Lecture 5: Linear equations

An equation in n variables is linear if it can be written in the form

$$
\begin{equation*}
a_{n} x_{n}+\ldots+a_{1} x_{1}=b \tag{1}
\end{equation*}
$$

The numbers $\left\{a_{1}, \ldots, a_{n}\right\}$ are the coefficients of the equation, while b is usually called constant term.

The variables x_{j} and the constant term b can be elements of rather general vector spaces. For example, x_{j} can be vectors in $\mathbb{R}^{n}, n \times m$ matrices with real entries, or real-valued continuous functions, while a_{i} are usually real or complex numbers ${ }^{1}$.

Examples: Let us provide a few simple examples of linear equations in the space \mathbb{R}^{n} for $n=2$ and $n=3$. The elements of \mathbb{R}^{n} are n-tuples of real numbers of the form

$$
\begin{equation*}
x=\left(x_{1}, \ldots, x_{n}\right) \quad x_{i} \in \mathbb{R} . \tag{2}
\end{equation*}
$$

In a matrix setting, x can be represented as a row vector or as a column vector

$$
x=\left[\begin{array}{c}
x_{1} \tag{3}\\
\vdots \\
x_{n}
\end{array}\right], \quad x=\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right] .
$$

(a) The linear equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}=b \quad a_{1}, a_{2}, b \in \mathbb{R} \tag{4}
\end{equation*}
$$

represents a line in \mathbb{R}^{2}. In fact, if $a_{2} \neq 0$ then we can express x_{2} in terms of x_{1} as

$$
\begin{equation*}
x_{2}=-\frac{a_{1}}{a_{2}} x_{1}+\frac{b}{a_{2}} . \tag{5}
\end{equation*}
$$

The graph x_{2} versus x_{1} is, e.g.,

If $a_{2}=0$ and $a_{1} \neq 0$ we obtain the vertical line $x_{1}=b / a_{1}$. Lastly, if $a_{1}=a_{2}=0$ then we necessarily have $b=0$ and the linear equation reduces to $0=0$, which is uninformative.

[^0](b) The linear equation
\[

$$
\begin{equation*}
a_{3} x_{3}+a_{2} x_{2}+a_{1} x_{1}=b \quad a_{i}, b \in \mathbb{R} \tag{6}
\end{equation*}
$$

\]

represents a plane in \mathbb{R}^{3}. Such a plane is a two-dimensional surface embedded in three dimensional space, which can be sketched as follows

This plane can be also expressed as a linear combination (linear equation) of two 3D vectors lying on the plane, plus a constant 3D vector.
(c) The following linear equation represents a so-called hyper-plane in $\mathbb{R}^{n}(n \geq 4)$.

$$
\begin{equation*}
a_{n} x_{n}+\cdots+a_{1} x_{1}=b \quad a_{i}, b \in \mathbb{R} \tag{7}
\end{equation*}
$$

Systems of linear equations. A system of m linear equations of the form (1) can be written as

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \tag{8}\\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{n}
\end{array}\right.
$$

For example,

$$
\begin{gathered}
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}=1 \\
x_{1}-5 x_{2}=0
\end{array}\right. \\
\left\{\begin{array}{l}
5 x_{1}-x_{3}=3 \\
x_{1}+2 x_{2}-8 x_{3}=5
\end{array}\right.
\end{gathered}
$$

A solution to the linear system (8) is a set n variables $\left(x_{1}, \ldots, x_{n}\right)$ satisfying all equations in (8). In general, linear systems can have

1. Exactly one solution
2. No solution
3. Infinite solutions

Geometric interpretation:

- We have seen that a linear equation in \mathbb{R}^{2} defines a line in the Cartesian plane. Hence, the following system of two equations in \mathbb{R}^{2}

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}=b_{1} \tag{9}\\
a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{array}\right.
$$

defines two lines. Such lines can intersect at one point (unique solution), can be parallel (no solutions) or they can be superimposed (infinite solutions).

