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a b s t r a c t

A planar elastic pendulum can be thought of as a planar simple pendulum and a one-dimensional
Hookian spring carrying a point mass coupled together nonlinearly. This autonomous nonintegrable
Hamiltonian system shows autoparametric resonance that corresponds to the 2 : 1 primary resonance
in the nearly integrable Hamiltonian approximating the planar elastic pendulum’s full Hamiltonian.
The system is also known to exhibit the phenomenon of the order-chaos-order in which the system
transits from a predominantly ordered state to a chaotic state and then back to a predominantly regular
state. Although there are well-documented numerical experiments reporting that the system is most
chaotic around the condition of autoparametric resonance, the exact mechanism behind the order-
chaos-order transition sandwiching the aforementioned chaotic state is not completely understood. In
this paper, by employing a combination of analytical and numerical methods, we establish that the
order-chaos-order transition occurs due to the interaction between two 2 : 1 resonances—one primary
and another secondary.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

It is very fascinating that deceptive simplicity of low-degree-
of-freedom systems, like elastic pendulum (also called swing–
spring [1]) – a three-degrees-of-freedom Hamiltonian system
– still intrigues researchers with newer phenomena even though
more than three centuries have elapsed since the governing
equations of the elastic pendulum have been established. Need-
less to say that quantum version of the elastic pendulum is
equally interesting; practically speaking, the pendulum models
the quantum dynamics of a few triatomic molecules, e.g., CO2,
where stretching of the molecular bonds and bending of the
molecule can be thought to be mimicked by the elastic pen-
dulum’s springing motion and the pendulum’s swinging motion
respectively. One rather newly found phenomenon in the elas-
tic pendulum is that of Hamiltonian monodromy [2–6]. The
phenomenon of order-chaos-order [7–11] is yet another inter-
esting phenomenon seen in the planar elastic pendulum (PEP)
[10,12–22], an even simpler version of the elastic pendulum,
where the elastic pendulum is constrained to oscillate in a fixed
vertical plane as shown in Fig. 1. In the phenomenon of the
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order-chaos-order, the system switches between the states of
the widespread chaotic motion and the predominantly regu-
lar motion. The PEP has also been used as a prototype model
to illustrate that the seed of irreversibility exists in the com-
plex dynamics of the nonlinear conservative system of merely
two-degrees-of-freedom [23].

To understand the precise meaning of the order-chaos-order
phenomenon, we recall [24] that a nonintegrable autonomous
Hamiltonian system possesses some chaotic trajectories even
if the nonlinearity is very weak. These trajectories for two-
degrees-of-freedom systems are localized between two KAM tori
[25–27]; for a higher degree of freedom systems, however, Arnold
diffusion [28] can overcome this confinement of the trajectories.
Somewhat figuratively speaking, when the boundaries of two
such localized regions come in contact with each other as some
system-parameter changes, the localized chaos gives way to the
widespread chaos. The Chirikov resonance overlap criterion [29]
gives an approximate quantitative estimate regarding when the
transition between the local chaos and the widespread chaos
in the system occurs. The criterion is based on the idea that it
is the overlap of two independent resonances that leads to the
widespread chaos. In the widespread chaotic regime, it is rather
easy to observe chaotic motion. In contrast, in the local chaotic
regime, the motion would appear predominantly regular.

In fact, although not probably reported in the literature, we
believe that the order-chaos-order phenomenon might be present
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Fig. 1. A schematic diagram of the planar elastic pendulum (PEP). P is the
immovable rigid point of support of the PEP and point O is the equilibrium
point at which mg = ks(l − l0). (See Section 1 for the details.)

in the elastic pendulum as well: In the limit of very stiff spring,
the elastic pendulum would appear as a spherical pendulum that
is known as to be integrable [30], and hence, is expected to
show mostly regular ordered motion. On the other hand, in the
limit of small amplitude motion, the nonlinear coupling between
the springing motion and the swinging motion can be taken to
be so small that the dynamics of the elastic pendulum would
correspond to the uncoupled integrable motions of a spherical
pendulum and a Hookian spring carrying a point mass at one end.
Thus, we do expect the nonintegrable elastic pendulum [31] to
show widespread chaos for the other ranges of parameters, and
hence, the order-chaos-order phenomenon.

The numerical search for the order-chaos-order transition is
quite straightforward, but that does not reveal the mechanism
behind this phenomenon. Moreover, since dealing with a fully
nonintegrable Hamiltonian analytically is almost impossible, it
would be quite insightful if appropriate perturbative methods
could be invoked to comprehend the phenomenon of order-
chaos-order. To the best of our knowledge, this endeavour has
not been taken up yet in the literature. Thus, in this paper,

we are motivated to investigate the phenomenon of the order-
chaos-order by considering the example of the PEP that is a
two-degrees-of-freedom autonomous nonintegrable Hamiltonian
system consisting of a point mass attached to the free end of
a massless elastic or extensible spring and is constrained to
oscillate in a vertical plane (see Fig. 1).

The Hamiltonian of the PEP in the radial–polar coordinate
system is given by [10,12],

H =
p2r
2m

+
p2θ

2m(δr + l)2
+

1
2
ksδr2 + mgδr(1 − cos θ ) +

mgl(1 − cos θ ) + Emin , (1)

where m is the mass attached with the spring, ks is the spring
constant, g is the acceleration due to gravity acting downwards,
δr and θ are the radial and the polar coordinates respectively,
and pr and pθ are the corresponding conjugate momenta. Emin ≡

−mgl + m2g2/2ks is the minimum energy of the PEP, i.e., the
energy when it is at rest and l is the equilibrium length of the
spring. For future convenience, we define, H ≡ −REmin, ω0

s ≡
√
ks/m, ω0

p ≡
√
g/l and µ ≡ (ω0

s /ω
0
p)

2
= 1 + ksl0/mg ≥ 1, where

l0 is the rest length of the spring. In this paper, we fix m = 1,
ks = 100, and g = 9.81—all in the S.I. units.

