AM 10 Prof. Daniele Venturi

Lecture 4: Matrices and vectors

A matrix is a rectangular table with entries arranged in rows and columns. The entries can be
numbers, functions, operators, matrices, symbols, etc. For example, the following matrix is a 2 x 3
matrix (2 rows and 3 columns) with real entries

1 7 2
A= |:—7T 1 O} (1)
Similarly,

cos(f) — sin(&)] 2)

R(6) = [sin(@) cos(0)

is a matrix of trigonometric functions known as rotation matriz'. In general, an m x n matrix with
entries in some set V' has the form

J-th column

all PRI a/lj o e a/ln
A= a1t Qg Qi | i-th row (3)
_a/ml DY am] PR amn-

Denote the set of m x n matrices with entries in V' as M,,x, (V). For example, we have:

o M,,xn(R): set of m x n matrices with real entries
® M,,xn(C): set of m x n matrices with complex entries

 Mxn(Co([0,27])): set of mxn matrices with entries in the space continuous functions defined
on the interval [0, 27]. An element of this set for n = m = 2 is the matrix defined in (2), i.e.,
R(0) € May2(Co([0,27])). Indeed, the entries of R(#) are continuous functions in [0, 27].

Ezample (plotting functions and surfaces): Let us provide a simple example of how vectors and
matrices can be used to plot one-dimensional and two-dimensional functions. To this end, consider

=sin(z)+2  z€[0,2n]. (4)
We are interested in plotting this function “point-by-point”, i.e., map a set of points {z1,...,z,} to
y; = sin(z;) +2 (¢ =1,...,n) one by one. In particular, we choose the set of evenly-spaced points
27
Tig1 = 7 1=0,...,n—1 5)
= )

!The rotation matrix (2) defines rigid rotations of the Cartesian plane by an angle 6.
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We can then map each entry of the vector z into the corresponding entry of another row vector y
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Ezxample (Matrices representing images)

1S represen

Yi
Hereafter we show the results of this procedure for n = 10 in one and two d
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Addition between matrices. It makes sense to define addition between matrices with the same
number of rows and and the same number of columns. To this end, let A and B are two n x m
matrices

aip - Qip bin -+ biy
A= : B=|: : (8)
i Qo bt - b
We define
aig +by o0 Ay + by
A+ B= : (9)
Q1 + bml o QT bmn

In this way A+ B is still an m x n matrix, i.e., the set of n x m matrices is closed under the addition
operation defined in (9).

Example: Consider the following matrices:

10 3 00 1 10 4
A‘{412}’ B_[123} = A+B_[535}' (10)

We also define the product between a matrix and number ¢ (real or complex) as

Ca1q s CAyp
cA=| : S (11)
Cmy -+ Clhmn
Clearly cA is a m X n matrix.
Ezxamples: ]
1 0 3 3 09
A‘[412} = 34=11 3 ¢
i 0 3+2i C 10 243 (12)
B=|141 1 2 = 1B=|—-141 —1 21
1 0 6i i 0 -6
It is clear that the neutral element for the addition operation (9) is the zero matriz
0 --- 0
0 --- 0

In fact, for any m x n matrix A we have A+ 0,,x, = A. The opposite of the matrix A is the matrix?

_all DR _aln
—A=| F- (14)

—Qm1 " —Qmn

2The opposite of a matrix A is, by definition, the element B such that A + B = 0, xp.
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Vector space of matrices. The addition and multiplication by a number operations defined in
(9) and (11) satisfy the following properties

1. A+ B=DB+ A (matrix addition is commutative)
(A+B)+C=A+ (B+C) (matrix addition is associative)

A+ 0pxn =0pxn + A=A (additive neutral, i.e., the zero matrix)
A—A=0,xn (opposite matrix —A)

c(A+B)=cA+cB ceR (orC)

(a+b)A=aA+bA a,beR (or C)

7. (ab)A = a(bA) ceR (or C)

I A S

In technical terms, we say that the space of n x m matrices over the field of complex numbers
forms a vector space. More generally, any set in which we define an addition operation “+” and a
multiplication by ¢ € C satisfying properties 1-7 listed above forms is a wvector space over C. The
set of matrices with positive real entries is not a vector space since the opposite of a matrix with
positive entries is not a matrix with positive entries.