- We have seen that a linear equation in \mathbb{R}^{3} defines a plane in the three-dimensional space. Hence, the following three equations in \mathbb{R}^{3}

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \tag{10}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{2}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{array}\right.
$$

define three planes. Such planes can intersect at one point (unique solution), can be parallel and distinct (no solution if just two planes are parallel), or they can intersect along one line (infinite solutions, one-dimensional set), or even be the same plane (infinite solutions, two-dimensional set).

NO solution

Remark: A linear system of m equations in n variables can be written in a compact matrix-vector form as

$$
\begin{equation*}
A x=b \tag{11}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \tag{12}\\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Solving a linear system of equations. Let us begin with the the following simple example of a system of 2 linear equations in 2 unknowns

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=3 \tag{13}\\
x_{1}-2 x_{2}=1
\end{array}\right.
$$

Clearly, we can express x_{1} in terms of x_{2} by using the second equation,i.e.,

$$
\begin{equation*}
x_{1}=1+2 x_{2} \tag{14}
\end{equation*}
$$

and then substitute this result into the first equation to obtain

$$
\begin{align*}
1+2 x_{2}+x_{2}=3 & \Rightarrow \tag{15}
\end{align*} x_{2}=\frac{2}{3}, ~\left(\frac{2}{3}\right) \quad \Rightarrow \quad x_{1}=\frac{7}{3}
$$

Note that $x_{1}=2 / 3$ and $x_{2}=7 / 3$ satisfy (13). The method we just described, is not very efficient for linear systems in higher dimensions, e.g.,

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}-3 x_{5}-=1 \\
x_{1}-x_{2}+x_{3}-x_{4}-12 x_{5}=2 \\
3 x_{1}-3 x_{2}+x_{3}+x_{4}+x_{5}=-2 \\
-x_{1}+2 x_{2}+x_{3}+x_{4}+-4 x_{5}=-2 \\
-4 x_{1}-x_{2}+x_{3}+x_{4}+x_{5}=-2
\end{array}\right.
$$

A more effective method relies on transforming a linear system into an equivalent one, i.e., a systems with the same solutions, that is easier to solve. The key observation is the following:

The solution of a linear system does not change if we replace one equation with a linear combination of that equation and others in the system (we will see why!).

Is this true? Let us verify the statement in the simplest possible setting, i.e., for the 2×2 linear system

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}=1 \tag{17}\\
x_{1}+x_{2}=0
\end{array}\right.
$$

This system can be written in a matrix-vector form as

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \tag{18}\\
1 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{b} .
$$

The solution is clearly $x_{1}=1$ and $x_{2}=-1$. Let us now replace the second equation in (17), i.e., $x_{1}+x_{2}=0$, with the first equation multiplied by 2 plus the second. This yields

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}=1 \tag{19}\\
5 x_{1}+3 x_{2}=2
\end{array}\right.
$$

which still has the unique solution $x_{1}=1$ and $x_{2}=-1$. So the statement seems to be true.
If we replace the second equation in (17) by the second equation multiplied by 2 itself minus the first equation we can eliminate the variable x_{1} to obtain

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}=1 \tag{20}\\
x_{2}=-1
\end{array}\right.
$$

This system can be written in a matrix-vector form as

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \tag{21}\\
0 & 1
\end{array}\right]}_{A_{1}} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}_{b_{1}}
$$

The matrix A has an upper-trianglar triangular structure which allows us to solve the system by using backward substitution, i.e., solving the last equation first and then substituting the result back into into the previous equations.

