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Lecture 9: Determinants

Let A ∈Mn×n be a square matrix with real or complex entries

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 (1)

The determinant of A is the real or complex number

det(A) =
n∑

j=1

(−1)i+jaij det(Aij) (for every fixed i), (2)

where aij are the entries of A, and Aij is a matrix obtained from A by crossing out the i-th row
and the j-th column1.

The expression (2) is called Laplace expansion of the determinant along the i-th row. As we will
see hereafter det(A) = det(AT ) and therefore there exists an equivalent Laplace expansion along
the j-th column, which is

det(A) =
n∑

i=1

(−1)i+jaij det(Aij) (for every fixed j). (4)

Remark: The fact that we can arbitrarily choose the row or the column along which develop the
determinant and always obtain the same result suggests that the determinant is a rather special
function. From a technical viewpoint it can be shown that (2) is the a unique alternating multilinear
function2

Λ(·) : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

(a1, . . . , an)→ Λ(a1, . . . , an) (6)

satisfying
Λ(e1, . . . , en) = 1, (7)

where {e1, . . . , en} is the canonical basis of Rn. In other words, we have

det(A) = Λ(a1, . . . , an), (8)

where aj is the j-th column of A.

1The number
cij = (−1)i+j det(Aij) (3)

is often called co-factor of aij in the determinant expansion.
2An alternating multilinear function is a function Λ(a1, . . . , an) that is linear in each argument aj , e.g.,

Λ(a1, a2 + b2, a3) = Λ(a1, a2, a3) + Λ(a1, b2, a3),

and changes sign if we interchange aj with ai. For instance,

Λ(a1, a2, a3) = −Λ(a2, a1, a3) = Λ(a3, a1, a2). (5)
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If A = a is a number then we set det(A) = a. Note that the determinant of a matrix is a nonlinear
function of the matrix entries which is defined recursively in terms of determinants of the matrices
Aij, which have smaller dimension.

Examples: Let us provide a few examples of calculation of determinants

1. A = a (real number). In this case we have det(A) = a.

2. A =

[
a11 a12
a21 a22

]
. We develop the determinant along the first row, i.e., set i = 1 in (2).

This yields
det(A) = (−1)1+1a11 det(A11) + (−1)1+2a12 det(A12), (9)

where
A11 = a22, A12 = a21. (10)

Therefore we obtain
det(A) = a11a22 − a12a21. (11)

Note that we obtain exactly the same formula if we develop the determinant along the second
row, the first column or the second column.

3. A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

. We develop the determinant along the first row, i.e., set i = 1 in (2).

This yields

det(A) = (−1)1+1a11 det(A11) + (−1)1+2a12 det(A12) + (−1)1+3a13 det(A13) (12)

where

A11 =

[
a22 a23
a32 a33

]
A12 =

[
a21 a23
a31 a33

]
A11 =

[
a21 a22
a31 a32

]
. (13)

Computing the determinants of A11, A12 and A13 yields the formula

det(A) = a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22). (14)

Note that we obtain exactly the same formula if we develop the determinant along any other
row or column.

Since we can equivalently expand the determinant along arbitrary rows orcolumns of A it is conve-
nient to choose the row or the column with the largest number of zeros. This minimizes the number
of calculations when computing the determinant using (2) or (4). For example, it is clear that it is
convenient to compute the determinant of the following matrix along the second column:

det

 3 1 4
−1 0 2
1 0 5

 = −1 det

([
−1 2
1 5

])
= −1(−5− 2) = 7. (15)
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Properties of the determinant. The determinant of any n× n matrix A satisfies the following
important properties:

1. det(A) = det
(
AT
)

2. det(A) is a linear function of the columns (or the rows) of the matrix A. In other words, if
we denote by ai the i-th column of A and B a column vector of the same length of ai then

(a) det
( [

a1 · · · (ai + b) · · · an
])

= det
( [

a1 · · · ai · · · an
])

+ det
( [

a1 · · · b · · · an
])

,

(b) det
( [

a1 · · · cai · · · an
])

= c det
( [

a1 · · · ai · · · an
])

,

where ai is the i-th column of A.

3. If the columns or the rows of A are linearly dependent then det(A) = 0. If the columns or
the rows or A are linearly independent (i.e., A is full rank) then det(A) 6= 0.

4. If a multiple of one row (or one column) is added or subtracted to another row (or column)
then the determinant does not change (this follows from property 2 by setting with B = cAj,
and property 3).

5. If two rows (or two columns) are interchanged then the determinant changes sign.

These properties can be easily verified for 2× 2 and 3× 3 matrices. The proof of these properties
for general n× n matrices can be found in the book.

Note that from property 2(b) it follows that for any number c and any n× n matrix A:

det(cA) = cn det(A). (16)

In fact, the matrix cA has all columns (n in total) multiplied by c.

Example: Let us show properties 1. to 5. for the simple matrix

A =

[
1 2
1 3

]
, det(A) = 1. (17)

We have:

1. det
(
AT
)

= det

([
1 1
2 3

])
= 1 = det (A).

