2 = |z|2e2iϑ, z3 = |z|3e3iϑ, . . . . (56)

Similarly,

z−1 =
1

z
=

z∗

zz∗
=
|z|
|z|2

e−iϑ =
1

|z|
e−iϑ = |z|−1e−iϑ (57)

By multiplying 1/z recursively by itself we obtain

z−2 = |z|−2e−2iϑ, z−3 = |z|−3e−3iϑ, . . . . (58)

Therefore we proved the following Theorem.

Theorem 3 (De Moivre’s formula). Let z be any complex number with modulus |z| and argument
ϑ. Then

zn = |z|neinϑ ∀n ∈ Z. (59)

Remark: The powers of a complex number complex are points on a spiral in the complex plane. In
fact, that the parametric form of a spiral in the Cartesian plane is

x(t) = at cos(bt) y(t) = at sin(bt), (60)

where t is the spiral parameter, and a, b are fixed real numbers. These equations coincide with the
real and imaginary parts of the powers of z. In fact,

Re(zn) = |z|n cos(nϑ) Im(zn) = |z|n sin(nϑ) n ∈ Z. (61)
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