For small values of µ, i.e., µ → 1, the coupling between the
radial (springing) and the angular (swinging) modes of the PEP is
weak, and so the phase space trajectories are mostly regular [10].
For large values of µ, we can argue that ks is large (hard spring)
so that the spring behaves like an inextensible string, and hence
most of the energy is in angular mode making the system ef-
fectively a one-degree-of-freedom pendulum system. Thus, the
phase space trajectories for the large value of µ are again regular.
Hence, it intuitively appears that there may be an order-chaos-
order transition in the PEP. In fact, Fig. 2 illustrates that the
Poincaré sections of the PEP in libration regime at R = −0.7
and rotation regime at R = 4.0 for different values of µ speak
volumes for the existence of the order-chaos-order phenomenon
in both the libration and the rotation regimes. In general, while
the libration or the rotation states depend both on the values of R
and µ, it can be shown [10] that for R < 0 and R > 1, the system
is in the libration and the rotation regimes respectively for any
allowed value of µ.

Fig. 2. Order-chaos-order transition in the PEP. Subplots (a), (b), and (c), i.e., the upper row, depict the Poincaré sections in θ-pθ plane for µ = 1.4, 3, and 5 respectively
in the libration regime (R = −0.7). Similarly, subplots (d), (e), and (f), i.e., the lower row, showcase the Poincaré sections for µ = 5, 10, and 15 respectively in
the rotation regime (R = 4.0). The blue plots indicate the predominantly regular state whereas the red plots highlight the widespread chaos. To construct each
Poincaré section, we have solved the equations of motion of the PEP numerically for various initial conditions at fixed value of R and µ and then taken the section
of trajectories in θ − pθ plane for fixed δr = 0 and pr > 0. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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In order to facilitate analytical investigation of the order-
chaos-order phenomenon in the PEP, we choose to work in the
small amplitude limit for the motion of the PEP. Although this
effectively restricts us to remain within the libration regime
of the PEP, still even within this limit finding the quantitative
mechanism for the order-chaos-order phenomenon remains a
challenging problem whose answer happens to be quite nontriv-
ial as we show in this paper. To begin with, however, we have to
decide on the approximated Hamiltonian of the PEP so that it can
be perturbatively tackled for the problem in hand.

2. The PEP and the Chirikov overlap criterion

The Hamiltonian of the PEP in the Cartesian coordinate system
is [10,19]

H =
1
2m

(px2 + pz2) − mgz +
1
2
ks(
√
x2 + (l − z)2 − l0)2. (2)

Here, x and z respectively are the horizontal and the vertical com-
ponents of the displacement of the mass from the equilibrium
point, and px and pz are the corresponding conjugate momenta.
Also, l = l0 + mg/ks. Since the full Hamiltonian (Eq. (2)) is not
analytically tractable, we need an appropriately approximated
version of the Hamiltonian. It can be argued (see Appendix A) that
in order to be able to see chaos in the system, the Hamiltonian
should be approximated such that at least the terms up to the
fourth order are retained, i.e.,

H =
1
2m

(px2 + pz2) +
1
2
mω2

10x
2
+

1
2
mω2

20z
2
+ mν1x2z

+
1
4
mν2x4 − mν2x2z2 , (3)

where ω2
10 ≡ (ks/m)(1 − (l0/l)) = g/l, ω2

20 ≡ ks/m, ν1 ≡

(ks/2m)(l0/l2) = (ω2
20 − ω2

10)/2l, and ν2 ≡ (ks/2m)(l0/l3) =

(ω2
20 − ω2

10)/2l
2.

We treat the PEP as if it is a nonlinearly coupled one-degree-
of-freedom pendulum system and a one-degree-of-freedom
Hookian spring system. In the absence of this coupling, the PEP is
thus an integrable system that incidentally is an iso-energetically
non-degenerate although not a non-degenerate KAM system
[24,32]. The coupling makes the system nonintegrable but in
the limit of small amplitude oscillations (librations) – as we
consider in this paper – the PEP is a nearly integrable system
that comes under the purview of KAM theory, and hence can
also possibly be tackled by the Chirikov’s method of resonance
overlap. With this in mind, we first go on to write the optimally
truncated Hamiltonian in terms of the action–angle variables of
the unperturbed Hamiltonian (zero aforementioned coupling) as
discussed below.

2.1. Resonances in the PEP

Assuming that the extension in the length of the spring in mo-
tion is much smaller than the rest length of the spring (i.e., δr ≪

l0), the Hamiltonian given by Eq. (1) – up to the fourth-order
terms – can be cast as follows:

H(δr, θ, pr , pθ ) = H0
p (θ, pθ ) + H0

s (δr, pr )

+ Hpert(δr, θ, pr , pθ ) + Emin, (4)

where,

H0
p ≡

p2θ
2ml2

+ mgl(1 − cos θ ), (5a)

H0
s ≡

p2r
2m

+
1
2
ksδr2, (5b)

Hpert ≡
p2θ

2ml2

(
−

2δr
l

+
3δr2

l2

)
+ mgδr(1 − cos θ ) . (5c)

If the action–angle variables for H0
p be denoted by (J0p , φ

0
p ) and

that for H0
s be denoted by (J0s , φ

0
s ), then in the libration regime

one concludes [24,32]:

J0p =
8ml2ω0

p

π

(
E(k) − (1 − k2)K (k)

)
, (6a)

φ0
p =

π

2K (k)
F
(
1
k
sin

θ

2
; k
)
, (6b)

J0s =
H0

s

Ω0
s
, (6c)

φ0
s = sin−1

(√
mω0

s

2J0s
δr

)
, (6d)

where k2 ≡ H0
p/2mgl, Ω0

s ≡ ω0
s =

√
ks/m, K (k) is the com-

plete elliptic integral of first kind, E(k) is the complete elliptic
integral of second kind, and F (k) is incomplete elliptic integral
of the first kind [33]. The frequency, Ω0

p (k), corresponding to the
unperturbed pendulum is given by: Ω0

p (k) = πω0
p/2K (k) .