Remark: Note that the operation we just described, i.e, "subtract the first equation from the second multiplied by 2 " can be represented by a lower-triangular (invertible) matrix

$$
T_{1}=\left[\begin{array}{cc}
1 & 0 \tag{22}\\
-1 & 2
\end{array}\right]
$$

In fact, by applying T_{1} to equation (18) we obtain equation (21), i.e.,

$$
\begin{equation*}
T_{1} A x=T_{1} b \quad \Rightarrow \quad A_{1} x=b_{1} \tag{23}
\end{equation*}
$$

This can be verified by a direct calculation

$$
T_{1} A=\left[\begin{array}{cc}
1 & 0 \tag{24}\\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]=A_{1} \quad T_{1} b=\left[\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=b_{1}
$$

Gauss elimination method and row echelon forms of a matrix. The method we just described to transform a linear system in an "upper triangular" form is known as Gauss elimination method, and it can be applied to linear systems with an arbitrary number of linear equations and an arbitrary number of unknowns.

When performing Gaussian elimination is also convenient to interchange the rows of the augmented matrix so that the row with largest (in absolute value) entry acts as a pivot for the elimination step. This procedure is called Gauss elimination method with pivoting by row. In general, the following elementary row operations performed on the augmented matrix do not change the solution of the associated linear system of equations:

1. multiplication of one row by a non-zero number,
2. addition of one row to another, and
3. interchange two rows.

All these operations can be represented by invertible matrices. This implies that they do not change the solution of the system. In fact, if T is an invertible matrix then

$$
\begin{equation*}
A x=b \quad \Leftrightarrow \quad T A x=T b . \tag{25}
\end{equation*}
$$

In orther words, $A x=b$ and $T A x=T b$ have the same solution. Note that it is possible to transform $T A x=T b$ back into $A x=b$ if and only if T is invertible ${ }^{2}$. On the other hand, if T is not invertible then

$$
\begin{equation*}
A x=b \quad \Rightarrow \quad T A x=T b, \quad \text { but } \quad T A x=T b \nRightarrow A x=b . \tag{26}
\end{equation*}
$$

This means that the systems are not equivalent if T is not invertible. Let us clarify why elementary row operations on a matrix can be represented as multiplications by invertible matrices.

Example: Consider the following 2×4 matrix

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \tag{27}\\
-3 & 1 & 2 & -2
\end{array}\right]
$$

The interchange of the first and the second row is represented by the matrix T_{1}

$$
\left[\begin{array}{cccc}
-3 & 1 & 2 & -2 \tag{28}\\
1 & 2 & 1 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{T_{1}}\left[\begin{array}{ccc|c}
1 & 2 & 1 & 1 \\
-3 & 1 & 2 & -2
\end{array}\right]
$$

Similarly, multiplication of the first row by $-1 / 3$ is represented by the matrix T_{2}

$$
\left[\begin{array}{cccc}
1 & -1 / 3 & -2 / 3 & 2 / 3 \tag{29}\\
1 & 2 & 1 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-1 / 3 & 0 \\
0 & 1
\end{array}\right]}_{T_{2}} \underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{T_{1}}\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
-3 & 1 & 2 & -2
\end{array}\right]
$$

Finally, the subtraction of the first row from the second one is represented by the matrix T_{3}

$$
\left[\begin{array}{cccc}
1 & -1 / 3 & -2 / 3 & 2 / 3 \tag{30}\\
0 & 4 / 3 & 5 / 3 & 1 / 3
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]}_{T_{3}} \underbrace{\left[\begin{array}{cc}
-1 / 3 & 0 \\
0 & 1
\end{array}\right]}_{T_{2}} \underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{T_{1}}\left[\begin{array}{cccc}
1 & 2 & 1 & 1 \\
-3 & 1 & 2 & -2
\end{array}\right] .
$$

[^1]The matrices T_{1}, T_{2} and T_{3} are all invertible, and therefore their product $T=T_{3} T_{2} T_{1}$ is invertible ${ }^{3}$. The invertibility of T establishes a one-to-one correspondence between the matrix (27) and the matrix at the left hand side of (30).

