
AM 10 Prof. Daniele Venturi

Lecture 4: Matrices and vectors

A matrix is a rectangular table with entries arranged in rows and columns. The entries can be
numbers, functions, operators, matrices, symbols, etc. For example, the following matrix is a 2× 3
matrix (2 rows and 3 columns) with real entries

A =

[
1 π 2
−π 1 0

]
(1)

Similarly,

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(2)

is a matrix of trigonometric functions known as rotation matrix1. In general, an m×n matrix with
entries in some set V has the form

j-th column
↓

A =


a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

am1 · · · amj · · · amn

← i-th row (3)

Denote the set of m× n matrices with entries in V as Mm×n(V ). For example, we have:

• Mm×n(R): set of m× n matrices with real entries

• Mm×n(C): set of m× n matrices with complex entries

• Mm×n(C0([0, 2π])): set of m×n matrices with entries in the space continuous functions defined
on the interval [0, 2π]. An element of this set for n = m = 2 is the matrix defined in (2), i.e.,
R(θ) ∈M2×2(C0([0, 2π])). Indeed, the entries of R(θ) are continuous functions in [0, 2π].

Example (plotting functions and surfaces): Let us provide a simple example of how vectors and
matrices can be used to plot one-dimensional and two-dimensional functions. To this end, consider

y = sin(x) + 2 x ∈ [0, 2π]. (4)

We are interested in plotting this function “point-by-point”, i.e., map a set of points {x1, . . . , xn} to
yi = sin(xi) + 2 (i = 1, . . . , n) one by one. In particular, we choose the set of evenly-spaced points

xi+1 =
2π

n− 1
i i = 0, . . . , n− 1 (5)

1The rotation matrix (2) defines rigid rotations of the Cartesian plane by an angle θ.
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We collect all these points into a matrix with one row and n columns, i.e., a row vector

x =

[
0

2π

n− 1

4π

n− 1
· · · 2π

]
. (6)

We can then map each entry of the vector x into the corresponding entry of another row vector y
as

yi = sin(xi) + 2 i = 1, . . . , n. (7)

Hereafter we show the results of this procedure for n = 10 in one and two dimensions.
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Example (Matrices representing images): The following 50× 50 black and white image “AM 10”

is represented by the matrix (1 means white, 0 means black)
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Addition between matrices. It makes sense to define addition between matrices with the same
number of rows and and the same number of columns. To this end, let A and B are two n × m
matrices

A =

a11 · · · a1n
...

...
am1 · · · amn

 B =

 b11 · · · b1n
...

...
bm1 · · · bmn

 (8)

We define

A+B =

 a11 + b11 · · · a1n + b1n
...

...
am1 + bm1 · · · amn + bmn

 (9)

In this way A+B is still an m×n matrix, i.e., the set of n×m matrices is closed under the addition
operation defined in (9).

Example: Consider the following matrices:

A =

[
1 0 3
4 1 2

]
, B =

[
0 0 1
1 2 3

]
⇒ A+B =

[
1 0 4
5 3 5

]
. (10)

We also define the product between a matrix and number c (real or complex) as

cA =

 ca11 · · · ca1n
...

...
cam1 · · · camn

 . (11)

Clearly cA is a m× n matrix.

Examples:

A =

[
1 0 3
4 1 2

]
⇒ 3A =

[
3 0 9
12 3 6

]
.

B =

 i 0 3 + 2i
1 + i i 2

1 0 6i

 ⇒ iB =

 −1 0 −2 + 3i
−1 + i −1 2i
i 0 −6

 . (12)

It is clear that the neutral element for the addition operation (9) is the zero matrix

0n×m =

0 · · · 0
...

. . .
...

0 · · · 0

 . (13)

In fact, for any m×n matrix A we have A+0m×n = A. The opposite of the matrix A is the matrix2

−A =

−a11 · · · −a1n
...