Furthermore, the equation of motion corresponding to the
unperturbed simple pendulum yields [24,32],

θ = 2 arcsin
[
k sn

(
2
π
K (k)φ0

p , k
)]

, (7a)

pθ = 2ml
√
glk cn

(
2
π
K (k)φ0

p , k
)
. (7b)

On using Eq. (6d), Eq. (7a), and Eq. (7b); and the series ex-
pansions [34] for sn2 and cn2 in Eq. (5c), we get the following
expression for Hpert in terms of the action–angle variables of the
unperturbed system:

Hpert = −4mgAs
E(k) − k′2K (k)

K (k)
sinφ0

s

+
6mgA2

s

l
E(k) − k′2K (k)

K (k)
sin2 φ0

s

+
π2

K (k)2
6mgA2

s

l

∞∑
n=1

Cn cos 2nφ0
p

+ 2mgAs
K (k) − E(k)

K (k)
sinφ0

s

+
π2

K (k)2
6mgAs

∞∑
n=1

Cn
[
sin(2nφ0

p − φ0
s ) − sin(2nφ0

p + φ0
s )
]

−
π2

K (k)2
3mgA2

s

l

∞∑
n=1

Cn
[
cos(2nφ0

p − 2φ0
s )

+ cos(2nφ0
p + 2φ0

s )
]
. (8)

Here, As ≡
√
2J0s /mω0

s and Cn ≡ nqn/(1 − q2n) with q ≡

exp(−πK (
√
1 − k2)/K (k)). The resonance terms explicitly present

in the Hamiltonian are called the primary resonances [24,35,36],
e.g., the 2n : 1 and the 2n : 2 resonances present in Eq. (8)
are the primary resonances whose strengths (Fourier coefficients)
respectively are

V2n,1 = 6mgCn

√
2J0s
mω0

s

π2

K (k)2
, (9a)

V2n,2 = −Cn
3mg
l

2J0s
mω0

s

π2

K (k)2
. (9b)
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Fig. 3. The 2 : 1 primary resonance is the strongest. This plot compares the
strengths of the most dominating primary resonances as given by Eq. (9). The
thinner green bars and the thicker red bars respectively correspond to the
resonances of type 2n : 1 and 2n : 2.

Fig. 4. No overlap of the dominant primary resonances in the libration regime.
The solid curves represent the values of action J0p of the resonance centres for
R = −0.7 as µ is varied. The blue, the red, the green, and the cyan curves
respectively correspond to the 2 : 1, the 2 : 2, the 4 : 1, and the 6 : 2
primary resonances. The width of each resonance is shown by the shaded region
sandwiching the corresponding solid curve; the lighter colours of the shaded
regions have been chosen to match with the corresponding darker colour of the
solid curve. The width is relatively too small to be seen around the cyan line.
The overlap (purple region) between the 2 : 1 and the 2 : 2 resonances, as seen
in the inset, is spurious (see text).

As we note in Fig. 3, the strengths of the resonances decrease
rapidly with the increasing value of n; among all the resonances,
the 2 : 1 resonance is the most dominating one.

For later discussion, we remark here that it is well known that
in case there was a single resonance term present in the Hamil-
tonian, one could introduce a set of new action–angle variables
such that the Hamiltonian becomes integrable, i.e., a function of
the new action alone. If now more primary resonances (in terms
of the old action–angle variable) are added to the Hamiltonian,
then the resonance terms – cast in terms of the aforementioned
new action–angle variables – give rise to the so-called secondary
resonances [24,35,36].

2.2. Resonances’ positions and widths

For the unperturbed Hamiltonian, an np : ns resonance – np
and ns being nonzero integers – occurs when, (npω

0
p − nsω

0
s ) = 0.

Here, ω0
p = φ̇0

p and ω0
s = φ̇0

s are the frequencies corresponding to
the unperturbed Hamiltonian. To understand the implication of
the resonance, one may recall the textbook case of a sinusoidally

forced simple harmonic oscillator,

ẍ +Ω2x = cosΩextt, (10)

that at Ωext = Ω (i.e., when the frequency of the external forcing
is equal to the natural frequency of the oscillator) is said to
be at resonance condition. The particular integral of Eq. (10) is
t sinΩextt/2Ωext and not cosΩextt/(Ω2

−Ω2
ext) that is valid only

when Ωext ̸= Ω . Hence, we note that the appearance of the
aperiodic solution is equivalent to the denominator, Ω2

−Ω2
ext,

being zero at resonance. Analogously, in the case of the PEP,
the resonance condition brings forth the infamous problem of
the small denominators, and thus, prevents the solution from
being periodic in φ(0)

s and φ(0)
p . For the perturbed Hamiltonian,

φ̇0
p and φ̇0

s that represent the frequencies of the system is not ω0
p

and ω0
s respectively; therefore, the resonance condition for the

perturbed Hamiltonian is better expressed in terms of the time
derivatives of the angle variables rather than the frequencies of
the unperturbed Hamiltonian, i.e.,

npφ̇
0
p − nsφ̇

0
s = 0 . (11)

We now intend to locate the position of the resonances in
the phase space. The approximate location can be found out in a
rather straightforward manner if one considers every resonance
in isolation, meaning, if we want to find the location of the 2 : 1
resonance, we work with the following truncated Hamiltonian:

H = J0s ω
0
s + 2(mgk)2

µ

ks
+ 6mg

q
1 − q2

√
2J0s
mω0

s

×
π2

K (k)2
sin(2φ0

p − φ0
s ) + Emin . (12)

This approximation, in effect, is equivalent to working with the
averaged dynamics about the resonance in hand so that the rest of
the resonant and the non-resonant terms appear to be relatively
highly oscillating, and consequently, their effect over a complete
period is negligible. We may remark here that the |np| : −|ns|

resonances are not realized in our system because they do not
satisfy Eq. (11) for the strictly positive values of φ̇0

p and φ̇0
s as is

the case for the system in hand.
We now perform a canonical transformation via the type-2

generating function, S2 =
1
2φ

0
s (I1−I2)+φ0

p I2, to go from the old co-
ordinates, (φ0

s , φ
0
p , J

0
s , J

0
p ), to the new coordinates, (ψ1, ψ2, I1, I2).

The explicit transformations between these coordinates are:ψ1 =

φ0
s /2, ψ2 = φ0

p − φ0
s /2, J0s = (I1 − I2)/2, and J0p = I2. It

should be noted from Eq. (11) that the transformation is such
that the condition for the 2 : 1 resonance reduces to ψ̇2 = 0.
Consequently, the fixed points – given by İ1 = İ2 = ψ̇2 = 0
– of the Poincaré map describing the dynamics on the points
of intersections of the phase trajectories with the hypersurface,
ψ1 = constant, locates the 2 : 1 resonance on the corresponding
I1-I2-ψ2 hypersurface. At the fixed point, thus, ψ2 = (2j + 1)π/4
(mod 2π ), where j ∈ {0, 1, 2, . . .}. Specifically, in θ-pθ plane,
where φ0

s = 0, the 2 : 1 resonance is located at φ0
p = (2j+1)π/4.

The fixed points corresponding to j = 0 and j = 2 are the two
centres of the 2 : 1 resonance. This can be ascertained [29] by
the fact that at these points, (dΩ0

p /dJ
0
p )V2,1sin(2φ0

p − φ0
s ) < 0.