The matrix (30) is said to be in row echelon form A matrix is in row echelon form if:
Whenever two successive rows do not consist entirely of zeros, then the second row starts with a non-zero entry at least one step further to the right than the first row. All the rows consisting entirely of zeros are at the bottom of the matrix. The row echelon form of a matrix is not unique.
Let us now show how to solve a linear system by using Gauss elimination with pivoting by row. To this end, consider the linear system

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=2 \tag{32}\\
2 x_{1}+x_{2}+x_{3}=1 \\
x_{1}+x_{2}+x_{3}=1
\end{array}\right.
$$

This system can be written in a matrix-vector form as

$$
\underbrace{\left[\begin{array}{lll}
1 & 2 & 1 \tag{33}\\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}_{x}=\underbrace{\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]}_{b} .
$$

Define the following augmented matrix associated with (32) (or equivalently (33))

$$
[A \mid b]=\left[\begin{array}{lll|l}
1 & 2 & 1 & 2 \tag{34}\\
2 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Note that the augmented matrix is obtained by concatenating the column vector b to the right of the matrix A. As we shall see hereafter, the Gauss elimination method with pivoting by row yields an augmented matrix in row echelon form.

Let us know describe the Gauss elimination method with pivoting by row which will transform the augmented matrix (34) in row echelon form.

1. Pivoting step: We select the equation with the largest absolute value of $a_{i 1}$, i.e., the second equation in (33), and we interchange it with the first to obtain

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}+x_{3}=1 \\
x_{1}+2 x_{2}+x_{3}=2 \\
x_{1}+x_{2}+x_{3}=1
\end{array}\right.
$$

$$
\left[\begin{array}{lll|l}
2 & 1 & 1 & 1 \\
1 & 2 & 1 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

(Augmented matrix of the new system)

[^2]2. Elimination step: We multiply the first equation by $-1 / 2$ and add it to the second and the third equation. This yields,
\[

\left\{$$
\begin{array} { l }
{ 2 x _ { 1 } + x _ { 2 } + x _ { 3 } = 1 } \\
{ x _ { 1 } + 2 x _ { 2 } + x _ { 3 } - x _ { 1 } - \frac { 1 } { 2 } x _ { 2 } - \frac { 1 } { 2 } x _ { 3 } = 2 - \frac { 1 } { 2 } } \\
{ x _ { 1 } + x _ { 2 } + x _ { 3 } - x _ { 1 } - \frac { 1 } { 2 } x _ { 2 } - \frac { 1 } { 2 } x _ { 3 } = 1 - \frac { 1 } { 2 } }
\end{array}
$$ \Rightarrow \left\{$$
\begin{array}{l}
2 x_{1}+x_{2}+x_{3}=1 \\
\frac{3}{2} x_{2}+\frac{1}{2} x_{3}=\frac{3}{2} \\
\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=\frac{1}{2}
\end{array}
$$\right.\right.
\]

Therefore, we obtain

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}+x_{3}=1 \\
\frac{3}{2} x_{2}+\frac{1}{2} x_{3}=\frac{3}{2} \\
\frac{1}{2} x_{2}+\frac{1}{2} x_{3}=\frac{1}{2}
\end{array}\right.
$$

$$
\left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
0 & 3 / 2 & 1 / 2 & 3 / 2 \\
0 & 1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]
$$

(Augmented matrix of the new system)
3. Pivoting step: We look for the equation with the maximum absolute value of the coefficient

4. Elimination step: We multiply the second equation by $-1 / 3$ and we add it to the last one to eliminate x_{2}

$$
\left\{\begin{array} { l }
{ 2 x _ { 1 } + x _ { 2 } + x _ { 3 } = 1 } \\
{ \frac { 3 } { 2 } x _ { 2 } + \frac { 1 } { 2 } x _ { 3 } = \frac { 3 } { 2 } } \\
{ \frac { 1 } { 2 } x _ { 2 } + \frac { 1 } { 2 } x _ { 3 } - \frac { 1 } { 2 } x _ { 2 } - \frac { 1 } { 6 } x _ { 3 } = \frac { 1 } { 2 } - \frac { 1 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
2 x_{1}+x_{2}+x_{3}=1 \\
\frac{3}{2} x_{2}+\frac{1}{2} x_{3}=\frac{3}{2} \\
\frac{1}{3} x_{3}=0
\end{array}\right.\right.
$$