2. (a) det

([
1 1
2 3

])
= det

([
1 0
2 3

])
+ det

([
1 1
2 0

])
= 3− 2 = 1.

(b) Multiply the second column of A by 3. This yields det

([
1 3
2 9

])
= 3 = 3 det(A)︸ ︷︷ ︸

=1

.

3. A has rank 2 and therefore its columns are linearly independent. However, if we consider the

rank 1 matrix

[
1 3
1 3

]
then

det

([
1 3
1 3

])
= 3− 3 = 0. (18)
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4. Multiply the first row of A by 2 and add it to the second row to obtain

det

([
1 2
3 7

])
= 7− 6 = 1 = det(A). (19)

5. Interchange the first and the second row of A to obtain

det

([
1 3
1 2

])
= 2− 3 = −1 = − det(A). (20)

From Property 3. at page 3 it follows that:

Theorem 1. Let A be a n× n matrix, b a n× 1 column vector. Then

1. A is invertible ⇔ det(A) 6= 0.

2. A has linearly independent rows/columns ⇔ det(A) 6= 0.

3. The linear system of equations Ax = b has a unique solution ⇔ det(A) 6= 0.

Determinant of matrix products and matrix inverses. By using the definition of determinant
(2) it can be shown that for every A,B ∈Mn×n we have

det(AB) = det(A) det(B). (21)

Clearly, this implies that

det(AB) = det(BA) and det(Ap) = det(A)p for all p ∈ N. (22)

By using these identities it is straightforward to show, e.g.,

det(ABTACAB) = det(A)3 det(B)2 det(C), (23)

where A, B and C are three n× n matrices. Moreover, if A is an invertible matrix then

1 = det(AA−1) = det(A) det(A−1) ⇒ det(A−1) =
1

det(A)
, (24)

i.e. the determinant of the inverse matrix is the inverse of the determinant.

Computing the determinant of a matrix efficiently. How do we actually compute the deter-
minant of a matrix? We have seen that one possibility is to use the definition (2), i.e., the Laplace
rule. However, this not really computationally efficient if the dimension of the matrix is even mod-
erately high, e.g., larger than 10 or 20. In fact, it can be shown that the number of operations to
compute (2) is exactly

p = bn!ec − 2. (25)

In this formula, e = 2.7183... is the Napier number and the symbol bn!ec denotes the nearest integer
number smaller or equal than n!e, where n! is the factorial of n. For instance, if n = 2 we have

p = b2!ec − 2 = b5.4366c − 2 = 5− 2 = 3.
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In fact, as we see from equation (11), to compute the determinant we need two multiplications and
one subtraction. Similarly, for 3× 3 matrices (n = 3) we need

p = b3!ec − 2 = b16.3097c − 2 = 16− 2 = 14

operations. In fact, as we see from equation (12), to compute the determinant we need 9 multipli-
cations and 5 subtractions. The number of operations increases exponentially fast as we increase
the dimension of the matrix. For example, for a 20× 20 matrix the Laplace rule (2) requires

p = b20!ec − 2 ' 6.61× 1018 operations.

The 2022 Apple M2 Max processor is capable of 13.6 Teraflops in single precision (32 bits), i.e., 13.6×
1012 single-precision floating point operations per second. Hence, to compute the determinant of a
20× 20 matrix by using the Laplace rule on the latest MacBook Pro with M2 Max processor/GPU
we need to let our laptop run for approximately

6.61× 1018 operations

13.6× 1012 flops
= 4.86× 105 seconds ' 5.62 days (26)

to complete the calculation. Repeating a similar calculation for a 22× 22 would require

30.554× 1020 operations

13.6× 1012 flops
= 2.2632× 108 seconds ' 7.18 years. (27)

Fortunately, there is a more efficient algorithm to compute the determinant of a matrix. In fact,
by using elementary row operations we known that we can reduce the matrix A to the following
matrix in row-echelon form

U =


u11 u12 · · · u1n

0 u12 · · · u2n
...

...
. . .

...
0 0 · · · unn

 (28)

The matrix U has the same determinant of A, up to a sign (i.e., + or −) determined by how many
times we interchange rows in the Gauss elimination with pivoting-by-row process. If we denote by
s the number of row permutations we take in the Gauss elimination process we have

det(A) = (−1)s
n∏

k=1

ukk. (29)

In fact, the determinant of an upper-triangular (or a lower-triangular) matrix is simply the product
of the diagonal elements. The total number of operations to transform an n× n matrix A into the
upper triangular form U is

2

3
n3 − n2

2
− n

6
. (30)

The number of products in (29) is n, while taking the exponential is one operation. Hence, the
total number of operations to compute the determinant with Gauss elimination is

2

3
n3 − n2

2
− n

6
+ n + 1 =

2

3
n3 − 1

2
n2 +

5

6
n + 1 (31)
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For a 22 × 22 matrix we get 6876 operations. If we use a 2022 Apple M2 Max processor, this
requires

6876 operations

13.6× 1012 flops
= 5.06× 10−10 seconds. (32)

Example: Consider the matrix

A =

 1 −1 3
1 −2 1
−1 1 3

 → Gauss elimination → U =

1 −1 3
0 −1 −2
0 0 6

 (33)

Since we did not perform any permutation we have s = 0 in (29) and therefore

det(A) = det(U) = −6.

