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Lecture 5: Linear equations

An equation in n variables is linear if it can be written in the form

anxn + . . . + a1x1 = b. (1)

The numbers {a1, . . . , an} are the coefficients of the equation, while b is usually called constant
term.

The variables xj and the constant term b can be elements of rather general vector spaces. For
example, xj can be vectors in Rn, n × m matrices with real entries, or real-valued continuous
functions, while ai are usually real or complex numbers1.

Examples: Let us provide a few simple examples of linear equations in the space Rn for n = 2 and
n = 3. The elements of Rn are n-tuples of real numbers of the form

x = (x1, . . . , xn) xi ∈ R. (2)

In a matrix setting, x can be represented as a row vector or as a column vector

x =

x1
...
xn

 , x =
[
x1 · · · xn

]
. (3)

(a) The linear equation
a1x1 + a2x2 = b a1, a2, b ∈ R (4)

represents a line in R2. In fact, if a2 6= 0 then we can express x2 in terms of x1 as

x2 = −a1
a2

x1 +
b

a2
. (5)

The graph x2 versus x1 is, e.g.,

X2
A

xz =-x1+
b/OV2

↳Be

0 X1

If a2 = 0 and a1 6= 0 we obtain the vertical line x1 = b/a1. Lastly, if a1 = a2 = 0 then we
necessarily have b = 0 and the linear equation reduces to 0 = 0, which is uninformative.

1The vast majority of vector spaces are constructed over the field R or C.
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(b) The linear equation
a3x3 + a2x2 + a1x1 = b ai, b ∈ R (6)

represents a plane in R3. Such a plane is a two-dimensional surface embedded in three dimen-
sional space, which can be sketched as follows

Pane

Yst
⑧ W

0 X2
·z/

*X1

This plane can be also expressed as a linear combination (linear equation) of two 3D vectors
lying on the plane, plus a constant 3D vector.

(c) The following linear equation represents a so-called hyper-plane in Rn (n ≥ 4).

anxn + · · ·+ a1x1 = b ai, b ∈ R (7)

Systems of linear equations. A system of m linear equations of the form (1) can be written
as 

a11x1 + . . . + a1nxn = b1
...

am1x1 + . . . + amnxn = bn

(8)

For example, {
3x1 + 2x2 = 1

x1 − 5x2 = 0
2 equations in 2 variables

{
5x1 − x3 = 3

x1 + 2x2 − 8x3 = 5
2 equations in 3 variables

A solution to the linear system (8) is a set n variables (x1, . . . , xn) satisfying all equations in (8).
In general, linear systems can have

1. Exactly one solution

2. No solution

3. Infinite solutions
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Geometric interpretation:

• We have seen that a linear equation in R2 defines a line in the Cartesian plane. Hence, the
following system of two equations in R2{

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2
(9)

defines two lines. Such lines can intersect at one point (unique solution), can be parallel (no
solutions) or they can be superimposed (infinite solutions).

ONESOLUTION

*onian
X2

ution-
↑

INFINITESOLUTIONS

Y-*
• We have seen that a linear equation in R3 defines a plane in the three-dimensional space.

Hence, the following three equations in R3
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x2 = b2

a31x1 + a32x2 + a33x3 = b3

(10)

define three planes. Such planes can intersect at one point (unique solution), can be parallel
and distinct (no solution if just two planes are parallel), or they can intersect along one
line (infinite solutions, one-dimensional set), or even be the same plane (infinite solutions,
two-dimensional set).

ONESOLUTION

~

PLANE3

itinthe
NO SOLUTION

-
PLANE1

&PLANE 2
W

-

XPLANE3

INFINITESOLUTIONS

W PLANE 3

INFINITE
SOLUTIONS

o
W

- -
PLANE1 AND 2

COINCIDE

W
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Remark: A linear system of m equations in n variables can be written in a compact matrix-vector
form as

Ax = b (11)

where

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 , x =

x1
...
xn

 , b =

 b1...
bm

 . (12)

Solving a linear system of equations. Let us begin with the the following simple example of a
system of 2 linear equations in 2 unknowns{

x1 + x2 = 3

x1 − 2x2 = 1
(13)

Clearly, we can express x1 in terms of x2 by using the second equation,i.e.,

x1 = 1 + 2x2 (14)

and then substitute this result into the first equation to obtain

1 + 2x2 + x2 = 3 ⇒ x2 =
2

3
(15)

x1 = 1 + 2

(
2

3

)
⇒ x1 =

7

3
(16)

