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Lecture 6: Vector spaces

Vector spaces are sets in which we define an addition operation and a multiplication by a scalar
satisfying certain number of properties. Let us first give a formal definition of vector space and
then provide a few examples. Consider a nonempty set V in which define an addition operation
“+” satisfying the following properties1:

1. ∀u, v ∈ V (u + v) ∈ V (V is closed under the addition operation)

2. ∀u, v ∈ V u + v = v + u (addition is commutative)

3. ∀u, v, w ∈ V (u + v) + w = u + (v + w) ∈ V (addition is associative)

4. ∃ 0V ∈ V such that u + 0V = u ∀u ∈ V (additive neutral)

5. ∀u ∈ V, ∃v ∈ V such that u + v = 0V (opposite element)

We also define the multiplication operation between an element of the set V and an element of a
field K (e.g., R or C) with the following properties:

1. av ∈ V ∀a ∈ K, ∀v ∈ V

2. (a + b)v = av + bv ∀a, b ∈ K, ∀v ∈ V

3. a(v + w) = av + aw ∀a ∈ K, ∀v, w ∈ V

4. (ab)v = a(bv) ∀a, b ∈ K, ∀v ∈ V

5. 1v = v 1 ∈ K, ∀v ∈ V

Definition (Vector space). A nonempty set V in which we define an addition operation and a
multiplication operation satisfying the properties listed above is called vector space over K.

Let us provide a few examples of vector spaces over the real or complex numbers.

• The space Rn (n-tuples of real numbers) with the addition operation defined as u + v =
(u1, . . . , un)+(v1, . . . , vn) = (u1+v1, . . . , un+vn) is a vector space over R. The neutral element
with respect to the addition operation is 0Rn = (0, 0, . . . , 0). Here is a simple visualization of
a vector u in the vector spaces R2 and R3.
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1A set V satisfying properties 1 to 5 is called “Abelian group”.
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• V = Mm×n(R), i.e., the set of real m × n matrices with the addition operation we defined
in Lecture 4, is a vector space over R. The neutral element with respect to the addition
operation is

0Mm×n =

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 (zero matrix). (1)

• V = Mn×m(C) is a vector space over C and over R.

• V = Pn(R), i.e., the space of polynomials of degree n with real coefficients, is a vector space
over R. An element of Pn(R) is

p(x) = a0 + a1x + · · ·+ anx
n, aj ∈ R, x ∈ R. (2)

The addition operation between two polynomials, say p(x) = a0 + a1x + · · · + anx
n and

q(x) = b0 + b1x + · · ·+ bnx
n, is defined as

p(x) + q(x) = (a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn, aj, bj ∈ R, x ∈ R. (3)

The neutral element with respect to the addition operation is the zero polynomial p(x) = 0.

• V = C(1)(R) (space of real-valued continuously differentiable functions defined on the real
line) is a vector space over R. An element of C(1)(R) is, e.g., v(x) = e−x

2
sin(x). The neutral

element with respect to the addition operation is the zero function v(x) = 0.

• Then space of linear transformations between two vector spaces V and W is a vector space
over R. The elements of such vector space are linear maps L : V → W .

Vector subspace. Let V be a vector space over a field K. We say that W ⊆ V is a vector subspace
of V if

1. 0V ∈ W

2. u, v ∈ W ⇒ (u + v) ∈ W

3. cu ∈ W ∀u ∈ W, ∀c ∈ K

Clearly, a vector subspace is itself a vector space. Note that the only condition we need for W ⊆ V
to be a vector subspace of V is that it is closed under addition and multiplication.

Example 1: A line passing through the origin of a Cartesian coordinate system is a vector subspace
of R2. In fact, such line is defined by the set of points (x1, x2) ∈ R2 satisfying the equation
a1x1 + a2x2 = 0 (for some a1, a2 ∈ R). As we shall see hereafter, the set

W = {(x1, x2) ∈ R2 : a1x1 + a2x2 = 0}, (4)

which represents the line, can be equivalently written as (assuming a2 6= 0)

W =
{
u ∈ R2 : u = x(1,−a1/a2), x ∈ R

}
. (5)

Clearly, W is a vector subspace of R2. In fact, 1) the zero of R2 is in W (the line passes through
the origin); 2) a rescaling of a vector u on the line W is either zero or a vector that is still on the
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line; 3) the addition of two vectors u and v on the line is either zero or it is a vector that sits on
the same line.

r*
Example 2: A plane passing through the origin of a three-dimensional Cartesian coordinate system
is a vector subspace of R3. Such plane can be defined as

W = {(x1, x2, x3) ∈ R3 : a1x1 + a2x2 + a3x3 = 0 a1, a2, a3 ∈ R}. (6)

Clearly, W is a vector subspace of R3. In fact, 1) the zero of R3 is in W (the plane passes through
the origin); 2) a rescaling of a vector u on the plane is either zero or a vector that is still on the
plane; 3) the addition of two vectors on the plane is either zero or a vector on the plane.

e X3

miniW

af
Example 3: The space of continuously differentiable functions is a vector subspace of the space of
continuous functions. In fact: 1) the addition between two differentiable functions f(x) and g(x) is
a differentiable function f(x) + g(x); 2) multiplication of a differentiable function f(x) by a scalar
c is a differentiable function cf(x).

