Lecture 6: Vector spaces

Vector spaces are sets in which we define an addition operation and a multiplication by a scalar satisfying certain number of properties. Let us first give a formal definition of vector space and then provide a few examples. Consider a nonempty set V in which define an addition operation "+" satisfying the following properties¹:

1. $\forall u, v \in V \ (u+v) \in V$ (V is closed under the addition operation)2. $\forall u, v \in V \ u+v = v+u$ (addition is commutative)3. $\forall u, v, w \in V \ (u+v) + w = u + (v+w) \in V$ (addition is associative)4. $\exists 0_V \in V$ such that $u + 0_V = u$ $\forall u \in V$ 5. $\forall u \in V, \exists v \in V$ such that $u + v = 0_V$ (opposite element)

We also define the multiplication operation between an element of the set V and an element of a field K (e.g., \mathbb{R} or \mathbb{C}) with the following properties:

1. $av \in V \quad \forall a \in K, \quad \forall v \in V$ 2. $(a+b)v = av + bv \quad \forall a, b \in K, \quad \forall v \in V$ 3. $a(v+w) = av + aw \quad \forall a \in K, \quad \forall v, w \in V$ 4. $(ab)v = a(bv) \quad \forall a, b \in K, \quad \forall v \in V$ 5. $1v = v \quad 1 \in K, \forall v \in V$

Definition (Vector space). A nonempty set V in which we define an addition operation and a multiplication operation satisfying the properties listed above is called *vector space* over K.

Let us provide a few examples of vector spaces over the real or complex numbers.

• The space \mathbb{R}^n (*n*-tuples of real numbers) with the addition operation defined as $u + v = (u_1, \ldots, u_n) + (v_1, \ldots, v_n) = (u_1 + v_1, \ldots, u_n + v_n)$ is a vector space over \mathbb{R} . The neutral element with respect to the addition operation is $0_{\mathbb{R}^n} = (0, 0, \ldots, 0)$. Here is a simple visualization of a vector u in the vector spaces \mathbb{R}^2 and \mathbb{R}^3 .

¹A set V satisfying properties 1 to 5 is called "Abelian group".

• $V = M_{m \times n}(\mathbb{R})$, i.e., the set of real $m \times n$ matrices with the addition operation we defined in Lecture 4, is a vector space over \mathbb{R} . The neutral element with respect to the addition operation is

$$0_{M_{m \times n}} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
(zero matrix). (1)

- $V = M_{n \times m}(\mathbb{C})$ is a vector space over \mathbb{C} and over \mathbb{R} .
- $V = \mathbb{P}_n(\mathbb{R})$, i.e., the space of polynomials of degree *n* with real coefficients, is a vector space over \mathbb{R} . An element of $\mathbb{P}_n(\mathbb{R})$ is

$$p(x) = a_0 + a_1 x + \dots + a_n x^n, \qquad a_j \in \mathbb{R}, \quad x \in \mathbb{R}.$$
(2)

The addition operation between two polynomials, say $p(x) = a_0 + a_1x + \cdots + a_nx^n$ and $q(x) = b_0 + b_1x + \cdots + b_nx^n$, is defined as

$$p(x) + q(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n, \qquad a_j, b_j \in \mathbb{R}, \quad x \in \mathbb{R}.$$
 (3)

The neutral element with respect to the addition operation is the zero polynomial p(x) = 0.

- $V = C^{(1)}(\mathbb{R})$ (space of real-valued continuously differentiable functions defined on the real line) is a vector space over \mathbb{R} . An element of $C^{(1)}(\mathbb{R})$ is, e.g., $v(x) = e^{-x^2} \sin(x)$. The neutral element with respect to the addition operation is the zero function v(x) = 0.
- Then space of linear transformations between two vector spaces V and W is a vector space over \mathbb{R} . The elements of such vector space are linear maps $\mathcal{L}: V \to W$.

Vector subspace. Let V be a vector space over a field K. We say that $W \subseteq V$ is a vector subspace of V if

- 1. $0_V \in W$
- 2. $u, v \in W \implies (u+v) \in W$
- 3. $cu \in W \quad \forall u \in W, \quad \forall c \in K$

Clearly, a vector subspace is itself a vector space. Note that the only condition we need for $W \subseteq V$ to be a vector subspace of V is that it is closed under addition and multiplication.