Note that x1 = 2/3 and x2 = 7/3 satisfy (13). The method we just described, is not very efficient
for linear systems in higher dimensions, e.g.,

x1 + x2 + x3 + x4 − 3x5− = 1

x1 − x2 + x3 − x4 − 12x5 = 2

3x1 − 3x2 + x3 + x4 + x5 = −2

−x1 + 2x2 + x3 + x4 +−4x5 = −2

−4x1 − x2 + x3 + x4 + x5 = −2

A more effective method relies on transforming a linear system into an equivalent one, i.e., a systems
with the same solutions, that is easier to solve. The key observation is the following:

The solution of a linear system does not change if we replace one equation with a linear combination
of that equation and others in the system (we will see why!).

Is this true? Let us verify the statement in the simplest possible setting, i.e., for the 2 × 2 linear
system {

2x1 + x2 = 1

x1 + x2 = 0
. (17)
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This system can be written in a matrix-vector form as[
2 1
1 1

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

=

[
1
0

]
︸︷︷︸

b

. (18)

The solution is clearly x1 = 1 and x2 = −1. Let us now replace the second equation in (17), i.e.,
x1 + x2 = 0, with the first equation multiplied by 2 plus the second. This yields{

2x1 + x2 = 1

5x1 + 3x2 = 2
(19)

which still has the unique solution x1 = 1 and x2 = −1. So the statement seems to be true.

If we replace the second equation in (17) by the second equation multiplied by 2 itself minus the
first equation we can eliminate the variable x1 to obtain{

2x1 + x2 = 1

x2 = −1
(20)

This system can be written in a matrix-vector form as[
2 1
0 1

]
︸ ︷︷ ︸

A1

[
x1

x2

]
︸︷︷︸

x

=

[
1
−1

]
︸ ︷︷ ︸

b1

(21)

The matrix A has an upper-trianglar triangular structure which allows us to solve the system by
using backward substitution, i.e., solving the last equation first and then substituting the result back
into into the previous equations.

Remark: Note that the operation we just described, i.e, “subtract the first equation from the second
multiplied by 2” can be represented by a lower-triangular (invertible) matrix

T1 =

[
1 0
−1 2

]
(22)

In fact, by applying T1 to equation (18) we obtain equation (21), i.e.,

T1Ax = T1b ⇒ A1x = b1 (23)

This can be verified by a direct calculation

T1A =

[
1 0
−1 2

] [
2 1
1 1

]
=

[
2 1
0 1

]
= A1 T1b =

[
1 0
−1 2

] [
1
0

]
=

[
1
−1

]
= b1. (24)

Gauss elimination method and row echelon forms of a matrix. The method we just
described to transform a linear system in an “upper triangular” form is known as Gauss elimination
method, and it can be applied to linear systems with an arbitrary number of linear equations and
an arbitrary number of unknowns.
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When performing Gaussian elimination is also convenient to interchange the rows of the augmented
matrix so that the row with largest (in absolute value) entry acts as a pivot for the elimination step.
This procedure is called Gauss elimination method with pivoting by row. In general, the following
elementary row operations performed on the augmented matrix do not change the solution of the
associated linear system of equations:

1. multiplication of one row by a non-zero number,

2. addition of one row to another, and

3. interchange two rows.

All these operations can be represented by invertible matrices. This implies that they do not change
the solution of the system. In fact, if T is an invertible matrix then

Ax = b ⇔ TAx = Tb. (25)

In orther words, Ax = b and TAx = Tb have the same solution. Note that it is possible to transform
TAx = Tb back into Ax = b if and only if T is invertible2. On the other hand, if T is not invertible
then

Ax = b ⇒ TAx = Tb, but TAx = Tb 6=⇒ Ax = b. (26)

This means that the systems are not equivalent if T is not invertible. Let us clarify why elementary
row operations on a matrix can be represented as multiplications by invertible matrices.