Likewise, the fixed points corresponding to j = 1 and j = 3—for
which (dΩ0

p /dJ
0
p )V2,1sin(2φ0

p − φ0
s ) > 0—are the saddle points of

the 2 : 1 resonance.
Subsequently, the values of the actions J0s and J0p at the reso-

nance centre can be calculated using Eqs. (11) and (12). In Fig. 4,
we show the value of the action variable J0p of the 2 : 1 resonance
for fixed R = −0.7 (libration regime) and varying µ. We note
that the primary 2 : 1 resonance appears at µ = 1 and vanishes
around µ = 6. In the similar fashion we can find J0p vs. µ for any
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other primary resonances, e.g., 2 : 2, 4 : 1, and 6 : 2 resonances
as depicted in Fig. 4.

Under the same setting of isolated resonance as discussed
above, the resonance half-width of any np : ns resonance is given
by the following expression [37]:

1
2
(∆J0p )np,ns = 2

√
|Vnp,ns |

dΩ0
p /dJ0p

. (13)

For the PEP, therefore, the half-widths of the 2n : 1 and the 2n : 2
resonances can be calculated to be:

1
2
(∆J0p )2n,1 = 2

√
96m2gAsl2Cn

k2(1 − k2)K (k)
E(k) − (1 − k2)K (k)

, (14a)

1
2
(∆J0p )2n,2 = 2

√
48m2gA2

s lCn
k2(1 − k2)K (k)

E(k) − (1 − k2)K (k)
. (14b)

Fig. 4 also exhibits the half-widths for some of the primary
resonances, viz., 2 : 1, 2 : 2, 4 : 1, and 6 : 2. The 2 : 1
resonance has the maximum width, and the width of the higher
resonances are negligibly small. As a result, apart from an almost
unnoticeable overlap between the 2 : 1 and the 2 : 2 resonances
for approximately µ ∈ (1.1, 1.2), there is no overlap between
the primary resonances. We emphasize that we have actually
overestimated the widths. It is evident from Fig. 4 that (∆J0p )2,1
is, in fact, greater than J0p of the 2 : 1 resonance and this fact is
not in line with the premise of the Chirikov method. Same is the
case with the 2 : 2 resonance. Hence, the overlap between the
2 : 1 and the 2 : 2 resonances, as seen in the inset of Fig. 4, is
spurious. Probably, other methods of finding widespread chaos,
e.g., Greene’s method [38], could be more accurate.

3. Origin of the order-chaos-order transition

In view of the discussion in the preceding section, it is quite
intriguing that the widespread chaos, and hence the order-chaos-
order transition, should appear in the PEP; at least, the Chirikov
resonance overlap criterion as employed on the primary reso-
nances seems to rule out any such transition. However, there is
no denying that the order-chaos-order transition does happen in
the PEP. Hence, it is logical to conjecture that the chaos in the
transition might owe its origin to the secondary resonances.

In principle, the secondary resonances can be identified using
the Birkhoff normalization technique [36] that is performed near
a particular resonance, say n0

pω
0
p − n0

sω
0
s = 0, with a view to

eliminate the other resonances. The resulting new transformed
Hamiltonian is, in general, an infinite series of new resonant
terms which correspond to the secondary resonances. (It may
happen that some of the new resonant terms are similar to the
primary resonances.) The Birkhoff normalization technique can be
repeatedly applied to arbitrary order so that further resonances
like tertiary resonances are generated. However, the PEP is not
a simple enough system to facilitate the analytical search of
the secondary and the further resonances via the normalization
technique. Hence, we resort to systematic numerical experiments
to find the secondary resonances and hence to pinpoint the origin
of the order-chaos-order in the PEP.

3.1. Results for the truncated Hamiltonian of the PEP

Recall that in Section 2, we have concerned ourselves with the
approximated Hamiltonian so that we can analytically pinpoint
the locations of the resonances and find the strengths of the res-
onances. Therefore, when in this section, we turn to the numerical
simulations, we still keep using the approximated Hamiltonian so
that the correctness of the numerical results can be ascertained

using the aforementioned analytically obtained results. We do
understand that using the full Hamiltonian is technically more ac-
curate. In that case, however, the numerically obtained positions
of the resonances would not follow the analytical predictions
(obtained using the approximated Hamiltonian) closely; but the
trend is expected to remain qualitatively similar. Specifically,
the lower order primary resonances should be robust to our
choice of Hamiltonian (approximated or full) owing to their large
strengths. For example, as we note later in this paper, the primary
resonances 2:1 and 4:1 appear clearly at the same values of µ for
both the approximated Hamiltonian and the full Hamiltonian. In
view of these facts, in this section we numerically time-evolve
the PEP using the approximated Hamiltonian given in Eq. (4) and
plot the Poincaré sections in Fig. 5. A similar study with the full
Hamiltonian is done subsequently.

To construct each Poincaré section, we solve the correspond-
ing equations of motion of the PEP using various initial conditions
at the fixed values of R (= −0.7) and µ, and take the section of
trajectories in θ-pθ plane while fixing δr = 0 and pr > 0. The
very first thing we observe is that our analytical calculations –
summarized in Fig. 4 – are validated by the plots in Fig. 5: (i)
the 2 : 2 and the 2 : 1 primary resonances start at µ = 1+,
(ii) the 2 : 2 resonance disappears at around µ ≈ 1.2, (iii) the
2 : 1 primary resonance vanishes at µ ≈ 6, (iv) around µ ≈ 8.0,
we see the emergence of the 6 : 2 primary resonance which
disappears at around µ ≈ 9, and (v) at µ ≈ 14.0, we see the
4 : 1 primary resonance appear.

Coming to the main point of this paper, we observe that
the order-chaos-order phenomenon is distinctly visible in the
plots. In fact, as we have conjectured earlier in the paper, this
phenomenon owes its origin to the presence of the resonances
that are not explicitly present in the perturbative part of the
Hamiltonian (see Eq. (8)) under consideration. In Fig. 5, we notice
that starting from µ ≈ 1.43 there is a series of secondary
resonances, viz., 6 : 5, 5 : 4, 4 : 3, 6 : 4, and 2 : 1, that
appear with increasing µ. For the problem in hand, the most
crucial secondary resonance is the 2 : 1 secondary resonance that
arises at µ ≈ 2.7. At µ ≈ 3.0, there is an overlap of the 2 : 1
primary resonance and the 2 : 1 secondary resonance which brings
forth the widespread chaos needed for the initiation of the order-
chaos-order phenomenon. As mentioned earlier, at around µ ≈ 6,
the 2 : 1 primary resonance vanishes but the 2 : 1 secondary
resonance is still existent although with a decreased width. There
is no further discernible overlap between the resonances beyond
µ = 6, or in other words, the order has been reestablished in the
system.