Example 1: A line passing through the origin of a Cartesian coordinate system is a vector subspace of \mathbb{R}^2 . In fact, such line is defined by the set of points $(x_1, x_2) \in \mathbb{R}^2$ satisfying the equation $a_1x_1 + a_2x_2 = 0$ (for some $a_1, a_2 \in \mathbb{R}$). As we shall see hereafter, the set

$$W = \{ (x_1, x_2) \in \mathbb{R}^2 : a_1 x_1 + a_2 x_2 = 0 \},$$
(4)

which represents the line, can be equivalently written as (assuming $a_2 \neq 0$)

$$W = \left\{ u \in \mathbb{R}^2 : u = x(1, -a_1/a_2), \quad x \in \mathbb{R} \right\}.$$
 (5)

Clearly, W is a vector subspace of \mathbb{R}^2 . In fact, 1) the zero of \mathbb{R}^2 is in W (the line passes through the origin); 2) a rescaling of a vector u on the line W is either zero or a vector that is still on the

line; 3) the addition of two vectors u and v on the line is either zero or it is a vector that sits on the same line.

Example 2: A plane passing through the origin of a three-dimensional Cartesian coordinate system is a vector subspace of \mathbb{R}^3 . Such plane can be defined as

$$W = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : a_1 x_1 + a_2 x_2 + a_3 x_3 = 0 \qquad a_1, a_2, a_3 \in \mathbb{R} \}.$$
 (6)

Clearly, W is a vector subspace of \mathbb{R}^3 . In fact, 1) the zero of \mathbb{R}^3 is in W (the plane passes through the origin); 2) a rescaling of a vector u on the plane is either zero or a vector that is still on the plane; 3) the addition of two vectors on the plane is either zero or a vector on the plane.

Example 3: The space of continuously differentiable functions is a vector subspace of the space of continuous functions. In fact: 1) the addition between two differentiable functions f(x) and g(x) is a differentiable function f(x) + g(x); 2) multiplication of a differentiable function f(x) by a scalar c is a differentiable function cf(x).

Example 4: The space 3×3 symmetric matrices is a vector subspace of $M_{3\times 3}(\mathbb{R})$. In fact, if A and B are symmetric then: 1) A + B is symmetric, 2) the zero matrix $0_{M_{3\times 3}}$ is symmetric, and 3) cA is symmetric for all $c \in \mathbb{R}$.

Example 5: The space of polynomials of degree at most 3, i.e., $\mathbb{P}_3(\mathbb{R})$, is a vector subspace of the space of polynomials of degree at most 8, i.e., $\mathbb{P}_8(\mathbb{R})$.

Linear combination. Let V be a vector space over K. A linear combination of $v_1, \ldots, v_n \in V$ is an expression of the form

$$x_1v_1 + \dots + x_nv_n. \tag{7}$$

We say that the set of vectors $v_1, \ldots, v_n \in V$ generates V if for every $v \in V$ there exist n numbers $x_1, \ldots, x_n \in K$ such that

$$v = x_1 v_1 + \dots + x_n v_n. \tag{8}$$

Example 1: The vectors

$$v_1 = (1,0), \qquad v_1 = (1,1),$$
(9)

generate \mathbb{R}^2 .

Example 2: The matrices

$$v_1 = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix},$$
 (10)

generate the space of 2×2 matrices with real coefficients $M_{2\times 2}(\mathbb{R})$. Similarly, the matrices

$$v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
(11)

generate the space of 2×2 symmetric matrices.

Example 3: The polynomials

$$p_1(x) = 1, \qquad p_2(x) = x \qquad p_3(x) = x^2$$
 (12)

generate the vector space of polynomials of degree at most 2.

Definition. Let V be a vector space over K. The space generated by $v_1, \ldots, v_p \in V$ is called *span* of v_1, \ldots, v_p and denoted by $\text{span}\{v_1, \ldots, v_p\}$.

Theorem 1. Let V be a vector space over K. The span of an arbitrary number of vectors $v_1, ..., v_p \in V$ is a vector subspace of V.