The elements of a vector space are called vectors. Hence, a matrix is a vector in the vector space
of matrices. A function f(x) = sin(z)? is a vector in the vector space continuous functions from R
into R.

Matrix multiplication. Let us consider two matrices A and B and suppose that the number of
columns of A (say p) coincides with the number of rows of B

aix - Al bii -+ bip
, B=|: e (15)

. by - bpn

A:

The (standard) matriz product between A and B is defined as
(AB),-j:ai1b1j+---+aipbpj, z'zl,...,m, z:l,,n (16)

Here, (AB);; denotes the (ij)-th entry of the matrix m x n matrix AB. Note that if the matrix A
has size m X p and the matrix B has size p X n then the matrix AB defined in (16) has size m x n.

The matrix product (16) corresponds to the so-called row-column rule in which the entries of the

i-th row of the matrix A are multiplied by the entries j-the column of B and the results of all these
multiplications are summed up to obtain the ij-entry of AB

N

———
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Example: Consider the two matrices
1 -1

A:E ; _21] B=|2 —2|. (17)
1 -3

The matrix product AB is well-defined and it is computed as follows:

| (1+6+2) (-1-6-6)| |9 -13
AB—{(1+10—1) (—1—1o+3)}_{1o —8} (18)

Similarly, the matrix product BA in this case is well-defined® and it corresponds to the 3 x 3 matrix

0 -2 3
BA=|0 -4 6. (19)
—2 -12 5

Remark: For square matrices A and B (i.e., matrices with size m = p = n) both products AB and
BA are well-defined and they yield n x n matrices. However, the matrix product is (in general) not
commutative, i.e., AB # BA. For example

1 1 11
ol eef
do not commute. In fact, we have
1 1)1 1 2 3
a=ly S0 o= 2]

1 1)1 1 4 —1
BA= {1 2} {3 —2} - {7 —3]
The matrix C' = AB — BA is called matriz commutator of A and B and it often denoted by
C = [A,B]. If AB = BA then we say that A and B commute. If A and B commute then the

commutator [A, B] is the necessarily the zero matrix.

(21)

Remark: A very important example of matrix product is the so-called matriz-vector product, in
which a m x n matrix A is multiplied by a column vector* with n entries

a1; - Aip x
a11T1 + - + a1y

Am1ZT1 + -+ QppTn
Am1 = Amnp T,

Clearly, Az is a column vector with entries

(Ax)i = Q11+ + Qi Ty 1=1,...m. (23)

3More generally, if A € M,,«.m and B € M,,«» then AB € M,,«,, and BA € M, xm.
4A column vector with n entries is a n x 1 matrix.
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Remark: The neutral element for the multiplication operation (16) is called identity matriz

1 -+ 0
]n =|: . | € Mnxn(R) (24)
0 --- 1

The identity matrix is a square matrix with ones along the main diagonal and zeros everywhere
else. If A is a m x n matrix then

I,A=AL = A (25)

Theorem 1 (Properties of the matrix product). Let A, B and C three matrices for which the
following products and sums are well-defined. Then:

1. A(BC)=(AB)C (matrix multiplication is associative),
2. AB+C)=AB+ AC (left distributive property),

3. (A+ B)C =AC+ BC (right distributive property),

4. ¢(AB) = A(eB), ceC.