Since the chaos in the system is most strongly observed in
the vicinity of µ = 4, a close investigation of the overlap of the
primary and the secondary 2 : 1 resonances near autoparametric
resonance condition is insightful. In Fig. 6, we plot the Poincaré
sections for the values of µ ranging from 3.3 to 4.7, and note that
the order-chaos-order sequence is accompanied by the reconnec-
tion between the saddle of one 2 : 1 resonance and the two
pairs of centre points of the other 2 : 1 resonance. Specifically,
in this range, for µ < 4, (0, 0) is the saddle of the secondary
2 : 1 resonance (see Figs. 6(a)–6(h)). The size of this resonance
increases with µ, and at µ = 4, the separatrix of the secondary
resonance covers a large portion of the phase space and conse-
quently overlaps with the primary 2 : 1 resonance bringing forth
the widespread chaos. For µ > 4.0, a reconnection takes place
and (0, 0) becomes the saddle of the primary 2 : 1 resonance
(see Figs. 6(i)–6(o)). This reconnection phenomenon in the order-
chaos-order transition not only known for the PEP [10,39] but
also in another closely related system – spring–mass–pendulum
system – showing similar 2 : 1 autoparametric resonance [40].



6 Anurag, B. Mondal, J.K. Bhattacharjee et al. / Physica D 402 (2020) 132256

Fig. 5. Order-chaos-order transition in the PEP approximated by Eq. (4). This figure represents the Poincaré sections at R = −0.7 for different values of µ in θ-pθ
plane. The blue plots indicate the predominantly regular states whereas the red plots highlight the widespread chaos. We note the presence of the 2 : 1 (subplots
(a)–(k)) and the 2 : 2 (subplot (a)) primary resonances for smaller values of µ. Before the transition to the chaotic state various secondary resonances, e.g., 6 : 5 (in
subplot (b)), 5 : 4 (in subplot (c)), 4 : 3 (in subplot (d)), 6 : 4 (in subplot (e)) and 2 : 1 (in subplot (f)) are observed between µ = 1+ to µ ≈ 2.8. The transition from
the ordered states (subplots (a)–(f)) to the chaotic states (subplots (g)–(i)) starts at µ ≈ 3.0 due to the overlap between the 2 : 1 primary and the 2 : 1 secondary
resonances. The widths of the resonances decrease with further increase in µ leading to another transition from the chaotic state to the ordered state at µ ≈ 4.8.
At µ ≈ 6.0, the 2 : 1 primary resonance vanishes (subplot (k)). Other primary resonances, viz., the 6 : 2 (subplot (l)) and the 4 : 1 (subplot (o)) are also observed
but there is no resonance overlap and the system stays mostly in the ordered states (subplots (j)–(o)). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3.2. Results for the full Hamiltonian of the PEP

Having used a combination of numerical and analytical meth-
ods to unravel the mechanism of the order-chaos-order transition
in the approximated Hamiltonian of the PEP, we must find out
how robust the results are if the full Hamiltonian of the PEP
is considered. We now show that the order-chaos-order tran-
sition, via the reconnection between the saddle of one 2 : 1
resonance and the two pairs of centre points of the other 2 : 1
resonance, is a robust phenomenon; i.e., the mechanism of the
transition remains qualitatively unchanged even if an infinite

number of nonlinear terms beyond quartic order are ignored in
the Hamiltonian of the PEP.

To this end, we present Fig. 7 containing the Poincaré sections
corresponding to the PEP Hamiltonian (Eq. (1)) for various values
of µ and R = −0.7. We see that the qualitative picture is
similar to what is obtained in Fig. 5 using the approximated
Hamiltonian of the PEP. Specifically, the locations, the strengths,
and the dependence on µ of the lower order primary resonances,
e.g., 2 : 1 and 4 : 1 remain almost unaltered. As far as the higher
order resonances appearing in the approximated Hamiltonian are
concerned, they exist even in the case of the full Hamiltonian but
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Fig. 6. Reconnection in the primary 2 : 1 and the secondary 2 : 1 resonances near µ = 4.0 using the approximated Hamiltonian (Eq. (4)). This figure depicts the Poincaré
sections in θ-pθ plane for µ = 3.3 to 4.7 at R = −0.7. For µ < 4.0, (θ, pθ ) = (0, 0) is the saddle point corresponding to the secondary 2 : 1 resonance; and for
µ > 4.0, (θ, pθ ) = (0, 0) is the saddle point corresponding to the primary 2 : 1 resonance.

their strengths and the values of the µ at which they appear may
slightly differ.

Similar to the Poincaré sections (Figs. 5(g)–5(i)) of the approx-
imated PEP, here also we observe that the chaos is dominant
around µ = 4.0 due to the overlap of the primary and the
secondary 2 : 1 resonances (Figs. 7(d)–7(f)). Additionally, we
observe in Fig. 8 that the order-chaos-order is mediated through
the reconnection between the saddle of one 2 : 1 resonance and
the two pairs of centre points of the other 2 : 1 resonance. We
also observe the secondary 4 : 3 (Fig. 7(a)) and 6 : 4 (Fig. 7(b)) res-
onances in the Poincaré sections at µ = 1.8 and 2.5 respectively.
The secondary 2 : 1 resonance (Fig. 7(c)) emerges at µ ≈ 2.8.
While the primary 2 : 1 resonance vanishes beyond µ ≈ 6.0, the
secondary 2 : 1 resonance still exists. Similar to the approximated
case, no resonance overlap is observed beyond µ ≈ 6.0 and the
system acquires the dominantly regular state again. The 6 : 2
primary resonance appears at µ ≈ 6.8 which also arises in the

approximated Hamiltonian case but for slightly higher value of
µ ≈ 8.0. At µ ≈ 14.0, we find the primary 4 : 1 resonance which
also matches with our analytical prediction in Fig. 4 and also with
the Poincaré section (Fig. 5(o)) for approximated Hamiltonian.