...
−am1 · · · −amn

 . (14)

2The opposite of a matrix A is, by definition, the element B such that A+B = 0m×n.
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Vector space of matrices. The addition and multiplication by a number operations defined in
(9) and (11) satisfy the following properties

1. A+B = B + A (matrix addition is commutative)

2. (A+B) + C = A+ (B + C) (matrix addition is associative)

3. A+ 0m×n = 0m×n + A = A (additive neutral, i.e., the zero matrix)

4. A− A = 0m×n (opposite matrix −A)

5. c(A+B) = cA+ cB c ∈ R (or C)

6. (a+ b)A = aA+ bA a, b ∈ R (or C)

7. (ab)A = a(bA) c ∈ R (or C)

In technical terms, we say that the space of n × m matrices over the field of complex numbers
forms a vector space. More generally, any set in which we define an addition operation “+” and a
multiplication by c ∈ C satisfying properties 1-7 listed above forms is a vector space over C. The
set of matrices with positive real entries is not a vector space since the opposite of a matrix with
positive entries is not a matrix with positive entries.

The elements of a vector space are called vectors. Hence, a matrix is a vector in the vector space
of matrices. A function f(x) = sin(x)2 is a vector in the vector space continuous functions from R
into R.

Matrix multiplication. Let us consider two matrices A and B and suppose that the number of
columns of A (say p) coincides with the number of rows of B

A =

a11 · · · a1p
...

...
am1 · · · amp

 , B =

b11 · · · b1n
...

...
bp1 · · · bpn

 . (15)

The (standard) matrix product between A and B is defined as

(AB)ij = ai1b1j + · · ·+ aipbpj, i = 1, . . . ,m, i = 1, . . . , n. (16)

Here, (AB)ij denotes the (ij)-th entry of the matrix m× n matrix AB. Note that if the matrix A
has size m× p and the matrix B has size p× n then the matrix AB defined in (16) has size m× n.

The matrix product (16) corresponds to the so-called row-column rule in which the entries of the
i-th row of the matrix A are multiplied by the entries j-the column of B and the results of all these
multiplications are summed up to obtain the ij-entry of AB

j j

i


...

· · · �


︸ ︷︷ ︸

AB

= i

[· · · · · · · · · · · · ]


︸ ︷︷ ︸

A





...

...

...

...

...




︸ ︷︷ ︸

B

.
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Example: Consider the two matrices

A =

[
1 3 2
1 5 −1

]
, B =

1 −1
2 −2
1 −3

 . (17)

The matrix product AB is well-defined and it is computed as follows:

AB =

[
(1 + 6 + 2) (−1− 6− 6)
(1 + 10− 1) (−1− 10 + 3)

]
=

[
9 −13
10 −8

]
. (18)

Similarly, the matrix product BA in this case is well-defined3 and it corresponds to the 3×3 matrix

BA =

 0 −2 3
0 −4 6
−2 −12 5

 . (19)

Remark: For square matrices A and B (i.e., matrices with size m = p = n) both products AB and
BA are well-defined and they yield n×n matrices. However, the matrix product is (in general) not
commutative, i.e., AB 6= BA. For example

A =

[
1 1
3 −2

]
B =

[
1 1
1 2

]
(20)

do not commute. In fact, we have

AB =

[
1 1
3 −2

] [
1 1
1 2

]
=

[
2 3
1 −1

]
,

BA =

[
1 1
1 2

] [
1 1
3 −2

]
=

[
4 −1
7 −3

]
.

(21)

The matrix C = AB − BA is called matrix commutator of A and B and it often denoted by
C = [A,B]. If AB = BA then we say that A and B commute. If A and B commute then the
commutator [A,B] is the necessarily the zero matrix.

Remark: A very important example of matrix product is the so-called matrix-vector product, in
which a m× n matrix A is multiplied by a column vector4 with n entries

Ax =


a11 · · · a1n
...

...
...

...
am1 · · · amn



x1
...
...
xn

 =

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn

 . (22)

Clearly, Ax is a column vector with entries

(Ax)i = ai1x1 + · · ·+ ainxn i = 1, . . .m. (23)

3More generally, if A ∈Mn×m and B ∈Mm×n then AB ∈Mn×n and BA ∈Mm×m.
4A column vector with n entries is a n× 1 matrix.
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Remark: The neutral element for the multiplication operation (16) is called identity matrix

In =

1 · · · 0
...

. . .
...

0 · · · 1

 ∈Mn×n(R) (24)

The identity matrix is a square matrix with ones along the main diagonal and zeros everywhere
else. If A is a m× n matrix then

ImA = AIn = A (25)

Theorem 1 (Properties of the matrix product). Let A, B and C three matrices for which the
following products and sums are well-defined. Then:

1. A(BC) = (AB)C (matrix multiplication is associative),

2. A(B + C) = AB + AC (left distributive property),

3. (A+B)C = AC +BC (right distributive property),

4. c(AB) = A(cB), c ∈ C.