Example 4: The space 3× 3 symmetric matrices is a vector subspace of M3×3(R). In fact, if A and
B are symmetric then: 1) A+B is symmetric, 2) the zero matrix 0M3×3 is symmetric, and 3) cA is
symmetric for all c ∈ R.
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Example 5: The space of polynomials of degree at most 3, i.e., P3(R), is a vector subspace of the
space of polynomials of degree at most 8, i.e., P8(R).

Linear combination. Let V be a vector space over K. A linear combination of v1, . . . , vn ∈ V is
an expression of the form

x1v1 + · · ·+ xnvn. (7)

We say that the set of vectors v1, . . . , vn ∈ V generates V if for every v ∈ V there exist n numbers
x1, . . . , xn ∈ K such that

v = x1v1 + · · ·xnvn. (8)

Example 1: The vectors
v1 = (1, 0), v1 = (1, 1), (9)

generate R2.

Example 2: The matrices

v1 =

[
2 0
0 0

]
, v2 =

[
1 0
1 0

]
, v3 =

[
0 1
1 0

]
, v4 =

[
0 1
1 1

]
, (10)

generate the space of 2× 2 matrices with real coefficients M2×2(R). Similarly, the matrices

v1 =

[
1 0
0 0

]
, v2 =

[
0 0
0 1

]
, v3 =

[
0 1
1 0

]
(11)

generate the space of 2× 2 symmetric matrices.

Example 3: The polynomials

p1(x) = 1, p2(x) = x p3(x) = x2 (12)

generate the vector space of polynomials of degree at most 2.

Definition. Let V be a vector space over K. The space generated by v1, . . . , vp ∈ V is called span
of v1, . . . , vp and denoted by span{v1, . . . , vp}.

Theorem 1. Let V be a vector space over K. The span of an arbitrary number of vectors v1, ..., vp ∈
V is a vector subspace of V .

Proof. Let v1, . . . , vp be vectors in V . Consider the space generated by v1, . . . , vp, i.e.,

W = span{v1, . . . , vp} = {v ∈ V : v = x1v1 + · · ·+ xpvp, xi ∈ K}. (13)

and pick two elements in W

u = x1v1 + · · ·+ xpvp, v = y1v1 + · · ·+ ypvp. (14)

Clearly, 0V ∈ Q, (u + v) ∈ W , and cu ∈ W (for all c ∈ K).
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By using the last theorem we immediately see why lines and planes are vector subspaces of R3. In
fact, a line is a vector subspace generated by a nonzero vector u ∈ R3. Specifically, consider the
line (x1,−3x1, 2x1) (for all x1 ∈ R). This line is generated by the vector u = (1,−3, 2). Similarly,
the plane x1 + x2− 2x3 = 0 is generated, e.g., by the two vectors v1 = (1, 1, 1) and v2 = (2, 0, 1). In
fact, any element on the plane can be expressed as a linear combination of v1 and v2.

Linear independence. Let V be a vector space over K, v1, . . . , vn ∈ V . We say that n vectors
v1, . . . , vn are linearly independent if

x1v1 + · · ·+ xnvn = 0V ⇒ x1, . . . , xn = 0 (15)

Example 1: The following vectors of R2

v1 =

[
1
1

]
, v2 =

[
1
−1

]
(16)

are linearly independent. In fact,

x1v1 + x2v2 = 0R2 ⇔
[
1 1
1 −1

] [
x1

x2

]
=

[
0
0

]
⇔

{
x1 = 0

x2 = 0
(17)

Example 2: The following two vectors of R3

v1 =

1
1
2

 , v2 =

1
2
3

 (18)

are linearly independent. In fact,

x1v1 + x2v2 = 0R2 ⇔

1 1
1 2
2 3

[x1

x2

]
=

0
0
0

 . (19)

Let us compute the reduced row echelon form of the augmented matrix1 1 0
1 2 0
2 3 0

 ⇒

1 0 0
0 1 0
0 0 0

 . (20)

Hence, the system is consistent (see the last row), i.e., it has a solution. Moreover, the solution is
unique and given by x1 = x2 = 0.
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Example 3: The following 2× 2 matrices