Proof. Properties 1 to 4 can be proved simply by using the definition (9), (11) and (16). Let us
prove property 2. To this end, let B,C € M,y and A € My, so that the matrix multiplication
in property 2 is well-defined. The ij entry of the matrix A(B + C') can be written as

n

(A B + C Z CL,p bzy + Cp] = Z aipbij —+ Z aipcij = (AB)Z] —+ (AO)U (26)

p=1 p=1

]

Remark: Consider an arbitrary square matrix A and a positive integer p. The p-th power of A is
the matrix

AP =AA--- A (matrix power). (27)

p times

For example, the square of the matrix A defined in equation (20) is
, [1 1]t 1] _[4 =1
A= [3 —2} [3 —2} - {—3 7] (28)

Remark: 1t is possible to define other types of matrix products, e.g., the Kronecker product “®”
or the Hadamard product “o”. These types of products are different from the matrix product (16),
and they satisfy different properties. For example, the Hadamard product between the matrices

ap; -0 Ay bin -+ by
A= : : and B =

Am1 = Amn bml bmn
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is defined as

aitbi -0 abin
Ao B = : : (Hadamard product). (29)

amlbml amnbmn

and it is clearly commutative®, i.e., AoB = BoA. On the other hand, given two matrices A € M,
and B € M,,, their Kronecker product is defined as defined as

allB ce alnB
A® B = ; : (Kronecker product). (30)
amB - amnB

Note that that A ® B is a block matrix of size np x mq. In fact, each entry of A ® B is a matrix of
size p X q.

Transpose of a matrix. The transpose of the m x n matrix

@113 - Aip

Am1 = Amnp

is the matrix obtained by switching the row and column indices of A, i.e.,
aip - Qim
AT = : (32)
A1 - o

For example,

1 0
12 103 r 12 =2

A‘{o —241} e A=y (33)
3 1

Theorem 2 (Properties of transpose matrix). Let A and B two matrices for which the following
operations are well-defined. Then:

L (AT =A
2. (A+B) =AT+ BT
3. (AB)T = BTAT

4. (cA)T = cAT ceC

SRecall that the standard matrix product between two square matrices is (in general) not commutative, i.e,
AB # BA.
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Proof. Let us prove property 3. To this end, let A € M, «,, and B € M,,x,. The ij entry of the
matrix AB is (see equation (16))

(AB)i; = Z it brj (34)
k=1

To obtain the ij entry of (AB)T we simply need to switch 4 and j. This yields,

m m

((AB)T)Z‘J' - Zaikb’” - Z (BT)ilc (AT)kj - (BTAT)z‘j (35)

k=1 k=1

All other properties can be proved in a similar way.

O
Remark: Let A, B, C' and D four matrices such that the product ABCD is well-defined. Then
(ABCD)" = DTCT BT AT (36)
In fact, by applying property 3 in Theorem 2 recursively we have
(ABCD)" = (CD)'(AB)T = DTCTBT AT (37)

Remark (Conjugate transpose): For matrices with complex entries we can also define the conjugate
transpose as

AP = (AT (38)
The conjugate transpose of a matrix A has entries
H _
a;; = aj;. (39)

Symmetric and skew-symmetric matrices. Let A € M, ., be a square matrix®.
If A= AT then we say that A is symmetric.
If A= —AT  then we say that A is skew-symmetric (or anti-symmetric).

Examples of symmetric and skew-symmetric matrices are

-1 3 1 0 3 1
A=13 =3 5| (symmetric), B=|-3 0 —4| (skew-symmetric). (40)
1 5 0 -1 4 0

By definition, the entries of a symmetric matrix A satisfy a,; = aj. Similarly, the entries of a
skew-symmetric matrix satisfy a;; = —aj;. Note that this implies that the diagonal entries of a
skew symmetric matrix are necessarily zero

Qi = — Q4 = Qi = 0. (41)

5The definition of symmetric and skew-symmetric matrices makes sense only for square matrices. In fact, the
statements A = AT and A = —A7T are legitimate only for square matrix. Otherwise we are saying that, e.g., a 3 x 2
matrix equals a 2 X 3 matrix.
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Any square matrix A € M,, can be decomposed into a sum of a symmetric matrix and a skew-
symmetric matrix as follows

1 1
A:§(A+AT)+ §(A—AT). (42)
h sym?n,(;tric s\kew—s;nrlmetri::

The following result holds for arbitrary rectangular matrices.