Thus, we obtained

$$
\left\{\begin{array}{l}
2 x_{1}+x_{2}+x_{3}=1 \tag{35}\\
\frac{3}{2} x_{2}+\frac{1}{2} x_{3}=\frac{3}{2} \\
\frac{1}{3} x_{3}=0
\end{array} \quad\left[\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
0 & 3 / 2 & 1 / 2 & 3 / 2 \\
0 & 0 & 1 / 3 & 0
\end{array}\right]\right.
$$

At this point we can now use backward substitution (i.e. solve the system of equations form the bottom to the top). This yields the following unique solution to the system (33)

$$
\left\{\begin{array}{l}
x_{3}=0 \\
x_{2}=\frac{2}{3}\left(\frac{3}{2}-\frac{1}{2} x_{3}\right)=\frac{2}{3}\left(\frac{3}{2}-\frac{1}{2}(0)\right)=1 \\
x_{1}=\frac{1}{2}\left(1-x_{2}-x_{3}\right)=\frac{1}{2}(1-1-0)=0
\end{array}\right.
$$

Remark: For a given system of linear equations, the row echelon forms is not unique. In fact there is infinite number of ways by which the augmented matrix of a linear system can be transformed in a row echelon form. For example, if we perform Gauss elimination without pivoting in (33), then we obtain the following row echelon form

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=2 \tag{36}\\
-3 x_{2}-x_{3}=-3 \\
\frac{1}{3} x_{3}=0
\end{array}\right.
$$

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
0 & -3 & -1 & -3 \\
0 & 0 & 1 / 3 & 0
\end{array}\right]
$$

The row echelon forms (35) and (36) are different, but they are both obtained from by apply elementary row operations to the same linear system (33).

Reduced row echelon form. The Gauss elimination method with pivoting by row can be applied to any linear system of equations (e.g., 2 equations in 3 unknowns) to obtain a row echelon form. Once the row echelon form is available, then we can normalize the entries of a certain row by dividing them by the pivot, and then perform backward elimination to remove all entries above such pivot. In numerical linear algebra this is known as Jordan backward elimination. Let us show how this works. To this end, consider the system

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=2 \\
x_{2}+\frac{1}{3} x_{3}=1 \\
x_{3}=0
\end{array}\right.
$$

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
0 & 1 & 1 / 3 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

(row echelon form)
Multiply the third equation by $1 / 3$ and 1 , respectively, and subtract it from the second and first equation, respectively. This yields

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}=2 \\
x_{2}=1 \\
x_{3}=0
\end{array} \quad\left[\begin{array}{lll|l}
1 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

(still in row echelon form)
Finally, multiply the second equation by 2 and subtract it from the first equation to obtain

$$
\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=1 \\
x_{3}=0
\end{array} \quad\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

(reduced row echelon form)

The augmented matrix of a linear system is in a reduced row echelon form if: 1) it is in an echelon form; and 2) in every pivot column, the pivot value is 1 and all other entries are 0 . The reduced row echelon form of a matrix or linear system is unique.

Example: Consider the augmented matrix in row echelon form we obtained by performing Gauss elimination on (33) without pivoting, i.e.,

$$
\begin{cases}x_{1}+2 x_{2}+x_{3}=2 \\
-3 x_{2}-x_{3}=-3 & {\left[\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
0 & -3 & -1 & -3 \\
0 & 0 & 1 / 3 & 0
\end{array}\right]} \\
\frac{1}{3} x_{3}=0 & \text { (row echelon form) }\end{cases}
$$

To obtain the reduced row echelon form, we first rescale the third equation equation by multiplying it by 3 . This yields,