Proof. Properties 1 to 4 can be proved simply by using the definition (9), (11) and (16). Let us
prove property 2. To this end, let B,C ∈ Mn×m and A ∈ Mp×n so that the matrix multiplication
in property 2 is well-defined. The ij entry of the matrix A(B + C) can be written as

(A(B + C))ij =
n∑

p=1

aip(bij + cpj) =
n∑

p=1

aipbij +
n∑

p=1

aipcij = (AB)ij + (AC)ij. (26)

Remark: Consider an arbitrary square matrix A and a positive integer p. The p-th power of A is
the matrix

Ap = AA · · ·A︸ ︷︷ ︸
p times

(matrix power). (27)

For example, the square of the matrix A defined in equation (20) is

A2 =

[
1 1
3 −2

] [
1 1
3 −2

]
=

[
4 −1
−3 7

]
. (28)

Remark: It is possible to define other types of matrix products, e.g., the Kronecker product “⊗”
or the Hadamard product “◦”. These types of products are different from the matrix product (16),
and they satisfy different properties. For example, the Hadamard product between the matrices

A =

a11 · · · a1n
...

...
am1 · · · amn

 and B =

 b11 · · · b1n
...

...
bm1 · · · bmn


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is defined as

A ◦B =

 a11b11 · · · a1nb1n
...

...
am1bm1 · · · amnbmn

 (Hadamard product). (29)

and it is clearly commutative5, i.e., A◦B = B◦A. On the other hand, given two matrices A ∈Mn×m

and B ∈Mp×q their Kronecker product is defined as defined as

A⊗B =

a11B · · · a1nB
...

...
am1B · · · amnB

 (Kronecker product). (30)

Note that that A⊗B is a block matrix of size np×mq. In fact, each entry of A⊗B is a matrix of
size p× q.

Transpose of a matrix. The transpose of the m× n matrix

A =


a11 · · · a1n
...

...
...

...
am1 · · · amn

 (31)

is the matrix obtained by switching the row and column indices of A, i.e.,

AT =


a11 · · · a1m
...

...
...

...
a1n · · · amn

 . (32)

For example,

A =

[
1 2 1 3
0 −2 4 1

]
⇔ AT =


1 0
2 −2
1 4
3 1

 . (33)

Theorem 2 (Properties of transpose matrix). Let A and B two matrices for which the following
operations are well-defined. Then:

1. (AT )T = A

2. (A+B)T = AT +BT

3. (AB)T = BTAT

4. (cA)T = cAT c ∈ C
5Recall that the standard matrix product between two square matrices is (in general) not commutative, i.e,

AB 6= BA.
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Proof. Let us prove property 3. To this end, let A ∈ Mn×m and B ∈ Mm×p. The ij entry of the
matrix AB is (see equation (16))

(AB)ij =
m∑
k=1

aikbkj (34)

To obtain the ij entry of (AB)T we simply need to switch i and j. This yields,

(
(AB)T

)
ij

=
m∑
k=1

ajkbki =
m∑
k=1

(
BT
)
ik

(
AT
)
kj

=
(
BTAT

)
ij

(35)

All other properties can be proved in a similar way.

Remark: Let A, B, C and D four matrices such that the product ABCD is well-defined. Then

(ABCD)T = DTCTBTAT (36)

In fact, by applying property 3 in Theorem 2 recursively we have

(ABCD)T = (CD)T (AB)T = DTCTBTAT (37)

Remark (Conjugate transpose): For matrices with complex entries we can also define the conjugate
transpose as

AH =
(
AT
)∗

(38)

The conjugate transpose of a matrix A has entries

aHij = a∗ji. (39)

Symmetric and skew-symmetric matrices. Let A ∈Mn×n be a square matrix6.

If A = AT then we say that A is symmetric.

If A = −AT then we say that A is skew-symmetric (or anti-symmetric).