Theorem 3. Let A € M,,,, be an arbitrary n x m matrix. Then AA” is a n x n symmetric matrix
and AT A is a m x m symmetric matrix.

The proof is left as exercise.

Remark: If A is a n x n square matrix then AT A and AAT are both n x n symmetric matrices. In
general, ATA # AAT. However, if A is symmetric then AAT = AT A (show it!).

Matrix inverse. Let A € M, ., be a square matrix. We say that A is invertible if there exists a
n x n matrix A~! such that

AAT =1, AT'A=1, (43)
where I, is the identity matrix (24).
Theorem 4 (Uniqueness of the inverse matrix). The matrix A™! satisfying (43) is unique.
Proof. Suppose that there are two matrices B; and B, such that
AB, =1,, BiA=1, and ABy =1,, ByA=1,. (44)

Then
By = Byl,, = By(ABy) = (B2A)By = By, (45)

i.e., By = B;. This means that for any matrix A, the inverse is unique (if it exists).

Hence, if A is invertible” then there exists a unique matrix A~! that commutes with A such that
the matrix product between A and A™! yields the identity matrix (24).

Theorem 5 (Properties of the inverse matrix). Let A and B be two n x n invertible matrices.
Then

L. (A =4
2. (AB)"' =B 4!
3. (AT) =A™
Proof. Let us prove properties 1, 2 and 3.
1. Let C be the inverse of A~!. Then
A'C=1, CA'=1I,. (46)

Theorem 3 says that there exists only one matrix that satisfies (46), and that matrix is A.
Thus, the inverse of A~ is A.

"We will derive conditions for the invertibility of a matrix A in subsequent lecture notes. As we will see, not every
square matrix admits an inverse.
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2. The following identities
I, = AB(B™'A™Y), I, =(B'AHYAB (47)
imply that the inverse of the matrix AB is B~1A~%

3. Consider
I, = (AA_l)T = (A_l)TAT 1, = (A_lA)T = AT(A_l)T. (48)

Therefore the inverse of AT, i.e. (A7), is equal to (A~1)T.

Orthogonal and unitary matrices. Let A € M, ., be a square matrix with real entries. We say
that A is an orthogonal matriz ® if

AAT = ATA =1, (49)
Clearly, if A is an orthogonal matrix then (by using the definition of the inverse and its uniqueness)
AT = A7 (50)
Moreover, if A is an orthogonal matrix then the commutator
A, AT = AAT —ATA=1,-1,=0y,,,. (51)
If the matrix A has complex entries then we say that A is a unitary matriz if
AAT = AP A =1, (52)

where A is the conjugate transpose of A.

Linear systems of equations. Consider the linear system of equations (m equations in n un-
knowns)
anxry + -+ a1y, = b1
a1T1 + -+ + Aoy = b2

(53)
W11 + 0+ QT = by
Upon definition of
a1 Qi by
A= | L b= (54)
Al Qo by,

we can write (53) in a matrix-vector product form as

Ax =b. (55)
In the particular case where m = n (number equations equals the number of unknowns) we have
that if the matrix A is invertible then the system (53) admit the unique solution®

r=A"b (56)
As we shall see in the next lecture, there is no need to compute the inverse matrix A~! to solve the
linear system (53).

8As we will see, the reason why we call the matrix A satisfying (49) an orthogonal matrix follows from the fact
that the rows (or the columns) of such matrix are orthonormal relative to standard “dot product” in R™.
9By applying A~! to both sides of (55) we obtain A~ 'Axz = A1, i.e., x = A~ 'b.
I’IL
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