.

Cramer’s rule. It is possible to express the solution to a linear system of equations in terms of
determinants. Specifically, let

Ax = b (34)

be a system of n linear equations in n unknowns. Suppose that the system has a unique solution
(i.e., det(A) 6= 0). Then

xi =
1

det(A)
det([a1 · · · b · · · an]), (35)

where [a1 · · · b · · · an] is a matrix obtained by replacing the i-th column of A (denoted by ai) with
the column vector b.

Example: Compute the solution to the following system of equations using Cramer’s rule:[
1 2
1 3

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

=

[
1
2

]
︸︷︷︸

b

. (36)

We have det(A) = 1, and therefore

x1 = det

([
1 2
2 3

])
= −1, x2 = det

([
1 1
1 2

])
= 1. (37)

An explicit formula for A−1 . Let A be an invertible matrix. By definition, the inverse of A is
a square matrix (denoted as A−1) with the following properties

AA−1 = In A−1A = In, (38)

where In is the n× n identity matrix. Let hi be the columns of the matrix A−1, i.e.,

A−1 = [h1 h2 · · · hn] hi ∈Mn×1 i = 1, . . . , n. (39)

By definition of matrix-vector product we have

AA−1 = [Ah1 Ah2 · · · Ahn]. (40)
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At this point, define the following column vectors ei ∈Mn×1 (i = 1, ..., n)

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 . (41)

Note that ei is the i-th column of the identity matrix In. With this notation we can write the
matrix equation AA−1 = In as

[Ah1 Ah2 · · · Ahn] = [e1 e2 · · · en]. (42)

Hence, the n columns of the inverse matrix A−1, i.e., h1, ...., hn are solutions to n linear systems

Ah1 = e1, Ah2 = e2, . . . , Ahn = en. (43)

By using Cramer’s rule we obtain that the i-th component of the column vector hj is

hji =
1

det(A)
det ([a1 · · · ej · · · an]) (44)

where [a1 · · · ej · · · an] is a matrix in which we replaced the i-th column ai with ej. By using the
Laplace rule along the i-th column of [a1 · · · ej · · · an] we obtain

det ([a1 · · · ej · · · an]) = (−1)i+j det(Aji) = Cji (j, i)-cofactor. (45)

This yields the following expression

A−1 =
1

det(A)

C
11 · · · C1n

...
. . .

...
Cn1 · · · Cnn


T

. (46)

Example: Compute the inverse of the following matrix

A =

[
−2 4
4 3

]
. (47)

We have det(A) = −22, and

C11 = det
([
e1 a2

])
= det

([
1 4
0 3

])
= 3,

C12 = det
([
a1 e1

])
= det

([
−2 1
4 0

])
= −4,

C21 = det
([
e2 a2

])
= det

([
0 4
1 3

])
= −4,

C22 = det
([
a1 e2

])
= det

([
−2 0
4 1

])
= −2.

Therefore,

A−1 =
1

22

[
−3 4
4 2

]
. (48)
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Volumes of parallelograms. The determinant of a matrix represents the volume enclosed by the
vectors defined by the columns (or the rows) or the matrix.

· N3

N2

I-
A

7
V1

NI
- Dis

0,2

A =(det((v,v])) I =(det([2,e,wS)/

At this point we notice that there are quite a lot of properties of A and V following from the
properties of determinant. For example, if we add a scalar multiple of v1 to v2, then the area of
the parallelogram defined by the two vectors does not change. This follows from the fact that the
determinant is a linear function of the columns, and that the determinant of a matrix with linearly
dependent columns is equal to zero. For example,

A =

∣∣∣∣det

([
1 1
0 1

])∣∣∣∣ =

∣∣∣∣det

([
1 2
0 1

])∣∣∣∣ . (49)

inhis
A =(det([!i))) =(det(t?]))

Of course, the green and blue areas are the same. Other properties of the area of a parallelogram
can be derived from properties of the determinant. Next, consider an invertible transformation
F : Rn Rn, represented by n× n invertible matrix L. We know that if {v1, . . . , vn} is a basis of
Rn then [

u1 . . . un

]
=
[
Lv1 . . . Lvn

]
= L

[
v1 . . . vn

]
(50)

is also a basis of Rn. The volume of the parallelograms enclosed by {v1, . . . , vn} and {u1, . . . , un}
are

V0 =
∣∣det

([
v1 . . . vn

])∣∣ , V1 =
∣∣det

([
u1 . . . un

])∣∣ . (51)

By applying the determinant operator to equation (50), and using the fact that the determinant of
the matrix product is the product of the matrix determinants we see that

V1 = |det(L)|V0. (52)

This formula is very important in a variety of fields ranging from multi-dimensional integration
theory to continuum mechanics.
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