Examples of symmetric and skew-symmetric matrices are

A =

−1 3 1
3 −3 5
1 5 0

 (symmetric), B =

 0 3 1
−3 0 −4
−1 4 0

 (skew-symmetric). (40)

By definition, the entries of a symmetric matrix A satisfy aij = aji. Similarly, the entries of a
skew-symmetric matrix satisfy aij = −aji. Note that this implies that the diagonal entries of a
skew symmetric matrix are necessarily zero

aii = −aii ⇒ aii = 0. (41)

6The definition of symmetric and skew-symmetric matrices makes sense only for square matrices. In fact, the
statements A = AT and A = −AT are legitimate only for square matrix. Otherwise we are saying that, e.g., a 3× 2
matrix equals a 2× 3 matrix.
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Any square matrix A ∈ Mn×n can be decomposed into a sum of a symmetric matrix and a skew-
symmetric matrix as follows

A =
1

2
(A+ AT )︸ ︷︷ ︸
symmetric

+
1

2
(A− AT )︸ ︷︷ ︸

skew-symmetric

. (42)

The following result holds for arbitrary rectangular matrices.

Theorem 3. Let A ∈Mn×m be an arbitrary n×m matrix. Then AAT is a n×n symmetric matrix
and ATA is a m×m symmetric matrix.

The proof is left as exercise.

Remark: If A is a n× n square matrix then ATA and AAT are both n× n symmetric matrices. In
general, ATA 6= AAT . However, if A is symmetric then AAT = ATA (show it!).

Matrix inverse. Let A ∈ Mn×n be a square matrix. We say that A is invertible if there exists a
n× n matrix A−1 such that

AA−1 = In A−1A = In. (43)

where In is the identity matrix (24).

Theorem 4 (Uniqueness of the inverse matrix). The matrix A−1 satisfying (43) is unique.

Proof. Suppose that there are two matrices B1 and B2 such that

AB1 = In, B1A = In and AB2 = In, B2A = In. (44)

Then
B2 = B2In = B2(AB1) = (B2A)B1 = B1, (45)

i.e., B2 = B1. This means that for any matrix A, the inverse is unique (if it exists).

Hence, if A is invertible7 then there exists a unique matrix A−1 that commutes with A such that
the matrix product between A and A−1 yields the identity matrix (24).

Theorem 5 (Properties of the inverse matrix). Let A and B be two n × n invertible matrices.
Then

1. (A−1)
−1

= A

2. (AB)−1 = B−1A−1

3.
(
AT
)−1

= (A−1)
T

Proof. Let us prove properties 1, 2 and 3.

1. Let C be the inverse of A−1. Then

A−1C = In CA−1 = In. (46)

Theorem 3 says that there exists only one matrix that satisfies (46), and that matrix is A.
Thus, the inverse of A−1 is A.

7We will derive conditions for the invertibility of a matrix A in subsequent lecture notes. As we will see, not every
square matrix admits an inverse.
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2. The following identities

In = AB(B−1A−1), In = (B−1A−1)AB (47)

imply that the inverse of the matrix AB is B−1A−1.

3. Consider
In = (AA−1)T = (A−1)TAT In = (A−1A)T = AT (A−1)T . (48)

Therefore the inverse of AT , i.e. (AT )−1, is equal to (A−1)T .

Orthogonal and unitary matrices. Let A ∈Mn×n be a square matrix with real entries. We say
that A is an orthogonal matrix 8 if

AAT = ATA = In. (49)

Clearly, if A is an orthogonal matrix then (by using the definition of the inverse and its uniqueness)

AT = A−1. (50)

Moreover, if A is an orthogonal matrix then the commutator

[A,AT ] = AAT − ATA = In − In = 0Mn×n . (51)

If the matrix A has complex entries then we say that A is a unitary matrix if

AAH = AHA = In (52)

where AH is the conjugate transpose of A.

Linear systems of equations. Consider the linear system of equations (m equations in n un-
knowns) 

a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2

...
am1x1 + · · ·+ amnxn = bm

(53)

Upon definition of

A =

a11 · · · a1n
...

...
am1 · · · amn

 , b =

 b1...
bm

 , (54)

we can write (53) in a matrix-vector product form as

Ax = b. (55)

In the particular case where m = n (number equations equals the number of unknowns) we have
that if the matrix A is invertible then the system (53) admit the unique solution9

x = A−1b (56)

As we shall see in the next lecture, there is no need to compute the inverse matrix A−1 to solve the
linear system (53).

8As we will see, the reason why we call the matrix A satisfying (49) an orthogonal matrix follows from the fact
that the rows (or the columns) of such matrix are orthonormal relative to standard “dot product” in Rn.

9By applying A−1 to both sides of (55) we obtain A−1A︸ ︷︷ ︸
In

x = A−1b, i.e., x = A−1b.
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