The spread of chaos at certain values of µ, as seen in Fig. 7,
can be extended if R is increased. This can be concluded if we
compare the plots for R = −0.7 with corresponding plot of the
Poincaré sections at R = −0.3, i.e., for relatively higher value
of energy (Fig. 9). Although the strengths of the primary and
the secondary resonances change, they all appear in the case of
R = −0.3 as well. Consequently, the order-chaos-order transition
is observed as well. It may be worth pointing out that unlike the
case of some other similar systems exhibiting order-chaos-order
sequence (e.g., two-degree-of-freedom-spring–mass–pendulum
system [40]), varying either the ratio of the spring and the
pendulum frequencies or the total system energy leads to an
order-chaos-order sequence in the PEP [10].
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Fig. 7. Order-chaos-order transition in the PEP at R = −0.7 using Eq. (1). The blue colour indicates the predominantly regular states, green colour is used to highlight
some small resonance islands, and the red colour indicates the widespread chaos. We note the presence of the primary 2 : 1 resonance (subplots (a)–(h)) for
µ ∈ (1+, 6.8). Before the transition to the chaotic state various secondary resonances, e.g., 4 : 3 (in subplot (a)), 6 : 4 (in subplot (b)) and 2 : 1 (in subplot (c)) first
appear between µ = 1+ to µ ≈ 2.8. The transition from the ordered states (subplots (a)–(c)) to the chaotic states (subplots (d)–(f)) starts at µ ≈ 3.3 due to the
overlap between the 2 : 1 primary and the 2 : 1 secondary resonances. Other primary resonances, viz., 6 : 2 (subplot (h)) and 4 : 1 (subplot (i)) are also observed
but there is no resonance overlap and the system stays mostly in the ordered states (subplots (g)–(i)). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Recall that in θ-pθ plots, following reconnection at µ = 4,
(0, 0)—that is the saddle of the secondary 2 : 1 resonance for
2.8 ≲ µ ≲ 4.0—becomes the saddle of the primary 2 : 1
resonance for µ > 4.0. There is chaos about the separatrix. In
the neighbourhood of the autoparametric resonance condition,
the spring mode excites the oscillation along horizontal direction,
i.e., the saddle structure grows (initiating the chaos in the system)
and for the other values of µ further away from µ ≈ 4, the saddle
structure remains close to the origin (system remains predomi-
nantly regular) [10]. Similarly, the swing mode also excites the
oscillation along vertical direction for µ ≈ 4.0. Thus, the energy
in the PEP is continuously exchanged between the spring and
the swing modes. This exchange of energy has been studied in
detail [39]. It is seen that at µ = 4.0, the region of widespread
chaos in the PEP increases as the energy of the system increases
leading to an interesting fact which is best understood if we
treat the PEP as a nonlinearly coupled system of a one-degree-of-
freedom pendulum and a one-degree-of-freedom Hookian spring.
We can, thus, split the energy content of the PEP in three parts:
energy in the pendulum, energy in the spring, and energy in the
nonlinear coupling. At the autoparametric resonance condition,
when only the spring or the pendulum moves, all three parts of
the energy remain constant in time but when the spring mode
and the swing mode exchange energy, the coupling energy does
small oscillations and paves the way for the energy transfer
between the two modes. In contrast, when the PEP is driven away
from the autoparametric resonance condition, say, by increasing
the initial energy of the system, many disconnected resonance
islands are created in the phase space such that all the three parts
of the energy terms oscillate regularly and energy is regularly
exchanged between the two modes—a signature of quasiperiodic
motion.

3.3. Trajectories in the physical x-z space

In order to get the more insight into the fundamentally dif-
ferent kinds of dynamics of the PEP in the physical space and
how these correlate to our understanding of the phase space of
the PEP, we also plot the trajectories made by the point mass
of the PEP in the physical x-z space. In Fig. 10, we present
some illustrative plots of the trajectories for the chaotic and the
quasiperiodic motions in the x-z plane. In the plots, µ ranges from
3.8 to 4.2 and R = −0.7. To be able to distinguish the chaotic and
the quasiperiodic motions qualitatively in the physical space, we
evolve the system for two nearby initial conditions in θ-pθ plane
(δr = 0.0) for a sufficiently long time. As an aside, it may be noted
that the value of pr can be calculated using the Hamiltonian of the
PEP since energy is conserved for each trajectory.

In the first column of the figure (Figs. 10(a)–10(e)), we take
two nearby initial conditions – (0.01, 0.01) and (0.011, 0.01) –
near the separatrix, where chaos is supposed to have set in.
In the second column (Figs. 10(f)–10(j)) and the third column
(Figs. 10(k)–10(o)) of the figure, we respectively take the initial
conditions near the primary and the secondary 2 : 1 resonances
inside which the motions are supposed to be quasiperiodic:
for the primary resonance the initial conditions are (0.4, 0.4)
and (0.401, 0.4); whereas the initial conditions, (−0.4, 0.4) and
(−0.401, 0.4)), are used for the secondary resonance. We observe
that the two nearby trajectories in the case of the chaotic motion
do not always remain close to each other when they are evolved
for a sufficiently long time, whereas the nearby trajectories al-
ways move close to each other in the case of the quasiperiodic
motions. In order to quantitatively distinguish these two types
of motion, we also calculate the maximum Lyapunov exponent
for the trajectories, and as expected, the exponent is positive
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Fig. 8. Reconnection in the primary 2 : 1 and the secondary 2 : 1 resonances near µ = 4.0 using Eq. (1). This plot depicts the Poincaré sections in θ-pθ plane for
µ = 3.3 to 4.7 at R = −0.7. For µ < 4.0, (θ, pθ ) = (0, 0) is the saddle point corresponding to the secondary 2 : 1 resonance; and for µ > 4.0, (θ, pθ ) = (0, 0) is the
saddle point corresponding to the primary 2 : 1 resonance.

definite and zero (approximately) for the chaotic trajectories and
the quasiperiodic trajectories respectively.

A very perceptible change in the range of the motion of the
point mass along z-direction with increasing µ may be noted for
the cases of the quasiperiodic motions; e.g., the second column
of Fig. 10 that corresponds to the primary 2 : 1 resonance,
depicts a monotonous decrease in the range with increasing µ.
The effect is most clearly seen at x = 0. Since x = 0 corresponds
to θ = 0 (recall that x = (l + δr) sin θ ), the reason behind
this observation is best understood with the help of the Poincaré
sections in δr-pr plane (θ = 0.0). In Fig. 11(a), we present a
plot consisting of such Poincaré sections for the initial conditions
corresponding to the five blue trajectories present in the second
column of Fig. 10. We observe that with increasing µ, the torus
on which the fixed initial condition is chosen shrinks in size
with increasing µ such that the maximum value of δr for the
torus decreases. Thus, it straightforwardly follows that range of

the motion along z-direction should decrease (recall that z =

−(l + δr) cos θ .). Also, since the shrinkage in the torus’s size
is not accompanied by an appreciable change in the minimum
value of δr , the decrease in the width of the region covered by
the trajectory corresponding to the primary 2 : 1 resonance
(see Figs. 10(f)–10(j)) is dominantly from the upper side.