Example: Consider the following 2× 4 matrix[
1 2 1 1
−3 1 2 −2

]
(27)

The interchange of the first and the second row is represented by the matrix T1[
−3 1 2 −2
1 2 1 1

]
=

[
0 1
1 0

]
︸ ︷︷ ︸

T1

[
1 2 1 1
−3 1 2 −2

]
(28)

Similarly, multiplication of the first row by −1/3 is represented by the matrix T2[
1 −1/3 −2/3 2/3
1 2 1 1

]
=

[
−1/3 0

0 1

]
︸ ︷︷ ︸

T2

[
0 1
1 0

]
︸ ︷︷ ︸

T1

[
1 2 1 1
−3 1 2 −2

]
(29)

Finally, the subtraction of the first row from the second one is represented by the matrix T3[
1 −1/3 −2/3 2/3
0 4/3 5/3 1/3

]
=

[
1 0
−1 1

]
︸ ︷︷ ︸

T3

[
−1/3 0

0 1

]
︸ ︷︷ ︸

T2

[
0 1
1 0

]
︸ ︷︷ ︸

T1

[
1 2 1 1
−3 1 2 −2

]
. (30)

2Just apply T−1 to TAx = Tb to obtain Ax = b.

Page 6



AM 10 Prof. Daniele Venturi

The matrices T1, T2 and T3 are all invertible, and therefore their product T = T3T2T1 is invertible3.
The invertibility of T establishes a one-to-one correspondence between the matrix (27) and the
matrix at the left hand side of (30).

The matrix (30) is said to be in row echelon form A matrix is in row echelon form if:

Whenever two successive rows do not consist entirely of zeros, then the second row starts with a
non-zero entry at least one step further to the right than the first row. All the rows consisting
entirely of zeros are at the bottom of the matrix. The row echelon form of a matrix is not unique.

Let us now show how to solve a linear system by using Gauss elimination with pivoting by row. To
this end, consider the linear system 

x1 + 2x2 + x3 = 2

2x1 + x2 + x3 = 1

x1 + x2 + x3 = 1

(32)

This system can be written in a matrix-vector form as1 2 1
2 1 1
1 1 1


︸ ︷︷ ︸

A

x1

x2

x3


︸ ︷︷ ︸

x

=

2
1
1


︸︷︷︸

b

. (33)

Define the following augmented matrix associated with (32) (or equivalently (33))

[A|b] =

1 2 1 2
2 1 1 1
1 1 1 1

 (34)

Note that the augmented matrix is obtained by concatenating the column vector b to the right of
the matrix A. As we shall see hereafter, the Gauss elimination method with pivoting by row yields
an augmented matrix in row echelon form.

Let us know describe the Gauss elimination method with pivoting by row which will transform the
augmented matrix (34) in row echelon form.

1. Pivoting step: We select the equation with the largest absolute value of ai1, i.e., the second
equation in (33), and we interchange it with the first to obtain

2x1 + x2 + x3 = 1

x1 + 2x2 + x3 = 2

x1 + x2 + x3 = 1

2 1 1 1
1 2 1 2
1 1 1 1


(Augmented matrix of the new system)

3Recall that the inverse of a production of invertible matrices T1, T2 and T3 is invertible and that

(T3T2T1)
−1

= T−1
1 T−1

2 T−1
3 . (31)
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2. Elimination step: We multiply the first equation by −1/2 and add it to the second and the
third equation. This yields,

2x1 + x2 + x3 = 1

x1 + 2x2 + x3 − x1 −
1

2
x2 −

1

2
x3 = 2− 1

2

x1 + x2 + x3 − x1 −
1

2
x2 −

1

2
x3 = 1− 1

2

⇒


2x1 + x2 + x3 = 1

3

2
x2 +

1

2
x3 =

3

2
1

2
x2 +

1

2
x3 =

1

2
Therefore, we obtain

2x1 + x2 + x3 = 1

3

2
x2 +

1

2
x3 =

3

2
1

2
x2 +

1

2
x3 =

1

2

2 1 1 1
0 3/2 1/2 3/2
0 1/2 1/2 1/2


(Augmented matrix of the new system)

3. Pivoting step: We look for the equation with the maximum absolute value of the coefficient
aj2, (j ≥ 2). In this case, it is the second equation. Hence, we do not do any permutation.