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+x_{3}=2 \\
-3 x_{2}-x_{3}=-3 \\
x_{3}=0
\end{array} \quad\left[\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
0 & -3 & -1 & -3 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

(row echelon form)
Next, we perform backward elimination of x_{3} to obtain

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}=2 \\
-3 x_{2}=-3 \\
x_{3}=0
\end{array} \quad\left[\begin{array}{ccc|c}
1 & 2 & 0 & 2 \\
0 & -3 & 0 & -3 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

(row echelon form)
At this point, we rescale the second equation by $-1 / 3$ and use it to eliminate x_{2} in the first equation. This yields

$$
\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=1 \\
x_{3}=0
\end{array} \quad\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\right.
$$

(reduced row echelon form)
Note that the last column of the reduced-row echelon form is the solution of the system (33).

Example: The following matrices are in a reduced row echelon form

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 5 & 7
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{cccccc}
1 & 2 & 0 & 6 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example: The following matrices are not in a reduced row echelon form

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 5 & 7
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 3 & 0
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{cccccc}
1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Remark: A linear system is said to be consistent if admits a solution. A system admits a solution (and therefore it is consistent) if and only if the row echelon form (or the reduced row echelon form) of the augmented matrix has no row of the form:

$$
\left[\begin{array}{llll|l}
0 & 0 & \ldots & 0 & z
\end{array}\right], \quad z \neq 0
$$

If the system is consistent then we can have one (unique) solution or infinitely many. An example of a system that is not consistent is the following

$$
\left\{\begin{array}{l}
x_{1}+x_{2}-x_{3}=1 \\
x_{1}+x_{2}-x_{3}=4
\end{array}\right.
$$

This system defines two parallel planes (not intersecting). The reduced row echelon form of the augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

and therefore the system is not consistent.

Computation of the inverse matrix. Let $A \in M_{n \times n}$ be an invertible matrix. By definition, the inverse of A is a square matrix denoted as A^{-1} with the following properties

$$
\begin{equation*}
A A^{-1}=I_{n} \quad A^{-1} A=I_{n}, \tag{37}
\end{equation*}
$$

where I_{n} is the $n \times n$ identity matrix. Let h_{i} be the columns of the matrix A^{-1}, i.e.,

$$
A^{-1}=\left[\begin{array}{llll}
h_{1} & h_{2} & \cdots & h_{n} \tag{38}
\end{array}\right] \quad h_{i} \in M_{n \times 1} \quad i=1, \ldots, n .
$$

By definition of matrix-vector product we have

$$
A A^{-1}=\left[\begin{array}{llll}
A h_{1} & A h_{2} & \cdots & A h_{n} \tag{39}
\end{array}\right] .
$$

At this point we define the following column vectors $e_{i} \in M_{n \times 1}(i=1, \ldots, n)$

$$
e_{1}=\left[\begin{array}{c}
1 \tag{40}\\
0 \\
\vdots \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \quad \cdots, \quad e_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]
$$

Note that e_{i} is the i-th column of the identity matrix I_{n}. With this notation we can write the matrix equation $A A^{-1}=I_{n}$ as

$$
\left[\begin{array}{llll}
A h_{1} & A h_{2} & \cdots & A h_{n}
\end{array}\right]=\left[\begin{array}{llll}
e_{1} & e_{2} & \cdots & e_{n} \tag{41}
\end{array}\right]
$$

Hence, the n columns of the inverse matrix A^{-1}, i.e., h_{1}, \ldots, h_{n} are solutions to n linear systems

$$
\begin{equation*}
A h_{1}=e_{1}, \quad A h_{2}=e_{2}, \quad \ldots, \quad A h_{n}=e_{n} \tag{42}
\end{equation*}
$$

To solve these systems we can compute the reduced row echelon form of the following augmented matrices

$$
\begin{equation*}
\left[A \mid e_{1}\right], \quad\left[A \mid e_{2}\right], \quad \ldots, \quad\left[A \mid e_{n}\right] \tag{43}
\end{equation*}
$$