The change in the range of the motion along z-direction with
increasing µ for the case of the secondary 2 : 1 resonance can
be similarly explained using Fig. 11(b) that exhibits the Poincaré
sections in δr-pr plane (θ = 0.0) for the initial conditions corre-
sponding to the five blue trajectories present in the third column
of Fig. 10. However, when compared with the case of the primary
2 : 1 resonance, this case is different in at least two aspects:
Firstly, the range monotonously decreases with increasing µ for
µ ≤ 4 in the neighbourhood of µ = 4 (see Figs. 10(k)–10(m))
and it monotonously increases for µ > 4 in the neighbourhood of
µ = 4 (see Figs. 10(n)–10(o)). Secondly, the shrinkage in the size
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Fig. 9. Order-chaos-order transition in the PEP at R = −0.3 using Eq. (1). The blue colour indicates the predominantly regular states whereas the red colour highlights
the widespread chaos. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

of the torus (on which the initial condition has been chosen) is
accompanied by the change in the location of both the minimum
and the maximum values of δr .

4. Discussion and conclusions

To conclude, we have explored the order-chaos-order phe-
nomenon in the PEP in detail by working with the truncated
Hamiltonian having up to fourth order terms. Before using the
Hamiltonian for our purpose, we have systematically justified
that it is the minimal and optimal Hamiltonian to work with.
While it is desirable that one uses the full Hamiltonian to explain
the mechanism behind the order-chaos-order transition both in
the libration and the rotation regimes (recall Fig. 2), it is not an
analytically feasible exercise. In view of this, our results are quite
important because it clearly sheds first light on the exact mech-
anism of the order-chaos-order in one of the prototype system,
viz., the PEP. The fact that it is the overlap between the primary
2 : 1 and the secondary 2 : 1 resonances that initiates the order
to chaos transition in the order-chaos-order phenomenon in the
PEP, makes it clear that even if the Chirikov overlap criterion
applied to the primary resonances to find widespread chaos fails,
there can be the order-chaos-order in the system.

Another well-explored system, which is very similar to the
PEP, is the two-degree-of-freedom-spring–mass–pendulum sys-
tem [41]. An inspection of the system’s Hamiltonian, expressed
in terms of the action–angle variables of the pendulum and the
Hookian spring, shows 2 : 1 primary resonance that is known to
be responsible to the autoparametric resonance in the system. A
numerical investigation [40] of the Poincaré sections reveals that
even here the primary and the secondary resonances responsible
for the order-chaos-order transition are of the same 2 : 1 type;
additionally, saddle reconnection identical to the case of the PEP
is seen in this system at the autoparametric resonance condition.
There have been elaborate studies [40,42] of nonlinear normal

modes and their bifurcations in the spring–mass–pendulum sys-
tem. This motivates a similar future investigation of nonlinear
normal modes, their bifurcations and – most importantly – their
connection with the overlaps of the primary and the secondary
resonances for the case of the PEP. In fact, the connection of
the bifurcations of the nonlinear normal modes with the over-
laps of the resonances is missing even in the literature of the
spring–mass–pendulum system.

The surprising coincidence, if at all it is one, that the primary
and the secondary resonances responsible for the order-chaos-
order transition are of the same type, e.g., 2 : 1 for the PEP, can
be witnessed in many other systems as well (see Appendix B for
another example). Whether there is a systematic reason behind
this is an open question. Also, it may be worth to study the
implication of the mechanism found for the order-chaos-order
transition on the quantized version of the system. Furthermore,
one can always extend the investigations done here to encompass
the three-degrees-of-freedom elastic pendulum that is used to
model some triatomic molecules.
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Appendix A. The approximated Hamiltonian

At the autoparametric resonance condition (ω20 = 2ω10)
[19,43], the approximate/truncated equations of motion for the
PEP are given by [44–46]

ẍ + ω2
10x = −3ω2

10xz/l , (A.1a)



Anurag, B. Mondal, J.K. Bhattacharjee et al. / Physica D 402 (2020) 132256 11

Fig. 10. Chaotic and quasiperiodic trajectories in the physical x-z space. This figure presents the chaotic and the quasiperiodic motions for µ ranging from 3.3 to 4.2 at
R = −0.7. Blue and red trajectories correspond to two nearby initial conditions. First column, i.e., subplots (a)–(e), represent the chaotic trajectories where the blue
and the red colours correspond to the initial conditions (θ, pθ , δr) = (0.01, 0.01, 0.0) and (θ, pθ , δr) = (0.011, 0.01, 0.0) respectively. The second column (subplots
(f)–(j)) and the third column (subplots (k)–(o)) respectively depict the quasiperiodic trajectories near the primary 2 : 1 and the secondary 2 : 1 resonances. For the
primary 2 : 1 resonance, (0.40, 0.40, 0.0) and (0.401, 0.40, 0.0) are the initial conditions for the blue and the red trajectories respectively, whereas for the secondary
2 : 1 resonance, (−0.40, 0.40, 0.0) and (−0.401, 0.40, 0.0) are the initial conditions for the blue and the red trajectories respectively. The values of the maximum
Lyapunov exponent for all the trajectories in blue are mentioned inside the respective subplots. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

z̈ + 4ω2
10z = −3ω2

10x
2/2l . (A.1b)

This corresponds to the Hamiltonian truncated at the third order,
i.e.,

H =
1
2m

(px2 + pz2) +
1
2
mω2

10x
2
+

1
2
mω2

20z
2
+ mν1x2z. (A.2)

One further notes [46] that the solutions for x and z assumed
to be

x(t) = A(t) cos(ω10t + δx(t)) , (A.3a)
z(t) = B(t) cos(2ω10t + δz(t)) , (A.3b)

having the sinusoidal functions with slowly varying amplitudes
and phases, yields the following flow equations:

Ȧ = −
3ω10AB

4l
sinχ , (A.4a)