4. Elimination step: We multiply the second equation by −1/3 and we add it to the last one to
eliminate x2 

2x1 + x2 + x3 = 1

3

2
x2 +

1

2
x3 =

3

2
1

2
x2 +

1

2
x3 −

1

2
x2 −

1

6
x3 =

1

2
− 1

2

⇒


2x1 + x2 + x3 = 1

3

2
x2 +

1

2
x3 =

3

2
1

3
x3 = 0

Thus, we obtained
2x1 + x2 + x3 = 1
3

2
x2 +

1

2
x3 =

3

2
1

3
x3 = 0

2 1 1 1
0 3/2 1/2 3/2
0 0 1/3 0

 (35)

(Augmented matrix in row echelon form)

At this point we can now use backward substitution (i.e. solve the system of equations form the
bottom to the top). This yields the following unique solution to the system (33)

x3 = 0

x2 =
2

3

(
3

2
− 1

2
x3

)
=

2

3

(
3

2
− 1

2
(0)

)
= 1

x1 =
1

2
(1− x2 − x3) =

1

2
(1− 1− 0) = 0

Remark: For a given system of linear equations, the row echelon forms is not unique. In fact there
is infinite number of ways by which the augmented matrix of a linear system can be transformed in
a row echelon form. For example, if we perform Gauss elimination without pivoting in (33), then
we obtain the following row echelon form
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x1 + 2x2 + x3 = 2

−3x2 − x3 = −3

1

3
x3 = 0

1 2 1 2
0 −3 −1 −3
0 0 1/3 0

 (36)

(Augmented matrix in row echelon form)

The row echelon forms (35) and (36) are different, but they are both obtained from by apply
elementary row operations to the same linear system (33).

Reduced row echelon form. The Gauss elimination method with pivoting by row can be applied
to any linear system of equations (e.g., 2 equations in 3 unknowns) to obtain a row echelon form.
Once the row echelon form is available, then we can normalize the entries of a certain row by
dividing them by the pivot, and then perform backward elimination to remove all entries above such
pivot. In numerical linear algebra this is known as Jordan backward elimination. Let us show how
this works. To this end, consider the system

x1 + 2x2 + x3 = 2

x2 +
1

3
x3 = 1

x3 = 0

1 2 1 2
0 1 1/3 1
0 0 1 0


( row echelon form)

Multiply the third equation by 1/3 and 1, respectively, and subtract it from the second and first
equation, respectively. This yields


x1 + 2x2 = 2

x2 = 1

x3 = 0

1 2 0 2
0 1 0 1
0 0 1 0


(still in row echelon form)

Finally, multiply the second equation by 2 and subtract it from the first equation to obtain


x1 = 0

x2 = 1

x3 = 0

1 0 0 0
0 1 0 1
0 0 1 0


(reduced row echelon form)

The augmented matrix of a linear system is in a reduced row echelon form if: 1) it is in an echelon
form; and 2) in every pivot column, the pivot value is 1 and all other entries are 0. The reduced
row echelon form of a matrix or linear system is unique.
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Example: Consider the augmented matrix in row echelon form we obtained by performing Gauss
elimination on (33) without pivoting, i.e.,

x1 + 2x2 + x3 = 2

−3x2 − x3 = −3

1

3
x3 = 0

1 2 1 2
0 −3 −1 −3
0 0 1/3 0


(row echelon form)

To obtain the reduced row echelon form, we first rescale the third equation equation by multiplying
it by 3. This yields,


x1 + 2x2 + x3 = 2

−3x2 − x3 = −3

x3 = 0

1 2 1 2
0 −3 −1 −3
0 0 1 0


(row echelon form)

Next, we perform backward elimination of x3 to obtain


x1 + 2x2 = 2

−3x2 = −3

x3 = 0

1 2 0 2
0 −3 0 −3
0 0 1 0


(row echelon form)

At this point, we rescale the second equation by −1/3 and use it to eliminate x2 in the first equation.
This yields


x1 = 0

x2 = 1

x3 = 0

1 0 0 0
0 1 0 1
0 0 1 0


(reduced row echelon form)

Note that the last column of the reduced-row echelon form is the solution of the system (33).

Example: The following matrices are in a reduced row echelon form

[
1 0 0 0
0 1 5 7

]
,

1 0 0 0
0 1 3 0
0 0 0 1

 ,

1 0 0 0
0 0 1 −4
0 0 0 0

 ,


1 2 0 6 0 0
0 0 1 0 0 0
0 0 0 0 1 −2
0 0 0 0 0 0

 .

Example: The following matrices are not in a reduced row echelon form

[
1 0 0 0
0 2 5 7

]
,

1 0 0 0
0 0 0 1
0 1 3 0

 ,

1 0 0 0
0 0 1 −4
0 0 0 1

 ,


1 2 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 −2
0 0 0 1 0 0

 .