If A is invertible, then A can be row-reduced to I_{n}. This means that the reduced row echelon form of the systems (43) is

$$
\begin{equation*}
\left[I_{n} \mid h_{1}\right], \quad\left[I_{n} \mid h_{2}\right], \quad \ldots, \quad\left[I_{n} \mid h_{n}\right] \tag{44}
\end{equation*}
$$

where h_{i} is the i-the column of the inverse matrix.
More compactly, we can compute the reduced row echelon form of the matrix

$$
\begin{equation*}
\left[A \mid I_{n}\right] \quad \text { to obtain } \quad\left[I_{n} \mid A^{-1} .\right] \tag{45}
\end{equation*}
$$

Example: Compute the inverse of the following 2×2 matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \tag{46}\\
1 & 1
\end{array}\right]
$$

We begin by constructing the augmented matrix $\left[A \mid I_{2}\right]$

$$
\left[A \mid I_{2}\right]=\left[\begin{array}{ll|ll}
1 & 2 & 1 & 0 \tag{47}\\
1 & 1 & 0 & 1
\end{array}\right]
$$

Then we transform the augmented matrix into row-reduced echelon form as

$$
\begin{gather*}
{\left[\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}: R_{2}-R_{1}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right] \xrightarrow{R_{2}:-R_{2}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right]} \tag{48}\\
\xrightarrow{R_{1}: R_{1}-2 R_{2}}[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \underbrace{-1}_{A^{-1}} \begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}] \tag{49}
\end{gather*} .
$$

Hence, the inverse of the matrix A defined in (46) is

$$
A^{-1}=\left[\begin{array}{cc}
-1 & 2 \tag{50}\\
1 & -1
\end{array}\right]
$$

It is good practice to verify that A^{-1} is indeed the inverse of A. To this end, we just need to check that $A A^{-1}=I_{2}$

$$
A A^{-1}=\left[\begin{array}{ll}
1 & 2 \tag{51}\\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}
$$

Example: Compute the inverse of the following 3×3 matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \tag{52}\\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

As before,

$$
\left[\begin{array}{lll|lll}
1 & 2 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow[R_{3}: R_{3}-R_{1}]{R_{2}: R_{2}-R_{1}}\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & -1 & 1 & 0 \\
0 & -2 & 1 & -1 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}:-R_{2}}\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 \\
0 & -2 & 1 & -1 & 0 & 1
\end{array}\right]
$$

$$
\begin{align*}
\xrightarrow{R_{3}: R_{3}+2 R_{2}}\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & -2 & 1
\end{array}\right] \xrightarrow{R_{3}:-R_{3}}\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 & 2 & -1
\end{array}\right] \xrightarrow{R_{2}: R_{2}+R_{3}} \xrightarrow{\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 2 & -1
\end{array}\right] \xrightarrow{R_{1}: R_{1}-2 R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & -2 & 2 \\
0 & 1 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 2 & -1
\end{array}\right] .}
\end{align*}
$$

Therefore, the inverse of the matrix A defined in (52) is

$$
A^{-1}=\left[\begin{array}{ccc}
1 & -2 & 2 \tag{54}\\
0 & 1 & -1 \\
-1 & 2 & -1
\end{array}\right]
$$

[^0]: ${ }^{1}$ The vast majority of vector spaces are constructed over the field \mathbb{R} or \mathbb{C}.

[^1]: ${ }^{2}$ Just apply T^{-1} to $T A x=T b$ to obtain $A x=b$.

[^2]: ${ }^{3}$ Recall that the inverse of a production of invertible matrices T_{1}, T_{2} and T_{3} is invertible and that

 $$
 \begin{equation*}
 \left(T_{3} T_{2} T_{1}\right)^{-1}=T_{1}^{-1} T_{2}^{-1} T_{3}^{-1} \tag{31}
 \end{equation*}
 $$