A =

[
1 1
2 3

]
, B =

[
1 1
1 1

]
, C =

[
2 2
3 4

]
(21)

are linearly dependent. In fact,

x1A + x2B + x3C = 0M2×2 ⇔
[
x1 + x2 + 2x3 x1 + x2 + 2x3

2x1 + x2 + 3x3 3x1 + x2 + 4x3

]
=

[
0 0
0 0

]
(22)

which yields the system 
x1 + x2 + 2x3 = 0

2x1 + x2 + 3x3 = 0

3x1 + x2 + 4x3 = 0

⇔


x1 = −x3

x2 = −x3

x3 free

(23)

Therefore the condition x1A + x2B + x3C = 0M2×2 implies that

x3A + x3B = x3C ∀x3 ∈ R (24)

and therefore the matrices A, B and C are linearly dependent.

Basis of a vector space. Let V be a vector space over K. A basis of V is a set of linearly
independent vectors in V that generate V .

Example: The vectors

v1 =

[
1
1

]
, v2 =

[
1
−1

]
(25)

are a basis for the vector space R2. In fact, they are linearly independent and they generate R2.
To show that they generate R2 we need to show that every vector u ∈ R2 can be represented as a
linear combination of v1 and v2. In other words, given u ∈ R2 we need to show that there exist x1

and x2 such that
x1v1 + x2v2 = u. (26)

This is equivalent to show that the following linear system of equations has a unique solution[
1 1
1 −1

] [
x1

x2

]
=

[
u1

u2

]
, (27)

which is obvious since the matrix of coefficients is invertible.

Definition (Coordinates relative to a basis). Let V be a vector space over K, v1, . . . , vn ∈ V a basis
for V , and v ∈ V . The numbers x1, . . . , xn such that v = x1v1 + · · ·+ xnvn are called coordinates of
v relative v1, . . . , vn.

Theorem 2. The coordinates of an arbitrary vector v in a vector space V are uniquely determined
by the basis.
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Proof. Let v1, . . . , vn be a basis for V . Suppose that for some v ∈ V there are two set of coordinates
{xi} and {yi} such that

v = x1v1 + · · ·+ xnvn = y1v1 + · · ·+ ynvn ⇒ (x1 − y1)v1 + · · ·+ (xn − yn)vn = 0V . (28)

This implies that xi = yi since the vectors v1, . . . , vn are linearly independent.

Example: The coordinates of v =

[
2
3

]
relative to v1 =

[
1
1

]
and v =

[
−10

9

]
can be computed by

solving the linear system of equations

x1v1 + x2v2 = v ⇒
[
1 −10
1 9

] [
x1

x2

]
=

[
2
3

]
(29)

Example: Find the coordinates of p(x) = x3 + x + 1 relative to the following basis of P3(R)

p0(x) = 5, p1(x) = x, p2(x) = x2 + 1, p3(x) = x3 − x2. (30)

Let y0, . . . , y3 be the coordinates of p(x) relative to {p0(x), . . . , p3(x)}. We have,

y0p0(x) + · · ·+ y3p3(x) = x3 + x + 1. (31)

Developing the products we find

y3x
3 + (y2 − y3)x

2 + y1x + (5y0 + y2) = x3 + x + 1, (32)

Which yields the linear system
y3 = 1

y2 − y3 = 0

y1 = −1

5y0 + y2 = 1

⇒


y3 = 1

y2 = 1

y1 = −1

y0 = 0

(33)

Example: The coordinates of the symmetric matrix

v =

[
−2 3
3 4

]
, (34)

relative to the basis v1, v2 and v3 defined in Eqs. (11) are x1 = −2, x2 = 4 and x3 = 3.
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Dimension of a vector space. The dimension of a vector space V is the number of linearly
independent vectors required to generate V , i.e., the number of elements in any basis of V . We
denote the dimension of V as dim(V ). We have, for example,

• dim (M2×2(R)) = 4,

• dim (R3) = 3,

• dim (P4(R)) = 5,

• dim
(
C(1)(R)

)
=∞

It is easy to show that if v1, . . . , vn is a basis of V and w1, . . . , wm are m > n vectors of V then
w1, . . . , wm are necessarily linear dependent. This means that number of vectors in every basis of
V is that minimum one that is needed to generate V . To show this, we let us write each vector wi

in terms of the basis 
w1 = x11v1 + · · ·+ x1nvn
...

wm = xm1v1 + · · ·+ xmnvn

(35)

Now, suppose that w1, . . . , wm are linearly independent, i.e.,

0V = y1w1 + · · ·+ ymwm ⇒ y1, . . . , ym = 0. (36)

By substituting (35) into (36) we obtain,

0V = y1w1 + · · · ymwm = (y1x11 + · · ·+ ymxm1)v1 + · · ·+ (y1x1n + · · ·+ ymxmn)vn, (37)

which implies that 
y1x11 + · · ·+ ymxm1 = 0
...

y1x1n + · · ·+ ymxmn = 0

(38)

This is a homogeneous linear system of n < m equation in m unknowns (y1, . . . , ym). which always
admits a nontrivial (i.e., nonzero) solution. Hence, y1, ..., ym cannot be all zero, and therefore
w1, ..., wm are necessarily linearly dependent.