Proof. Let v_1, \ldots, v_p be vectors in V. Consider the space generated by v_1, \ldots, v_p , i.e.,

$$W = \operatorname{span}\{v_1, \dots, v_p\} = \{v \in V : v = x_1v_1 + \dots + x_pv_p, \quad x_i \in K\}.$$
(13)

and pick two elements in W

$$u = x_1 v_1 + \dots + x_p v_p, \qquad v = y_1 v_1 + \dots + y_p v_p.$$
 (14)

Clearly, $0_V \in Q$, $(u + v) \in W$, and $cu \in W$ (for all $c \in K$).

Page 4

By using the last theorem we immediately see why lines and planes are vector subspaces of \mathbb{R}^3 . In fact, a line is a vector subspace generated by a nonzero vector $u \in \mathbb{R}^3$. Specifically, consider the line $(x_1, -3x_1, 2x_1)$ (for all $x_1 \in \mathbb{R}$). This line is generated by the vector u = (1, -3, 2). Similarly, the plane $x_1 + x_2 - 2x_3 = 0$ is generated, e.g., by the two vectors $v_1 = (1, 1, 1)$ and $v_2 = (2, 0, 1)$. In fact, any element on the plane can be expressed as a linear combination of v_1 and v_2 .

Linear independence. Let V be a vector space over $K, v_1, \ldots, v_n \in V$. We say that n vectors v_1, \ldots, v_n are linearly *independent* if

$$x_1v_1 + \dots + x_nv_n = 0_V \quad \Rightarrow \quad x_1, \dots, x_n = 0 \tag{15}$$

Example 1: The following vectors of \mathbb{R}^2

$$v_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}$$
(16)

are linearly independent. In fact,

$$x_1v_1 + x_2v_2 = 0_{\mathbb{R}^2} \quad \Leftrightarrow \quad \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$
(17)

Example 2: The following two vectors of \mathbb{R}^3

$$v_1 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
(18)

are linearly independent. In fact,

$$x_1v_1 + x_2v_2 = 0_{\mathbb{R}^2} \quad \Leftrightarrow \quad \begin{bmatrix} 1 & 1\\ 1 & 2\\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}.$$
(19)

Let us compute the reduced row echelon form of the augmented matrix

$$\begin{bmatrix} 1 & 1 & | & 0 \\ 1 & 2 & | & 0 \\ 2 & 3 & | & 0 \end{bmatrix} \implies \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}.$$
 (20)

Hence, the system is consistent (see the last row), i.e., it has a solution. Moreover, the solution is unique and given by $x_1 = x_2 = 0$.

Example 3: The following 2×2 matrices

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}$$
(21)

are linearly dependent. In fact,

$$x_1A + x_2B + x_3C = 0_{M_{2\times 2}} \quad \Leftrightarrow \quad \begin{bmatrix} x_1 + x_2 + 2x_3 & x_1 + x_2 + 2x_3 \\ 2x_1 + x_2 + 3x_3 & 3x_1 + x_2 + 4x_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
(22)

which yields the system

$$\begin{cases} x_1 + x_2 + 2x_3 = 0\\ 2x_1 + x_2 + 3x_3 = 0\\ 3x_1 + x_2 + 4x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} x_1 = -x_3\\ x_2 = -x_3\\ x_3 \text{ free} \end{cases}$$
(23)

Therefore the condition $x_1A + x_2B + x_3C = 0_{M_{2\times 2}}$ implies that

$$x_3A + x_3B = x_3C \qquad \forall x_3 \in \mathbb{R} \tag{24}$$

and therefore the matrices A, B and C are linearly dependent.

Basis of a vector space. Let V be a vector space over K. A basis of V is a set of linearly independent vectors in V that generate V.

Example: The vectors

$$v_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}$$
(25)

are a basis for the vector space \mathbb{R}^2 . In fact, they are linearly independent and they generate \mathbb{R}^2 . To show that they generate \mathbb{R}^2 we need to show that every vector $u \in \mathbb{R}^2$ can be represented as a linear combination of v_1 and v_2 . In other words, given $u \in \mathbb{R}^2$ we need to show that there exist x_1 and x_2 such that

$$x_1v_1 + x_2v_2 = u. (26)$$

This is equivalent to show that the following linear system of equations has a unique solution

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix},$$
(27)

which is obvious since the matrix of coefficients is invertible.