Page 10



AM 10 Prof. Daniele Venturi

Remark: A linear system is said to be consistent if admits a solution. A system admits a solution
(and therefore it is consistent) if and only if the row echelon form (or the reduced row echelon form)
of the augmented matrix has no row of the form:[

0 0 . . . 0 z
]
, z 6= 0

If the system is consistent then we can have one (unique) solution or infinitely many. An example
of a system that is not consistent is the following{

x1 + x2 − x3 = 1

x1 + x2 − x3 = 4

This system defines two parallel planes (not intersecting). The reduced row echelon form of the
augmented matrix is [

1 1 −1 1
0 0 0 4

]
,

and therefore the system is not consistent.

Computation of the inverse matrix. Let A ∈Mn×n be an invertible matrix. By definition, the
inverse of A is a square matrix denoted as A−1 with the following properties

AA−1 = In A−1A = In, (37)

where In is the n× n identity matrix. Let hi be the columns of the matrix A−1, i.e.,

A−1 = [h1 h2 · · · hn] hi ∈Mn×1 i = 1, . . . , n. (38)

By definition of matrix-vector product we have

AA−1 = [Ah1 Ah2 · · · Ahn]. (39)

At this point we define the following column vectors ei ∈Mn×1 (i = 1, ..., n)

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 . (40)

Note that ei is the i-th column of the identity matrix In. With this notation we can write the
matrix equation AA−1 = In as

[Ah1 Ah2 · · · Ahn] = [e1 e2 · · · en]. (41)

Hence, the n columns of the inverse matrix A−1, i.e., h1, ...., hn are solutions to n linear systems

Ah1 = e1, Ah2 = e2, . . . , Ahn = en. (42)

To solve these systems we can compute the reduced row echelon form of the following augmented
matrices [

A e1
]
,

[
A e2

]
, . . . ,

[
A en

]
(43)
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If A is invertible, then A can be row-reduced to In. This means that the reduced row echelon form
of the systems (43) is [

In h1

]
,

[
In h2

]
, . . . ,

[
In hn

]
, (44)

where hi is the i-the column of the inverse matrix.

More compactly, we can compute the reduced row echelon form of the matrix[
A In

]
to obtain

[
In A−1.

]
(45)

Example: Compute the inverse of the following 2× 2 matrix

A =

[
1 2
1 1

]
. (46)

We begin by constructing the augmented matrix [A|I2][
A I2

]
=

[
1 2 1 0
1 1 0 1

]
(47)

Then we transform the augmented matrix into row-reduced echelon form as[
1 2 1 0
1 1 0 1

]
R2 : R2 −R1−−−−−−−→

[
1 2 1 0
0 −1 −1 1

]
R2 : −R2−−−−−→

[
1 2 1 0
0 1 1 −1

]
(48)

R1 : R1 − 2R2−−−−−−−−→
[

1 0
0 1

∣∣∣∣ −1 2
1 −1

]
︸ ︷︷ ︸

A−1

. (49)

Hence, the inverse of the matrix A defined in (46) is

A−1 =

[
−1 2
1 −1

]
. (50)

It is good practice to verify that A−1 is indeed the inverse of A. To this end, we just need to check
that AA−1 = I2

AA−1 =

[
1 2
1 1

] [
−1 2
1 −1

]
=

[
1 0
0 1

]
= I2 (51)

Example: Compute the inverse of the following 3× 3 matrix

A =

1 2 0
1 1 1
1 0 1

 . (52)

As before,1 2 0 1 0 0
1 1 1 0 1 0
1 0 1 0 0 1

 R2 : R2 −R1−−−−−−−→
R3 : R3 −R1

1 2 0 1 0 0
0 −1 1 −1 1 0
0 −2 1 −1 0 1

 R2 : −R2−−−−−→

1 2 0 1 0 0
0 1 −1 1 −1 0
0 −2 1 −1 0 1
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R3 : R3 + 2R2−−−−−−−−→

1 2 0 1 0 0
0 1 −1 1 −1 0
0 0 −1 1 −2 1

 R3 : −R3−−−−−→

1 2 0 1 0 0
0 1 −1 1 −1 0
0 0 1 −1 2 −1

 R2 : R2 +R3−−−−−−−→

1 2 0 1 0 0
0 1 0 0 1 −1
0 0 1 −1 2 −1

 R1 : R1 − 2R2−−−−−−−−→

1 0 0 1 −2 2
0 1 0 0 1 −1
0 0 1 −1 2 −1

 . (53)

Therefore, the inverse of the matrix A defined in (52) is

A−1 =

 1 −2 2
0 1 −1
−1 2 −1

 . (54)

Page 13