Ḃ =
3ω10A2

16l
sinχ , (A.4b)

χ̇ =
3ω10

2l

(
A2

8B
− B

)
cosχ . (A.4c)

Here, χ ≡ δz−2δx. It is easy to verify that the flow equations pos-
sess two constants of motion, viz., A2

+4B2 and A2B cosχ , making
the (approximated) dynamical system mostly non-chaotic. In fact,
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Fig. 11. Resonance centres and nearby quasiperiodic orbits in δr-pr plane. Blue, red, green, magenta, and cyan colours respectively correspond to µ =

3.8, 3.9, 4.0, 4.1, and 4.2 respectively. Subplot (a) shows that the torus, for the initial condition chosen in the primary 2 : 1 resonance island, shrinks from the right
side with increasing µ. In contrast, subplot (b) shows that the torus, for the initial condition chosen in the secondary 2 : 1 resonance island, shrink along both the
left and the right side, as µ increases.

even the elastic pendulum is integrable if we keep only up to
cubic terms [47].

Hence, we conclude that in order to be able to easily see chaos
in the system, it is pertinent that the Hamiltonian should be
approximated such that at least the terms up to fourth order are
retained, i.e.,

H =
1
2m

(px2 + pz2) +
1
2
mω2

10x
2
+

1
2
mω2

20z
2
+ mν1x2z

+
1
4
mν2x4 − mν2x2z2 . (A.5)

Indeed, on applying any standard perturbation method [43,48–
50], we arrive at the following flow equations:

Ȧ = −
3ω10AB

4l
sin(δz − 2δx) +

9ω10AB2

64l2
cos(δz + δx) sin(δz − δx)

−
27ω10AB2

64l2
cos(δz − δx) sin(δz + δx)

−
9ω10AB2

16l2
cos(δz − δx)

× sin(δz − δx) +
9ω10A3

64l2
sin 2δx

+
9ω10A3

128l2
cos 2δx sin 2δx , (A.6a)

δ̇x =
3ω10B
4l

cos(δz − 2δx) −
9ω10B2

64l2
cos(δz + δx) cos(δz − δx)

−
27ω10B2

64l2
sin(δz + δx) sin(δz − δx) −

9ω10B2

16l2
sin2(δz − δx)

−
21ω10B2

64l2
+

27ω10A2

128l2
+

9ω10A2

64l2
cos 2δx

−
9ω10A2

128l2
sin2 2δx , (A.6b)

Ḃ =
3ω10A2

16l
sin(δz − 2δx) +

9ω10A2B
128l2

cos(δz + δx) sin(δx − δz)

+
27ω10A2B
128l2

sin(δz + δx) cos(δx − δz)

+
9ω10A2B
32l2

cos(δx − δz)

× sin(δz − δx) , (A.6c)

δ̇z =
3ω10A2

16lB
cos(δz − 2δx) −

9ω10A2

128l2
cos(δz + δx) cos(δx − δz)

+
27ω10A2

128l2
sin(δz + δx) sin(δx − δz) +

9ω10A2

32l2
sin(δz − δx)

× sin(δx − δz) −
3ω10A2

8l2
. (A.6d)

We validate numerically that this indeed is a chaotic system. As
an illustration, we remark that using the initial condition, A(0) =

5.523, B(0) = 0.805, δx(0) = −π/2, δz(0) = π , the maximum
Lyapunov exponent is found out to be +3.539 ± .001.

To conclude, it suffices for the purpose of the paper to work
with the Hamiltonian approximated to keep terms only up to
the fourth-order, i.e., with the equations of motion that have
nonlinearity up to the cubic order.

Appendix B. Chaos to order transition in the generalized
Hénon–Heiles systems

As pointed out in the introduction, there are several other
systems that undergo the order-chaos-order transition. In this
appendix, we have shown that the generalized Hénon–Heiles
system [9] also exhibits the transition and that transition is due to
overlap of a primary and a secondary resonance of the same type,
viz., 2 : 2. The Hamiltonian for the generalized Hénon–Heiles
system is,

H =
p2x
2

+
p2y
2

+
1
2
ax2 +

1
2
ay2 + cx4 + cy4 + bx2y

−
1
3
by3 + 2cx2y2 . (B.1)

Let the action–angle variables of the unperturbed systems be
(φ0

x , φ
0
y , J

0
x , J

0
y ), so that

x =

√
2J0x
√
a
sinφ0

x , (B.2a)

px =

√
2J0x

√
a cosφ0

x , (B.2b)

y =

√
2J0y
√
a
sinφ0

y , (B.2c)

py =

√
2J0y

√
a cosφ0

y . (B.2d)

The Hamiltonian of this system in terms of the action angle
variable is, therefore,

H =
√
a
(
J0x + J0y

)
−

b
3

(
2J0y
√
a

) 3
2

sin3 φ0
y + 4c

(
J0x

2

a
sin4 φ0

x

+
J0y

2

a
sin4 φ0

y

)

+
b
2

J0x
√
a

(
2J0y
√
a

) 1
2 [

2 sinφ0
y − sin(2φ0

x + φ0
y )

+ sin(2φ0
x − φ0

y )
]
+ c

J0x
√
a

J0y
√
a
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Fig. B.12. Order-chaos-order phenomena in the generalized Hénon–Heiles system. Above figure shows the Poincaré sections of the system in x-px plane. The blue plots
represent the system in the predominantly ordered states and the red plots highlight the widespread chaos in the system. The transition from order to chaos is
observed at E ≈ 9 due to the overlap of the 2 : 2 primary resonance and the 2 : 2 secondary resonance. We observe another transition from the chaotic to the
ordered state at energy E ≈ 1800. Here, a = 1, b =

√
10, and c = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)

×
[
2 − 2 cos 2φ0

x − 2 cos 2φ0
y − cos(2φ0

x + 2φ0
y )

− cos(2φ0
x − 2φ0

y )
]
. (B.3)

From the Hamiltonian, it is clear that there are only 2 : 1
and 2 : 2 primary resonances in the system (

√
a > 0). This sys-

tem, unfortunately, is not easily amenable to the Chirikov over-
lap technique because the unperturbed (quadratic) part of the
Hamiltonian is neither non-degenerate nor iso-energetically non-
degenerate. Nevertheless, Fig. B.12 illustrates the order-chaos-
order transition in the system and establishes that it is mainly due
to the interaction between the primary 2 : 2 and the secondary
2 : 2 resonances.
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