Definition (Coordinates relative to a basis). Let V be a vector space over $K, v_1, \ldots, v_n \in V$ a basis for V, and $v \in V$. The numbers x_1, \ldots, x_n such that $v = x_1v_1 + \cdots + x_nv_n$ are called *coordinates* of v relative v_1, \ldots, v_n .

Theorem 2. The coordinates of an arbitrary vector v in a vector space V are uniquely determined by the basis.

$$v = x_1v_1 + \dots + x_nv_n = y_1v_1 + \dots + y_nv_n \quad \Rightarrow \quad (x_1 - y_1)v_1 + \dots + (x_n - y_n)v_n = 0_V.$$
 (28)

This implies that $x_i = y_i$ since the vectors v_1, \ldots, v_n are linearly independent.

Example: The coordinates of $v = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ relative to $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} -10 \\ 9 \end{bmatrix}$ can be computed by solving the linear system of equations

$$x_1v_1 + x_2v_2 = v \quad \Rightarrow \quad \begin{bmatrix} 1 & -10\\ 1 & 9 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
(29)

Example: Find the coordinates of $p(x) = x^3 + x + 1$ relative to the following basis of $\mathbb{P}_3(\mathbb{R})$

$$p_0(x) = 5,$$
 $p_1(x) = x,$ $p_2(x) = x^2 + 1,$ $p_3(x) = x^3 - x^2.$ (30)

Let y_0, \ldots, y_3 be the coordinates of p(x) relative to $\{p_0(x), \ldots, p_3(x)\}$. We have,

$$y_0 p_0(x) + \dots + y_3 p_3(x) = x^3 + x + 1.$$
 (31)

Developing the products we find

$$y_3x^3 + (y_2 - y_3)x^2 + y_1x + (5y_0 + y_2) = x^3 + x + 1,$$
(32)

Which yields the linear system

$$\begin{cases} y_3 = 1 \\ y_2 - y_3 = 0 \\ y_1 = -1 \\ 5y_0 + y_2 = 1 \end{cases} \Rightarrow \begin{cases} y_3 = 1 \\ y_2 = 1 \\ y_1 = -1 \\ y_0 = 0 \end{cases}$$
(33)

Example: The coordinates of the symmetric matrix

$$v = \begin{bmatrix} -2 & 3\\ 3 & 4 \end{bmatrix},\tag{34}$$

relative to the basis v_1 , v_2 and v_3 defined in Eqs. (11) are $x_1 = -2$, $x_2 = 4$ and $x_3 = 3$.

Dimension of a vector space. The dimension of a vector space V is the number of linearly independent vectors required to generate V, i.e., the number of elements in any basis of V. We denote the dimension of V as dim(V). We have, for example,

- dim $(M_{2\times 2}(\mathbb{R})) = 4$,
- dim $(\mathbb{R}^3) = 3$,
- dim $(\mathbb{P}_4(\mathbb{R})) = 5$,
- dim $(C^{(1)}(\mathbb{R})) = \infty$

It is easy to show that if v_1, \ldots, v_n is a basis of V and w_1, \ldots, w_m are m > n vectors of V then w_1, \ldots, w_m are necessarily linear dependent. This means that number of vectors in every basis of V is that minimum one that is needed to generate V. To show this, we let us write each vector w_i in terms of the basis

$$\begin{cases} w_1 = x_{11}v_1 + \dots + x_{1n}v_n \\ \vdots \\ w_m = x_{m1}v_1 + \dots + x_{mn}v_n \end{cases}$$
(35)

Now, suppose that w_1, \ldots, w_m are linearly independent, i.e.,

$$0_V = y_1 w_1 + \dots + y_m w_m \quad \Rightarrow \quad y_1, \dots, y_m = 0.$$
(36)

By substituting (35) into (36) we obtain,

$$0_V = y_1 w_1 + \dots + y_m w_m = (y_1 x_{11} + \dots + y_m x_{m1}) v_1 + \dots + (y_1 x_{1n} + \dots + y_m x_{mn}) v_n, \qquad (37)$$

which implies that

$$\begin{cases} y_1 x_{11} + \dots + y_m x_{m1} = 0 \\ \vdots \\ y_1 x_{1n} + \dots + y_m x_{mn} = 0 \end{cases}$$
(38)

This is a homogeneous linear system of n < m equation in m unknowns (y_1, \ldots, y_m) . which always admits a nontrivial (i.e., nonzero) solution. Hence, y_1, \ldots, y_m cannot be all zero, and therefore w_1, \ldots, w_m are necessarily linearly dependent.