We conclude this section by emphasizing that a set of p linearly independent vectors in a vector
space V of dimension n > p can be always complemented with additional linearly independent
vectors to become a basis of V .

The rank of a matrix. Consider the following m× n matrix

A =

a11 · · · a1n
...

...
am1 · · · amn

 . (39)

The columns of A generate a vector space called column space of A. Similarly, the rows of A generate
a vector space called row space of A

Column space of A: span =


a11...
am1

 ,

a12...
am2

 , . . . ,

a1n...
amn


 . (40)
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Row space of A: span =
{[

a11 · · · a1n
]
,
[
a21 · · · a2n

]
, . . . ,

[
am1 · · · amn

]}
. (41)

Note that the column space of A is a vector subspace of Rm, while the row space of A is a vector
subspace of Rn.

The dimension of the column space is called column rank, while the dimension of the row space
is called row rank. Both ranks can be computed by reducing the matrix to an echelon form using
elementary row or column operations, i.e.,

1. Adding a scalar multiple of one row (column) to another row (column);

2. Interchange rows (columns),

3. Multiplying one row (column) by a non-zero number.

Theorem 3. Elementary row or column operations do not change the row rank nor the column
rank of a matrix2.

This statement follows immediately by noting that linear taking linear combinations of a fixed
number of vectors does not change the dimension of the span of such vectors. Moreover, taking
permutations of the entries of a set of vectors in the same way for all vectors does not alter linear
independence.

By performing both rows and column operations it is possible to transform any m× n matrix into
the following canonical form (block matrix)

A =

[
Ir 0Mr×(n−r))

0M(m−r)×r
0M(m−r)×(n−r)

]
, (42)

where Ir is a r × r identity matrix, and all other matrices are zero matrices.

This means that the dimension of the row space of a matrix is always the same as the dimension of
the column space. Phrasing this differently:

Theorem 4. The row rank of a matrix is always the same as the column rank.

Hence, we can omit “row” or “column” and just speak of the rank of a matrix. Clearly, for an m×n
matrix the rank r is always smaller or equal than the minimum between the number of rows m and
the number of columns n, i.e.,

r ≤ min{m,n}. (43)

Example 1: By using elementary row and column operations reduce the matrix1 1 1 2 −1
0 2 1 0 1
2 0 1 4 −1

 (44)

2Note that elementary column operations can change the solution to a linear system of equations. In fact, if we
perform Gauss elimination along a row we are essentially eliminating the coefficient multiplying, say, xk using the
coefficient of the variable xj . Clearly, this changes the solution of the linear system.
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to the canonical form (42).1 1 1 2 −1
0 2 1 0 1
2 0 1 4 −1

 R3 : R3 − 2R1−−−−−−−−→

1 1 1 2 −1
0 2 1 0 1
0 −2 −1 0 1

 C2 : C2 − C1−−−−−−−−→
C4 : C4 − 2C1

1 0 0 0 0
0 2 1 0 1
0 −2 −1 0 1

 (45)

R3 : R3 +R2−−−−−−−→

1 0 0 0 0
0 2 1 0 1
0 0 0 0 2

 C4 : C4 − C2−−−−−−−−→
C2 : C2 − 2C1

1 0 0 0 0
0 0 1 0 0
0 0 0 0 2

 C3 ↔ C5/2−−−−−−→
C2 ↔ C3

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 (46)

Hence, the rank of the matrix (44) is r = 3.

Example 2: Find the rank of the matrix

A =

1 3 4
1 1 −1
2 6 0

 . (47)

A is row equivalent to the following matrix3

A =

1 3 4
0 −2 −5
0 0 −8

 . (48)

Clearly, the columns of this matrix are linearly independent and therefore the rank is 3.

Example: The rank of the following matrices is equal to 2

A =

[
1 1
0 1

]
, B =

 1 2 1
0 0 1
−1 −2 0

 , C =

1 1 1 2 −1
0 2 1 0 −1
2 0 1 4 −1

 , D =


1 1
0 2
2 0
1 1

 . (49)

3Recall that elementary row or column operations do not change the rank of a matrix.
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