We conclude this section by emphasizing that a set of p linearly independent vectors in a vector space V of dimension n > p can be always complemented with additional linearly independent vectors to become a basis of V.

The rank of a matrix. Consider the following $m \times n$ matrix

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}.$$
 (39)

The columns of A generate a vector space called *column space of* A. Similarly, the rows of A generate a vector space called *row space of* A

Column space of A: span =
$$\left\{ \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} \right\}.$$
 (40)

Row space of A: span = { $[a_{11} \cdots a_{1n}], [a_{21} \cdots a_{2n}], \dots, [a_{m1} \cdots a_{mn}]$ }. (41)

Note that the column space of A is a vector subspace of \mathbb{R}^m , while the row space of A is a vector subspace of \mathbb{R}^n .

The dimension of the column space is called *column rank*, while the dimension of the row space is called *row rank*. Both ranks can be computed by reducing the matrix to an echelon form using elementary row or column operations, i.e.,

- 1. Adding a scalar multiple of one row (column) to another row (column);
- 2. Interchange rows (columns),
- 3. Multiplying one row (column) by a non-zero number.

Theorem 3. Elementary row or column operations do not change the row rank nor the column rank of a matrix².

This statement follows immediately by noting that linear taking linear combinations of a fixed number of vectors does not change the dimension of the span of such vectors. Moreover, taking permutations of the entries of a set of vectors in the same way for all vectors does not alter linear independence.

By performing both rows and column operations it is possible to transform any $m \times n$ matrix into the following canonical form (block matrix)

$$A = \begin{bmatrix} I_r & 0_{M_{r \times (n-r)}} \\ 0_{M_{(m-r) \times r}} & 0_{M_{(m-r) \times (n-r)}} \end{bmatrix},$$
(42)

where I_r is a $r \times r$ identity matrix, and all other matrices are zero matrices.

This means that the dimension of the row space of a matrix is always the same as the dimension of the column space. Phrasing this differently:

Theorem 4. The row rank of a matrix is always the same as the column rank.

Hence, we can omit "row" or "column" and just speak of the rank of a matrix. Clearly, for an $m \times n$ matrix the rank r is always smaller or equal than the minimum between the number of rows m and the number of columns n, i.e.,

$$r \le \min\{m, n\}.\tag{43}$$

Example 1: By using elementary row and column operations reduce the matrix

$$\begin{bmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 4 & -1 \end{bmatrix}$$
(44)

²Note that elementary column operations can change the solution to a linear system of equations. In fact, if we perform Gauss elimination along a row we are essentially eliminating the coefficient multiplying, say, x_k using the coefficient of the variable x_i . Clearly, this changes the solution of the linear system.

to the canonical form (42).

$$\begin{bmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 2 & 1 & 0 & 1 \\ 2 & 0 & 1 & 4 & -1 \end{bmatrix} \xrightarrow{R_3:R_3 - 2R_1} \begin{bmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{C_2:C_2 - C_1} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & -2 & -1 & 0 & 1 \end{bmatrix}$$
(45)
$$\xrightarrow{R_3:R_3 + R_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{C_4:C_4 - C_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{C_3 \leftrightarrow C_5/2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$
(46)

Hence, the rank of the matrix (44) is r = 3.

Example 2: Find the rank of the matrix

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 1 & -1 \\ 2 & 6 & 0 \end{bmatrix}.$$
 (47)

A is row equivalent to the following matrix 3

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & -2 & -5 \\ 0 & 0 & -8 \end{bmatrix}.$$
 (48)

Clearly, the columns of this matrix are linearly independent and therefore the rank is 3.

Example: The rank of the following matrices is equal to 2

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ -1 & -2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 2 & -1 \\ 0 & 2 & 1 & 0 & -1 \\ 2 & 0 & 1 & 4 & -1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ 2 & 0 \\ 1 & 1 \end{bmatrix}.$$
(49)

³Recall that elementary row or column operations do not change the rank of a matrix.